
Vol.:(0123456789)

Machine Learning (2022) 111:4003–4038
https://doi.org/10.1007/s10994-022-06220-w

1 3

GENs: generative encoding networks

Surojit Saha1 · Shireen Elhabian1 · Ross Whitaker1

Received: 18 October 2021 / Revised: 22 April 2022 / Accepted: 2 July 2022 /
Published online: 19 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022

Abstract
Mapping data from and/or onto a known family of distributions has become an impor-
tant topic in machine learning and data analysis. Deep generative models (e.g., generative
adversarial networks) have been used effectively to match known and unknown distribu-
tions. Nonetheless, when the form of the target distribution is known, analytical methods
are advantageous in providing robust results with provable properties. In this paper, we
propose and analyze the use of nonparametric density methods to estimate the Jensen-
Shannon divergence for matching unknown data distributions to known target distribu-
tions, such Gaussian or mixtures of Gaussians, in latent spaces. This analytical method has
several advantages: better behavior when training sample quantity is low, provable conver-
gence properties, and relatively few parameters, which can be derived analytically. Using
the proposed method, we enforce the latent representation of an autoencoder to match a tar-
get distribution in a learning framework that we call a generative encoding network. Here,
we present the numerical methods for bandwidth estimation; derive the expected distribu-
tion of the data in the latent space; show the advantages over the adversarial counterpart;
study the properties of the latent space such as entropy, sample generation, interpolation;
and demonstrate the application of the method in the real world.

Keywords Nonparametric density estimation · Latent space regularization · Generative
model

Editor: Krzysztof Dembczynski and Emilie Devijver.

 * Surojit Saha
 surojit@cs.utah.edu

 Shireen Elhabian
 shireen@sci.utah.edu

 Ross Whitaker
 whitaker@cs.utah.edu

1 Scientific Computing and Imaging Institute, School of Computing, University of Utah,
Salt Lake City 84112, Utah, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06220-w&domain=pdf

4004 Machine Learning (2022) 111:4003–4038

1 3

1 Introduction

Autoencoder-based generative models have proved their merit to be used as a generative
model besides building a latent representation that can be used for statistical analysis and
downstream tasks, such as classification and regression. In autoencoder-based generative
models, the low-dimensional data manifold in the latent space of an autoencoder is regu-
larized to match a target, defined a priori. A slew of such methods have been developed
lately that primarily differ in terms of the regularization penalty over the reconstruction
loss of the autoencoder. In this paper, we propose an autoencoder-based generative model
that uses the Jensen-Shannon divergence (JSD) to match the data distribution in the latent
space (aka encoded distribution), approximated by the kernel density estimate (KDE), to
the target. In addition to the general properties of the autoencoder-based generative mod-
els, the proposed method has provable properties of the encoded distribution.

Research in statistical modeling and deep learning has made great strides in the discov-
ery of latent spaces in the context of nonlinear, high-dimensional, and very general trans-
formations, such as those developed by autoencoders that employ deep neural networks
(Tschannen et al., 2018). While encoder technologies, such as deterministic denoising
(Vincent et al., 2008) and contractive (Rifai et al., 2011) autoencoders, can produce latent
representation for samples, the structure of the data population in that latent space is often
underspecified or unconstrained, such that one cannot readily reason about that distribution
or sample from them. Thus, such models often fail as generators of new samples.

Generators, on the other hand, such as those produced by the generative adversarial net-
work (GAN) (Goodfellow et al., 2014; Radford et al., 2016), have demonstrated impres-
sive capabilities to produce new, very realistic samples (both qualitatively and quantita-
tively) from complex distributions described by training data. This is achieved, typically,
by learning a transformation from a known distribution in a latent space into the high-
dimensional data space. However, it is difficult to achieve convergence (Kodali et al., 2017;
Liu et al., 2017; Mescheder et al., 2018; Barnett, 2018), optimizing the objective function
of the vanilla GAN. Different training strategies have been adopted to address the stability
of training GANs (Salimans et al., 2016; Roth et al., 2017). Addressing stability in training
GANs using different divergence measures, regularization penalties and training strategies
has led to the development of many variants of the vanilla GAN, such as the fGAN (Nowo-
zin et al., 2016), WGAN (Arjovsky & Bottou, 2017), WGAN-GP (Gulrajani et al., 2017),
LS-GAN (Mao et al., 2015), and MMD-GAN (Li et al., 2017). The autoregressive model
(Larochelle & Murray, 2011; Germain et al., 2015) is another class of generative model
that, unlike the GAN, explicitly learns the data distribution as products of conditional dis-
tributions built using some hidden representations. These methods are, however, limited by
the slow sampling process and are not as popular as GANs.

Inverse mapping (from data samples into the latent space) is another concern with
GANs. Therefore it is often difficult to reason about the absolute or relative positions of
generated sample in the latent space. Models that map training samples into latent spaces
with well-defined properties are of significant value and interest. For instance, using such
mappings, we can compute data densities in the latent space, which could be relevant
for anomaly detection (Chalapathy & Chawla, 2019). We might also want to compare or
manipulate data samples in the latent space, and thereby generate new, realistic samples
in controlled ways (Zhu et al., 2016). These motivations, and others, have led to the devel-
opment of autoencoder-based generative models that seek to build latent spaces that have
two properties: (i) an approximate invertible mapping from the data space to the latent

4005Machine Learning (2022) 111:4003–4038

1 3

space and (ii) data in the latent space with defined statistical characteristics that lead to
probabilistic reasoning and sample generation. Autoencoder-based generative models learn
a joint distribution of data and latent variables where the encoded distribution is mapped
to a prior distribution that makes it a generative model. These methods are very stable in
terms of training, and are not finicky about the architectural choices and hyperparamter set-
tings, as experienced with GANs. The variational autoencoder (VAE) (Kingma & Welling,
2014) learns the data distribution by maximization of the evidence lower bound (ELBO)
that matches the conditional posterior to a prior. Other alternatives, such as the adversarial
autoencoder (AAE) (Makhzani et al., 2016), and the Wasserstein autoencoder (WAE) (Tol-
stikhin et al., 2018), replace the stochastic encoder and decoder with the deterministic ver-
sion and match the aggregate posterior to the prior distribution, unlike VAEs. AAEs and
WAE-GANs employ a discriminator in the latent space to match the encoded distribution
to the known target distribution (e.g., standard normal). However, finding the optimum dis-
criminator is not an easy task. In addition, the min-max optimization problem with com-
peting networks is highly sensitive to the hyperparameter settings and training strategies.

In this paper, we take an alternative approach. Rather than using an adversary to com-
pare distributions, we propose a nonadversarial framework, generative encoding networks
or GENs, to enforce the latent representation of an autoencoder to a desired target distribu-
tion. The main contributions of this paper can be summarized as follows:

• Use of the KDE for approximation of the data distribution in the latent space, which is
used in the computation of the JSD loss.

• A robust, automated method for the KDE bandwidth estimation that uses the known
structure of the target distribution.

• An analytical proof that the proposed optimization, on convergence, coincides to,
within a known scaling factor, the target distribution.

• Empirical results showing that the KDE-based JSD computation is as or more effective
than the results from adversarial training, particularly with limited training data.

• Using different measures of efficacy on multiple data sets, it is demonstrated that the
generative capability of the proposed method is as good or better than the state-of-the-
art (SOTA) autoencoder-based generative models.

• A demonstration of the use of the latent space built with GENs for outlier detection
with comparisons against SOTA methods.

2 Related work

Directly related to the GEN are deep, generative models that build low-dimensional latent
spaces with known/quantifiable properties (e.g., known density such as multivariate
normal) and learn a functional mapping from this latent space to the data space. VAEs
(Kingma & Welling, 2014; Rezende et al., 2014) introduce a parametric prior distribu-
tion on the latent space and learn an inference network (i.e., encoder) jointly with the
generative model (i.e., decoder) to maximize a variational lower bound of the otherwise
intractable marginal log-likelihood of the training data. Main contributions of the VAE
can be summarized as follows: (i) efficient posterior inference using the inference model,
which is an approximation to the intractable true posterior, and (ii) efficient optimiza-
tion of the variational lower bound by using the reparameterization strategy. Nonetheless,
VAEs often fail to match the marginal (aka aggregate) posterior to the prior distribution

4006 Machine Learning (2022) 111:4003–4038

1 3

due to the presence of pockets or holes in the aggregate posterior, which indicates that
regions strongly supported under the prior have low density under aggregate posterior.
This adversely affects the quality of the generated samples in VAEs (Rosca et al., 2018;
Bauer & Mnih, 2019). An analysis of the ELBO (Hoffman & Johnson, 2016) shows
that with Gaussian as the prior may lead to over-regularization, and the prior should be
learned. Following this idea, flexible and richer priors, VampPrior and LARS priors, were
proposed by Tomczak and Welling (2018) and Bauer and Mnih (2019), respectively. To
improve the sample quality produced by the VAE, a two-stage VAE was proposed by Dai
and Wipf (2019), which uses two VAEs for addressing suboptimal solutions produced due
to mismatch with the prior. Other VAE variants improve matching distributions in the
latent space through learning a data-driven prior distribution using normalizing flows in
the low-dimensional latent space (Bhalodia et al., 2020; Xiao et al., 2019). VAEs could
produce degenerate solutions when the KL divergence between the conditional poste-
rior and prior approaches zero. This phenomenon is known as posterior collapse (Lucasz
et al., 2019; Dai et al., 2020), and in this scenario the information about data in the latent
space is completely ignored. Use of powerful decoders in the VAE can also lead to this
scenario. Different strategies, such as lower regularizing effect, use of discrete latent rep-
resentation (Oord et al., 2017) and ensuring the KL divergence has a lower bound (Razavi
et al., 2019), have been developed to circumvent this problem.

VAE variants, such as AAEs (Makhzani et al., 2016) and WAEs (Tolstikhin et al.,
2018), match the aggregate posterior distribution to target distribution using the JSD or
maximum mean discrepancy (MMD) regularizers in the latent space. The AAE or WAE-
GAN uses a discriminator (neural network) to implicitly match distributions in the latent
space. However, the correct choice of the discriminator, setting the hyperparameters, and
figuring the training strategy is challenging in practice. The generative moment matching
network (GMMN) (Swersky & Zemel, 2015) similar to the WAE-MMD uses the MMD
to match the encoded and target distribution that matches all the moments of the corre-
sponding distributions. Nevertheless, the GMMN uses a pretrained autoencoder, unlike
the WAE-MMD, which jointly minimizes the reconstruction loss and divergence measure.
Although moment matching technique is more stable (in terms of training) than an adver-
sarial setup, the correct choice of kernels and related hyperparameters plays an important
role in the performance of the model.

The regularized autoencoder (RAE) (Ghosh et al., 2020) is a variant of the VAE that
replaces the variational framework in VAEs with a deterministic framework. This method
is an extension of the constant-variance VAEs (CV-VAEs) that assumes the diagonal
covariance entries to be a constant. Moreover, in the RAE, the noise added to the decoder
input using the reparameterization strategy is replaced with explicit regularization over the
decoder parameters, such as the L-2 regularization. Overall, the RAE resembles a vanilla
autoencoder with different regularization techniques applied over the decoder parameters.
However, to use this as a generative model, an ex post density estimation is required to be
done over the latent representation after the model is trained.

GANs, in their basic form (Goodfellow et al., 2014), do not provide reliable mappings
of the samples in the data space back into the latent space. Encoder-decoder GAN variants
(e.g., BiGAN (Donahue et al., 2017), ALI (Dumoulin et al., 2017)) simultaneously learn
inference and generator networks. However, reconstructed samples from their latent rep-
resentation do not preserve sample identity since the data-latent correspondence is learned
through a discriminator that approximates a density ratio between their joint distribution. A
summary of the pros and cons of different methods discussed in this section is reported in
Table 9 of “Appendix A”.

4007Machine Learning (2022) 111:4003–4038

1 3

3 Generative encoding networks

In autoencoder-based generative models, an encoded distribution in the latent space, pe , is
formed to resemble a target distribution, pt (selected a priori), which is achieved by mini-
mization of the following loss function:

In Eq. (1), E� and D� are the encoder and decoder of the autoencoder with parameters
� and � , respectively. Representation in the latent space is defined as � = E�(�) , where
� ∈ �l . The first term in Eq. (1) is the reconstruction loss of the conventional autoencoder,
and the second is a regularization with a divergence measure, D

�
 , which penalizes differ-

ences between the encoded distribution pe(�) and the target distribution, pt(�) with 𝜆 > 0
as a hyperparameter that mediates the compromise. The D

�
 can take different forms such as

the Kullback-Leibler divergence (KLD) in matching the conditional distribution pe(� ∣ �)
to the prior pt(�) as in the VAE, JSD for implicitly matching the aggregate posterior pe(�)
to the target pt(�) in the AAE and WAE-GAN, or MMD in the WAE-MMD.

Makhzani et al. (2016), in the context of GANs, note that an ideal discriminator or
adversary classifying samples between the pt and pe with a cross entropy loss computes
the ratio of densities required for the JSD, and thus the cross entropy is proportional to
the JSD. This result is very powerful, but requires the design and training of a discrimina-
tor that can approximate the ideal one, with the associated hyperparameters, architectural
choices, and training strategies. The proposed method is based on the following observa-
tion: in scenarios where the pt has a known regular form, which is true in the context of
autoencoder-based generative models, we can estimate the JSD if we have a good approxi-
mation to the pe through samples, without the need of an additional neural network or
adversary.

In this work, we use the JSD
[
pt, pe

]
 , given by Eq. (2), for standard normal as the target

distribution (leaving out the constants), for penalizing the difference between the pe and pt .
The JSD is an expectation over the ratio of the densities where the first term is the expecta-
tion over the encoded distribution, pe , and the second term is the expectation over the tar-
get distribution, pt . Relative to other choices of divergence, this penalty has the advantages
of being a metric with respect to the two distributions and having values between 0 and 1
(in the analytical case), which controls the influence of the penalty under a wide range of
circumstances. However, while the expectation can be approximated with a sample mean,
it requires an estimate of the ratios of probabilities, which typically requires us to estimate
the encoded density, pe . Estimation of the encoded density, pe , is a challenging task. In this
work, the pe is estimated using the KDE with m samples and is defined as follows:

(1)�
�∼p(�)

{
∥ � − D�(E�(�)) ∥

2
2
+� ⋅ D

�
(pe(�), pt(�))

}
.

(2)
JSD

[
pe, pt

]
= �

��∼pe

{
log

[
pe(�

�)

pt(�
�) + pe(�

�)

]}

+ �
���∼pt

{
log

[
pt(�

��)

pt(�
��) + pe(�

��)

]}

(3)pe(�
�) =

1

m

m∑

i=1

K

(
||�� − �i||

h

)

4008 Machine Learning (2022) 111:4003–4038

1 3

where h ∈ �+ denotes the kernel bandwidth and K is the chosen kernel at �i . Without loss
of generality, we consider isotropic Gaussian kernel, and denote it as Gh

(
�� − �i

)
 . In prin-

ciple, the target distribution, pt , of GENs, can be any distribution from which we can sam-
ple, but in this paper we focus on the cases where the target distribution is Gaussian or
mixtures of Gaussians.

This strategy leaves us with two important decisions regarding hyperparameters. The
first is the choice of the number of KDE samples, m, to be used in the KDE-based esti-
mate of the pe and second is the bandwidth, h, used in the same estimate. Of course,
bandwidth selection for the KDE is, in general, a challenging problem without a com-
pletely satisfying general solution. However, because we are quantifying differences
with known target distributions, where accuracy is most important when distributions
are similar, we can use the target distribution itself, the dimensionality of the latent
space, l, and the size of the sample set used in the KDE (m above) to estimate the opti-
mal bandwidth, hopt . We seek the hopt that best differentiates two sample sets from the
target distribution, and therefore maximizes the JSD between two sample sets.

Given only the latent dimension, l, and number of KDE samples, m, we can estimate
the optimal bandwidth by either root trapping or a fixed-point method on h, by evaluat-
ing the derivative of (2) with respect to h, that is �JSD

[
pe, pt

]
∕�h . For the target dis-

tribution as the standard normal, Table 1 shows the optimal bandwidth estimates for a
variety of latent dimensions, l, and number of KDE samples, m. As expected, the band-
width increases with higher dimension and fewer samples. It is also observed that for
certain latent dimensions, l, and sample size, m, the estimated bandwidth is greater than
1 (standard deviation of the target distribution). This will result in degenerate solutions.
Other KDE estimates, such as the variable bandwidth KDE where h potentially varies
with the distance from the mean of the target distribution is a possible workaround for
this problem which will be studied in the future scope of this work Silverman (1986).

The novelty of this work lies in the computation of the JSD using the KDE of the
pe , and estimation of the optimum bandwidth, hopt , for the pe , leveraging the informa-
tion of the target distribution, pt , known a priori. This eliminates the onerous task of
finding the optimum adversary as used in the computation of the JSD in AAEs and
WAE-GANs. In addition, use of analytical method for the computation of density in the
encoded distribution, pe , offers additional benefits, such as deriving provable properties
of the encoded distribution on convergence, as discussed in Sect. 4.

The loss function of GENs can thus be formulated as,

Table 1 Optimal bandwidths, hopt , estimated to maximize the JSD between two standard normal samples
sets

Error bars are computed over 10 trials. Notice that the bandwidth increases with increasing dimensions
(vertical) or decreasing sample size (horizontal)

l∕m 250 500 1000 2000 4000 8000

2 0.46 ± 0.08 0.41 ± 0.04 0.38 ± 0.03 0.34 ± 0.02 0.31 ± 0.03 0.28 ± 0.01

5 0.65 ± 0.03 0.59 ± 0.02 0.55 ± 0.02 0.51 ± 0.01 0.47 ± 0.01 0.44 ± 0.01

10 0.77 ± 0.02 0.73 ± 0.01 0.69 ± 0.01 0.66 ± 0.01 0.63 ± 0.01 0.6 ± 0.01

20 0.92 ± 0.01 0.89 ± 0.01 0.86 ± 0.00 0.82 ± 0.01 0.80 ± 0.00 0.77 ± 0.00

40 > 1.0 > 1.0 > 1.0 0.98 ± 0.00 0.95 ± 0.00 0.94 ± 0.00

4009Machine Learning (2022) 111:4003–4038

1 3

where the KDE-based JSD estimate is used to match the encoded distribution to the desired
or target distribution in the latent space.

In this work, the KDE-based estimate of the encoded distribution, pe , represents the
overall state of the encoder network E� , and we propose to let the pe lag the updates of the
autoencoder, much as we would do with adversarial networks where, for a single update
of the discriminator (the discriminator lags), the generator is updated multiple times. This
entails an update of the encoder parameters with stochastic gradient descent using the gra-
dient from the first term of (2), which is an expectation over the samples �′ that comprise
the minibatch (i.e., sampled from the training data). In this scenario, the second term in (2)
does not affect the update of the autoencoder.

The GEN simultaneously updates the encoder E� , and the decoder D� to minimize
the expected reconstruction loss in data space, �d , and JSD in the latent space, �l (using

(4)�
�∼p(�)

{
∥ � − D�(E�(�)) ∥

2
2
+� ⋅ JSD

[
pe, pt

]}

4010 Machine Learning (2022) 111:4003–4038

1 3

KDE of the encoded distribution). Algorithm 1 outlines the training of GENs. Here,
we see the relationship with several other methods. The KDE estimate of JSD is simi-
lar to an adversary. Its single parameter, bandwidth (h) is chosen to maximize the dis-
crimination (similar to an adversary) between samples from the same distributions (i.e.,
pessimistic assumptions). Furthermore, minimization of the JSD loss (by updating the
encoder parameters) set up a min-max game as in the AAE—except that we know the
optimal/final value of the single parameter, bandwidth, h, in the latent space, unlike
the AAE, which optimizes parameters of a neural network to find this estimate. There
is also a relationship with the VAE formulation. The aggregate latent distribution is
a convolution of data samples with a kernel. The difference is that the width of that
kernel in the GEN is chosen specifically to aid analysis in the latent space relative to a
target distribution, rather than basing it on a hypothetical noise model. Furthermore, the
JSD penalty directly operates on the aggregate latent distribution, similar to the AAE
and WAE. As demonstrated in Sect. 5, this results in latent distributions that are better
matched to the target.

4 Latent space distribution

The use of an analytical method for estimating density (of the encoded distribution, pe)
in the GEN facilitates us in systematic examination of the properties of the final empiri-
cal distribution of the data in the latent space, when the training has converged, i.e.,
when there is no gradient from the JSD loss and the reconstruction loss has saturated.
In this section, we derive the closed form expression of the resultant distribution in the
latent space of the GEN when the target distribution is standard normal. However, this
can be generalized to any multivariate Gaussian distribution parameterized by (�,Σ) .
When the training of the GEN converges, the encoder parameters, � , are not updated
and the gradient of the JSD

[
pe, pt

]
 , with respect to the encoded data sample, �′ (where

�� = E�(�)) is zero. Under this condition, we derive the expected distribution in the
latent space of GENs, which holds true for any lagging set of size m, used to build the
KDE of pe.

Theorem 1 Let Gh

(
�� − �i

)
 be an isotropic Gaussian kernel with mean �i and standard

deviation (bandwidth) h, and the encoder is trained to convergence with the KDE-based
JSD loss as used in GENs, and a standard normal target distribution, N(�, �) . The distribu-
tion of the training data is mapped (in the latent space) to an isotropic, Gaussian distribu-
tion with mean zero and standard deviation (1 − h2)1∕2.

Proof of Theorem 1 Setting the derivative of the JSD with respect to �′ , �JSD[pe, pt]∕��� , to
0 we get,

The expression in (5) should hold ∀�� ∈ Z
�. and rearranging the same we get,

(5)�
� =

1

(1 − h2)

�
1

∑m

i=1
Gh

�
�� − �i

�

��
m�

i=1

Gh

�
�
� − �i

�
�i

�
.

4011Machine Learning (2022) 111:4003–4038

1 3

The expression in (6) should hold for all configuration of �i ’s and hence in the expected
sense we can write (6) as follows:

We know, that �i s’ are independent and hence we can split the joint probability distribution
into a product of marginals,

Applying the independence of �i s’ in (8) and using the linearity property of summation in
�,

For the ith KDE sample, all other variables except i get marginalized from (10), which
results in

Considering all the KDE samples in (10), we get,

Likewise, applying the independence condition and linearity of summation in the RHS of
(7), we get,

(6)�
�

m∑

i=1

Gh

(
�
� − �i

)
=

(
1

h2

[
m∑

i=1

Gh

(
�
� − �i

)
(�� − �i)

])
.

(7)

�
�∼p(�1,�2,...,�m)

{
�
�

m∑

i=1

Gh

(
�
� − �i

)
}

= �
�∼p(�1,�2,...,�m)

{
1

h2

[
m∑

i=1

Gh

(
�
� − �i

)
(�� − �i)

]}
.

(8)

Let, � =

m∑

i=1

Gh

(
�
� − �i

)
and � =

m∑

i=1

Gh

(
�
� − �i

)
(�� − �i).

�
� ∫

�1
∫
�2

..∫
�m

�p(�1, �2, .., �m)d�1d�2..d�m

=
1

h2 ∫�1
∫
�2

..∫
�m

�p(�1, �2, .., �m)d�1d�2..d�m.

(9)p(�1, �2, .., �m) = p(�1)p(�2)....p(�m).

(10)

�
� ∫

�1

..∫
�m

�p(�1, .., �m)d�1..d�m

= �
�

m∑

i=1
∫
�1

..∫
�m

Gh

(
�
� − �i

)
p(�1), .., p(�m)d�1..d�m.

(11)�
� ∫

�i

Gh

(
�
� − �i

)
p(�i)d�i.

(12)

�
�

m∑

i=1
∫
�1

..∫
�m

Gh

(
�
� − �i

)
p(�1), .., p(�m)d�1..d�m = �

�

m∑

i=1
∫
�i

Gh

(
�
� − �i

)
p(�i)d�i.

4012 Machine Learning (2022) 111:4003–4038

1 3

Thus, from (7) we get,

We know in the LHS of (16),

In the RHS of (16),

Plugging the results in (16) gives,

This is a partial differential equation and the solution for Q(��) is as follows:

(13)
1

h2 ∫�1

..∫
�m

�p(�1, �2, .., �m)d�1..d�m =
1

h2

m∑

i=1
∫
�i

Gh

(
�
� − �i

)
(�� − �i)p(�i)d�i.

(14)�
�

m∑

i=1
∫
�i

Gh

(
�
� − �i

)
p(�i)d�i =

1

h2

m∑

i=1
∫
�i

Gh

(
�
� − �i

)
(�� − �i)p(�i)d�i.

(15)

Considering the expected value on both sides, we get

m

[
�
� ∫

�i

Gh

(
�
� − �i

)
p(�i)d�i

]
= m

[
1

h2 ∫�i

Gh

(
�
� − �i

)
(�� − �i)p(�i)d�i

]
,

(16)�
� ∫

�i

Gh

(
�
� − �i

)
p(�i)d�i =

1

(h2) ∫�i

Gh

(
�
� − �i

)
(�� − �i)p(�i)d�i.

(17)∫
�i

Gh

(
�
� − �i

)
p(�i)d�i = Gh

(
�
�
)
⊛ p(��).

(18)
(�� − �i)

h2
Gh

(
�
� − �i

)
= −∇

��
Gh

(
�
� − �i

)
,

(19)∫
�i

∇
��
Gh

(
�
� − �i

)
p(�i)d�i = −∇

��

[
Gh

(
�
�
)
⊛ p(��)

]
.

(20)�
�
[
Gh

(
�
�
)
⊛ p(��)

]
= −∇

��

[
Gh

(
�
�
)
⊛ p(��)

]
,

(21)∇
��
Q(��) = −��Q(��),

(22)where, Q(��) =
[
Gh

(
�
�
)
⊛ p(��)

]
.

(23)Q(��) = k × exp
(
−||��||2∕2

)
,

(24)Gh

(
�
�
)
⊛ p(��) = G1

(
�
�
)
,

(25)This proves that, p(��) = G�

(
�
�
)
,

(26)where, �2 = 1 − h2.

4013Machine Learning (2022) 111:4003–4038

1 3

 ◻

Using the KDE-based JSD computation we have proved that the expected latent distri-
bution is an isotropic Gaussian with variance (1 − h2) , when the target is standard normal
distribution. This demonstrates the value of the analytical approach used in formulation of
the GEN. Proving such properties of the latent distribution is challenging for many other
autoencoder-based generative models, such as AAEs and VAEs. AAEs asymptotically
minimizes the JSD (in an implicit manner) between the encoded and target distribution,
given an ideal discriminator with optimal parameter settings (Goodfellow et al., 2014).
In practice, designing and training such a discriminator (e.g., with a finite architecture) is
quite challenging, and the problems around design and convergence (as in GANs (Barnett,
2018; Kodali et al., 2017; Liu et al., 2017; Mescheder et al., 2018) require additional strate-
gies that undermine the claims of the formal result. The formulation of the VAE proposes
to match, via KL divergence, the conditional posterior (approximated by a Gaussian with
mean and diagonal covariance) to the prior. Thus, the VAE formulation makes no claims
about the aggregate/marginalized posterior, which represents encoded distribution—the
topic of concern in this work. Indeed, without additional precautions (e.g. regularization)
VAEs are prone to posterior collapse (Lucasz et al., 2019; Dai et al., 2020), and the meas-
ures (Oord et al., 2017; Razavi et al., 2019) typically used to alleviate that tendency further
interfere with any rigorous claims about the structure of the final distribution in the latent
space.

5 Results

To demonstrate the efficacy of GENs in different scenarios, we consider the AAE, VAE,
WAE, and RAE as potential methods for comparison. We have used the WAE-MMD in all
our experiments due to stable training. Although the RAE is not similar in principle to the
regularization strategy adopted in the GEN or other autoencoder-based generative model,
we consider this method worth studying as it has manifested its strength on multiple pub-
lic data sets. For the RAE, we have used the L−2 regularization for simplicity and as no
significant benefit was observed with the use of other complex regularization techniques
(Ghosh et al., 2020). We do not use the Gaussian mixture model (GMM) as an ex post den-
sity estimator over the latent representation (adopted by the RAE to address the mismatch
between the aggregate posterior and target distribution) in any of our experiments because
we want to compare the baseline methods using the encoded distribution produced by their
basic formulation. Here, we present experimental results that demonstrate the power of the
KDE-based approach, relative to a neural network adversary, in computing the JSD. We
also evaluate the generative capability of the methods, both qualitatively and quantitatively,
on benchmark data sets. In addition, we study the entropy of the latent space distribution
of the competing methods, which can be interpreted as a measure of matching the target
distribution. To illustrate that the performance of GENs is not limited to any fixed target
distribution, such as the standard normal, we evaluate the GEN with mixtures of Gaussians
as the target distribution. Finally, we showcase the potential use of the proposed method for
outlier detection.

4014 Machine Learning (2022) 111:4003–4038

1 3

5.1 Correlation study

Here, we compare the proposed KDE-based JSD computation with an adversarial (i.e., dis-
criminator) neural network (NN). We create a set of experiments that control the degree of
divergence between two distributions, the target distribution and hypothetical latent distri-
bution, and quantify the correlation between the JSD and the parameter that controls these
differences.

In this experiment, the target distribution is chosen to be standard normal, and we con-
struct sequences of hypothetical latent distributions, a mixture of two standard normal dis-
tributions, separated by distance, s, that controls the distributions’ divergence. In an ideal
scenario, the computed JSD should increase with the parameter, s, which ranges from 0
to 6 in our study. For this particular experiment, we whiten all data to avoid trivial dif-
ferences. The top of Fig. 1 shows examples from the hypothetical latent distributions (in
2D) with s = [0, 3, 6] . This arrangement allows us to study the behavior of the competing
methods in estimating the difference between distributions over multiple trials, for different
latent dimensions, l, and different training sample sizes, m.

The single parameter, the bandwidth, needed for estimating the JSD in GENs is com-
puted with the optimization technique described in Sect. 3. For the NN, we train a discrim-
inator with labeled instances from the two distributions, target distribution (standard nor-
mal distribution) and hypothetical latent distribution (mixtures of Gaussians). For a given
latent dimensions, l, and training sample size, m, the NN-discriminator architecture is cho-
sen from a pool of 10 architectures, varying in capacity, with the minimum validation loss.
The baseline model has three hidden layers, with the number of units at each layer pro-
portional to l, and the first layer being the widest, with 10 × l units, followed by 5 × l , and
2 × l units. For variation in the model capacity, more hidden layers are added, the width of
the existing hidden layers is increased or a combination of both is applied. Details of the
NN architectures can be found in “Appendix B”. In the search for the best architecture for a
given l and m, all the models are trained for 50 epochs, and to avoid overfitting the learning
rate of the Adam optimizer (initialized at 1e − 03) is reduced by 0.5, if the validation loss
did not improve for 5 consecutive epochs. Similar hyperparameter settings are also used for
training the best neural network architecture.

Correlation of the JSD with divergence, s, for the NN and KDE-based method is deter-
mined by computing the JSD over 10 trials for a given s. Using the correlation study, we
can quantify the slope for each method as a function of dimension and sample size. The
Pearson correlations are reported in Table 2 over a range of dimensions and sample sizes.
In each cell, the NN ∣ KDE are on the left ∣ right, respectively. Correlations that are sta-
tistically significant, i.e., a correlation coefficient with p-value less than 0.05, are repre-
sented in regular font with the higher number indicated in bold, and numbers in italics
have either no statistical significance (considering p-value) or have negative correlation or
both. For cells with single significant correlation value, no comparison is done. For lower
dimensions, l = [2, 5] , the behaviors of both methods are consistent, even with a low sam-
ple count, but the response of the NN is observed to be highly unstable for dimensions
l >= 10 . This is also manifested in the line graph of the estimated JSD as a function of
s for l = 20 and m = 8000 , with the error bars produced with 10 trials, in the bottom of
Fig. 1. Here, the correlation for the proposed KDE-based approach is way higher relative
to the NN, which is almost zero. Consistent increase in the JSD with increase in separa-
tion s between the mixtures (positive slope) for the KDE (orange curve) explains the high
correlation coefficient of 0.83 of the KDE-based JSD estimation for l = 20 and m = 8000

4015Machine Learning (2022) 111:4003–4038

1 3

in Table 2. Similarly, the overall flat curve for the NN (in blue) justifies a low correlation
coefficient of 0.05, where there is almost no change in the JSD with distance between the
mixtures. These slopes and the corresponding error bars are important, because the deriva-
tives of the computed JSD drive the structure of the latent space in this autoencoder con-
text. These results also demonstrate that the estimation of the JSD using the NN is strongly
influenced by the sample size and data dimension, unlike the robust behavior of the KDE,
which can produce good results even with a low sample size. In most of the scenarios
reported in Table 2, the KDE has a high positive correlation coefficient. The correlation
study helped us in choosing the number of KDE samples to be used in GENs when we fix
the latent dimension of the autoencoder. This experiment illustrates that, in general, the
KDE-based JSD computation gives us a better estimate of the difference between distribu-
tions, relative to the NN counterpart.

5.2 Results on bench‑mark data

We examine qualitative results for several benchmark data sets: MNIST (LeCun et al.,
2010), SVHN (Netzer et al., 2011), and CelebA (Liu et al., 2015) with the standard nor-
mal as the target distribution in the latent space. As the proposed method is an autoen-
coder-based generative model, it is important to evaluate the generative capability. In
this experiment, we have used the widely known Fréchet Inception Distance (FID)
(Heusel et al., 2017) for estimating the quality of the generated samples. The lower the
FID score, the better the modelling of the data distribution. The FID score is known
to be robust to noises and rewards variability in the generated examples (Heusel et al.,
2017; Lucic et al., 2017), unlike the Inception Score (IS) (Salimans et al., 2016), an
alternate technique to evaluate generated samples. Performance of the GEN is com-
pared with the AAE, VAE, WAE, and RAE. The numbers of the KDE samples used
in GENs for the MNIST, SVHN and CelebA data sets are 10K, 10K, and 20K, respec-
tively. The dimension of the bottleneck layer, l, used for the MNIST, and SVHN data
sets are 8 (Makhzani et al., 2016), and 35 (Makhzani et al., 2016), respectively, for all
the methods. The latent dimension for the SVHN data set is increased to 35 from 20, as
used in Makhzani et al. (2016), because of better reconstruction. The latent dimension l,
used for the CelebA is 64 (Ghosh et al., 2020) for all the methods except the GEN. For

Table 2 The Pearson correlation between the JSD estimates and varying degrees of separation, s, between
the distributions computed with data gathered over multiple trials for the NN (left of bars) and KDE for dif-
ferent settings of latent dimension, l and sample size, m

The rows and columns of the table span across different latent dimensions and sample sizes, respectively.
Bold indicates significant correlations that are higher than the alternative model

l∖m 500 1000 2000 4000 8000 10000

2 0.64 ∣ 0.91 0.84 ∣ 0.91 0.90 ∣ 0.93 0.85 ∣ 0.92 0.91 ∣ 0.93 0.80 ∣ 0.93
5 0.42 ∣ 0.88 0.72 ∣ 0.90 0.87 ∣ 0.93 0.91 ∣ 0.93 0.91 ∣ 0.93 0.91 ∣ 0.93
10 0.03 ∣ 0.54 0.28 ∣ 0.82 0.56 ∣ 0.88 0.84 ∣ 0.91 0.87 ∣ 0.92 0.93 ∣ 0.91
20 −0.02 ∣ 0.06 −0.27 ∣ 0.18 0.01 ∣ 0.28 0.05 ∣ 0.48 0.05 ∣ 0.83 −0.27 ∣ 0.84
30 0.06 ∣ 0.17 −0.26 ∣ −0.11 0.02 ∣ 0.12 0.32 ∣ −0.09 −0.45 ∣ 0.06 −0.09 ∣ 0.40
40 0.13 ∣ −0.08 −0.31 ∣ −0.08 −0.45 ∣ −0.16 0.19 ∣ −0.46 −0.09 ∣ 0.05 0.22 ∣ −0.16

4016 Machine Learning (2022) 111:4003–4038

1 3

latent dimensions l >= 50 , the bandwidth estimation method produces h > 1 , which will
degenerate solutions in GENs. This represents a limitation in using a single fixed band-
width for the KDE in very high dimensions—plausible solutions are beyond the scope
of this paper, but are discussed in Sect. 6.

In all these methods except the RAE, the latent distribution is matched to a target distri-
bution, N(�, �) . In autoencoder-based generative methods, it is well known that there is a
trade-off between the reconstruction quality and the regularizing effect in the latent space.
Therefore, to compare the performance of different methods, it is important that the recon-
struction quality is more or less similar for all the methods. To this end, we have reported
the FID score of the reconstructed held-out data for all the benchmark data sets. It is also
important to understand that how smooth is the structure in the latent space with differ-
ent regularization techniques. To address this issue, we have reported the FID score of the
interpolated samples generated by spherical interpolation between the encoding of random
pairs of test data. FID scores of the reconstructed, interpolated and generated samples are
computed using 10K samples for all the competing methods.

For fair comparison, the architecture of the autoencoder (similar to Ghosh et al. (2020))
is same for a particular data set for all the competing methods. Network architectures for all
the data sets and details related to training are reported in “Appendix C”. We know that the
latent distribution for the GEN on convergence is N

(
�, �(1 − h2)

)
 from Theorem 1, where h

is the bandwidth used in training GENs. So, the generative capability of the GEN is evalu-
ated using samples drawn from N

(
�, �(1 − h2)

)
 . Since the latent representation of the RAE

is not matched to any target distribution, samples are generated from a normal distribu-
tion whose parameters are estimated using the embedding of the training data. Quantita-
tive analysis of different methods is reported in Table 3. For generated and interpolated

Fig. 1 Top: Sequences of hypothetical latent distributions (in 2D) with s = [0, 3, 6] , all with the same vari-
ance, that differ in controlled ways from the target distribution (standard normal) allow us to evaluate a
method’s ability to quantify these differences. Bottom: A line graph with error bars shows how the JSD
estimated using a neural network (NN) and using a KDE-based approach varies with different degrees of
separation in the hypothetical latent distributions for l = 20 dimensions and m = 8000 samples. The JSD
estimated using the KDE increases consistently with the separation between the mixtures, unlike the NN

4017Machine Learning (2022) 111:4003–4038

1 3

examples, the FID score is the average over 5 different sets. The FID score (in Table 3)
of the best performing method for all the data sets is highlighted in bold. Scenarios, when
GENs is the second best method, FID scores are reported in italics. As expected, we can
see that the FID score of the reconstructed held-out data is consistently lower than the
FID score of the generated samples for all the methods across different data sets. For the
MNIST data set, the FID score of the reconstructed samples is the minimum for the GEN
and is the next best (shown in italics), both for samples from the target distribution and
interpolated examples, following the AAE. For the SVHN, it closely follows the best per-
forming method, RAE, for reconstructed and generated samples. For the CelebA, GENs
has the best FID score for the generated samples, even with l = 40 dimension latent space,
and the second best for the reconstructed examples. With the use of variable bandwidth
KDE, to be studied in the future scope of this work, we hope to have better results when
the latent space of GENs can be scaled even higher. Overall, FID scores of the GEN for
multiple data sets are consistently close to the best performing method. Important thing to
observe here is that the performance of GENs is achieved without extensive search of the
hyperparameter settings. For qualitative evaluation, the reconstructed, generated, and inter-
polated images produced by different methods for the CelebA data set are shown in Fig. 2.

5.3 Evaluating structure in learned latent spaces

Here we quantify how well-formed the Gaussian structure is in the latent space after
the autoencoder is optimized. We rely on the fact that for a given covariance, � , the
Gaussian has the maximum entropy among all distributions with the same covariance.
Thus, we can compute the entropy, H

[
pe
]
 , of the whitened latent distributions from vari-

ous learned models to evaluate the normality of the encoded distribution for different
methods. Evaluating entropy relies on estimates of the density. For this, we also use the
KDE, as defined in (3). For a certain latent dimension l, and sample size m, the optimal
bandwidth, hopt , can be determined by minimizing the entropy of the KDE estimate of a
distribution given samples from it (maximum log likelihood). This is in contrast to the
estimation of the bandwidth, using the JSD for GENs, which best differentiates samples
from two distributions, encoded and target.

To find hopt that minimizes the entropy of a set of latent space samples, we differ-
entiate H

[
pe
]
 with respect to h, set it equal to zero, and solve for hopt with a fixed point

strategy. We have,

which gives the fixed point update:

We evaluate the entropy of the latent distributions of all the competing methods for varying
training sample sizes, ranging from 2000 through 20000, so as to study the effect of the data size
in matching distributions. If the latent representation closely matches the target, standard normal
distribution, then its entropy will be similar to that of the standard normal for that dimension,
which has an analytical expression. This experiment is conducted on the MNIST data set with

(27)H
[
pe(�)

]
≈ −

1

m

∑

i

log
1

m − 1

∑

j≠i
K

(||�j − �i||
h

)
,

(28)h2 ←
1

lm

�

i

∑
j≠i ���j − �i��22Gh

�
�j − �i

�

∑
j≠i Gh

�
�j − �i

� .

4018 Machine Learning (2022) 111:4003–4038

1 3

Ta
bl

e
3

 F
ID

 sc
or

es
 o

f t
he

 c
om

pe
tin

g
m

et
ho

ds
 fo

r d
iff

er
en

t d
at

a
se

ts
 (l

ow
er

 is
 b

et
te

r)

Th
e

FI
D

 sc
or

e
of

 th
e

be
st

pe
rfo

rm
in

g
m

et
ho

d
is

 h
ig

hl
ig

ht
ed

 in
 b

ol
d.

 S
ce

na
rio

s,
w

he
re

 G
EN

s i
s t

he
 se

co
nd

 b
es

t m
et

ho
d,

 F
ID

 sc
or

es
 a

re
 re

po
rte

d
in

 it
al

ic
s

M
N

IS
T

SV
H

N
C

el
eb

A

R
ec
.

Sa
m
pl

eS
R
ec
.

Sa
m
pl

eS
R
ec
.

Sa
m
pl

eS

N
In

t.
N

In
t.

N
In

t.

A
A

E
16

.6
9

�
�
.�
�
±
�
.�
�

�
�
.�
�
±
�
.�
�

41
.9

2
4
7
.0
0
±
0
.5
4

4
6
.6
5
±
0
.2
3

43
.5

6
4
9
.0
8
±
0
.2

4
7
.3
2
±
0
.1
4

VA
E

19
.8

1
2
3
.8
6
±
0
.2
0

2
1
.5
2
±
0
.1
7

39
.2

1
5
2
.6
5
±
0
.3
7

4
6
.3
9
±
0
.1
0

�
�
.�
�

4
8
.7
9
±
0
.0
8

4
3
.2
2
±
0
.1
3

W
A

E
16

.9
8

2
0
.9
8
±
0
.2
4

2
0
.3
3
±
0
.1
3

44
.5

7
5
6
.6
3
±
0
.3
2

5
9
.7
9
±
0
.2
7

40
.5

8
4
8
.3
9
±
0
.2
7

3
9
.7
7
±
0
.1
5

R
A

E
16

.1
5

2
4
.3
2
±
0
.1
1

2
3
.4
4
±
0
.1
1

�
�
.�
�

�
�
.�
�
±
�
.�
�

�
�
.�
±
�
.�
�

42
.0

5
4
9
.6
7
±
0
.2
6

�
�
.�
�
±
�
.�
�

G
EN

�
�
.�
�

1
8
.1
6
±
0
.1
0

1
9
.1
2
±
0
.1
6

3
7
.0
2

4
2
.0
0
±
0
.3
6

4
7
.8
6
±
0
.2
5

4
0
.3
2

�
�
.�
�
±
�
.�
�

4
4
.5
2
±
0
.0
3

4019Machine Learning (2022) 111:4003–4038

1 3

latent dimension of l = 8 . For fair comparison, the architecture of the E� and D� used is same
for all methods, defined in “Appendix C”. A part of the training budget is used for the KDE
estimate in GENs. For this experiment, 50% of the training data is used as KDE samples for
GENs. Say for training data size of 2000, the GEN uses 1000 samples for the KDE estimate and
the remaining 1000 samples to update model parameters. Whereas, all other methods use the
complete training data (2000 examples in this case) to update model parameters. To rule out the
confounding factor of the reconstruction loss in the study of the entropy, we have ensured that the
reconstruction loss is similar for all the methods for different training data sizes by determining
the correct scaling factor of the regularizer. However, the reconstruction loss of the RAE is less
than other methods and close to that of an unconstrained autoencoder, as the regularizations used
in this method never attempts to impair the performance of an unconstrained autoencoder, unlike
other methods, which match the latent distribution to the target distribution. For the RAE, we
have reported results for regularization scalars that gave the best entropy.

The steps involved in this experiment are summarized as follows: train models using the
training data; generate the latent encoding of the evaluation data; determine the optimal band-
width (hopt) using the latent encoding of the evaluation data (post whitening); compute the
entropy of the whitened latent encoding using the optimal bandwidth. The mean entropy with
the error estimate and the reconstruction loss (in parentheses) is reported in Table 4. Results
are computed using the test data (10K samples) of the MNIST data set. For statistical evalu-
ation, we have trained 5 different models of each method for a given sample size. Additional
experimental details are available in the “Appendix C”. Numerical estimates of the entropy of
standard-normal distribution reported in Table 4 are very close to the true entropy of the stand-
ard normal distribution (11.35 for l = 8), which validates our implementation. In this experi-
ment, the performance of the RAE is surpassed by majority of the competing methods, in most
of the scenarios. This is due to the lack of regularizer, imposing distribution matching in the

Fig. 2 a Reconstructed b generated and c interpolated images for the CelebA data set for different methods.
For interpolation results, images in the first and last column represent ground truth (GT)

4020 Machine Learning (2022) 111:4003–4038

1 3

Ta
bl

e
4

 M
ea

n
en

tro
py

 o
f t

he
 la

te
nt

 re
pr

es
en

ta
tio

ns
 b

ui
lt

by
 th

e
A

A
E

, V
A

E
, W

A
E,

 R
A

E,
 a

nd
 G

EN
 fo

r t
he

 M
N

IS
T

da
ta

 se
t (

us
in

g
la

te
nt

 d
im

en
si

on
 o

f l
=
8
) a

lo
ng

 w
ith

 st
an

d-
ar

d
de

vi
at

io
n

an
d

re
co

ns
tru

ct
io

n
lo

ss
 (i

n
pa

re
nt

he
se

s)

M
et
h
o
d
∖
S
a
m
p
le
s

20
00

40
00

10
00

0
20

00
0

A
A

E
9
.7
4
1
±
0
.2
1
0
(0
.1
4
1
)

9
.8
0
3
±
0
.1
4
5
(0
.1
1
4
)

1
0
.2
3
9
±
0
.1
0
7
(0
.1
2
4
)

1
0
.4
3
9
±
0
.0
6
1
(0
.1
0
1
)

VA
E

9
.0
6
6
±
0
.0
7
3
(0
.1
4
1
)

9
.7
1
0
±
0
.0
7
5
(0
.1
1
4
)

9
.8
9
7
±
0
.0
7
1
(0
.1
0
5
)

1
0
.0
8
0
±
0
.1
3
3
(0
.0
9
6
)

W
A

E
1
0
.4
0
±
0
.0
4
7
(0
.1
3
0
)

1
0
.5
0
3
±
0
.0
3
2
(0
.1
1
5
)

1
0
.6
1
0
±
0
.0
3
2
(0
.1
0
3
)

1
0
.6
8
7
±
0
.0
6
2
(0
.0
9
6
)

R
A

E
9
.7
4
3
±
0
.0
3
1
(0
.0
9
3
)

9
.7
8
1
±
0
.0
6
9
(0
.0
7
9
)

9
.6
2
1
±
0
.0
2
9
(0
.0
7
1
)

9
.2
5
0
±
0
.0
4
5
(0
.0
6
3
)

G
EN

�
�
.�
�
�
±
�
.�
�
�
(�
.�
�
�
)

�
�
.�
�
�
±
�
.�
�
�
(�
.�
�
�
)

�
�
.�
�
�
±
�
.�
�
�
(�
.�
�
�
)

�
�
.�
�
�
±
�
.�
�
�
(�
.�
�
�
)

St
an

da
rd

 N
or

m
al

11
.6

68
11

.6
21

11
.5

75
11

.5
38

4021Machine Learning (2022) 111:4003–4038

1 3

latent space, in the loss function of the RAE. Poor performance of the VAE in matching the
aggregate posterior to the prior can be attributed to holes or pockets in the encoded distribution
Rosca et al. (2018). The performance of the AAE and WAE scales up with the training sample
sizes and both these methods are close to the performance of GENs. However, the strategy of
matching moments of the distributions, as used in the WAE-MMD, is found to be more effec-
tive than the adversarial training in the AAE. Among all the competing methods, the perfor-
mance of GENs in matching the encoded distribution to the standard normal is the best and
very close to the entropy of the standard normal for the training sample size >= 10000.

5.4 Mixtures of Gaussians

So far in all our experiments, the standard normal distribution was considered as the tar-
get distribution. Nevertheless, formulation of GENs can be extended to other target dis-
tributions, such as mixtures of Gaussians (MoG). In this experiment, we consider a MoG
with 10 modes as the target distribution in two-dimensional latent space, l = 2 . Similar to
previous experiments, we need to compute the KDE bandwidth by maximizing the JSD
between two sample sets from the MoG. Number of KDE samples used in this experiment
is m = 10K . Two experiments are devised over the MNIST data set, one in unsupervised
framework and the other in semi-supervised framework. In the unsupervised setup, GENs
match the latent distribution to MoG as shown in Fig. 3a. Here we see the projection of
held out data (10K samples) in the latent space. We can observe that though GENs could
successfully match the distributions in the latent space, different classes in the MNIST data
set are not matched distinctly to specific modes in the MoG, which is obvious. However, if
we consider some labeled data for training the GEN, input data can be mapped to specific
modes of the distribution (depending on its category) shown in Fig. 3b. We call this the
semi-supervised setup. In the semi-supervised experiment, out of the total training data we
use labels for 10K samples. This experiment clearly demonstrates that GENs can be used
for matching any target distribution. Use of the MoG as the target distribution for the GEN
in higher latent dimension, l, for richer data representation will be considered in the future
scope of this work. The autoencoder architecture used in this experiment is the one used in
Sect. 5.2 for the MNIST data, defined in “Appendix C”.

Fig. 3 Mapping of the MNIST held-out data to 10 2D Gaussians in the latent space a without any supervi-
sion b with labels for 10K training examples

4022 Machine Learning (2022) 111:4003–4038

1 3

5.5 Anomaly detection

For the autoencoder-based generative model, a distribution is imposed in the latent space
to add generative capability to the model. So, for all the methods studied in this work it
would be interesting to see whether the latent distribution can be used for some discrimi-
native task, for example detecting unusual or rare events (aka outliers). This is based on
the assumption that the prevalent samples in the data distribution are mapped to the high
probability region of the latent distribution whereas, outliers representing rare examples
from the data distribution or examples from a different data distribution are mapped to the
low probability region. Provided the latent distribution closely matches the target distribu-
tion, this approach of detecting outliers in the unsupervised framework is very effective as
estimation of distribution in data space is usually not easy. Most of the outlier detection
methods, using the encoder-decoder architecture, rely on the reconstruction loss (Xia et al.,
2015; Xu et al., 2021) or employs a one-class classifier (Sabokrou et al., 2018) where the
classifier is trained with samples from the inlier class which subsequently helps in detecting
less frequent outlier examples. Detection of outliers using the density in the latent space was
proposed in the deep autoencoding Gaussian mixture model (DAGMM) due to Zong et al.
(2018). In this method, density is estimated as mixtures of Gaussians and samples with low
probability are identified as outliers. Likewise, anomaly detection with density estimated
by the energy based model using a denoising autoencoder, deep structured energy based
models for anomaly detection (DSEBM) (Zhai et al., 2016), is another density-based outlier
detection method. Generative probabilistic novelty detection with adversarial autoencoders
(GPND) (Pidhorskyi et al., 2018) is an outlier detection method which relies on the prob-
ability of samples on the data manifold learned by autoencoder in observed space, where the
score is computed using in-manifold and out-of-manifold probability.

Comparative study of the use of the latent space of the autoencoder-based generative mod-
els for outlier detection can be considered another way of interpreting how well-formed the
latent structure is. For our study, Mahalanobis distance is used for computing the outlier score
where the mean and covariance of the distribution in the latent space is computed from the
training data. Performance metric used in this experiment are the F1 score and area under the
ROC curve (AUC). The AUC score summarizes the model performance for different clas-
sification thresholds. For both the F1 and AUC score, higher is better. This study is focussed
on two public data sets, the MNIST (LeCun et al., 2010), and NSL-KDD (Xu et al., 2021).

5.5.1 MNIST

For this data set, we leverage the labeling of the data to identify inlier and outlier exam-
ples. In this setup, a class of digit is selected as inlier and examples from that class in
the training data are used to train the model. For outlier detection evaluation, a test set is
constructed with samples from the inlier class in test data mixed with random samples
from other classes, representing outliers, with anomaly proportion, � , ranging from 0.1
through 1.0 with a step size of 0.1, � = [0.1 ∶ 1.0;0.1] . In this experiment no noise is con-
sidered in the training data, such as adding examples from a class other than the inlier
class. After the models are trained, threshold scores to detect outliers are determined by
applying the percentile rule on the outlier scores of the training examples. For this experi-
ment, 90th percentile of the outlier scores of the training examples is used as the threshold
for computing the F1 scores reported in Table 5.AUC scores reported in Table 6 aggregate

4023Machine Learning (2022) 111:4003–4038

1 3

the model performance for the complete range of thresholds (based on percentile). Since
the test set contains outlier samples chosen randomly from the MNIST classes leaving
out the inlier class, an average of the F1 and AUC score for 10 different evaluation sets is
reported in Tables 5 and 6, respectively. For uncluttered representation, F1 and AUC scores
of all methods are reported for � = 0.2 and � = 1.0 on the left ∣ right, respectively. The F1
and AUC score of the best performing method for each MNIST class in Tables 5 and 6 is
reported in bold and scenarios where the GEN is the second best method are indicated in
italics. To evaluate the performance of the AAE, VAE, WAE, RAE, and GEN as outlier
detector we have reported the results for the DSEBM, a specially designed outlier detection
algorithm. Out of the two proposed metrics, DSEBM-e and DSEBM-r, we have considered
the DSEBM-e in our experiment due to better accuracy in its predictions. The encoder
architecture used in the DSEBM-e is built following instructions in Zhai et al. (2016). The
autoencoder architecture used for all methods in this experiment is defined in “Appendix
C”.

Both in Tables 5 and 6, it is observed that for most of the MNIST classes, the GEN
outperforms other methods or closely follows the best performing method, both for low
and high anomaly proportions. Overall, the performance of GENs is better than other
autoencoder-based generataive methods, and is better or comparable to the specially built
outlier detection algorithm, DSEBM-e. This is also observed in Fig. 4a, which plots mean
F1 scores marginalized over all MNIST classes for different anomaly proportions, � . F1
scores of the RAE and VAE closely follow GENs. Likewise, the F1 score for different
MNIST classes, representing average over different anomaly proportions, � , can be found
in Fig. 4b. The GEN is observed to be among the top performers for all the MNIST classes.
The bar plot manifests that the DSEBM-e is doing consistently good for all the MNIST
classes except digit 0, which is also observed in Table 5. This experiment of classifying
inliers from outliers clearly demonstrates that the latent space built by the GEN, in an unsu-
pervised setup, contains meaningful information that can be used for downstream tasks.

5.5.2 NSL‑KDD

The KDDCup99 data set (Cup 1999) is a widely used data set used to build computer net-
work intrusion detection systems which identifies the abnormal (aka outlier) samples from
the normal (or inlier) data. However, this data set has several redundant entries both in the

Fig. 4 Mean F1 scores a for different anomaly proportions marginalized over all the MNIST classes b for
the MNIST classes marginalized over the anomaly proportions, �

4024 Machine Learning (2022) 111:4003–4038

1 3

Ta
bl

e
5

 M
ea

n
F 1

 s
co

re
s

of
 th

e
co

m
pe

tin
g

m
et

ho
ds

 fo
r d

iff
er

en
t d

at
a

cl
as

se
s

in
 th

e
M

N
IS

T
da

ta
 s

et
 fo

r �
=
0
.2

 a
nd

 �
=
1
.0

 o
n

th
e

le
ft

 ri
gh

t,
re

sp
ec

tiv
el

y,
 e

va
lu

at
ed

 o
ve

r 1
0

di
ffe

re
nt

 te
st

se
ts

Th
e

F 1
 sc

or
e

of
 th

e
be

st
pe

rfo
rm

in
g

m
et

ho
d

fo
r e

ac
h

M
N

IS
T

di
gi

t i
s r

ep
or

te
d

in
 b

ol
d,

 a
nd

 sc
en

ar
io

s w
he

re
 th

e
G

EN
 is

 th
e

se
co

nd
 b

es
t m

et
ho

d,
 F

1
 sc

or
es

 a
re

 in
di

ca
te

d
in

 it
al

-
ic

s

A
A

E
VA

E
W

A
E

R
A

E
D

SE
B

M
-e

G
EN

Ze
Ro

0
.9
2
9
∣
0
.8
7
5

0
.9
3
4
∣
0
.8
8
4

0
.9
1
9
∣
0
.8
1
5

0
.9
3
9
∣
0
.8
9
0

0
.8
9
1
∣
0
.7
1
4

�
.�
�
�
∣
�
.�
�
�

o
n
e

0
.9
0
4
∣
0
.7
6
3

0
.9
5
5
∣
0
.9
4
3

0
.9
2
6
∣
0
.8
3
3

0
.9
4
9
∣
0
.9
4
0

0
.9
5
0
∣
�
.�
�
�

�
.�
�
�
∣
0
.9
4
3

tw
o

0
.9
0
2
∣
0
.7
6
5

0
.9
1
1
∣
0
.7
5
4

0
.9
0
1
∣
0
.7
3
3

�
.�
�
�
∣
�
.�
�
�

0
.9
0
7
∣
0
.7
6
2

0
.9
0
4
∣
0
.7
3
6

th
R
ee

0
.9
0
9
∣
0
.7
4
8

0
.9
1
4
∣
0
.7
5
2

0
.9
0
0
∣
0
.7
0
7

0
.9
1
2
∣
0
.7
4
2

�
.�
�
�
∣
�
.�
�
�

0
.9
1
7
∣
0
.7
5
3

Fo
u
R

0
.9
0
2
∣
0
.7
4
7

0
.8
9
6
∣
0
.7
1
3

0
.8
9
2
∣
0
.7
0
3

0
.9
0
1
∣
0
.7
2
6

�
.�
�
�
∣
�
.�
�
�

0
.9
1
4

∣
0
.7
4
9

FI
v
e

0
.8
9
4
∣
0
.7
2
5

�
.�
�
�
∣
�
.�
�
�

0
.9
0
5
∣
0
.7
5
9

0
.8
9
8
∣
0
.7
3
7

0
.9
0
6
∣
0
.7
4
4

0
.9
1
3
∣
0
.7
6
2

SI
x

0
.9
0
2
∣
0
.8
1
5

0
.9
1
7
∣
0
.8
0
4

0
.8
9
6
∣
0
.7
1
7

0
.9
0
1
∣
0
.7
7
2

�
.�
�
�
∣
�
.�
�
�

0
.9
1
8
∣
0
.8
0
1

Se
v
en

0
.9
1
6
∣
0
.8
1
6

0
.9
2
7
∣
0
.8
4
4

0
.9
2
1
∣
0
.7
9
6

�
.�
�
�
∣
0
.8
4
6

0
.9
1
4
∣
0
.8
2
6

�
.�
�
�
∣
�
.�
�
�

eI
g
h
t

0
.9
1
4
∣
0
.7
7
2

0
.9
1
7
∣
0
.7
5
8

0
.9
0
2
∣
0
.7
0
9

0
.9
0
1
∣
0
.7
2
0

�
.�
�
�
∣
�
.�
�
�

0
.9
1
6
∣
�
.�
�
�

n
In

e
0
.9
1
7
∣
0
.8
1
4

0
.9
2
7
∣
0
.8
1
8

0
.9
1
3
∣
0
.7
7
9

�
.�
�
�
∣
�
.�
�
�

0
.9
3
3
∣
0
.8
3
1

0
.9
3
1
∣
0
.8
3
4

4025Machine Learning (2022) 111:4003–4038

1 3

Ta
bl

e
6

 M
ea

n
A

U
C

 sc
or

es
 o

f t
he

 c
om

pe
tin

g
m

et
ho

ds
 fo

r d
iff

er
en

t d
at

a
cl

as
se

s i
n

th
e

M
N

IS
T

da
ta

 se
t f

or
 �

=
0
.2

 a
nd

 �
=
1
.0

 o
n

th
e

le
ft

 ri
gh

t,
re

sp
ec

tiv
el

y,
 e

va
lu

at
ed

 o
ve

r 1
0

di
ffe

re
nt

 te
st

se
ts

Th
e

A
U

C
 sc

or
e

of
 th

e
be

st
pe

rfo
rm

in
g

m
et

ho
d

fo
r e

ac
h

M
N

IS
T

di
gi

t i
s r

ep
or

te
d

in
 b

ol
d,

 a
nd

 sc
en

ar
io

s w
he

re
 th

e
G

EN
 is

 th
e

se
co

nd
 b

es
t m

et
ho

d,
 A

U
C

 sc
or

es
 a

re
 in

di
ca

te
d

in

ita
lic

s

A
A

E
VA

E
W

A
E

R
A

E
D

SE
B

M
-e

G
EN

Ze
Ro

0
.9
4
3
∣
0
.9
4
2

0
.9
5
1
∣
0
.9
5
5

0
.9
0
1
∣
0
.9
0
1

0
.9
5
3
∣
0
.9
5
6

0
.6
5
5
∣
0
.6
5
7

�
.�
�
�
∣
�
.�
�
�

o
n
e

0
.8
0
3
∣
0
.8
0
6

0
.9
8
7
∣
0
.9
8
7

0
.8
7
0
∣
0
.8
7
6

0
.9
8
9
∣
0
.9
8
9

�
.�
�
�
∣
�
.�
�
�

0
.9
8
7
∣
0
.9
8
6

tw
o

0
.8
2
7
∣
0
.8
2
7

0
.8
4
0
∣
0
.8
3
7

0
.7
8
0
∣
0
.7
8
1

�
.�
�
�
∣
�
.�
�
�

0
.8
2
4
∣
0
.8
2
9

0
.8
4
4
∣
0
.8
4
4

th
R
ee

0
.8
0
5
∣
0
.8
0
5

0
.8
4
2
∣
0
.8
4
0

0
.7
0
8
∣
0
.7
0
7

0
.8
0
1
∣
0
.8
0
1

�
.�
�
�
∣
�
.�
�
�

0
.8
2
7
∣
0
.8
2
6

Fo
u
R

0
.7
4
8
∣
0
.7
5
7

0
.7
4
1
∣
0
.7
4
8

0
.6
6
9
∣
0
.6
7
3

0
.7
5
4
∣
0
.7
6
0

�
.�
�
�
∣
�
.�
�
�

0
.8
0
3
∣
0
.8
0
8

FI
v
e

0
.7
3
0
∣
0
.7
2
8

�
.�
�
�
∣
�
.�
�
�

0
.7
9
3
∣
0
.7
9
6

0
.7
4
3
∣
0
.7
4
6

0
.8
2
2
∣
0
.8
2
5

0
.8
2
0
∣
0
.8
2
0

SI
x

0
.8
8
6
∣
0
.8
8
7

0
.8
8
3
∣
0
.8
8
7

0
.7
4
3
∣
0
.7
4
9

0
.8
3
0
∣
0
.8
4
0

�
.�
�
�
∣
�
.�
�
�

0
.8
7
4
∣
0
.8
8
1

Se
v
en

0
.8
9
0
∣
0
.8
8
5

0
.9
1
7
∣
0
.9
1
8

0
.8
6
8
∣
0
.8
6
6

�
.�
�
�
∣
�
.�
�
�

0
.8
9
3
∣
0
.8
9
5

0
.9
2
5
∣
0
.9
2
5

eI
g
h
t

0
.8
4
3
∣
0
.8
4
6

0
.8
3
0
∣
0
.8
2
9

0
.7
1
2
∣
0
.7
1
3

0
.7
9
6
∣
0
.7
9
5

�
.�
�
�
∣
�
.�
�
�

0
.8
4
8
∣
0
.8
4
8

n
In

e
0
.8
8
1
∣
0
.8
7
8

0
.8
9
0
∣
0
.8
8
7

0
.8
3
0
∣
0
.8
2
6

�
.�
�
�
∣
�
.�
�
�

0
.9
0
1
∣
0
.9
0
0

0
.9
1
2
∣
�
.�
�
�

4026 Machine Learning (2022) 111:4003–4038

1 3

train and test set which makes the outlier detection algorithm biased towards learning the
frequent class. Moreover, owing to the large size of the training data, different methods
split the training data into training and evaluation set which has strong ramifications on fair
comparison of different learning algorithms. These limitation were first studied in details
by (Tavallaee et al., 2009) and they proposed a new data set, NSL-KDD (Tavallaee et al.,
2009; Xu et al., 2021) by pruning the redundant entries from the train and test set of the
original KDDCup99 data set (Cup 1999). Reasonable size of the new train and test set
encourages the use of the complete set for training and evaluation of the outlier detection
algorithms, ensuring a fair and consistent comparison.

The length of each entry in the NSL-KDD data set is 41 and has both continuous and
categorical variables. One-hot vector representation of the categorical data along with the
continuous variables produces a vector of 122 dimensions. It should be noted that extreme
value of any feature in the training set has negative impact on the performance of the outlier
detection algorithms. Hence, it is reasonable to pre-process the training data by removing
such entries. Out of different data pre-processing techniques, such as z-score, inter-quartile
range, median absolute deviation (MAD) (Leys et al., 2013), and percentile rule (Xu et al.,
2021), we have used the percentile rule in this experiment, typical set to 98th percentile.
Using this pre-processing scheme, any entry in the training data is dropped if any one of the
feature value is greater than the 98th percentile of that feature. The training data is then nor-
malized to the range [0, 1] using the minimum and maximum value of individual features.

From the train data, only normal samples are used for training the network parameters
and samples from the test data, containing both normal and attack examples, are used for
model evaluation using the F1 and AUC score. The autoencoder architecture used for the
AAE, VAE, WAE, RAE and GEN is defined in “Appendix C” along with other experimen-
tal details. The compression network used in the DAGMM (Zong et al., 2018) is the same
as in GENs, and the estimation network follows the configuration for the KDDCUP99 10
percent data set (Lichman 2013) defined in (Zong et al., 2018). The encoder used in the
DSEBM (Zhai et al., 2016) is the same as used in the GEN. In this experiment, we have
studied the performance of the models for different latent dimensions, l = 2, 5, and 10.
After the models are trained, threshold scores to detect outliers are determined by applying
the percentile rule on the outlier scores of the training examples. For this experiment, typi-
cally 90th percentile of the outlier scores of the training examples is used as the threshold
for computing F1 scores reported in Table 7. AUC scores of the competing methods for dif-
ferent latent dimensions are reported in Table 8.

For F1 and AUC scores reported in Tables 7 and 8, respectively, it is observed that the
performance of the autoencoder-based generative models improves with the size of the
latent dimension, l. However, the specially built methods for outlier detection, DAGMM
(Zong et al., 2018) and DSEBM (Zhai et al., 2016), are indifferent to the size of the latent
dimension, l. Based on the F1 scores reported in Table 7, GENs outperform all other meth-
ods for latent dimension, l = 10 , and for lower latent dimensions, l = 2 , and 5, the GEN is
observed to be better than all other autoencoder-based generative models. Considering the

Table 7 F1 scores of the competing methods for different latent dimensions, l

l AAE VAE WAE RAE DSEBM-e DAGMM GEN

2 0.680 0.624 0.661 0.601 �.��� 0.915 0.805
5 0.850 0.819 0.760 0.860 0.912 �.��� 0.870
10 0.835 0.909 0.810 0.917 0.914 0.915 �.���

4027Machine Learning (2022) 111:4003–4038

1 3

AUC scores reported in Table 8, which is invariant to the choice of thresholds, GENs is
the best performing outlier detection method for the latent dimension, l = 10 . GENs jointly
share the best AUC score for l = 5 with DAGMM. This experiment manifests the potential
use of the latent representation produced by GENs, without any supervision, for solving
complex real-world challenges, such as intrusion detection.

6 Discussion

In this paper, we propose an autoencoder-based generative model, the GEN, where, a KDE-
based JSD estimate is used to match the encoded distribution to the target, defined a priori.
An important property of GENs is that, for the standard normal as the target distribution,
the expected encoded distribution, on convergence, is an isotropic Gaussian distribution,
N
(
�, �(1 − h2)

)
 . This property can be generalized to any multivariate Gaussian distribution

parameterized by (�,Σ) , as the target. Use of the KDE in estimating the encoded distribu-
tion facilitates us in deriving such provable property of the latent structure, unlike other
autoencoder-based generative model.

Through extensive experimental evaluation in the study of the correlation of the JSD
with divergence, we could show that the proposed KDE-based JSD estimate increases with
the increase in difference between the distributions. Proper estimate of the JSD is impor-
tant for structuring the latent space such that the encoded distribution closely matches the
target. Overall, the performance of the GEN was observed to be as or more accurate than
the NN counterpart. This is also validated by the results of the entropy study. In this exper-
iment, the entropy of GENs is observed to be consistently higher than all other competing
methods in different scenarios and close to the entropy of the standard normal distribution
(computed analytically). This indicates close matching of the encoded distribution to the
target, which could be attributed to the better estimate of the JSD in GENs. Evaluation
of the generative capability of GENs using the FID score, a way of assessing the quality
of the generated samples, on multiple public data sets, clearly showcases the strength of
GENs to be used as a generative model. Performance of the GEN is found to be better than
or comparable to the SOTA autoencoder-based generative models.

In this paper, we have also demonstrated the practical use of the latent representation pro-
duced by GENs for unsupervised anomaly detection on mutiple public data sets. In the out-
lier detection experiment on the MNIST data set, GENs is observed to be superior to other
autoencoder-based generative models and comparable to the method designed specifically for
outlier detection. However, for the NSL-KDD data set, a challenging data set for modeling
intrusion detection systems, GENs outperformed the specially built methods for outlier detec-
tion. This illustrates that the feature space produced by the GEN is effective for other down-
stream discriminative tasks. All these experimental results, combined with the relatively few
design choices of the method (number of training samples used for the KDE estimate and the
weight on the regularizer) bodes well for the practicality of the proposed method. So far, we

Table 8 AUC scores of the competing methods for different latent dimensions, l

l AAE VAE WAE RAE DSEBM-e DAGMM GEN

2 0.777 0.722 0.756 0.754 0.908 �.��� 0.856
5 0.874 0.897 0.846 0.911 0.904 �.��� �.���

10 0.872 0.936 0.849 0.922 0.915 0.920 �.���

4028 Machine Learning (2022) 111:4003–4038

1 3

have discussed experimental results considering the standard normal distribution as the tar-
get. Nevertheless, we show that the capability of GENs is not limited to any fixed target dis-
tribution and can be extended to other complex distributions, such as mixtures of Gaussians.

One important challenge for GENs is the bandwidth estimation for higher latent dimen-
sions, l >= 50 . This limits the scalability of GENs to higher latent dimensions. However,
there are methods in the statistics literature to address this issue (Silverman 1986), but their
practicality and efficacy in this context remains a topic for future development. Formula-
tion of the GEN for any target distribution offer a promising next step for development. Use
of the latent space constructed by GENs, on convergence, for more downstream discrimi-
native tasks, is an interesting direction for future research.

Appendix A: Summary of the pros and cons of the generative models

Table 9 summarizes the pros and cons of different autoencoder-based generative models
related to the GEN.

Appendix B: Architecture for correlation study

Different neural network architectures used in the correlation study, discussed in Sect. 5.1,
are defined in Table 10.

Appendix C: Architecture for bench‑mark data

The autoencoder architectures used in all methods for the MNIST, SVHN, CelebA, and
NSL-KDD data set are defined in Table 11, 12, 13, and 14, respectively. In the neural net-
work architectures, Conv n and TransConv n defines convolution and transpose convolu-
tion operation, respectively, with n filters in the output. We have used 5 × 5 filters for all
data sets. Stride size of 2 is used for transpose convolution expect the last layer of the
decoder. Fully connected layers are represented as ��� with n nodes. Activation functions
used in the networks are lRelu, represents Leaky ReLU (rectified linear units), and tanh,
hyperbolic tangent function. Architecture of the discriminator used in the AAE for the
MNIST, SVHN, CelebA, and NSL-KDD data sets are defined in Tables 15, 16, 17, and 18,
respectively.

Input is mapped to the range [−1, 1] for the MNIST, SVHN and CelebA data sets. For
the NSL-KDD data set, the input is mapped to the range [0, 1]. Adam optimizer is used
in all experiments with learning rate of 2e − 04 . All methods are trained for a maximum
of 100, 100, 70, and 200 epochs for the MNIST, SVHN, CelebA, and NSL-KDD data set,
respectively, with a minibatch size of 64. However, for the entropy study of the latent space
minibatch size is 25 for 2000 samples and 50 for other sample sizes. Batch normalization is
not used in our implementations.

For the CelebA data set, the latent dimension size is l = 64 (Ghosh et al. 2020) for all
the methods, except the GEN. The dimension of latent space is set to l = 40 for the GEN in
this work.

4029Machine Learning (2022) 111:4003–4038

1 3

Ta
bl

e
9

 P
ro

s a
nd

 c
on

s o
f d

iff
er

en
t a

ut
oe

nc
od

er
-b

as
ed

 g
en

er
at

iv
e

m
od

el
s

M
et

ho
ds

Pr
os

C
on

s

VA
E

(K
in

gm
a

an
d

W
el

lin
g

20
14

)
•

Effi
ci

en
t o

pt
im

iz
at

io
n

of
 th

e
va

ria
tio

na
l l

ow
er

 b
ou

nd
 b

y
us

in
g

th
e

re
pa

ra
m

et
er

iz
at

io
n

str
at

eg
y

Effi
ci

en
t p

os
te

rio
r i

nf
er

en
ce

 u
si

ng
 th

e
re

co
gn

iti
on

 m
od

el
 w

hi
ch

 is
 a

n
ap

pr
ox

im
at

io
n

to
 th

e
in

tra
ct

ab
le

tru

e
po

ste
rio

r

•
Po

ck
et

s o
r h

ol
es

 in
 th

e
la

te
nt

 d
ist

rib
ut

io
n

Pr
on

e
to

 th
e

co
lla

ps
e

of

th
e

ap
pr

ox
im

at
e

po
ste

rio
r t

o
pr

io
r

A
A

E
(M

ak
hz

an
i e

t a
l.

20
16

)
•

Im
pl

ic
itl

y
m

at
ch

es
 th

e
ag

gr
eg

at
e

po
ste

rio
r t

o
th

e
pr

io
r u

si
ng

 a

di
sc

rim
in

at
or

 in
 th

e
la

te
nt

 sp
ac

e
•

Se
ns

iti
ve

 to
 th

e
ch

oi
ce

 o
f t

he
 d

is
cr

im
in

at
or

, h
yp

er
pa

ra
m

et
er

 se
t-

tin
gs

, a
nd

 tr
ai

ni
ng

 st
ra

te
gy

 fo
r o

pt
im

iz
at

io
n

of
 th

e
m

in
-m

ax
 o

bj
ec

-
tiv

e
fu

nc
tio

n.
 S

to
pp

in
g

cr
ite

ria
 is

 u
nk

no
w

n
R

A
E

(G
ho

sh
 e

t a
l.

20
20

)
•

Tr
ai

ns
 a

 d
et

er
m

in
ist

ic
 a

ut
oe

nc
od

er
 w

ith
 si

m
pl

e
re

gu
la

riz
at

io
n

po
lic

ie
s

•
Ex

-p
os

t d
en

si
ty

 e
sti

m
at

io
n

ov
er

 th
e

la
te

nt
 re

pr
es

en
ta

tio
n

hy
pe

rp
a-

ra
m

et
er

 tu
ni

ng
 fo

r t
he

 e
x-

po
st

de
ns

ity
 e

sti
m

at
io

n
W

A
E

(T
ol

sti
kh

in
 e

t a
l.

20
18

)
•

M
at

ch
es

 m
ar

gi
na

l d
ist

rib
ut

io
ns

 in
 th

e
la

te
nt

 sp
ac

e
us

in
g

op
tim

al

tra
ns

po
rt

th
eo

re
m

•
Pr

ob
le

m
s r

el
at

ed
 to

 a
dv

er
sa

ria
l t

ra
in

in
g

in
 th

e
W

A
E-

JS
D

 (a
s

ob
se

rv
ed

 in
 th

e
A

A
E)

 C
ho

ic
e

of
 k

er
ne

ls
 a

nd
 re

la
te

d
hy

pe
rp

ar
am

-
et

er
s f

or
 th

e
W

A
E-

M
M

D
B

iG
A

N
 (D

on
ah

ue
 e

t a
l.

20
17

)
•

Si
m

ul
ta

ne
ou

sly
 le

ar
n

th
e

in
fe

re
nc

e
an

d
ge

ne
ra

to
r n

et
w

or
ks

•
Re

co
ns

tru
ct

ed
 sa

m
pl

es
 fr

om
 th

ei
r l

at
en

t r
ep

re
se

nt
at

io
n

do
 n

ot

pr
es

er
ve

 sa
m

pl
e

id
en

tit
y

4030 Machine Learning (2022) 111:4003–4038

1 3

Table 10 Neural network architectures of discriminators used in the correlation study for the latent dimen-
sion, l

Arch1 FC(l, 10 × l,ReLU) → FC(10 × l, 5 × l,ReLU) → FC(5 × l, 2 × l,ReLU) → FC(2 × l, 1, Sigmoid)

Arch2 FC(l, 10 × l,ReLU) → FC(10 × l, 5 × l,ReLU) → FC(5 × l, 2 × l,ReLU) → FC(2 × l, 2 × l,ReLU)
→ FC(2 × l, 1, Sigmoid)

Arch3 FC(l, 10 × l,ReLU) → FC(10 × l, 5 × l,ReLU) → FC(5 × l, 5 × l,ReLU) → FC(5 × l, 2 × l,ReLU)
→ FC(2 × l, 2 × l,ReLU) → FC(2 × l, 1, Sigmoid)

Arch4 FC(l, 10 × l,ReLU) → FC(10 × l, 10 × l,ReLU) → FC(10 × l, 5 × l,ReLU) → FC(5 × l, 5 × l,ReLU)

→ FC(5 × l, 2 × l,ReLU) → FC(2 × l, 2 × l,ReLU) → FC(2 × l, 1, Sigmoid)

Arch5 FC(l, 10 × l,ReLU) → FC(10 × l, 5 × l,ReLU) → FC(5 × l, 4 × l,ReLU) → FC(4 × l, 1, Sigmoid)

Arch6 FC(l, 10 × l,ReLU) → FC(10 × l, 10 × l,ReLU) → FC(10 × l, 4 × l,ReLU) → FC(4 × l, 1, Sigmoid)

Arch7 FC(l, 20 × l,ReLU) → FC(20 × l, 10 × l,ReLU) → FC(10 × l, 4 × l,ReLU) → FC(4 × l, 1, Sigmoid)

Arch8 FC(l, 10 × l,ReLU) → FC(10 × l, 5 × l,ReLU) → FC(5 × l, 4 × l,ReLU)
→ FC(4 × l, 2 × l,ReLU) → FC(2 × l, 1, Sigmoid)

Arch9 FC(l, 10 × l,ReLU) → FC(10 × l, 10 × l,ReLU) → FC(10 × l, 5 × l,ReLU)
→ FC(5 × l, 4 × l,ReLU) → FC(4 × l, 2 × l,ReLU) → FC(2 × l, 1, Sigmoid)

Arch10 FC(l, 20 × l,ReLU) → FC(20 × l, 10 × l,ReLU) → FC(10 × l, 10 × l,ReLU) → FC(10 × l, 5 × l,ReLU)

→ FC(5 × l, 4 × l,ReLU) → FC(4 × l, 2 × l,ReLU) → FC(2 × l, 1, Sigmoid)

Table 11 Neural network architecture of the Encoder and Decoder used for the MNIST data set for l = 8 in
all the methods

Encoder Decoder

� ∈ �28×28×1 � ∈ �8

↓ ↓

������ → ����� ������ → �����

↓ ↓

������� → ����� ������ → ���×�×��� → �����

↓ ↓

��������×�×��� → ������ → ����� ����������� → �����

↓ ↓

������ → ��� → ���� ���������� → ����

Table 12 Neural network architecture of the Encoder and Decoder used for the SVHN data set for l = 35 in
all the methods

Encoder Decoder

� ∈ �32×32×3
� ∈ �35

↓ ↓

������ → ����� ���×�×��� → �����

↓ ↓

������� → ����� ������������ → �����

↓ ↓

������� → ����� ����������� → �����

↓ ↓

��������×�×��� → ���� → ���� ���������� → ����

4031Machine Learning (2022) 111:4003–4038

1 3

Appendix D: Anomaly detection

MNIST

For this data set, we leverage the labeling of the data to identify inlier and outlier examples. In
this setup, a class of digit is selected as inlier and examples from that class in the training data
are used to train the model. For outlier detection evaluation, a set is constructed with samples
from the inlier class in test data mixed with random samples from other classes, representing

Table 13 Neural network
architecture of the Encoder and
Decoder used for the CelebA
data set in all the methods

Encoder Decoder

� ∈ �64×64×3 � ∈ �l

↓ ↓

������ → ����� ���×�×��� → �����

↓ ↓

������� → ����� ������������ → �����

↓ ↓

������� → ����� ������������ → �����

↓ ↓

������� → ����� ����������� → �����

↓ ↓

��������×�×��� → ���� → ���� ���������� → ����

Table 14 Neural network
architecture of the Encoder and
Decoder used for the NSL-KDD
data set for l = 2, 5, and 10 in all
the methods

Encoder Decoder

� ∈ �122
� ∈ �l

↓ ↓

���� → ����� ���� → �����

↓ ↓

��� → ���� ����� → ����

Table 15 Neural network architecture of the discriminator used for the MNIST data set in the AAE

Discriminator

� ∈ �8

↓

����� → �����

↓

����� → �����

↓

����� → �����

↓

��� → ����

4032 Machine Learning (2022) 111:4003–4038

1 3

outliers, with anomaly proportion, � , ranging from 0.1 through 1.0 with a step size of 0.1,
� = [0.1 ∶ 1.0;0.1] . In this experiment no noise is considered in the training data, such as
adding examples from a different class. The threshold for detecting anomalous samples in an
evaluation set is determined from the anomaly proportion, � . Say for � = 0.4 , top 40% of the
sorted scores will be marked as outliers. For uncluttered representation, only F1 scores of all
methods are reported in Table 19 for all MNIST classes for � = 0.2 and � = 1.0 on the left ∣

Table 16 Neural network architecture of the discriminator used for the SVHN data set in the AAE

Discriminator

� ∈ �35

↓

������ → �����

↓

������ → �����

↓

������ → �����

↓

��� → ����

Table 17 Neural network architecture of the discriminator used for the CelebA data set in the AAE

Discriminator

� ∈ �l

↓

������ → �����

↓

������ → �����

↓

������ → �����

↓

��� → ����

Table 18 Neural network architecture of the discriminator used for the NSL-KDD data set in the AAE for
l = 2, 5, and 10

Discriminator

� ∈ �l

↓

��� → �����

↓

��� → �����

↓

��� → ����

4033Machine Learning (2022) 111:4003–4038

1 3

right, respectively. Since the test set contains outlier samples chosen randomly from the MNIST
classes leaving out the inlier class, an average of the F1 scores for 10 different evaluation sets is
reported in Table 19. It is observed that the GEN outperforms other methods for many classes
both for low and high outlier percentages or it closely follows the best performing method.
To evaluate the performance of the AAE, VAE, WAE, RAE, and GEN as outlier detector we
have reported the results for the DSEBM, a specially designed outlier detection algorithm. Out
of the two proposed metric, DSEBM-e and DSEBM-r, we have considered the DSEBM-e in
our experiment due to better accuracy in its predictions. The encoder architecture used in the
DSEBM-e is built following instructions in the paper (Zhai et al., 2016). The autoencoder archi-
tecture used for all the methods in this experiment is defined in “Appendix C”. Mean F1 scores
marginalized over all MNIST classes for different anomaly proportions are shown in Fig. 5a. It
can be observed that the GEN is better than all competing methods for different scenarios. The
GEN is even better than the DSEBM-e in many occasions. Performance of the RAE and VAE
closely follow GENs. Likewise, F1 scores for different MNIST classes, representing average
over different anomaly proportions, � , can be found in Fig. 5b. It can be inferred from the bar
plot that the DSEBM-e is doing consistently better for all the MNIST classes except 0 which
is also observed in Table 19. The GEN is observed to be among the top performers for all the
digits.

KDDCup99

The KDDCup99 10 percent data set (Lichman 2013) from the UCI repository is a computer
network intrusion data having continuous and categorical variables. Using continuous variable
and one-hot vector representation of the categorical data, the length of each entry is 121 dimen-
sion. This data set has 20% normal data and 80% anomalous data labeled as "attack". Since, the
percentage of "attack" data is significantly more than the normal data, we consider anomalous
data as normal class in our experiments. In the basic set up, the data is split into equal propor-
tion as train and test data. From the train data, only normal samples are used for training the
network parameters and samples from the test data, containing both normal and attack examples,
are used for model evaluation using the F1 score. Subsequently, the training data is corrupted by
including examples from abnormal class in the training set, ranging from 1% through 5% of the
normal samples. For this experiment, we use the same autoencoder architecture as used in the

Fig. 5 Average F1 scores a for different anomaly proportions marginalized over all MNIST classes b for the
MNIST classes averaged over different anomaly proportions, �

4034 Machine Learning (2022) 111:4003–4038

1 3

Ta
bl

e
19

M

ea
n

F1
 s

co
re

s
of

 th
e

m
et

ho
ds

 fo
r d

iff
er

en
t d

at
a

cl
as

se
s

in
 th

e
M

N
IS

T
da

ta
 s

et
 fo

r �
=
0
.2

 a
nd

 �
=
1
.0

 o
n

th
e

le
ft

 ri
gh

t,
re

sp
ec

tiv
el

y,
 a

ve
ra

ge
d

ov
er

 1
0

di
ffe

re
nt

ev

al
ua

tio
n

se
ts

A
A

E
VA

E
W

A
E

R
A

E
D

SE
B

M
-e

G
EN

Ze
Ro

0
.9
5
4
∣
0
.8
7
3

0
.9
6
3
∣
0
.8
8
8

0
.9
3
1
∣
0
.8
3
5

0
.9
5
8
∣
0
.8
9
3

0
.8
9
2
∣
0
.6
3
0

�
.�
�
�
∣
�
.�
�
�

o
n
e

0
.9
1
0
∣
0
.7
4
4

0
.9
7
9
∣
0
.9
4
7

0
.9
4
1
∣
0
.8
1
7

0
.9
8
2
∣
0
.9
5
9

�
.�
�
�
∣
�
.�
�
�

0
.9
7
3
∣
0
.9
4
9

tw
o

0
.9
1
5
∣
0
.7
5
0

0
.9
1
1
∣
0
.7
6
3

0
.9
0
0
∣
0
.7
0
9

�
.�
�
�
∣
�
.�
�
�

0
.9
1
5
∣
0
.7
5
7

0
.9
0
5
∣
0
.7
6
7

th
R
ee

0
.9
2
3
∣
0
.7
2
2

0
.9
2
6
∣
0
.7
6
0

0
.9
0
8
∣
0
.6
4
4

0
.9
1
9
∣
0
.7
2
8

�
.�
�
�
∣
�
.�
�
�

0
.9
2
4
∣
0
.7
4
0

Fo
u
R

0
.9
0
8
∣
0
.7
0
1

0
.8
9
5
∣
0
.6
8
7

0
.8
8
9
∣
0
.6
3
7

0
.9
0
4
∣
0
.6
9
2

�
.�
�
�
∣
�
.�
�
�

0
.9
1
2
∣
0
.7
3
2

FI
v
e

0
.9
1
2
∣
0
.6
8
3

�
.�
�
�
∣
�
.�
�
�

0
.9
2
2
∣
0
.7
4
0

0
.9
1
6
∣
0
.7
1
3

0
.9
2
1
∣
0
.7
4
9

0
.9
2
7
∣
0
.7
4
3

SI
x

�
.�
�
�
∣
0
.8
1
7

0
.9
4
1
∣
0
.8
2
3

0
.9
1
3
∣
0
.6
9
0

0
.9
2
6
∣
0
.7
7
9

�
.�
�
�
∣
�
.�
�
�

0
.9
3
9
∣
0
.8
0
1

Se
v
en

0
.9
3
5
∣
0
.8
0
2

0
.9
3
8
∣
0
.8
4
3

0
.9
2
4
∣
0
.7
9
2

0
.9
4
1
∣
0
.8
4
6

0
.9
3
6
∣
0
.8
2
1

�
.�
�
�
∣
�
.�
�
�

eI
g
h
t

0
.9
1
8
∣
0
.7
6
4

0
.9
1
6
∣
0
.7
5
6

0
.8
8
4
∣
0
.6
5
8

0
.8
9
8
∣
0
.7
2
9

�
.�
�
�
∣
0
.7
7
5

0
.9
1
2
∣
�
.�
�
�

n
In

e
0
.9
4
4
∣
0
.8
0
6

0
.9
4
4
∣
0
.8
1
9

0
.9
2
9
∣
0
.7
5
6

�
.�
�
�
∣
�
.�
�
�

�
.�
�
�
∣
0
.8
2
8

0
.9
4
5
∣
0
.8
4
5

4035Machine Learning (2022) 111:4003–4038

1 3

Ta
bl

e
20

M

ea
n

F1
 sc

or
es

 o
f t

he
 m

et
ho

ds
 fo

r d
iff

er
en

t n
oi

se
 %

 c
on

si
de

re
d

in
 th

e
tra

in
in

g
da

ta
 fo

r K
D

D
C

up
99

 1
0

pe
rc

en
t d

at
a

se
t a

ve
ra

ge
d

ov
er

 1
0

di
ffe

re
nt

 e
va

lu
at

io
n

se
ts

no
is

e%
A

A
E

VA
E

W
A

E
R

A
E

D
SE

B
M

-e
D

A
G

M
M

G
EN

0
%

0.
90

4
0.

90
1

0.
91

4
0.

91
4

0.
90

9
0.

93
0

�
.�
�
�

1
%

0.
86

2
�
.�
�
�

0.
86

0
0.

84
9

0.
93

8
0.

91
8

0.
94

2
2
%

0.
88

5
0.

89
2

0.
86

6
0.

87
6

0.
88

0
�
.�
�
�

0.
95

6
3
%

0.
90

5
0.

92
6

0.
87

5
0.

87
2

0.
86

3
0.

95
5

�
.�
�
�

4
%

0.
92

1
0.

90
9

0.
87

4
0.

86
8

0.
86

6
�
.�
�
�

�
.�
�
�

5
%

0.
91

9
0.

92
0

0.
90

3
0.

86
6

0.
85

0
0.

95
2

�
.�
�
�

4036 Machine Learning (2022) 111:4003–4038

1 3

DAGMM Zong et al. (2018) for the AAE, VAE, WAE, RAE, and GEN, except that the latent
dimension is increased to 2 from 1 (used in the compression network of DAGMM). This is a rea-
sonable choice as the DAGMM augments two more latent features (relative euclidean distance
and cosine similarity) to the encoded vector for estimating the density in the latent space. The
encoder used in the DSEBM is the same as used in the DAGMM. In addition, we followed other
experimental details like optimizer, learning rate, batch size, epochs, as used in the training of
the DAGMM. The percentage of abnormal samples (∼ 20%) in the test data is used to determine
the threshold for detecting outliers. Since the test set is created by a random subset of the original
data, 10 different sets of train and test data are used for training and evaluation of all the methods.
From the average F1 score scores reported in Table 20, it can be inferred that the F1 score of
almost all methods are immune to the presence of noisy samples in the training data, except the
RAE where, we observe a downward trend in the F1 score with the increase in amount of noisy
samples. The performance of GENs is better than other methods in almost all scenarios except a
couple where it is the next best method.

Author Contributions All authors have contributed to the formulation of the proposed method. Mr. Surojit
Saha conducted experiments, analysis of the results, and preparation of manuscript under the supervision of
Prof. (Dr.) Shireen Elhabian and Prof. (Dr.) Ross Whitaker.

Funding This work is funded by ExxonMobil Corporation.

Availability of data and materials Experimental results are mostly produced using publicly available data
sets. Following data sets are used for the experimental results: MNIST (LeCun et al., 2010), SVHN (Netzer
et al., 2011), CelebA (Liu et al., 2015), NSL-KDD (Xu et al., 2021), and KDDCup99 10 percent (Lichman
2013). The source code used for generating data for correlation study, discussed in Sect. 5.1, is available
from the corresponding author on request.

Code availability Codes developed/used by the authors for results reported in this submission can be pro-
duced by the corresponding author on request.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethics approval This article does not contain any studies with human participants or animals performed by
any of the authors. So, formal consent is not required for this submission.

References

Arjovsky, M., Bottou, L. (2017). Towards principled methods for training generative adversarial networks.
In: International conference on learning representations.

A. Barnett, S. (2018). Convergence problems with generative adversarial networks (GANs). Preprint at
https:// arxiv. org/ abs/ 1806. 11382.

Bauer, M., Mnih, A. (2019). Resampled priors for variational autoencoders. In International conference on
artificial intelligence and statistics.

Bhalodia, R., Lee, I., Elhabian, S. (2020). dpvaes: Fixing sample generation for regularized vaes. In: Asian
conference on computer vision.

Chalapathy, R., Chawla, S. (2019). Deep learning for anomaly detection: A survey. Preprint at https:// arxiv.
org/ abs/ 1901. 03407.

Cup, K. D.D. (1999). Machine learning repository Available on: http:// kdd. ics. uci. edu/ datab ases/ kddcu
p99/ kddcu p99. html

https://arxiv.org/abs/1806.11382
https://arxiv.org/abs/1901.03407
https://arxiv.org/abs/1901.03407
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

4037Machine Learning (2022) 111:4003–4038

1 3

Dai, B., Wang, Z., Wipf, D. (2020). The usual suspects? reassessing blame for vae posterior collapse. In:
International conference on machine learning.

Dai, B., Wipf, D. (2019). Diagnosing and enhancing vae models. In International conference on learning
representations.

Donahue, J., Krähenbühl, P., Darrell, T. (2017). Adversarial feature learning. In: International conference on
learning representations.

Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O., Lamb, A., Arjovsky, M., & Courville, A. (2017).
Adversarially learned inference. In: International conference on learning representations.

Germain, M., Gregor, K., Murray, I., Larochelle, H. (2015). Made: Masked autoencoder for distribution
estimation. In: International conference on machine learning.

Ghosh, P., Sajjadi, M.S.M., Vergari, A., Black, M., Scholköpf, B. (2020). From variational to determin-
istic autoencoders. In: International conference on learning representations.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., &
Bengio, Y. (2014). Generative adversarial nets. In: Conference on neural information processing
systems.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A. (2017) Improved training of wasser-
stein gans. In: Conference on neural information processing systems.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S. (2017). Gans trained by a two
time-scale update rule converge to a local nash equilibrium. In: Conference on neural information
processing systems.

Hoffman, M.D., Johnson, M.J. (2016) Elbo surgery: yet another way to carve up the variational evidence
lower bound. In: NIPS workshop: Advances in approximate bayesian inference.

Kingma, D.P., Welling, M. (2014). Auto-encoding variational bayes. In International conference on
learning representations.

Kodali, N., Abernethy, J., Hays, J., & Kira, Z. (2017) On convergence and stability of GANs. Preprint at
https:// arxiv. org/ abs/ 1705. 07215.

Larochelle, H., Murray, I. (2011). The neural autoregressive distribution estimator. In: International con-
ference on artificial intelligence and statistics.

LeCun, Y., Cortes, C., & Burges, C. (2010). MNIST handwritten digit database. Available on: http://
yann. lecun. com/ exdb/ mnist.

Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do not use standard
deviation around the mean, use absolute deviation around the median. Journal of Experimental
Social Psychology, 49(4), 764–766.

Li, C.-L., Chang, W.-C., Cheng, Y., Yang, Y., & Póczos, B. (2017). Mmd gan: Towards deeper under-
standing of moment matching network. In: Conference on neural information processing systems.

Li, Y., Swersky, K., Zemel, R. (2015). Generative moment matching networks. In: International confer-
ence on machine learning.

Lichman, M. (2013). UCI machine learning repository. Available on: http:// archi ve. ics. uci. edu/ ml.
Liu, S., Bousquet, O., & Chaudhuri, K. (2017). Approximation and convergence properties of generative

adversarial learning. In: Conference on neural information processing systems.
Liu, Z., Luo, P., Wang, X., Tang, X. (2015). Deep learning face attributes in the wild. In: International

conference on computer vision. http:// dblp. uni- trier. de/ db/ conf/ iccv/ iccv2 015. html# LiuLW T15.
Lucasz, J., Tuckery, G., Grossez, R., & Norouziy, M. (2019). Understanding posterior collapse in gen-

erative latent variable models. In: International conference on learning representations.
Lucic, M., Kurach, K., Michalski, M., Bousquet, O., Gelly, S. (2017). Are gans created equal? a large-

scale study. In: Conference on neural information processing systems.
Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B. (2016). Adversarial autoencoders. In: Inter-

national conference on learning representations.
Mao, X., Li, Q., Xie, H., Y.K. Lau, R., Wang, Z., Paul Smolley, S. (2015). Least squares generative

adversarial networks. In: International conference on computer vision.
Mescheder, L., Geiger, A., & Nowozin, S. (2018). Which training methods for gans do actually con-

verge? In: International conference on machine learning.
Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A.Y. (2011). Reading digits in natural images

with unsupervised feature learning. In: Conference on neural information processing systems.
Nowozin, S., Cseke, B., & Tomioka, R. (2016). f-gan: Training generative neural samplers using vari-

ational divergence minimization. In: Conference on neural information processing systems.
Oord, A.v.d., Vinyals, O., & Kavukcuoglu, K. (2017). Neural discrete representation learning. In: Con-

ference on neural information processing systems.
Pidhorskyi, S., Almohsen, R., Adjeroh, D.A., & Doretto, G. (2018). Generative probabilistic novelty

detection with adversarial autoencoders. In: Conference on neural information processing systems.

https://arxiv.org/abs/1705.07215
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://archive.ics.uci.edu/ml
http://dblp.uni-trier.de/db/conf/iccv/iccv2015.html#LiuLWT15

4038 Machine Learning (2022) 111:4003–4038

1 3

Radford, A., Metz, L., & Chintala, S. (2016). Unsupervised representation learning with deep convo-
lutional generative adversarial networks. In: International conference on learning representations.

Razavi, A., Oord, A.v.d., Poole, B., & Vinyals, O. (2019). Preventing posterior collapse with �-vaes. In:
International conference on learning representations.

Rezende, D.J., Mohamed, S., & Wierstra, D. (2014). Stochastic backpropagation and approximate inference
in deep generative models. In: International conference on machine learning, pp. 1278–1286.

Rifai, S., Vincent, P., Muller, X., Glorot, X., & Bengio, Y. (2011). Contractive auto-encoders: Explicit invar-
iance during feature extraction. In: International Conference on Machine Learning.

Rosca, M., Lakshminarayanan, B., & Mohamed, S. (2018) Distribution matching in variational inference.
Preprint at https:// arxiv. org/ abs/ 1802. 06847.

Roth, K., Lucchi, A., Nowozin, S., Hofmann, T. (2017). Stabilizing training of generative adversarial net-
works through regularization. In: Conference on neural information processing systems.

Sabokrou, M., Khalooei, M., Fathy, M., Adeli, E. (2018). Adversarially learned one-class classifier for nov-
elty detection. In: IEEE conference on computer vision and pattern recognition.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X. (2016) Improved techniques
for training gans. In: Conference on neural information processing systems.

Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: Chapman and Hall.
Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A. (2009). A detailed analysis of the kdd cup 99 data set.

In: IEEE symposium on computational intelligence in security and defense applications.
Tolstikhin, I., Bousquet, O., Gelly, S., Schoelköpf, B. (2018). Wasserstein auto-encoders. In: International

conference on learning representations.
Tomczak, J.M., Welling, M. (2018). Vae with a vampprior. In: International conference on artificial intel-

ligence and statistics.
Tschannen, M., Bachem, O., & Lucic, M. (2018). Recent advances in autoencoder-based representation

learning. In: Workshop on Bayesian Deep Learning NeurIPS).
Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008) Extracting and composing robust features

with denoising autoencoders. In: International Conference on Machine Learning, pp. 1096–1103.
Xia, Y., Cao, X., Wen, F., Hua, G., Sun, J. (2015). Learning discriminative reconstructions for unsupervised

outlier removal. In: International conference on computer vision.
Xiao, Z., Yan, Q., Chen, Y., Amit, Y. (2019). Generative latent flow: A framework for non-adversarial image

generation. Preprint at https:// arxiv. org/ abs/ 1905. 10485.
Xu, W., Jang-Jaccard, J., Singh, A., Wei, Y., & Sabrina, F. NSL-KDD. Available on: https:// www. unb. ca/

cic/ datas ets/ nsl. html.
Xu, W., Jang-Jaccard, J., Singh, A., Wei, Y., & Sabrina, F. (2021). Improving performance of autoencoder-

based network anomaly detection on nsl-kdd dataset. IEEE Access, 9, 140136–140146.
Zhai, S., Cheng, Y., Lu, W., & Zhang, Z.M. (2016). Deep structured energy based models for anomaly

detection. In: International conference on machine learning.
Zhu, J.-Y., Krähenbühl, P., Shechtman, E., & Efros, A.A. (2016). Generative visual manipulation on the

natural image manifold. In: European conference on computer vision.
Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., & Chen, H. (2018). Deep autoencoding

gaussian mixture model for unsupervised anomaly detection. In: International conference on learning
representations.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

https://arxiv.org/abs/1802.06847
https://arxiv.org/abs/1905.10485
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html

	GENs: generative encoding networks
	Abstract
	1 Introduction
	2 Related work
	3 Generative encoding networks
	4 Latent space distribution
	5 Results
	5.1 Correlation study
	5.2 Results on bench-mark data
	5.3 Evaluating structure in learned latent spaces
	5.4 Mixtures of Gaussians
	5.5 Anomaly detection
	5.5.1 MNIST
	5.5.2 NSL-KDD

	6 Discussion
	References

