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Abstract
In this paper, we propose a novel approach for unsupervised domain adaptation that relates 
notions of optimal transport, learning probability measures, and unsupervised learning. 
The proposed approach, HOT-DA, is based on a hierarchical formulation of optimal trans-
port that leverages beyond the geometrical information captured by the ground metric, 
richer structural information in the source and target domains. The additional information 
in the labeled source domain is formed instinctively by grouping samples into structures 
according to their class labels. While exploring hidden structures in the unlabeled target 
domain is reduced to the problem of learning probability measures through Wasserstein 
barycenter, which we prove to be equivalent to spectral clustering. Experiments show the 
superiority of the proposed approach over state-of-the-art across a range of domain adapta-
tion problems including inter-twinning moons dataset, Digits, Office-Caltech, and Office-
Home. Experiments also show the robustness of our model against structure imbalance. 
We make our code publicly available.
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1  Introduction

Supervised learning is arguably the most widespread task of machine learning and has 
enjoyed much success on a broad spectrum of application domains (Kotsiantis et al., 2007). 
However, most supervised learning methods are built on the crucial assumption that train-
ing and test data are drawn from the same probability distribution (Pan and Yang, 2009). 
In real-world applications, this hypothesis is usually violated due to several application-
dependent reasons: in computer vision, the presence or absence of backgrounds, the vari-
ation of acquisition devices, or the change of lighting conditions introduce non-negligible 
discrepancies in data distributions (Saenko et al., 2010), in product reviews classification, 
the drifts observed in the word distributions are caused by the difference of product cat-
egory and the changes in word frequencies (Blitzer et al., 2007). These distributional shifts 
will be likely to degrade significantly the generalization ability of supervised learning 
models. While manual labeling may appear like a feasible solution, such an approach is 
unreasonable in practice, since it is often prohibitively expensive to collect from scratch 
a new large high quality labeled dataset with the same distribution as the test data, due to 
lack of time, resources, or other factors, and it would be an immense waste to totally reject 
the available knowledge on a different, yet related labeled training set. Such a challenging 
situation has promoted the emergence of domain adaptation (Redko et al., 2019), a sub-
field of statistical learning theory (Vapnik, 2013), that takes into account the distributional 
shift between training and test data, and in which the training set and test set distributions 
are respectively called source and target domains. There are two variants of domain adapta-
tion, depending on the availability of a small amount of labeled data in the target domain 
(semi-supervised domain adaptation) or not (unsupervised domain adaptation). This paper 
deals with the challenging setting of unsupervised domain adaptation.

Since the launching of domain adaptation theory, a large panoply of algorithms was pro-
posed to deal with its unsupervised variant, and they can be roughly divided into shallow 
(Kouw and Loog, 2019) and deep (Wilson and Cook, 2020) approaches. Most of shallow 
algorithms try to solve the unsupervised domain adaptation problem in two steps by first 
aligning the source and target domains to make them indiscernible, which then allows to 
apply traditional supervised methods on the transformed data. Such an alignment is typi-
cally accomplished through sample-based approaches which focus on correcting biases 
in the sampling procedure (Shimodaira, 2000; Sugiyama et  al., 2007) or feature-based 
approaches which focus on learning domain-invariant representations (Pan et al., 2010) and 
finding subspace mappings (Gong et al., 2012; Fernando et al., 2013). Deep domain adap-
tation algorithms have also gained a renewed interest due to their feature extraction ability 
to learn more abstract and robust representations that are both semantically meaningful and 
domain invariant. Ganin et al.  (2016) is one of the most popular deep adaptative networks, 
which is based on the adversarial training procedure (Goodfellow et al., 2014) and directly 
derived from the seminal theoretical contribution in Ben-David et al. (2006), its main idea 
is to embed domain adaptation into the representation learning process, so that the final 
classification decisions are made based on features that are both discriminative and invari-
ant to domain changes. Later on, the work of Zhang et al. (2019) provided margin-aware 
generalization bounds, which can also be transformed into an adversarial learning algo-
rithm for domain adaptation.

More recent advances in domain adaptation are due to the theory of optimal trans-
port (Villani, 2009), which allows to learn explicitly the least cost transformation of the 
source distribution into the target one. This idea was first investigated in the work of 



4161Machine Learning (2022) 111:4159–4182	

1 3

Courty et al. (2016), where authors have successfully cast the domain adaptation prob-
lem into an optimal transport one to match the shifted marginal distributions of the two 
domains, which then allows to learn a classifier on the transported data. Since then, sev-
eral optimal transport based domain adaptation methods have emerged. In Courty et al. 
(2017), authors proposed to avoid the two-steps adaptation procedure, by aligning the 
joint distributions using a coupling accounting for the marginals and the class-condi-
tional distributions shift jointly. Authors in Redko et al. (2019) performed multi-source 
domain adaptation under the target shift assumption, by learning simultaneously the 
class probabilities of the unlabeled target samples and the optimal transport plan allow-
ing to align several probability distributions. The recent work of Dhouib et  al. (2020) 
derived an efficient optimal transport based adversarial approach from a bound on the 
target margin violation rate. Finally, several deep domain adaptation algorithms based 
on optimal transport were proposed in Damodaran et  al. (2018), Shen et  al. (2018), 
Chen et al. (2018), Xu et al. (2020), Li et al. (2020) to name a few.

A common denominator of these approaches is their ability to capture the underly-
ing geometry of the data by relying on the cost function that reflects the metric of the 
input space. However, these optimal transport based methods can benefit from not rely-
ing solely on such rudimentary geometrical information, since there is further important 
structural information that remains uncaptured directly from the ground metric, e.g., the 
local consistency induced by class labels in the source. The exploitation of this struc-
tural information can elicit some desired properties in domain adaptation like preserving 
compact classes during the transportation. It is, moreover, what led authors in Courty 
et al. (2016) to propose the inclusion of this structural information by adding a group-
norm regularizer. Such structures, however, could not be induced directly by the stand-
ard formulation of optimal transport. To the best of our knowledge, Alvarez-Melis et al. 
(2018) is the only work that has attempted to incorporate structural information directly 
into the optimal transport problem without the need to add a regularization term. This 
approach developed a nonlinear generalization of discrete optimal transport based on 
submodular functions. However, the application of this method in domain adaptation 
only takes into account the available structures in the labeled source domain, by parti-
tioning samples according to their class labels, while every target sample forms its own 
cluster. Nonetheless, richer structures in the target domain can be easily captured differ-
ently, e.g., by grouping, and the incorporation of such target structures directly into the 
optimal transport formulation can lead in our view to a significant improvement in the 
performance of domain adaptation algorithms.

Contributions and outline of the paper: In this paper, we address the existing limita-
tions of the target-structure-agnostic algorithms mentioned above by proposing a princi-
pally new approach based on hierarchical optimal transport (Schmitzer and Schnörr, 2013). 
Hierarchical optimal transport is an effective and efficient paradigm to induce structural 
information into the transportation procedure. It has been recently used for different tasks 
such as multi-level clustering (Ho et  al., 2017), multimodal distribution alignment (Lee 
et al., 2019), document representation (Yurochkin et al., 2019) and semi-supervised learn-
ing (Taherkhani et  al., 2020). The relevance of this paradigm for domain adaptation is 
illustrated in Fig. 1, where we show that the structure-agnostic Reg-OT (Cuturi, 2013) and 
target-structure-agnostic OT-GL (Courty et al., 2016) algorithms fail to always restrict the 
transportation of mass across instances of different structures, whereas, our Hierarchical 
Optimal Transport for Domain Adaptation (HOT-DA) model manages to do it correctly by 
leveraging the source and target structures simultaneously, which will subsequently lead to 
a better adaptation.
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To the best of our knowledge, the proposed approach is the first hierarchical optimal trans-
port method for unsupervised domain adaptation, and the first work to shed light on the con-
nection between spectral clustering and Wasserstein barycenter.

The rest of this paper is organized as follows: in Sect. 2, we present a brief overview of 
unsupervised domain adaptation setup. In Sect. 3, we detail the optimal transport problem and 
its hierarchical formulation, then in Sect. 4, we elaborate the proposed approach HOT-DA. 
In Sect. 5, we evaluate our algorithm on a toy dataset and three benchmark visual adaptation 
problems, and we study the relevance of Wasserstein-Spectral clustering to HOT-DA as well 
as the sensitivity of our approach to unbalanced structures. Finally, we conclude in Sect. 6.

2 � Unsupervised domain adaptation

Let X = ℝ
d be an input space, Y = {c1,… , ck} a discrete label space consisting of k classes, S 

and T  two different probability distributions over X × Y called respectively the source and tar-
get domains. We have access to a set S = {(xi, yi)}

n
i=1

 of n labeled source samples drawn i.i.d. 
from the joint distribution S and a set T = {xj}

m
j=1

 of m unlabeled target samples drawn i.i.d. 
from the marginal distribution TX , of the joint distribution T  over X  , more formally:

The aim of unsupervised domain adaptation algorithms is to infer a classifier � ∶ X → Y 
with a low target risk:

under the distributional shift assumption S ≠ T  , while having no information about the 
labels {yj}mj=1 of the target set T, other than the fact that T and S share the same label space 
Y . In the rest, we design by the source domain interchangeably the distribution S and the 
labeled set S, and by the target domain, the distribution T  and the unlabeled set T.

3 � Optimal transport

In this section, we present the key concepts of the optimal transport problem and its hierarchi-
cal formulation (Villani, 2009).

S = {(xi, yi)}
n
i=1

∼ (S)n, T = {xj}
m
j=1

∼ (TX)
m

RT(�) = ℙ
(x,y)∼T

(�(x) ≠ y)

Fig. 1   Illustration of the transportation obtained with structure-agnostic Reg-OT (Cuturi, 2013) and target-
structure-agnostic OT-GL (Courty et al., 2016) methods, and our proposed algorithm HOT-DA



4163Machine Learning (2022) 111:4159–4182	

1 3

Optimal transport is a long-standing mathematical problem whose theory has matured over 
time. Its roots can be traced back to the 18th century, when the French mathematician Gaspard 
Monge introduced the following problem (Monge, 1781): Let (X,�) and (Y, �) be two proba-
bility spaces, c ∶ X × Y → ℝ

+ a positive cost function over X × Y , which represents the work 
needed to move a unit of mass from x ∈ X  to y ∈ Y . The problem asks to find a measurable 
transport map T ∶ X → Y that transports the mass represented by the probability measure � 
to the mass represented by the probability measure � , while minimizing the total cost of this 
transportation:

where T#� stands for the image measure of � by T . The problem of Monge (M) depicted 
in Fig. 2 is quite difficult, since it is not symmetric, and may not admit a solution, it is the 
case when � is a Dirac measure and � is not.

A long period of sleep followed Monge’s formulation until the convex relaxation of the 
Soviet mathematician Leonid Kantorovitch in the thick of World War II (Kantorovich, 1942). 
This relaxed formulation, known as the problem of Monge-Kantorovich (MK) allows mass 
splitting and, in contrast to the formulation of Monge, it guarantees the existence of a solution 
under very general assumptions:

where Π(�, �) = {� ∈ P(X × Y)|projX#� = � , projY#� = � } is the transport plans set, con-
stituted of all joint probability measures � on X × Y with marginals � and �.

When X = Y is a polish metric space endowed with a distance d, a natural choice is to use 
it as a cost function, e.g., c(x, y) = d(x, y)p for p ∈ [1 ,+∞[ . Then, the problem (MK) induces 
a metric between probability measures over X  , called the p-Wasserstein distance (Santambro-
gio, 2015). The p-Wasserstein distance is defined in the following way, ∀�, � ∈ P(X):

In the discrete version of optimal transport, i.e., when the measures � and � are only avail-
able through discrete samples X = {x1,… , xn} ⊂ X and Y = {y1,… , ym} ⊂ Y , their empir-
ical distributions can be expressed as � =

∑n

i=1
ai�xi and � =

∑m

j=1
bj�yj , where 

a = (a1,… , an) and b = (b1,… , bm) are vectors in the probability simplex 
∑

n and 
∑

m 
respectively. The cost function only needs to be specified for every pair (xi, yj)1≤i≤n

1≤j≤m
∈ X × Y  

yielding a cost matrix C ∈ Mn×m(ℝ
+) . The problem (MK) becomes then a linear program 

(Bertsimas and Tsitsiklis, 1997) parametrized by the transportation polytope 
U(a, b) = {� ∈ Mn×m(ℝ

+)|�1m = a and �T1n = b} , which acts as a feasible set, and the 

(1)(M) inf
T
{∫X

c(x,T(x))d�(x)|T#� = �}

(2)(MK) inf
�
{∫X×Y

c(x, y) d�(x, y)|� ∈ Π(�, �) }

(3)Wp(�, �) = ( inf
�∈Π(�,�)∫X2

dp(x, y) d�(x, y))1∕p

Fig. 2   Monge’s problem: T is a 
transport map from X  to Y.
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matrix C which acts as a cost parameter. Thus, solving this linear program consists in find-
ing a plan �∗ that realizes:

where ⟨., .⟩F is the Frobenius inner product. In this case, the p-Wasserstein distance can be 
inferred as follows: Wp

p(�, �) = ⟨�∗,C⟩F . An illustration of the problem of Monge-Kan-
torovich in its continuous and discrete formulation is provided in Fig. 3.

A Wasserstein barycenter (Agueh and Carlier, 2011) of N measures {�1,… , �N} in 
P(X) can be defined as a minimizer of the following functional f over P(X):

where �i are positive real numbers such that 
∑N

i=1
�i = 1.

As stated above, discrete optimal transport is a linear program, and thus can be 
solved exactly in O(r3 log(r)) where r = max(n,m) , with the simplex algorithm or inte-
rior point methods (Pele and Werman, 2009), which is a heavy computational price tag. 
Entropy-regularization (Cuturi, 2013) has emerged as a solution to the computational 
burden of optimal transport. The entropy-regularized discrete optimal transport problem 
is defined as follows:

(4)(DMK) min
�∈U(a,b)

⟨� ,C⟩
F

(5)f (�) =
1

N

N∑

i=1

�iW
p
p
(�, �i)

(6)(D �
MK

) min
�∈U(a,b)

⟨� ,C⟩
F
− �H(�)

Fig. 3   Continuous Kantorovich’s relaxation: the joint probability distribution � is a transport plan between 
� and � (left). Discrete Kantorovich’s relaxation: the positive entries of the discrete transport plan are dis-
played as blue disks with a radius proportional to the entry values (right) (Color figure online)



4165Machine Learning (2022) 111:4159–4182	

1 3

where H(�) = −
∑n

i=1

∑m

j=1
�ij(log(�ij) − 1) is the entropy of � . This regularization allows a 

faster computation of the optimal transport plan (Peyré et al., 2019) in O(r2∕�3) (Altschuler 
et al., 2017) via the iterative procedure of Sinkhorn algorithm (Knight, 2008).

Hierarchical optimal transport is an attractive formulation that offers an efficient way 
to induce structural information directly into the transportation process (Schmitzer and 
Schnörr, 2013). The main underlying idea behind this formulation is to organize the data 
in X and Y  into structures (e.g., classes or clusters), this hierarchical organization allows 
to look at both X and Y as a collection of structures. To compute the hierarchical optimal 
transport plan between these two collections, the cost function can no longer be evalu-
ated using a distance that quantitatively defines the closeness between data, such as the 
Euclidean distance, we must therefore employ another metric able to measure the discrep-
ancy between structures. Since each structure can be represented by a discrete measure, the 
Wasserstein distance is an evident choice. Obviously, computing the Wasserstein distance 
between each pair of structures requires solving a prior optimal transport problem between 
samples of the two structures. Therefore, if X and Y are composed of h and l structures 
respectively, then, the Wasserstein cost matrix would require a prior computation of h × l 
optimal transport problems, before solving the final optimal transport problem between 
classes and clusters, hence the hierarchy.

More formally, let X  be a Polish metric space endowed with a distance d and P(X) be 
the space of Borel probability measures on X  equipped with the Wasserstein distance Wp 
according to (3). Since X  is a Polish metric space, then P(X) is also a Polish metric space 
(Parthasarathy, 2005). By a recursion of concepts, P(P(X)) the space of Borel probability 
measures on P(X) is a Polish metric space, and will be equipped then with the Wasserstein 
metric that we note HWp , induced this time by the Wasserstein distance Wp which acts as 
the ground metric on P(X) . Let 𝜃 = {𝜇1,… ,𝜇h} ⊂ P(X) and 𝜗 = {𝜈1,… , 𝜈l} ⊂ P(X) be 
two sets of probability measures over P(X) (each probability measure represents a struc-
ture). The empirical distributions of � and � can be expressed respectively by 
�,� ∈ P(P(X)) as � =

∑h

i=1
�i��i

 and � =
∑l

j=1
�j��j , where � = (�1,… , �h) and 

� = (�1,… , �l) are vectors in the probability simplex 
∑

h and 
∑

l respectively ( � and � rep-
resent the two collections of structures). The hierarchical optimal transport problem 
between � and � is then:

where the matrix W = (Wp(�i, �j))1≤i≤h
1≤j≤l

∈ Mh×l(ℝ
+) stands for the Wasserstein cost matrix 

and U(�, �) represents the new transportation polytope, U(�, �) = {Γ ∈ h×l(ℝ+)|Γ1l
= � and ΓT1h = �} . More intuitive insights are provided in Fig. 5.

4 � HOT‑DA: hierarchical optimal transport for unsupervised domain 
adaptation

In this section, we introduce the proposed HOT-DA approach, which consists of three phases, 
the first one aims to learn hidden structures in the unlabeled target domain using Wasserstein 
barycenter, which we prove can be equivalent to spectral clustering, the second phase focuses 
on finding a one-to-one matching between structures of the two domains through the hierar-
chical optimal transport formulation, and the third phase involves transporting samples of each 
source structure to its corresponding target structure via the barycentric mapping.

(7)(HOT) min
Γ∈U(�,�)

⟨Γ,W⟩F
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4.1 � Learning unlabeled target structures through Wasserstein‑Spectral clustering

Samples in the source domain S = {(xi, yi)}
n
i=1

 can be grouped into structures according to their 
class labels, but, data in the target domain T = {xj}

m
j=1

 are not labeled to allow us to identify 
directly such structures. Removing this obstacle cannot be accomplished without using some addi-
tional assumptions. In fact, to exploit efficiently the unlabeled data in the target domain, the most 
plausible assumption stems from the structural hypothesis based on clustering, where it is assumed 
that the data belonging to the same cluster are more likely to share the same label. This assumption 
constitutes the core nucleus for the first phase of our approach, which aims to prove that spectral 
clustering can be cast as a problem of learning probability measures with respect to Wasserstein 
barycenter. Our proof is based on three key ingredients: the equivalence between the search for a 
2-Wasserstein barycenter of the empirical distribution that represents unlabeled data and k-means 
clustering, the analogy between traditional k-means and kernel k-means and finally the connection 
between kernel k-means and spectral clustering. We derive from this result a novel algorithm able 
to learn efficiently hidden structures of arbitrary shapes in the unlabeled target domain.

Firstly, given m unlabeled instances {x1,… , xm} ⊂ X , k-means clustering (MacQueen et al., 
1976) aims to partition the m samples into k clusters Πk = {�1,… ,�k} in which each sample 
belongs to the cluster with the nearest center. This results in a partitioning of the data space 
into Voronoi cells (Vorq)1≤q≤k generated by the cluster centers C̃k = {c1,… , ck} . The goal of 
k-means then is to minimize the mean squared error, and its objective function is defined as:

Let 𝜌̂m =
∑m

i=1

1

m
𝛿xi be the empirical distribution of {x1,… , xm} . Since 

1

m

∑m

i=1
‖xi − cj‖2 = �x∼𝜌̂m

‖x − C̃k‖2 , then according to Canas and Rosasco (2012):

where 𝜋C̃k
∶ X → C̃k is the projection function mapping each x ∈ Vorq ⊂ X  to cq . Since 

k-means minimizes (9), it also finds the measure that is closest to 𝜌̂m among those with sup-
port of size k (Pollard, 1982). Which proves the equivalence between k-means and search-
ing for a 2-Wasserstein barycenter of 𝜌̂m in Pk(X) , i.e., a minimizer in Pk(X) of:

Secondly, k-means suffers from a major drawback, namely that it cannot separate clusters 
that are nonlinearly separable in the input space. Kernel k-means (Schölkopf et al., 1998) 
can overcome this limitation by mapping the input data in X  to a high-dimensional repro-
ducing kernel Hilbert space H by a nonlinear mapping � ∶ X → H , then the traditional 
k-means is applied on the high-dimensional mappings {�(x1),… ,�(xm)} to obtain a non-
linear partition. Thus, the objective function of kernel k-means can be expressed analo-
gously to that of traditional k-means in (8):

Usually, the nonlinear mapping �(xi) cannot be explicitly computed, instead, the inner 
product of any two mappings �(xi)

T�(xj) can be computed by a kernel function K . Hence, 

(8)min
c1,…,ck

1

m

m�

i=1

‖xi − cj‖2

(9)
1

m

m�

i=1

‖xi − cj‖2 = W2
2
(𝜌̂m,𝜋C̃k

#𝜌̂m)

(10)f (𝜅) = W2
2
(𝜌̂m, 𝜅)

(11)min
c1,…,ck

1

m

m�

i=1

‖�(xi) − cj‖2
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the whole data set in the high-dimensional space can be represented by a kernel matrix 
K ∈ Mm(ℝ

+) , where each entry is defined as: Ki,j = K(xi, xj) = �(xi)
T�(xj).

Thirdly, according to Zha et al. (2001), the objective function of kernel k-means in 
(11) can be transformed to the following spectral relaxed maximization problem:

On the other hand, spectral clustering has emerged as a robust approach for data cluster-
ing (Shi and Malik, 2000; Ng et al., 2002). Here we focus on the normalized cut for k-way 
clustering objective function (Gu et al., 2001; Stella and Shi, 2003). Let G = (V ,E, K̃) be a 
weighted graph, where V = {x1,… , xm} is the vertex set, E the edge set, and K̃ the affinity 
matrix defined by a kernel K̃ . The k-way normalized cut spectral clustering aims to find a 
disjoint partition {V1,… ,Vk} of the vertex set V, such that:

where linkratio(Vl,Vl) =
links(Vl,Vl)

degree(Vl)
=

∑
i∈Vl

∑
j∈Vl

K̃ij

∑
i∈Vl

∑
j∈V K̃ij

.

Following (Dhillon et al., 2004; Ding et al., 2005), the minimization in (13) can be 
casted as:

where D̃ is the degree matrix of the graph G. Thus, the maximization problem in (14) is 
identical to the spectral relaxed maximization of kernel k-means clustering in (12) when 
equipped with the kernel matrix K = D̃−1∕2K̃D̃−1∕2.

According to the three-dimensional analysis above, we can now give the main result 
in the first phase of our method:

Theorem 1  Spectral clustering using an affinity matrix K̃ is equivalent to the search for a 
2-Wasserstein barycenter of 𝜚̂m =

∑m

i=1

1

m
𝛿𝜉(xi) in the space of probability measures with 

support of size k, where � is a nonlinear mapping corresponding to the kernel matrix 
K = D̃−1∕2K̃D̃−1∕2 and D̃ is the degree matrix associated to K̃.

In the sequel, we will refer to the search for a 2-Wasserstein barycenter of 𝜚̂m as Was-
serstein-Spectral clustering, and we will use it to learn k hidden structures in the unla-
beled target domain T.

The theoretical result in Theorem 1 is confirmed by experiments, this is illustrated 
in Fig.  4, where we show that Wasserstein-Spectral clustering performs identically to 
the traditional spectral clustering and that both are effective at separating clusters that 
are nonlinearly separable, whereas k-means fails to separate data with non-globular 
structures.

Complexity analysis: Wasserstein-Spectral clustering offers an alternative to the popular 
spectral clustering algorithm of Ng et al. (2002) that has limited applicability to large-scale 
problems due to its prohibitive running time that might be cubic O(m3) on the size m of 
the input dataset (Yan et  al., 2009; Tsironis et  al., 2013). In fact, there are fast and effi-
cient algorithms to perform Wasserstein-Spectral clustering as Cuturi and Doucet (2014), 
Kroshnin et  al. (2019) which is based on accelerated gradient descent with complexity 

(12)max
YTY=Ik ,Y≥0

trace(YTKY)

(13)min
V1,…,Vk

k∑

l=1

linkratio(Vl,Vl)

(14)max
ZTZ=Ik ,Z≥0

trace(ZTD̃−1∕2K̃D̃−1∕2Z)
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Fig. 4   (a) Comparison of Wasserstein-Spectral clustering, spectral clustering, and k-means on Two-Circles 
dataset. (b) As for (a) but on Moons dataset

Fig. 5   Wasserstein-Spectral clustering is used to learn hidden structures in the target domain as a seminal step 
before performing hierarchical optimal transport to align the source and target domains. The optimal plan of this 
hierarchical transport (in purple) is calculated from the Wasserstein cost matrix (in blue) that measures the dis-
tance between the source classes and the target clusters. The distance between each pair of structures is computed 
through the optimal transport plan of their points (e.g., orange and green) (Color figure online)
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proportional to m2∕� and Altschuler and Boix-Adsera (2021) which can be computed in 
polynomial time in fixed dimension d. Furthermore, when the barycenter is restricted to 
measures with support of size k, the recent work of Izzo et  al. (2021) shows that rand-
omized dimensionality reduction can be used to map the problem to a space of dimension 
O(log(k)) independent of d and that any solution found in the reduced dimension will have 
its cost preserved up to arbitrary small error in the original space. The algorithmic appli-
cation of this statement is that one can take any approximation algorithm or heuristic for 
computing Wasserstein barycenter and combine it with dimensionality reduction to cope 
with the curse of dimensionality burden of Wasserstein barycenter.

It is noteworthy that the computation of Wasserstein barycenter is an increasingly popu-
lar problem in the machine learning and statistics communities and our algorithm can ben-
efit from this renewed interest to reach more faster running time.

4.2 � Matching source and target structures through hierarchical optimal transport

Optimal transport offers a well-founded geometric way for comparing probability measures 
in a Lagrangian framework, and for inferring a matching between them as an inherent part 
of its computation. Its hierarchical formulation has inherited all these properties with the 
extra benefit of inducing structural information directly without the need to add any regu-
larized term for this purpose, as well as the capability to split a sophisticated optimization 
surface into simpler ones that are less subject to local minima, and the ability to benefit 
from the entropy-regularization. Hence the key insight behind its use in the second phase 
of our method.

To use an appropriate formulation for hierarchical optimal transport, samples in 
the source domain S = {(xi, yi)}

n
i=1

 must be partitioning according to their class labels 
yi ∈ Y = {c1,… , ck} into k classes {C1,… ,Ck} . The empirical distributions of these struc-
tures can be expressed using discrete measures {𝜇1,… ,𝜇k} ⊂ P(X) as follows:

Similarly, samples in the target domain T = {xj}
m
j=1

 are grouped in k clusters {Cl1,… ,Clk} 
using Wasserstein-Spectral clustering in the first phase. The empirical distributions of 
these structures can be expressed using discrete measures {𝜈1,… , 𝜈k} ⊂ P(X) in the fol-
lowing way:

Under the assumption that S and T are two sets of independent and identically distributed 
samples, the weights of all instances in each structure are naturally set to be equal:

(15)�h =

n∑

i=1∕xi∈Ch

ai�xi , ∀h ∈ {1,… , k}

(16)�l =

m∑

j=1∕xj∈Cll

bj�xj , ∀l ∈ {1,… , k}

ai =
1

|Ch|
and bj =

1

|Cll|
, ∀h, l ∈ {1,… , k}
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The set S of labeled source samples and the set T of unlabeled target samples can be seen 
in a hierarchical paradigm as a collection of classes and clusters. Thus, the distribution 
of S and T can be expressed respectively as a measure of measures � and � in P(P(X)) as 
follows:

where � = (�1,… , �k) and � = (�1,… , �k) are vectors in the probability simplex 
∑

k . The 
weights �h and �l are set to be equal to deal with the problem of structure imbalance, in the 
following way:

To learn the correspondences between classes and clusters, we formulate an entropy-regu-
larized hierarchical optimal transport problem between � and � in the following way:

where U(�, �) = {Γ ∈ Mk(ℝ
+)|Γ1k = � and ΓT

1k = �} represents the transportation 
polytope and W = (Wh,l)1≤h,l≤k ∈ Mk(ℝ

+) stands for the Wasserstein cost matrix, whose 
each matrix-entry Wh,l is defined as the 2-Wasserstein distance between the measures �h 
and �l:

where Ch,l is the cost matrix of pairwise squared-Euclidean distances between elements of 
Ch and Cll , and �∗,��

h,l
 is the regularized optimal transport plan between �h and �l.

The optimal transport plan Γ∗
�
 in (18) can be interpreted as a soft multivalued matching 

between � and � as it provides the degree of association between classes {C1,… ,Ck} in 
the source domain S and clusters {Cl1,… ,Clk} in the target domain T. Then, the one-to-
one matching relationship (=̂) between each class Ch and its corresponding cluster Cll can 
be inferred by hard assignment from Γ∗

�
 , in the following way:

4.3 � Transporting source to target structures through the barycentric mapping

Besides being a means of comparison and matching, optimal transport has the asset of per-
forming thanks to its intrinsic quiddity of transport an alignment between source and target 
structures. Hence the main underlying idea of this phase.

Once the correspondence between source and target structures has been determined 
according to the one-to-one matching relationship (=̂) in (20), the source samples in each 
class Ch have to be transported to the target samples in the corresponding cluster Cll . 
This transportation can be handily expressed for each instance xi in Ch with respect to the 
instances in Cll as the following barycentric mapping (Reich, 2013; Ferradans et al., 2014; 
Courty et al., 2016):

(17)� =

k∑

h=1

�h��h
and � =

k∑

l=1

�l��l

�h =
1

k
and �l =

1

k
, ∀h, l ∈ {1,… , k}

(18)(HOTտDA) min
Γ∈U(�,�)

⟨Γ,W⟩F − �H(Γ)

(19)W
2

h,l
= W2

2
(�

h
, �

l
) = ⟨�∗,��

h,l
, C

h,l⟩F

(20)Ch=̂Cll|l = argmax
j=1,…,k

Γ∗
�
(h, j), ∀h ∈ {1,… , k}
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where x̃i is the image of xi in the region occupied by Cll on the target domain, and �∗,��
h,l

 is 
the optimal transport plan between �h and �l already computed in (19). The barycentric 
mapping can be formulated for each class Ch as follows:

While samples in Ch and Cll are drawn i.i.d. from �h and �l , then this mapping can be casted 
as a linear expression:

After the alignment of each class Ch with its corresponding cluster Cll has been done as 
suggested in (23), a classifier � can be learned on the transported labeled source data 
S̃ = ∪k

q=1
C̃q and evaluated on the unlabeled target data T.

The proposed HOT-DA approach is formally summarized in Algorithm 1:

5 � Experimental results

In this section, we evaluate our method on a toy dataset and three challenging real-world 
visual adaptation problems.1

5.1 � Inter‑twinning moons dataset

In the first experiment, we carry on moons dataset, the source domain is the classical binary 
two inter-twinning moons centered at the origin (0,0) and composed of 300 instances, 
where each class is associated to one moon of 150 samples. We consider 7 different target 
domains by rotating anticlockwise the source domain around its center according to 7 angles. 

(21)x̃i = argmin
x∈X

m�

j=1∕xj∈Cll

�
∗,��

h,l
(i, j)‖x − xj‖2

(22)C̃h = diag(�
∗,��

h,l
1|Cll|)

−1�
∗,��

h,l
Cll, ∀h ∈ {1,… , k}

(23)C̃h = |Ch|�
∗,��

h,l
Cll, ∀h ∈ {1,… , k}

1  We make our code and the used datasets publicly available at: https://​github.​com/​Moura​dElHa​mri/​HOT-​
DA.

https://github.com/MouradElHamri/HOT-DA
https://github.com/MouradElHamri/HOT-DA
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Naturally, the greater is the angle, the harder is the adaptation. The experiments were run 
by setting � = �� = 0.1 , and an SVM with a Gaussian kernel as classifier to cope with the 
non-linearity of this dataset. The width parameter of the SVM was chosen as � =

1

2�
 , where 

� is the variance of the transported source samples. Our algorithm is compared to an SVM 
classifier with a Gaussian kernel trained on the source domain (without adaptation), PBDA 
(Germain et al., 2013) and four optimal transport based domain adaptation methods, OT-GL 
(Courty et al., 2016), JDOT (Courty et al., 2017), HiWA (Lee et al., 2019) and MADAOT 
(Dhouib et al., 2020), with the hyperparameter ranges suggested in the respective articles. To 
assess the generalization ability of the compared methods, they are tested on an independent 
set of 1000 instances that follow the same distribution as the target domain. The experiments 
are conducted 10 times, and the average accuracy is considered as a comparison criterion. 
The results are presented in Table 1 and the decision boundary of HOT-DA is illustrated in 
Fig. 6.

We remark that all the considered algorithms based on optimal transport (except for 
HiWa) manage to achieve an almost perfect score on the angles from 10◦ to 40◦ , which 
is rational, as for these small angles the adaptation problem remains quite easy. How-
ever, the SVM without adaptation has experienced a decline of almost one-third of its 
accuracy from 30◦ . This proves that moons dataset presents a difficult adaptation prob-
lem that goes beyond the generalization ability of standard supervised learning models. 
For the strongest deformation, from 50◦ and up to 90◦ , the proposed method HOT-DA, 
always provides an almost perfect score, while a big deterioration in the performance 

Table 1   Average accuracy over 
moons dataset for 7 rotation 
angles

Bolded numbers correspond to the best performance

Angle ( ◦) 10◦ 20◦ 30◦ 40◦ 50◦ 70◦ 90◦

SVM 1 0.896 0.760 0.688 0.600 0.266 0.172
PBDA 1 0.906 0.897 0.775 0.588 0.374 0.313
OT-GL 1 1 1 0.987 0.804 0.622 0.492
JDOT 0.989 0.955 0.906 0.865 0.815 0.705 0.600
HiWA 0.575 0.579 0.514 0.579 0.579 0.552 0.399
MADAOT 0.995 0.993 0.996 0.996 0.989 0.770 0.641
HOT-DA 1 1 1 1 1 1 0.997

Fig. 6   Illustration of the decision boundary of HOT-DA over moons problem for increasing rotation angles
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of PBDA and considerable deterioration in the performance of OT-GL and JDOT from 
50◦ was observed, for MADAOT, a significant deterioration of performances starts 
from 70◦ . In short, structures leveraged by HOT-DA are highlighted by eliminating the 
increasing difficulty of this adaptation task, the constancy of the excellent performances 
of our approach speaks for itself, while the poor performances of HiWa, which is a mul-
timodal distribution alignment method that seeks to jointly learn the alignment and the 
structure-correspondences is rather surprising, considering that this approach also relies 
on hierarchical optimal transport.

5.2 � Visual adaptation datasets

We now evaluate our method on three challenging visual adaptation datasets. We start by 
presenting the details of these benchmark datasets, the experimental protocol, the hyper-
parameter tuning and finish by providing and discussing the obtained results.

Datasets: We consider three visual adaptation datasets: Digits (Hull, 1994; LeCun, 
1998), Office-Caltech (Fei-Fei et  al., 2004; Saenko et  al., 2010) and Office-Home (Ven-
kateswara et al., 2017). A detailed description of each dataset is given in Table 2.

Experimental protocol: For the problem of Digits recognition, 2000 and 1800 images 
are randomly selected respectively from the original MNIST and USPS datasets. Then, the 
selected MNIST images are resized to the same 16 × 16 resolution as USPS ones. For the 
second visual adaptation problem, Office-Caltech dataset is used, where we randomly sam-
pled a collection of 20 images per class from each domain, except for DSLR where only 
8 images per class are selected. To represent these images, 4096 DeCaf6 features are used 
(Donahue et al., 2014). For the last problem, the more complex Office-Home dataset (Ven-
kateswara et al., 2017) is employed. This dataset contains 15588 images from four visually 
very different domains: Artistic images, Clip Art, Product images, and Real-world images. 
For this problem, ResNet-50 was used to extract 2048 features (He et al., 2016).

As a classifier for our approach, we use 1-Nearest Neighbor classifier (1NN) on the 
three visual adaptation datasets, which has the advantage of being parameter free.

For the problem of Digits recognition, the comparison is conducted using 1NN classi-
fier (without adaptation) and five domain adaptation methods, SA (Fernando et al., 2013) 
with a linear SVM, JDA (Long et al., 2013) with 1NN classifier, SCA (Ghifary et al., 2016) 
with 1NN classifier, OT-GL with 1NN classifier (Courty et  al., 2016) and JDOT with a 
linear SVM (Courty et  al., 2017). Concerning Office-Caltech dataset, the comparison is 

Table 2   Description of the visual 
adaptation datasets

Dataset Domains #Samples #Features #Classes Abbr.

Digits USPS
MNIST

1800
2000

256
256

10
10

U
M

Office-Caltech Caltech
Amazon
Webcam
DSLR

1123
958
295
157

4096
4096
4096
4096

10
10
10
10

C
A
W
D

Office-Home Art
Clipart
Product
Real-World

2427
4365
4439
4357

2048
2048
2048
2048

65
65
65
65

Ar
Cl
Pr
Rw
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performed with the same competitors as for Digits in addition to DeepJDOT (Damodaran 
et  al., 2018). Regarding the more voluminous and challenging Office-Home dataset, the 
choice is made to conduct the comparison with five deep learning approaches to prove the 
scalability of our method, and its capability to compete with deep learning models. The 
competitors are: ResNet-50 (without adaptation), DAN (Long et al., 2015), DANN (Ganin 
et al., 2016), JAN (Long et al., 2017) and DeepJDOT (Damodaran et al., 2018).

Hyper-parameter tuning: For the problem of Digits recognition, the experiments were 
performed by setting � = �� = 0.1 . For Office-Caltech dataset, each target domain is equita-
bly splited into a validation and test set. The validation set is used to select the best hyper-
parameters �, �′ in the range of {1,… , 100} . The accuracy is then evaluated on the test 
set, with the chosen hyper-parameters. The experimentation is performed 10 times, and 
the mean accuracy in % is reported as in Courty et al. (2016). For Office-Home dataset, 
all labeled source samples and unlabeled target samples are used, and the average clas-
sification accuracy in % is computed based on three random experiments as in Ganin and 
Lempitsky (2015). The best hyper-parameters �, �′ are selected in the range of {1,… , 100}.

Results: The results of our experiments are reported in Tables 3, 4, and 5. For each task, 
we use bold and underlined fonts to indicate the best and second best results respectively.

From Table  3, we can see that the proposed approach HOT-DA significantly outper-
forms the other domain adaptation methods on both tasks of Digits recognition problem.

Table 3   Accuracy on digits 
dataset

Bolded numbers correspond to the best performance and underlined 
numbers to the second best performance

Task 1NN JDA SA SCA OT-GL JDOT HOT-DA

M → U 58.33 60.09 67.71 65.10 69.96 64.00 76.39
U → M 39.00 54.52 49.85 48.00 57.85 56.00 63.20
average 48.66 57.30 58.73 56.55 63.90 60.00 69.79

Table 4   Accuracy on Office-Caltech dataset (Decaf6 features)

Bolded numbers correspond to the best performance and underlined numbers to the second best perfor-
mance

Task 1NN JDA SA SCA OT-GL JDOT DeepJDOT HOT-DA

A → C 22.25 81.28 79.20 78.80 85.51 85.22 87.40 80.00
A → D 20.38 86.25 83.80 85.40 85.00 87.90 88.50 92.53
A → W 23.51 88.33 74.60 75.90 83.05 84.75 86.70 96.74
C → A 20.54 88.04 89.30 89.50 92.08 91.54 92.30 92.19
C → D 19.62 84.12 74.40 87.90 87.25 89.91 92.00 96.27
C → W 18.94 79.60 88.50 85.40 84.17 88.81 85.30 95.11
D → A 27.10 91.32 79.00 90.00 92.31 88.10 91.50 91.33
D → C 23.97 81.13 92.25 78.10 84.11 84.33 85.30 78.48
D → W 51.26 97.48 79.20 98.60 96.29 96.61 98.70 96.33
W → A 23.19 90.19 55.00 86.10 90.62 90.71 86.60 91.86
W → C 19.29 81.97 99.60 74.80 81.45 82.64 84.70 78.20
W → D 53.62 98.88 81.65 100.00 96.25 98.09 98.70 94.61
average 28.47 86.72 81.65 85.90 88.18 89.05 89.80 90.30
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Table 4 shows that HOT-DA surpasses the other competitors on 5 out of 12 tasks in 
Office-Caltech dataset, and has the second best accuracy on another task. Tables 3 and 4 
also present the average results of each algorithm, where we observe a slight advance in 
favor of our method compared to competitors, notably JDOT and DeepJDOT. Therefore, 
we attribute this gain to the effectiveness of our Wasserstein-Spectral clustering that suc-
ceeds in learning hidden structures in the target domain even if they do not have globular 
shapes, which is the case of these two challenging visual adaptation datasets. Furthermore, 
the hierarchical formulation incorporates efficiently these structures, which allows to pre-
serve compact classes during the transportation and limits the mass splitting across differ-
ent target structures. However, we see that DeepJDOT significantly outperforms HOT-DA 
in the three tasks where Caltech (C) is the target domain, this is explained by the difficulty 
we encountered to produce clusters similar to the unknown real classes in this domain.

The experimental results on Office-Home dataset are shown in Table 5. We observe that 
HOT-DA outperforms the other methods on 6 out of 12 tasks, while DeepJDOT performs 
better in the remaining 6 tasks. DeepJDOT is in the second place 6 times compared to 3 
times for HOT-DA, which experienced a drop in performance in the 3 tasks where Clipart 
is the target domain. This behavior led to a slight difference in their average accuracy on 
Office-Home dataset in favor of DeepJDOT. This is rather surprising considering that the 
competitors rely on neural networks to learn the final classifier and these latter are expected 
to have higher discriminative power than the 1-Nearest Neighbor classifier used in our 
approach. Consequently, we attribute this competitiveness to the efficiency of our hierar-
chical optimal transport formulation that manages to better align the two distributions, and 
that can be seen as an “implicit regularized” optimal transport. This implicit regularization 
heavily relies on “a priori knowledge” (clustering), which leads to the injection of struc-
tural information directly into the transport problem.

Globally, the mean accuracy of HOT-DA is 0.5% higher than DeepJDOT on Office-
Caltech. In parallel, DeepJDOT shows an improvement of 1.1% compared to our method 
on Office-Home. Roughly speaking, the set of experiments shows a good behavior with 
respect to state-of-the-art methods, especially JDOT and DeepJDOT, which however 

Table 5   Accuracy on Office-
Home dataset (ResNet-50 
features)

Bolded numbers correspond to the best performance and underlined 
numbers to the second best performance

Task ResNet-50 DAN DANN JAN DeepJDOT HOT-DA

Ar → Cl 34.9 43.6 45.6 45.9 50.7 48.0
Ar → Pr 50.0 57.0 59.3 61.2 68.6 69.0
Ar → Rw 58.0 67.9 70.1 68.9 74.4 75.3
Cl → Ar 37.4 45.8 47.0 50.4 59.9 61.7
Cl → Pr 41.9 56.5 58.5 59.7 65.8 63.2
Cl → Rw 46.2 60.4 60.9 61.0 68.1 67.4
Pr → Ar 38.5 44.0 46.1 45.8 55.2 54.1
Pr → Cl 31.2 43.6 43.7 43.4 46.3 39.7
Pr → Rw 60.4 67.7 68.5 70.3 73.8 75.3
Rw → Ar 53.9 63.1 63.2 63.9 66.0 67.6
Rw → Cl 41.2 51.5 51.8 52.4 54.9 47.9
Rw → Pr 59.9 74.3 76.8 76.8 78.3 78.5
average 46.1 56.3 57.6 58.3 63.5 62.4
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manage to outperform our algorithm on several tasks. This competitive behavior is, we 
believe, due to the commonality between JDOT and DeepJDOT on the one hand and HOT-
DA on the other hand. The former methods design a simultaneous optimization problem 
to find the coupling between the joint distribution of the source and target domains and 
the labeling function that solves the transfer problem. While the second method tries to 
address the same task sequentially by first finding the target structures, which is equivalent 
to performing a pseudo-labeling in the target domain, before aligning each source struc-
ture with its corresponding target structure, which can be seen as an alignment of the joint 
distributions.

5.3 � Relevance of Wasserstein‑Spectral clustering to HOT‑DA

The first step of HOT-DA is not directly integrated into the domain adaptation process, 
and it is questionable whether other well-known clustering algorithms such as k-means 
(MacQueen et  al., 1976), DBSCAN (Ester et  al., 1996) or HDBSCAN (Campello et  al., 
2013) can be used to learn the target structures instead of Wasserstein-Spectral clustering 
(W-SC).

k-means suffers from several drawbacks, notably its inability to identify clusters with 
non-convex shapes, as shown in Fig. 4. This incapacity can significantly reduce the perfor-
mance of HOT-DA on several unsupervised domain adaptation problems where clusters do 
not have globular shapes in the target domain. These problems include but are not limited 
to, the inter-twinning moons dataset.

On the other hand, DBSCAN relies on detecting areas where points are closely packed 
together (points with many nearby neighbors) and marking as outliers points that lie 
alone in low-density regions (whose nearest neighbors are too far away). DBSCAN does 
not require to specify the number of clusters a priori, instead, it requires two parameters: 
minimum number of neighbors minpts and minimum radius Eps. Therefore, for clustering 
high-dimensional data, it becomes very difficult to tune these parameters to get the desired 
number of clusters, even using heuristic methods (Musdholifah et  al., 2013). Which can 
lead to finding a number of clusters very larger or very smaller than the number of classes 
k in the source domain, and then to poor adaptation results. Regarding HDBSCAN, which 
is a conversion of DBSCAN into a hierarchical clustering algorithm, from which a simpli-
fied hierarchy composed only of the most significant clusters can be easily extracted. It can 
find clusters of varying densities, unlike DBSCAN and it performs well on low to medium 
dimensional data. However, its performance tends to decrease as the dimension increases. 
In general, the performance of HDBSCAN can see significant decreases already with tens 
of dimensions (Campello et al., 2020). The unsupervised domain adaptation settings can be 
beneficial for clustering algorithms that require the number of clusters k to the detriment of 
DBSCAN and HDBSCAN which do not benefit from this available information, especially 
for high-dimensional data (e.g., visual domain adaptation datasets using ResNet-50 or 
DeCaf features) where it becomes quite difficult to tune these parameters to get the desired 
number of clusters k.

This analysis is the main motivation behind replacing k-means, DBSCAN, or HDB-
SCAN with spectral clustering which is able to find exactly k clusters, even with non-glob-
ular shapes. This choice was reconsidered for complexity reasons as discussed in Sect. 4.1, 
which led to the establishment of an equivalent algorithm: Wasserstein-Spectral clustering, 
which furthermore allows unifying the different steps of our algorithm under the aegis of 
optimal transport.
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To confirm the insights above, we reproduce the experiments on the following datasets: 
Moons, Office-Caltech, and Office-Home using four variants of our algorithm, the first one 
uses Wasserstein-Spectral clustering, the second one uses k-means, the third one is based 
on DBSCAN and the fourth one is rather based on HDBSCAN. The results of these experi-
ments are given in Fig. 7 using Kiviat diagram.

Figure  7 indicates ostensibly that the radar corresponding to the variant with W-SC 
encompasses the other radars on the three datasets. On the 7 rotation problems of moons 
dataset, the variant of HOT-DA based on Wasserstein-Spectral clustering performs slightly 
better than the other variants based on DBSCAN and HDBSCAN and all manage to make 
a nearly perfect adaptation. This is due to the ability of Wasserstein-Spectral clustering to 
capture the structure of the two moons, and the ease of tuning the parameters for DBSCAN 
and HDBSCAN to find the desired number of clusters in a small dimensional space 
( d = 2 ). While the variant of HOT-DA based on k-means has much poorer performance 
due to the inability of k-means to correctly explore the two inter-twinning moons. Regard-
ing Office-Caltech and Office-Home, the high-dimensionality of these datasets ( d = 4096 
for Office-Caltech and d = 2048 for Office-Home) has strongly impacted the performance 
of DBSCAN and HDBSCAN, which fail to find exactly the desired number of clusters 
( k = 10 for Office-Caltech and k = 65 for Office-Home), while k-means and Wasserstein-
Spectral clustering benefit from this available information to obtain better results, with sig-
nificant supremacy for this latter.

The above empirical experiments strengthen our choice of Wasserstein-Spectral cluster-
ing and clearly demonstrate that it is a well-suited candidate for these unsupervised domain 
adaptation settings.

5.4 � Structure imbalance sensitivity analysis

The problem of structure imbalance where an uneven distribution of samples occurs among 
a variety of structures can lead to pathological behavior of the mass transportation, by 
showing favoritism towards majority target structures in spite of minority ones which may 
receive no mass due to the thresholding performed in (20). Fortunately, the choice made to 
give the same mass to each structure, allows HOT-DA to avoid this behavior and to achieve 

Fig. 7   Kiviat’s accuracy diagram for the four variants of HOT-DA on Office-Caltech, Office-Home, and 
Moons datasets. The radar corresponding to the variant based on Wasserstein-Spectral clustering dominates 
the other radars on the three datasets
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the right matching between source and target structures. The intuition behind this choice is 
to consider each structure as an independent entity and to remove the bias induced by its 
cardinality, which is quite natural since a class in the source domain and its corresponding 
cluster in the target domain do not necessarily have the same proportion of points.

To evaluate the behavior of HOT-DA with respect to the problem of structure imbalance, 
an experiment is conducted on a toy dataset composed of two structures in each domain as 
shown in Fig. 8. The experiment is designed to compare the performance of our proposed 
approach with Reg-OT (Cuturi, 2013), OT-GL (Courty et  al., 2016) and GW (Gromov-
Wasserstein is a distance that generalizes the notion of optimal transport to the setting of 
mm-spaces up to isometries) (Mémoli, 2011; Sturm, 2006), in three scenarios: balanced 
structures, moderately unbalanced structures and, extremely unbalanced structures.

The first part of the experiment concerning the case of balanced structures shows an 
ideal behavior of the four methods. The situation begins to change slightly in the second 
case of moderately unbalanced structures, where Reg-OT and OT-GL make some mistakes 
because of the extra-mass of the red source structure that has to be sent to the blue target 
structure, while GW reverses the matching due to this moderate imbalance. However, our 
approach still achieves an uncontested matching. The third part concerning the most com-
plicated scenario of extremely unbalanced structures, demonstrates a catastrophic deterio-
ration in the results of the three methods Reg-OT, OT-GL, and GW, while our HOT-DA 
approach continues to provide a flawless result. This proves that HOT-DA is a robust and 
non-sensitive algorithm to this kind of imbalance, unlike other approaches. It is notewor-
thy that our model is less sensitive than other optimal transport methods to changes in the 
value of the entropy regularization parameter thanks to the thresholding carried out by the 
hard assignment in (20).

6 � Conclusions and future perspectives

In this paper, we proposed HOT-DA, a novel approach dealing with unsupervised domain 
adaptation, by leveraging the ability of hierarchical optimal transport to induce struc-
tural information directly into the transportation process. We also proved theoretically the 

Fig. 8   Behavior of Reg-OT, OT-GL, GW, and, HOT-DA towards the problem of structure imbalance



4179Machine Learning (2022) 111:4159–4182	

1 3

equivalence between spectral clustering and the problem of learning probability measures 
through Wasserstein barycenter, this latter was used to derive Wasserstein-Spectral clus-
tering, a new alternative of spectral clustering able to learn hidden structures of arbitrary 
shapes in the unlabeled target domain, as a seminal step before performing hierarchical 
optimal transport to align the source and target domains. The proposed approach has been 
shown to be efficient on both simulated and real-world problems compared to several state-
of-the-art methods, in addition to being able to cope with structure imbalance.

Our work can be extended in different directions. From an algorithmic standpoint, we 
plan to investigate a possible application of the proposed approach to multi-source domain 
adaptation setting. From a theoretical standpoint, future work will include the development 
of generalization bounds that take into account the hierarchical organization of source and 
target samples in structures. These bounds will reflect explicitly both the excess clustering 
risk in the target domain and which structures must be aligned to lead to a good adaptation.
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