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Abstract
Partial label learning deals with the problem where each training instance is associated 
with a set of candidate labels, among which only one is valid. Existing approaches on 
partial label learning assume that the scale of label space is fixed, however, this assump-
tion may not be satisfied in open and dynamic environment. In this paper, the first attempt 
towards the problem of partial label learning with emerging new labels is presented. There 
are mainly three challenges in this task, namely new label detection, effective classifica-
tion, and efficient model updating. Specifically, a new method is proposed to address these 
challenges which consists of three parts: (1) An ensemble-based detector that identifies 
instances from new labels while also assigns candidate labels to instances which may 
belong to known labels. (2) An effective classification mechanism that involves data pool 
construction and label disambiguation process. (3) An efficient updating procedure that 
adapts both the detector and classifier to new labels without training from scratch. Our 
experiments on artificial and real-world partial label data sets validate the effectiveness of 
the proposed method in dealing with emerging labels for partial label learning.
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1  Introduction

Partial label learning is a kind of weakly supervised learning paradigm (Zhou 2018), which 
deals with the problem where each training instance is associated with a set of candidate 
labels, among which only one is valid and not directly accessible by the training algorithms 
(Nguyen and Caruana 2008; Lv et al. 2020; Yan and Guo 2020; Xu et al. 2021). The need 
of partial label learning arises in many real-world applications such as web mining (Chen 
et al. 2017), automatic face annotation (Hu et al. 2021), natural language processing (Zhou 
et al. 2018), etc.

Existing studies on partial label learning are usually conducted based on the assumption 
that the learning environment is static, such as the number of labels is fixed during train-
ing and testing. However, the environment in many real-world tasks is open and dynamic, 
which break the stationary assumption (Zhang et al. 2022; Mancini et al. 2022). For exam-
ple, in topic categorization, a document may be annotated with a set of labels while only 
one is correct, which can be formulated as partial label learning problem. Moreover, new 
topics may arise at any time in online environment, which requires the categorization sys-
tem to be adjusted quickly (Masud et al. 2010; Zhou et al. 2021). Therefore, in this paper, 
we investigate a new problem, i.e, partial label learning with emerging new labels.

Formally, let X  denote the instance space and Yt denote the label space at time t. In 
the beginning, we are given an initial partial label data set D0 = {(xi, Si) ∣ 1 ≤ i ≤ n} , 
where xi ∈ X  is a d-dimensional feature vector (xi,1, xi,2,⋯ , xi,d)

� and Si ⊆ Y0 denotes 
the associated candidate label set. There are q different labels in the initial label space, 
i.e., Y0 = [1, q] . Following the key assumption of partial label learning, the ground truth 
label yi of xi is concealed in Si and cannot be accessed by the learning algorithm. Let 
D = {x�

t
∣ 1 ≤ t ≤ ∞} be the data stream, where x′

t
 arrives at time t. Following the com-

monly used assumption in learning with emerging new labels, the ground truth label y′
t
 of 

x′
t
 cannot be accessed in the entire data stream. Our task aims to continuously update the 

model when new labels emerge, while maintain the overall performance on the entire data 
stream.

Compared with traditional partial label learning, there exist three major challenges to 
be solved in this new task: (1) New label detection is challenging without accessing any 
instance from emerging labels. Moreover, given partially labeled data, this problem is even 
more difficult due to the ambiguity in label space. (2) The classification on data stream 
is difficult since the ground-truth labels cannot be available. (3) The detector and classi-
fier need to be efficiently updated to deal with new labels while maintain the performance 
on known labels, which means that they need to be reusable during the dynamic train-
ing procedure, instead of retraining them from scratch in each period. In this paper, a new 
method named Plenl, i.e., Partial Label learning with Emerging New Labels, is proposed 
to tackle the above challenges. Specifically, Plenl consists of three parts: (1) An ensemble-
based detector is designed to detect the instances of new labels, while also estimates the 
candidate labels effectively; (2) The classification is solved by firstly constructing a data 
pool which contains representative instances of each label and then using a graph-based 
manifold consistency mechanism to disambiguate the labels. (3) The detector and classi-
fier can be efficiently updated by continuously adding individual detectors which focus on 
emerging labels to enhance the ensemble-based detector and expanding the data pool with 
new instances.

The rest of this paper is organized as follows. Section 2 briefly reviews the related work 
on learning with emerging new labels and partial label learning. Section  3 presents the 
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technical details of the proposed Plenl method. Section 4 reports the experiment results 
against comparing methods. Finally, the conclusion is presented in Sect. 5.

2 � Related work

For the learning systems in open and dynamic environment, it is important to develop algo-
rithms which can adapt to emerging new labels while maintain the performance on previ-
ous labels (Zhu et al. 2018; Zhu and Li 2020; Hu et al. 2021; Zhou et al. 2021). Masud 
et  al. (2010) propose to delay the prediction process under maximum allowable waiting 
time, since they assume that the ground-truth label would be given after a certain time 
interval. However, this assumption is not always realistic in real-world applications. Da 
et al. (2014) propose a simplified setting called learning with augmented label, in which all 
unseen labels will be treated as an augmented label. Mu et al. (2017b) address the problem 
of learning with emerging new labels using a new method called SENC-Mas, which utilizes 
two matrix sketches to build the classifier and detector simultaneously. Zhu and Li (2020) 
propose a method namely SEEN which detects new label via a typical anomaly detection 
method iForest (Liu et al. 2008) and conducts classification by graph-based method. Mu 
et al. (2017a) propose SENCForest which achieves classification and new label detection in 
a unified framework using completely random trees. Zhu et al. (2018) propose to tackle the 
classification and new label detection by taking the dependence among labels into account 
to improve performance.

The above methods tackle new label detection by simply transforming this problem into 
an anomaly detection problem (Chandola et al. 2009; Akoglu et al. 2015). However, these 
two problems are actually different. Intuitively speaking, anomaly usually refers to noisy 
instances, which only account for a small proportion in the whole data set. Differently, new 
label detection focuses on the emergence of new pattern and the instances from those new 
labels may dominate the data stream. Furthermore, anomaly detection does not pay atten-
tion to the discrimination of known labels, which may be very helpful to detect new labels.

Previous works usually assume that the initial training instances are associated with 
explicit labels, however, these explicit labels cannot be collected in some special scenario. 
In many applications, training instances are annotated with only partial labels, i.e., par-
tial label learning (Nguyen and Caruana 2008; Feng et al. 2020; Lv et al. 2020; Xu et al. 
2021). Partial label learning can be regarded as a kind of weakly-supervised learning para-
digm, in which the ground-truth label of each instance is concealed in a candidate label set 
and unaccessible during training phase. This problem is similar to multi-instance learning 
and multi-label learning and learning with noisy labels (Foulds and Frank 2010; Zhang 
and Zhou 2013; Bai and Liu 2021). Although the relation between instance and label is 
ambiguous in both multi-instance learning and partial label learning, the ambiguity exists 
in feature space for the former and label space for the latter one. In multi-label learning, 
all candidate labels are valid, while there is only one valid label among candidate labels 
in partial label learning. Learning with noisy labels focuses on the correction the wrong 
labels via credible sample selection (Xia et al. 2021). Note that the partial label learning 
problem could be transformed into learning with noisy labels problem if we decompose 
each partial label instance into multiple noisy label instance according to its candidate 
labels. There are many approaches have been proposed for partial label learning in the 
past decades. Label disambiguation is usually considered as a principal approach to solve 
this problem. Averaging-based disambiguation treats all the candidate labels in an equal 
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manner, then makes the prediction by averaging their model outputs. In (Cour et al. 2011), 
the outputs over all candidate labels is averaged and distinguished from the outputs over 
all non-candidate labels. Gong et al. (2017) determine the prediction of a test instance by 
directly voting among all the candidate labels of its neighbors. Although the averaging-
based disambiguation is intuitive and easy to be implemented, its effectiveness is prone 
to be affected by the false positive labels whose outputs would overwhelm the output of 
the ground-truth label. Another way towards disambiguation is to identify the ground-truth 
label during training. Existing approaches along this line treat the ground-truth label as a 
latent variable, which could be determined by the maximum likelihood criterion. Then, the 
Expectation-Maximization (EM) procedure is used to refine the estimation of the latent 
variable and optimize the model parameters iteratively (Jin and Ghahramani 2002). The 
drawback of identification-based disambiguation lies in that the prediction might be misled 
by the false positive labels in the candidate label set. In recent years, the graph-based dis-
ambiguation methods are proposed, which utilize local manifold structure in feature space 
to determine the ground-truth label (Wang et al. 2019; Zhang and Yu 2015). However, the 
above studies assume that learning algorithms would be implemented in static environ-
ment, thus, these methods cannot continuously adapt the emerging new labels in open and 
dynamic environment.

In this paper, we introduce a novel approach named Plenl to tackle the problem of par-
tial label learning with emerging new labels. To the best of our knowledge, this is the first 
attempt on this complicated problem. The details of Plenl will be presented in the next 
section.

3 � The Plenl approach

Following the notations in Section 1, in the beginning, we are given the initial data set D0 
containing instances only from known labels in Y0 , where all the instances in D0 are par-
tially labeled, i.e., the ground truth labels of those instances must locate in Y0 , which can-
not offer any information of the emerging new labels. After that, new labels may continu-
ously emerge in the data stream D = {x�

t
}∞
(t=1)

 , while the ground-truth labels of instances in 
D may come from initial label set Y0 or its complementary set Y ⧵ Y0 , but they are unac-
cessible in the entire learning procedure.

To address this problem, we need to continuously detect new labels and update the 
model to deal with these emerging labels while maintain the classification performance 
on the known labels. A schematic description of the overall framework of Plenl is shown 
in Fig.  1. As shown in this section, we introduce our method from three perspectives: 
new label detection, data stream classification and model updating. Overall, we employ 
an ensemble-based detector to identify new labels and a graph-based label disambiguation 
method to perform classification. We will show that both the detector and classifier can be 
efficiently updated by simply plugging an individual classifier for the new label. In the fol-
lowing subsections, we present each part of our method in details.

3.1 � New label detection

Following the common assumption (Mu et al. 2017b; Zhu and Li 2020), there would be only 
one new label y∗ emerges in each period. Therefore, for each period, x′

t
 could be identified as 
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an instance from the new labels y∗ if it does not belong to any known label in Yt−1 , which can 
be presented as follows:

Thus, we can use a set of classifiers of known labels to conduct new label detection. In the 
beginning, to learn classifiers from the initial partial label data set D0 , we firstly decom-
pose D0 into q data sets {D1

0
,D2

0
,⋯ ,D

q

0
} , where Dj

0
= {xi ∣ j ∈ Si, 1 ≤ i ≤ n} . For each 

data set, we will use one-class SVM to induce an individual classifier g, and the objective 
function of one-class SVM is presented as follows:

where � and � are the parameters of hyperplane, � is the normal vector, and � is the offset of 
hyperplane; � is the slack variable; n is the number of training data; � ∈ (0, 1) controls the 
trade-off between model complexity and performance; � denotes the kernel function. In 
this paper, we employ the commonly used RBF kernel, i.e., K(xi, xj) = exp

�
−�‖xi − xj‖

�
 . 

By optimizing the Eq.  2, the classification hyperplane can be determined. After 
optimization, the corresponding classification result for instance x′

t
 is induced as 

g(x�
t
) = sgn

(
w⊤Φ(x′

t
) − 𝜌

)
 . Then, the detector G is built by ensembling all these binary 

classifiers:

(1)P(y∗ ∣ x�
t
) =

∣Yt−1∣∏
i=1

(1 − P(yi ∣ x
�
t
))

(2)
min
�,�,�

1

2
‖�‖2 + 1

�n

n�
i=1

� − �

s.t. ∶ � ⋅�(xi) ≥ � − �i, �i ≥ 0

(3)G(x�
t
) =

{
1, if gj(x

�
t
) = −1, ∀j ∈ [1, q]

0, otherwise

Fig. 1   The illustration of our proposed Plenl framework
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which means that if x′
t
 does not belong any label in the known label set, then it would be 

assigned to the new label y∗.
It is inefficient to immediately update the model in the case of very few instances 

are detected as new labels. Therefore, we use a temporary buffer B to store the detected 
instances and update the model once sufficient data has been obtained. If G(x�

t
) = 1 , then 

x′
t
 would be placed in B . With the accumulation of instances in B , the buffer will reach the 

maximum capacity M, then the detector would be updated for the subsequent detection. 
At the same time, the known label set will be enlarged as Yt = Yt−1 ∪ y∗ . If G(x�

t
) = 0 , the 

prediction of the base classifiers could be considered as a rough estimation of the candidate 
label set, that is Ŝt = {j ∣ gj(x

�
t
) = 1,∀j ∈ [1, ∣ Yt ∣]} . In the next subsection, we will show 

that these candidate labels could be efficiently disambiguated.

3.2 � Data stream classification

After the detection process, we need to conduct classification for the instances that may 
come from known labels. As we described above, the candidate label set of x′

t
 can be 

roughly estimated by the detector. Given these candidate labels, the fine-grained classifica-
tion of x′

t
 can be accomplished by label disambiguation. Previous works on partial label 

learning found that label disambiguation can be effectively achieved by graph-based mani-
fold consistency (Zhang and Yu 2015; Wang et al. 2019).

However, the optimization of graph-based methods is usually inefficient, especially 
when the number of instances is large. To address this problem, we use a data pool mecha-
nism, which discards most instances in training data set and only preserves a few instances 
for each label in the data pool P . We find that a random subset of the whole data stream is 
enough to achieve comparable label disambiguation performance, thus we randomly select 
M instances for each label, where M is also the buffer size. Furthermore, in the stream clas-
sification procedure, the data pool would be continuously enlarged as P = P ∪ B when the 
buffer B reaches its maximum capacity.

At that time, we perform label disambiguation on the instances by graph-based mani-
fold consistency. The key idea is that the similarity in feature space should be preserved in 
label space. Accordingly, for instances in P and the data which needs to be classified, we 
firstly learn a weight matrix W by solving a re-construction problem, which encodes the 
fine-grained influence between instances without the restriction on symmetry in traditional 
affinity matrix, and it can depict the manifold structure of feature space in a more flexible 
and adaptive way. Specifically, each vector in W can be obtained by:

where N
(
xi
)
 denotes the k-nearest neighbors of xi . Following the classic label propagation 

procedure, we obtain the normalized weight matrix H = WD−1 , where D is the diagonal 
matrix with the sum of each row of W.

Let F denote the label confidence matrix, and f i denote the label confidence vector for 
instance xi . In order to avoid symbol confusion, the initial label confidence matrix is 
denoted as P, which is initialized according to label candidate estimation of detector: 
fi,j =

1

∣Ŝi∣
 for yj ∈ Ŝi and fi,j = 0 for yj ∉ Ŝi . Then, the label confidence matrix is refined by 

continuous label propagation: F̃𝜏 = 𝛼 ⋅ H⊤F𝜏−1 + (1 − 𝛼) ⋅ P , where � ∈ (0, 1) controls the 

(4)
min
wi

‖‖‖‖xi −
∑

xj∈N(xi)
wi,j ⋅ xj

‖‖‖‖
2

s.t. wi,j ≥ 0
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relative importance of initial matrix P. In each iteration, label confidence vector f i is nor-
malized as follows:

The propagation procedure is repeated until the label confidence matrix converges or the 
maximum iteration times reaches. After that, the prediction of each instance would be 
obtained by selecting the label with maximum confidence.

(5)f 𝜏
i,j
=

⎧
⎪⎨⎪⎩

f̃ 𝜏
i,j∑

yj∈Si
f̃ 𝜏
i,j

, if yj ∈ Si

0, otherwise
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3.3 � Model update

To enable the model to adaptively deal with new labels, a natural idea is retraining the 
model from scratch once a new label is detected. However, this is significantly inefficient, 
since the updating process would be repeated a plenty of times as new labels emerge 
continuously.

In our method, the updating process can be achieved by reusing the base classifiers on 
known labels during different periods. In each period, instances identified as the new label 
y∗ will be stored in the buffer temporarily, then the model would be updated to adapt this 
new label once B reaches the maximum capacity M. Specifically, for the detector, only one 
additional one-class SVM, w.r.t. the new label, is needed to be additionally induced. This 
one-class SVM will be aggregated with the current detector Gt = Gt−1 ∪ gy∗ . As our detec-
tion module is built via ensembling multiple independent one-class SVM classifiers, the 
model updating process would not affect the classification on previous known labels. For 
the classification module, the instances in B are added into the data pool as P = P ∪ B , 
which enables partial label disambiguation to adapt the new label. After the above process-
ing, the new label y∗ would be aggregated into the known label set Yt = Yt−1 ∪ y∗.

Algorithm 1 presents the pseudo-code of our Plenl approach. As we can see, the model 
updating process is presented in line 10 to 15. The updating of detection and classifica-
tion module involves adding a new one-class SVM as base classifier and integrating a few 
instances from new label into the data pool respectively. In the end of each period, the data 
will be classified via label disambiguation as shown in line 19.

4 � Experiments

4.1 � Experimental setup

4.1.1 � Data sets

To validate the effectiveness of the proposed method Plenl, we conduct experiments 
on 9 data sets with different scales. Table  1 summarizes the characteristics of these 
data sets. Specifically, the first 6 data sets are from UCI repository and the last 3 ones 
are real-world partial label data sets. For the UCI data sets, we transform them into 

Table 1   Characteristics of the 
experiment data sets

Data set #Examples #Features #Labels q

Vehicle 846 18 4 3
Segment 2,310 18 7 4
Usps 9,298 256 10 4
Pendigits 10,992 16 10 4
Letter 20,000 16 26 20
Sensorless 58,509 48 11 5
Lost 750 108 5 4
Mirflickr 2,508 1,536 8 3
BirdSong 4,884 38 11 5
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synthetic partial label data sets by randomly assigning a candidate label set for each 
instance. In our experiment, the size of candidate label set is set to 2 for all synthetic 
partial label data sets.

For each data set in Table 1, the labels are randomly splited into the known labels in 
the initial data D0 and the emerging labels in the data stream D . The initial label num-
ber q in D0 for each data set is chosen according to the size of label space, as shown in 
Table 1. Note that the minimum value of q is set to 3, otherwise the label information 
of instances in D0 would be completely eliminated. For the initial known labels, there 
will be 90% instances presented in D0 , while the rest 10% instances will be randomly 
distributed in the following periods and mixed with the instances from the new labels 
with a completely random manner. Furthermore, only one new label y∗ emerges in each 
period, and the detected new label would be regarded as a known one in the next period. 
To guarantee that there are sufficient instances from each label in all periods, we discard 
the labels from which the number of instances is fewer than 60.

4.1.2 � Comparison methods

The problem of multi-class learning with emerging new labels has been widely studied 
(Mu et al. 2017b; Zhu and Li 2020; Mu et al. 2017a), however, to the best of our knowl-
edge, there is no work investigating the problem of partial label learning with emerging 
new labels. Therefore, to compare with the existing methods, we need to firstly trans-
form the initial partial label data sets into the regular multi-class data sets by label dis-
ambiguation before employing these methods. Here we employ IPAL, which has been 
validated as an effective disambiguation method (Zhang and Yu 2015), to conduct label 
disambiguation. In our experiments, we consider three methods used for multi-class 
learning with emerging new labels for comparison:

•	 SENC-Mas (Mu et al. 2017b) utilizes two low-dimensional matrix sketches to detect 
new labels and classify known labels.

•	 SENCForest (Mu et al. 2017a) employs completely random trees, which have been 
shown to work well in unsupervised learning and supervised learning independently 
in the literature, to perform new label detection and classification.

•	 SEEN (Zhu and Li 2020) uses a tree-based method for new label detection and an 
online label propagation method for classification.

Except these methods, we also consider the combinations of anomaly detection and tra-
ditional multi-class classification as the baselines:

•	 iForest (Liu et al. 2008; Chang and Lin 2011) is an unsupervised anomaly detection 
method based on forest, which will be used to detect new labels. In addition, SVM 
will be used as the classifier.

•	 LOF (Breunig et  al. 2000) is a commonly used unsupervised anomaly detection 
method based on local density, which will be used as new label detector. In addition, 
kNN is used as classifier.

•	 iNNE (Bandaragoda et al. 2018) is an improved method based on isolation, which 
can effectively detect the clustering anomaly data and scattered anomaly points, then 
kNN is used for classification.
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•	 OC-SVM (Ma and Perkins 2003) constructs a hyper-sphere surrounding all instances 
from known labels to detect new labels. In addition, SVM is used to perform classifica-
tion.

To evaluate the performance of Plenl, we calculate the accuracy on the entire data 
stream as well as the accuracy on instances up to time t, where the former one indicates 
the overall performance and the latter one measures the dynamic performance during dif-
ferent periods. We also make a comparison on the time spent for the data stream, shown in 
Table 5.

4.2 � Experimental results

In our method, we simply set M = 250 , k = 10 and � = 0.9 on all data sets. For the base 
classifier one-class SVM, we use RBF kernel function to deal with nonlinear cases. The 
experiments on each data set are repeated 10 times with different data streams. The mean 
and standard variance of accuracy on entire data stream are reported in Tables 2, 3 and 4, 
and the changing of accuracy during periods is presented in Figs. 2 and 3. Except the above 

Table 2   Classification accuracy 
(mean±std) of Plenl and 
comparing methods on synthetic 
partial label data sets 

Bold value indicates the best one among comparing algorithms on dif-
ferent datasets

Method Letter Pendigits Segment

iForest 0.252±0.004 0.610±0.021 0.214±0.045
LOF 0.408±0.001 0.670±0.001 0.450±0.007
iNNE 0.286±0.007 0.536±0.045 0.567±0.029
OC-SVM 0.263±0.001 0.046±0.001 0.114±0.003
SENC-Mas 0.186±0.002 0.302±0.007 0.417±0.017
SENCForest 0.364±0.005 0.422±0.005 0.437±0.003
SEEN 0.215±0.005 0.103±0.001 0.184±0.014
Plenl 0.556±0.003 0.669±0.001 0.710±0.004

Table 3   Classification accuracy 
(mean±std) of Plenl and 
comparing methods on synthetic 
partial label data sets

Bold value indicates the best one among comparing algorithms on dif-
ferent datasets

Sensorless Usps Vehicle

iForest 0.161±0.014 0.242±0.012 0.400±0.042
LOF 0.224±0.000 0.102±0.000 0.191±0.013
iNNE 0.291±0.007 0.338±0.038 0.553±0.051
OC-SVM 0.155±0.000 0.200±0.001 0.394±0.016
SENC-Mas 0.250±0.005 0.308±0.003 0.422±0.010
SENCForest 0.259±0.004 0.319±0.009 0.304±0.026
SEEN 0.042±0.001 0.384±0.048 0.282±0.028
Plenl 0.306±0.003 0.663±0.001 0.790±0.014



1559Machine Learning (2024) 113:1549–1565	

1 3

mentioned measures, we further evaluate the percentage of new label instances misclas-
sified in the normal class, which is noteds as MissNew, and the results are presented in 
Tables 6, 7 and 8.

4.2.1 � Overall performance

Controlled UCI Data Sets. The results reported in Tables 2 and 3 show the effectiveness 
of our method. Compared with the methods that focus on multi-class learning with new 
labels, Plenl achieves superior performance on all cases. Compared with the methods 
that directly combine anomaly detection and classification, Plenl achieves significantly 

(a) (b) (c)

(d) (e) (f)

Fig. 2   The performance changing during stream classification of Plenl and comparing methods on syn-
thetic partial label data sets

Table 4   Classification accuracy 
(mean±std) of Plenl against 
comparing methods on real-
world partial label data sets

Bold value indicates the best one among comparing algorithms on dif-
ferent datasets

Bird song Lost Mirflickr

iForest 0.302±0.033 0.447±0.015 0.372±0.002
LOF 0.111±0.001 0.279±0.016 0.368±0.002
iNNE 0.495±0.019 0.477±0.019 0.408±0.009
OC-SVM 0.144±0.002 0.316±0.008 0.265±0.002
SENC-Mas 0.191±0.014 0.500±0.007 0.419±0.007
SENCForest 0.365±0.033 0.441±0.021 0.374±0.005
SEEN 0.204±0.029 0.258±0.013 0.407±0.008
Plenl 0.579±0.001 0.586±0.012 0.492±0.003
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superior performance on all synthetic partial label data sets except Pendigits, on which 
LOF outperforms our method with 1%.

Real-World Data Sets. The results on real-world partial label data sets are reported 
in Table 4. As we can see, Plenl also achieves superior performance on the real-word 
partial label data sets against comparing methods, which further validate the effective-
ness of our method.

Overall, our method outperforms the others with large margin. Specifically, the aver-
age accuracy of our method on all the 9 data sets is 59.5%, which is significantly higher 
than the best among the rest methods, i.e., 43.9% achieved by iNNE.

4.2.2 � Performance Changing on Stream

In Figs.  2 and 3, we present the accuracy on data stream during the dynamic learn-
ing process. From the results on both synthetic and real-world partial label data sets, 
we can see that as the instances continuously arrive, the performance margin between 
our method and the comparing methods will become larger. The improvement of our 
method can be owed to two perspectives. Firstly, the training of our method is more sta-
ble compared with other methods when new labels emerge in the data stream, and this 
stability makes our method outperform the others after a few initial periods. Another 
important observation is that our method achieves more significant performance rising 

Table 5   Runtime (S) of Plenl against comparing methods

BirdSong Lost Mirflickr Letter Pendigits Segment Sensorless Usps Vehicle

iForest 9.715 1.244 110.766 79.919 18.595 2.747 924.576 115.469 0.921
LOF 0.421 0.021 6.757 7.848 1.259 0.079 133.822 19.452 0.011
iNNE 0.302 0.051 2.564 0.601 0.350 0.121 9.115 2.261 0.038
OC-SVM 8.831 0.616 164.767 36.940 12.259 1.317 937.472 153.522 0.228
SENC-Mas 0.084 0.020 0.706 0.524 0.276 0.039 5.383 0.493 0.009
SENCForest 75.700 7.758 8.063 118.303 84.127 23.701 533.329 75.531 9.747
SEEN 101.304 6.883 76.133 197.349 109.100 15.711 1803.947 163.693 3.812
Plenl 4.132 0.396 64.659 36.940 12.259 1.217 937.472 152.522 0.228

(a) (b) (c)

Fig. 3   The performance changing during stream classification of Plenl and comparing methods on real-
world partial label data sets
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after each model updating process, which means that the detection of new labels of our 
method is more accurate than other methods. Furthermore, we compare the time cost 
to handle the data stream for different methods, shown in Table 5. As can be observed, 
compared with other comparing algorithms, Plenl achieves a much better trade-off 
between time and performance.

4.2.3 � Sensitivity analysis

Our method Plenl is instantiated with parameters M, which is employed to control the 
capacity of the instance buffer. Furthermore, k and � are used to determine the number 
of neighbors and adjust the label propagation in classification. Figure 4 illustrates how 
the performance of Plenl changes under different configurations of M, k and �.

In Fig. 4a, we observe that the performance of Plenl increases when M varies from 
50 to 250 and tends to be stable as M continues to increase. In Fig. 4b, c, d, e and f, � 
increases from 0.05 to 0.95 with step size 0.1, while k changes from 1 to 19 with step 
size 2. It is shown that the performance of Plenl is stable across different selections of 
k, and the best value for � is between 0.5 and 0.95.

4.2.4 � New label detection analysis

MissNew measures the percentage of new label instances misclassified into the known 
label set, which is equal to the ratio between the total number of instances from new 
labels classified into the normal labels and the total number of instances from the new 

(a)

(d) (e) (f)

(b) (c)

Fig. 4   The parameter sensitivity analysis for M, k and � . (a): Classification accuracy with different buffer 
size M in Plenl on BirdSong, Segment, Usps, Mirflickr and Letter; (b-f): Classification accuracy of Plenl 
with changing k and � on BirdSong, Segment, Usps, Mirflickr and Letter respectively
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labels in the stream. As shown in Tables 6, 7 and 8, the results validate the effective-
ness of our method on new label detection for real-world data sets and controlled UCI 
data sets. Compared with the other methods, including previous methods for multi-
class learning with new labels and combination of anomaly detection and multi-class 

Table 6   Evaluation on MissNew 
(mean±std) of Plenl and 
comparing methods on real-
world partial label data sets.

Bold value indicates the best one among comparing algorithms on dif-
ferent datasets

BirdSong Lost Mirflickr

iForest 0.660±0.050 0.932±0.010 0.983±0.004
LOF 0.992±0.000 0.846±0.030 0.996±0.000
iNNE 0.136±0.040 0.244±0.020 0.385±0.029
OC-SVM 0.729±0.001 0.697±0.009 0.507±0.002
SENC-Mas 0.679±0.017 0.056±0.011 0.314±0.014
SENCForest 0.615±0.047 0.568±0.045 0.744±0.026
SEEN 0.504±0.072 0.944±0.020 0.875±0.025
Plenl 0.070±0.002 0.070±0.009 0.185±0.004

Table 7   Evaluation on MissNew 
(mean±std) of Plenl and 
comparing methods on synthetic 
partial label data sets.

Bold value indicates the best one among comparing algorithms on dif-
ferent datasets

Letter Pendigits Segment

iForest 0.911±0.007 0.011±0.003 0.815±0.091
LOF 0.782±0.000 0.335±0.001 0.603±0.008
iNNE 0.426±0.019 0.029±0.025 0.234±0.042
OC-SVM 0.551±0.002 0.743±0.003 0.738±0.002
SENC-Mas 0.717±0.003 0.379±0.006 0.293±0.023
SENCForest 0.393±0.016 0.074±0.022 0.564±0.008
SEEN 0.945±0.002 0.954±0.000 0.898±0.013
Plenl 0.256±0.002 0.002±0.000 0.083±0.003

Table 8   Evaluation on MissNew 
(mean±std) of Plenl and 
comparing methods on synthetic 
partial label data sets.

Bold value indicates the best one among comparing algorithms on dif-
ferent datasets

Sensorless Usps Vehicle

iForest 0.763±0.019 0.597±0.023 0.655±0.048
LOF 0.825±0.000 0.985±0.000 0.961±0.005
iNNE 0.280±0.026 0.314±0.070 0.410±0.072
OC-SVM 0.651±0.000 0.514±0.001 0.584±0.012
SENC-Mas 0.536±0.004 0.309±0.004 0.519±0.008
SENCForest 0.581±0.020 0.338±0.025 0.784±0.035
SEEN 0.998±0.001 0.628±0.055 0.782±0.016
Plenl 0.237±0.001 0.091±0.001 0.069±0.006
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classifier, Plenl achieves superior performance on all data sets, and it exceeds those 
methods with large margins.

5 � Conclusion

In this paper, partial label learning with emerging new labels is investigated for the first 
time, and a novel approach Plenl is proposed to address this problem. Plenl employs an 
ensemble-based detector to identify instances of new labels, while this detector also pro-
duces a rough estimation of candidate label set for each instance in data stream. Then, the 
classification is solved by constructing a data pool to store a small proportion of the previ-
ous data and using a graph-based manifold consistency mechanism to disambiguate the 
labels. In our approach, the detection and classification modules are continuously updated 
with the emergence of new labels, and this process can be efficiently achieved. Extensive 
experiments on real-world and controlled UCI data sets validate the effectiveness of the 
proposed approach.
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