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Abstract
In this work, we study the optimal transport (OT) problem between symmetric positive 
definite (SPD) matrix-valued measures. We formulate the above as a generalized optimal 
transport problem where the cost, the marginals, and the coupling are represented as block 
matrices and each component block is a SPD matrix. The summation of row blocks and 
column blocks in the coupling matrix are constrained by the given block-SPD margin-
als. We endow the set of such block-coupling matrices with a novel Riemannian manifold 
structure. This allows to exploit the versatile Riemannian optimization framework to solve 
generic SPD matrix-valued OT problems. We illustrate the usefulness of the proposed 
approach in several applications.

Keywords Tensor gromov–wasserstein · Block SPD wasserstein barycenter · Domain 
adaptation · Tensor-value interpolation

1 Introduction

Optimal transport (OT) offers a systematic approach to compare probability distributions 
by finding a transport plan (coupling) that minimizes the cost of transporting mass from 
one distribution to another. It has been successfully applied in a wide range of fields, such 
as computer graphics (Solomon et  al., 2015, 2014), graph representation learning (Chen 
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et al., 2020; Maretic et al., 2019), text classification (Yurochkin et al., 2019), and domain 
adaptation (Courty et al., 2016, 2014), to name a few.

Despite the popularity of OT, existing OT formulations are mostly limited to scalar-val-
ued distributions. On the other hand, many applications involve symmetric positive definite 
(SPD) matrix-valued distributions. In diffusion tensor imaging (Le Bihan et al., 2001), the 
local diffusion of water molecules in human brain are encoded in fields of SPD matrices 
(Assaf and Pasternak, 2008). In image processing, region information of an image can be 
effectively captured through several SPD covariance descriptors (Tuzel et al., 2006). For 
the application of image set/video classification, each set of images/frames can be repre-
sented by its covariance matrix, which has shown great promise in modelling the intra-set 
variations (Huang et al., 2015; Harandi et al., 2014). In addition, fields of SPD matrices are 
also important in computer graphics for anisotropic diffusion (Weickert, 1998), remesh-
ing (Alliez et al., 2003) and texture synthesis (Galerne et al., 2010), just to name a few. In 
all such cases, being able to compare fields represented by SPD matrices is crucial. This, 
however, requires a nontrivial generalization of existing (scalar-valued) optimal transport 
framework with careful construction of cost and transport plan.

In the quantum mechanics setting, existing works (Jiang et al., 2012; Carlen and Maas, 
2014; Chen et  al., 2017, 2018) have explored geodesic formulation of the Wasserstein 
distance between vector and matrix-valued densities. In (Ning, 2013; Ning et  al., 2014), 
the Monge-Kantorovich optimal mass transport problem has been studied for comparing 
matrix-valued power spectra measures. Recently, Peyré et  al. (2019a) proposed to solve 
an unbalanced optimal transport problem for SPD-valued distributions of unequal masses.

In this paper, we propose a general framework for solving the balanced OT problem 
between SPD-valued distributions, where the cost and the coupling are represented as 
block SPD matrices. We discuss a Riemannian manifold structure for the set of such block 
coupling matrices, and we are able to use the Riemannian optimization framework (Absil 
et  al., 2008; Boumal, 2020) to solve various generalized OT problems. Specifically, our 
contributions are as follows. 

1. We introduce the general SPD matrix-valued balanced OT problem for SPD matrix-
valued marginals and study its metric properties for a specific setting.

2. We propose a novel manifold structure for the set of block matrix coupling matrices, 
which generalizes the manifold structures studied in (Douik and Hassibi, 2019; Shi 
et al., 2021; Mishra et al., 2021, 2019). We discuss optimization-related ingredients like 
Riemannian metric, Riemannian gradient, Hessian, and retraction.

3. We extend our SPD-valued balanced OT formulation to block SPD Wasserstein bar-
ycenter and Gromov-Wasserstein OT.

4. We empirically illustrate the benefit of the proposed framework in domain adaptation, 
tensor-valued shape interpolation, and displacement interpolation between tensor fields.

Organizations. We start with a brief review of Riemannian optimization and SPD matrix-
valued optimal transport problem in Sect. 2. In Sect. 3, we introduce the generalized SPD 
matrix-valued OT problem and define the proposed block SPD coupling manifold. Sect. 4 
discusses the Riemannian structure of the proposed manifold and derives the necessary 
optimization-related ingredients. Sect.  5 presents two additional OT related applications 
of the proposed Block SPD coupling manifold. In Sect. 6, we empirically evaluate the pro-
posed approach in various applications. Sect. 7 concludes the paper. In the appendix sec-
tions, we provide the proofs and present additional experiments.
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2  Preliminaries

2.1  Riemannian optimization

A matrix manifold M is a smooth subset of the ambient vector space V with local bijec-
tivity to the Euclidean space. A Riemannian manifold is a manifold endowed with a 
Riemannian metric (a smooth, symmetric positive definite inner product structure 
⟨⋅, ⋅⟩x ) on every tangent space TxM . The induced norm on the tangent space is thus 
‖u‖x =

√⟨u, u⟩x.
The orthogonal projection operation for an embedded matrix manifold Px ∶ V �→ TxM 

is a projection that is orthogonal with respect to the Riemannian metric ⟨⋅, ⋅⟩x . Retrac-
tion is a smooth map from tangent space to the manifold That is, for any x ∈ M , retrac-
tion Rx ∶ TxM �→ M such that 1) Rx(0) = x and 2) DRx(0)[u] = u , where Df (x)[u] is the 
derivative of a function at x along direction u.

The Riemannian gradient of a function F ∶ M �→ ℝ at x, denoted as gradF(x) , gen-
eralizes the notion of the Euclidean gradient ∇F(x) . It is defined as the unique tangent 
vector satisfying ⟨gradF(x), u⟩x = DF(x)[u] = ⟨∇F(x), u⟩2 for any u ∈ TxM , where ⟨⋅, ⋅⟩2 
denotes the Euclidean inner product. To minimize the function, Riemannian gradient 
descent (Absil et al., 2008) and other first-order solvers apply retraction to update the 
iterates along the direction of negative Riemannian gradient while staying on the mani-
fold, i.e., xt+1 = Rxt

(−� gradF(xt)) , where � is the step size. Similarly, the Riemannian 
Hessian HessF(x) ∶ TxM �→ TxM is defined as the covariant derivative of Riemannian 
gradient. Popular second-order methods, such as trust regions and cubic regularized 
Newton’s methods have been adapted to Riemannian optimization (Absil et  al., 2007; 
Agarwal et al., 2018).

2.2  Scalar‑valued optimal transport

Consider two discrete measures supported on ℝd , � =
∑m

i=1
pi��i , � =

∑n

j=1
qj��j , where 

�i, �j ∈ ℝ
d and �� is the Dirac at � . The weights � ∈ Σm, � ∈ Σn are in probability sim-

plex where Σk ∶= {� ∈ ℝ
k ∶ pi ≥ 0,

∑
i pi = 1} . The 2-Wasserstein distance between �, � 

is given by solving the Monge-Kantorovich optimal transport problem:

where Π(�,�) ∶= {� ∈ ℝ
m×n ∶ � ≥ 0, �� = �, �⊤� = �} is the space of joint distribution 

between the source and the target marginals. An optimal solution of (1) is referred to as 
an optimal transport plan (or coupling). Recently, Cuturi (2013) proposed the Sinkhorn-
Knopp algorithm (Sinkhorn, 1964; Knight, 2008) for entropy-regularized OT formulation. 
In case � and � are measures (i.e., the setting is not restricted to probability measures), it 
may happen that they are of unequal masses. OT in this case is termed as unbalanced opti-
mal transport (Chizat et al., 2018; Liero et al., 2018). For a recent survey of OT literature 
and related machine learning applications, please refer to (Peyré et al., 2019b).

(1)W2
2
(�, �) = min

�∈Π(�,�)

�
i,j

‖�i − �j‖2�i,j,
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2.3  SPD matrix‑valued optimal transport

A SPD matrix-valued measure is a generalization of the (scalar-valued) probability 
measure (discussed in Sect. 2.2). Let us consider a SPD matrix-valued measure M and a 
scalar-valued measure � defined on a space X  . Let A be a measurable subset of X  . Then, 
while �(A) is a non-negative scalar, the “mass” M(A) ∈ �

d
+
 , where �d

+
 denotes the set of 

d × d positive semi-definite matrices. SPD matrix-valued measures have been employed 
in applications such as diffusion tensor imaging (Le Bihan et al., 2001), image set clas-
sification (Huang et  al., 2015; Harandi et  al., 2014), anisotropic diffusion (Weickert, 
1998), and brain imaging (Assaf and Pasternak, 2008), to name a few.

Recent works (Carlen and Maas, 2014; Chen et al., 2017; Ryu et al., 2018; Peyré et al., 
2019a) have explored optimal transport formulations for SPD matrix-valued measures. 
While the works (Carlen and Maas, 2014; Chen et  al., 2017; Ryu et  al., 2018) discuss 
dynamical (geodesic) OT framework, (Peyré et al., 2019a) studies the “static” OT formula-
tion that learns a suitable joint coupling between the input SPD matrix-valued measures. 
However, Peyré et  al. (2019a) explore an unbalanced OT setup for SPD matrix-valued 
measures and term it as quantum optimal transport (QOT). Thus, the marginals of the 
(learned) joint coupling in QOT is not equal to the input SPD matrix-valued measures. 
As in case of unbalanced (scalar-valued) OT (Chizat et al., 2018; Liero et al., 2018), the 
discrepancy between marginals of the joint and the input measures in QOT is penalized via 
the Kulback-Leibler divergence (for SPD matrix-valued measures).

3  Block SPD optimal transport

In this section, we study a balanced OT formulation for SPD matrix-valued meas-
ures. Consider � and � to be (d-dimensional) SPD matrix-valued input measures. Let 
� ∶= {[�i]m×1 ∶ �i ∈ �

d
++

} and � ∶= {[�j]n×1 ∶ �j ∈ �
d
++

} and � and � have the same 
total mass. Without loss of generality, we assume 

∑
i �i =

∑
j �j = � . Here, [⋅]m×n denotes a 

collection of mn matrices organized as a block matrix and � represents the identity matrix. 
The cost of transporting a positive definite matrix-valued mass � from position �i (in 
source space) to �j (in target space) is parameterized by a (given) positive semi-definite 
matrix �i,j and is computed as tr(�i,j�) . Under this setting, we propose the block SPD 
matrix-valued balanced OT problem as

where � = [�i,j]m×n is a block-matrix coupling of size m × n and the set of such couplings 
are defined as �(m, n, d,�,�) ∶= {[�i,j]m×n ∶ �i,j ∈ �

d
+
,

∑
j �i,j = �i,

∑
i �i,j = �j,∀i ∈ [m], j ∈ [n]} . 

Here �d
+
 is used to denote the set of d × d positive semi-definite matrices and tr(⋅) is the 

matrix trace. The problem is well-defined provided that the corresponding coupling con-
straint set �(m, n, d,�,�) is non-empty. For arbitrary SPD marginals �,� , there is no guar-
antee that the set �(m, n, d,�,�) defined in (2) is not empty (Ning et al., 2014). Hence, in 
this work, we assume that the given marginals � and � are such that �(m, n, d,�,�) is not 
empty. In Sect. 4.3 later, we discuss a block matrix balancing algorithm which can be used 
to check whether �(m, n, d,�,�) is empty or not for given marginals � and �.

(2)MW2(�,�) ∶= min
�∈�(m,n,d,�,�)

∑
i,j

tr(�i,j�i,j),
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3.1  Metric properties of MW(�,�)

In the following result, we show that MW(�,�) is a valid distance metric for a special 
case of block SPD marginals.

Proposition 1 Suppose the input SPD matrix-valued marginals have the same support size 
n and the costs {�i,j}

n
i,j=1

 satisfy 

1. �i,j = �j,i and
2. �i,j ≻ � for i ≠ j and �i,j = � for i = j,

3. ∀(i, j, k) ∈ [n]3, and � ⪰ �, 
�

tr(�i,j�) ≤
√
tr(�i,k�) +

�
tr(�j,k�).

Then, MW(�,�) is a metric between the SPD matrix-valued marginals � and � defined 
as � ∶= {[�i]m×1 ∶ �i = pi�} and � ∶= {[�j]n×1 ∶ �j = qi�} , where �, � ∈ Σn and � is the 
d × d identity matrix.

We remark that the conditions on �i,j in Proposition  1 generalize the conditions 
required for W2(�, �) in (1) to be a metric. See for example (Peyré et al. 2019b, Propo-
sition 2.2. In "Appendix B", we discuss some particular constructions of the cost that 
satisfy the conditions.

3.2  Manifold structure for the coupling set 5(m, n, d,�,�)

We next analyze the coupling constraint set �(m, n, d,�,�) and show that it can be 
endowed with a manifold structure. This allows to exploit the versatile Riemannian opti-
mization framework to solve (2) and any more general problem (Absil et al., 2008).

We propose the following manifold structure, termed as the block SPD coupling 
manifold,

where 
∑

i �i =
∑

j �j = � . Particularly, we restrict �i,�j,�i,j ∈ �
d
++

 , the set of SPD matri-
ces. This ensures that the proposed manifold Md

m,n
(�,�) in (3) is the interior of the set 

�(m, n, d,�,�).
As discussed earlier �(m, n, d,�,�) is not guaranteed to be non-empty for arbitrary 

choices of block SPD marginals � and � (Ning, 2013). To this end, we assume that the 
marginals � and � that are given ensure feasibility of the set �(m, n, d,�,�) . In particu-
lar, the manifold Md

m,n
(�,�) inherits the following assumption.

Assumption 1 In this work, we consider block-SPD marginals � and � such that the set 
M

d
m,n

(�,�) is not empty.

It should be noted that Assumption  1 is trivially satisfied for diagonal SPD mar-
ginals, i.e., when �i and �j are diagonal. However, non-diagonal SPD marginals may 
also satisfy Assumption 1 for many problem instances. In Sect. 6, we discuss empirical 

(3)M
d
m,n

(�,�) ∶= {� ∶ �i,j ∈ �
d
++

,
∑
j

�i,j = �i,
∑
i

�i,j = �j},
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settings where non-diagonal SPD marginals satisfying Assumption  1 are considered. 
The following proposition implies that we can endow Md

m,n
(�,�) with a differentiable 

structure.

Proposition 2 Under Assumption 1, the set Md
m,n

(�,�) is smooth, i.e., differentiable.

It should be emphasized that the proposed manifold Md
m,n

(�,�) can be regarded as a 
generalization to existing manifold structures. For example, when d = 1 and either m = 1 
or n = 1 , Md

m,n
(�,�) reduces to the multinomial manifold of probability simplex (Sun 

et al., 2015). When d = 1 and m, n ≠ 1 , it reduces the so-called doubly stochastic manifold 
(Douik and Hassibi, 2019) with uniform marginals or the more general matrix coupling 
manifold (Shi et al., 2021). When d > 1 and either m = 1 or n = 1 , our proposed manifold 
simplifies to the simplex manifold of SPD matrices (Mishra et al., 2019).

In the next section, we derive various optimization-related ingredients on Md
m,n

(�,�) 
that allow optimization of an arbitrary differentiable objective function on the manifold. 
In particular, we propose a Riemannian optimization approach following the general treat-
ment by (Absil et al., 2008; Boumal, 2020). It allows employing the proposed approach not 
only for (2) but also for other OT problems as discussed in Sect. 5.

4  Riemannian geometry and optimization over Md

m,n
(�,�)

We consider the general optimization problem

where F ∶ M
d
m,n

(�,�) → ℝ is a differentiable objective function. The proposed manifold 
M

d
m,n

(�,�) can be endowed with a smooth Riemannian manifold structure (Absil et al., 
2008; Boumal, 2020). Consequently, (4) is an optimization problem on a Riemannian 
manifold. We solve the problem via the Riemannian optimization framework. It provides a 
principled class of optimization methods and computational tools for manifolds, both first 
order and second order, as long as the ingredients such as Riemannian metric, orthogo-
nal projection, retraction, and Riemannian gradient (and Hessian) of a function are defined 
(Absil et  al., 2008; Boumal et  al., 2014; Boumal, 2020). Conceptually, the Riemannian 

(4)min
�∈Md

m,n
(�,�)

F(�),
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optimization framework treats (4) as an “unconstrained” optimization problem over the 
constraint manifold Md

m,n
 (omitted marginals � , � for clarity).

In Algorithm 1, we outline the skeletal steps involved in optimization over Md
m,n

 , where 
the step � can be computed from different Riemannian methods. In Riemannian steep-
est descent, � = −� gradF(�) , where gradF(�) is the Riemannian gradient at � . Also, � 
is given by the “conjugate” direction of gradF(�) in the Riemannian conjugate gradient 
method. And, for the Riemannian trust-region method, � computation involves minimizing 
a second-order approximation of the objective function in a trust-region ball (Absil et al., 
2008). Below, we show the computations of these ingredients.

4.1  Riemannian metric

The manifold Md
m,n

 is a submanifold of the Cartesian product of m × n SPD mani-
fold of size d × d , which we denote as ×m,n�

d
++

 . The dimension of the manifold Md
m,n

 is 
(m − 1)(n − 1)d(d + 1)∕2 . The tangent space characterization of Md

m,n
 at � is obtained as

where �d is the set of d × d symmetric matrices. The expression for the tangent space is 
obtained by linearizing the constraints. We endow each SPD manifold with the affine-
invariant Riemannian metric (Bhatia, 2009), which induces a Riemannian metric for the 
product manifold Md

m,n
 as

for any �,� ∈ T�M
d
m,n

.

4.2  Orthogonal projection, riemannian gradient, and riemannian Hessian

As an embedded submanifold, the orthogonal projection plays a crucial role in deriving the 
Riemannian gradient (as orthogonal projection of the Euclidean gradient in the ambient 
space).

Proposition 3 The orthogonal projection of any � ∈ ×m,n�
d to T�M

d
m,n

 with respect to the 
Riemannian metric (5) is given by

where auxiliary variables �i,�j are solved from the system of matrix linear equations:

T�M
d
m,n

=

{
[�i,j]m×n ∶ �i,j ∈ �

d,
∑
j

�i,j = �,
∑
i

�i,j = �

}
,

(5)⟨�,�⟩� =
�
i,j

tr(�−1
i,j
�i,j�

−1
i,j
�i,j),

P�(�) = �, with �i,j = �i,j + �i,j(�i +�j)�i,j,

�
−
∑

i �i,j =
∑

i �i,j(�i +�j)�i,j, ∀j

−
∑

j �i,j =
∑

j �i,j(�i +�j)�i,j, ∀i.
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Subsequently, the Riemannian gradient and Hessian are derived as the orthogonal pro-
jection of the gradient and Hessian from the ambient space.

Proposition 4 The Riemannian gradient and Hessian of F ∶ M
d
m×n

�→ ℝ are derived as

where � ∈ T�M
d
m,n

 and ∇F(�i,j) is the block partial derivative of F with respect to �i,j . 
Here, DgradF(�i,j)[�i,j] denotes the directional derivative of the Riemannian gradient 
gradF along � and {�}S ∶= (� + �⊤)∕2.

4.3  Retraction and block matrix balancing algorithm

The retraction operation on Md
m,n

 is given by a composition of two operations. The first 
operation is to ensure positive definiteness of the blocks in the coupling matrix. In par-
ticular, we use the exponential map associated with the affine-invariant metric on the SPD 
manifold �d

++
 (Bhatia, 2009). The second operation is to ensure that the summation of the 

row blocks and column blocks respect the block-SPD marginals. Given an initialized block 
SPD matrix [�i,j]m×n , where �i,j ∈ �

d
++

 , the goal is to find a ‘closest’ block SPD coupling 
matrix � ∈ M

d
m,n

 . This is achieved by alternatively normalizing the row and column blocks 
to the corresponding marginals. The procedure is outlined in Algorithm 2. The solution for 
the row and column normalization factors �j,�i , which are SPD matrices, are computed by 
solving the Riccati equation ��� = � for given �,� ∈ �

d
++

 . Here, � admits a unique solu-
tion (Bhatia, 2009; Malagò et al., 2018). Different from the scalar marginals case where the 
scaling can be expressed as a diagonal matrix, we need to symmetrically normalize each 
SPD block matrix. Algorithm  2 is a generalization of the RAS algorithm for balancing 
non-negative matrices (Sinkhorn, 1967), which is related to the popular Sinkhorn-Knopp 
algorithm (Sinkhorn, 1964; Knight, 2008). We also use Algorithm 2 to test feasibility of 
the set Md

m,n
 by checking whether Algorithm 2 outputs a balanced block SPD matrix for a 

random block SPD matrix �.
It should be noted that a similar matrix balancing algorithm has been introduced for 

positive operators (Gurvits, 2004; Georgiou and Pavon, 2015), where the convergence is 
only established in limited cases. Algorithm 2 is different from the quantum Sinkhorn algo-
rithm proposed in (Peyré et al., 2019a) that applies to the unbalanced setting. Although we 
do not provide a theoretical convergence analysis for Algorithm 2, we empirically observe 
quick convergence of this algorithm in various settings (see "Appendix A").

gradF(�) = P�([�i,j{∇F(�i,j)}S�i,j]m×n),

HessF(�)[�] = P�([DgradF(�i,j)[�i,j] − {�i,j�
−1
i,j
gradF(�i,j)}S]m×n),
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Based on Algorithm 2, we define a retraction R�(�) at � ∈ M
d
m,n

 for any � ∈ T�M
d
m,n

 
as

where MBalance calls the matrix balancing procedure in Algorithm 2 and exp(⋅) denotes 
the matrix exponential. The retraction proposed in (6) is valid (i.e., satisfy the two condi-
tions) for diagonal marginals and empirically we also see the retraction is well-defined for 
arbitrary block-SPD marginals. See "Appendix A" for more details.

4.4  Convergence and computational complexity

Convergence of riemannian optimization. Similar to Euclidean optimization, the necessary 
first-order optimality condition for any differentiable F on Md

m,n
 is gradF(�∗) = 0 , i.e., where 

the Riemannian gradient vanishes. We call such �∗ the stationary point. The Riemannian 
methods are known to converge to a stationary point (Absil et al., 2008; Boumal, 2020) under 
standard assumptions. Additionally, we show the following.

Theorem  2 Suppose the objective function of the problem min�∈�(m,n,d,�,�) F(�) is 
strictly convex and the optimal solution �∗ is positive definite, i.e., it lies in the interior 
of �(m, n, d,�,�) . Then, Riemannian optimization (Algorithm 1) for (4) converges to the 
same global optimal solution �∗.

Theorem 2 guarantees the quality of the solution obtained by Riemannian optimization for 
a class of objective functions which includes the SPD matrix-valued OT problem with convex 
regularization.

Computational complexity. The complexity of each iteration of the Riemannian optimi-
zation algorithm is dominated by the computations of retraction, the Riemannian gradient, the 
Riemannian Hessian. These also make use of the orthogonal projection operation. All these 
operations cost O(mnd3) . Since the number of parameters to be learned is N = mnd2 (size of 
the coupling block SPD matrix � ), the above cost is almost linear in N.

(6)R�(�) = MBalance
(
[�i,jexp(�

−1
i,j
�i,j)]m×n

)
,
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5  Applications of block SPD coupling manifold

As discussed earlier, we employ the proposed block SPD coupling manifold optimization 
approach to solve the block SPD matrix valued balanced OT problem (2). We now present 
two other OT related applications of the block SPD coupling manifold: learning Wasserstein 
barycenters and the Gromov-Wasserstein averaging of distance matrices.

5.1  Block SPD Wasserstein barycenter learning

We consider the problem of computing the Wasserstein barycenter of a set of block SPD 
matrix-valued measures. Let Δn(�

d
++

) ∶= {� = [�i]n×1 ∶ �i ∈ �
d
++

,
∑

i �i = �} denotes 
the space of n × 1 block SPD marginals. Then, the Wasserstein barycenter �̄ of a set 
�� ∈ Δn

�
(�d

++
) for all � = {1,… ,K} is computed as follows:

where the given non-negative weights satisfy 
∑

�
�
�
= 1 . It should be noted that we 

employ a regularized version of the proposed block SPD OT problem (2) to ensure the 
differentiability of the objective function near boundary in (7). The regularized block SPD 
OT problem is defined as

where 𝜖 > 0 is the regularization parameter and Ω(⋅) is a strictly convex regularization 
(e.g., entropic regularization) on the block SPD coupling matrices.

To solve for �̄ in (7), we consider Riemannian optimization on Δn(�
d
++

) , which has 
recently been studied in (Mishra et al., 2019). The following result provides an expression for 
the Euclidean gradient of the objective function in problem (7).

Proposition 5 The Euclidean gradient of (7) with respect to �i , for i ∈ [n] is

where (��

i
)∗ is given by evaluating the orthogonal projection P(�� )∗ (∇(�� )∗MW�) , where 

∇(��

i,j
)∗MW� = ��

i,j
+ �∇Ω((��

i,j
)∗) and (��)∗ is the optimal coupling for �� . That is, (��

i
)∗ is 

the auxiliary variable obtained during the solving of the system of matrix linear equations 
in Proposition 3.

The complete algorithm for computing the barycenter in (7) is outlined in Algorithm 3 
("Appendix E").

5.2  Block SPD Gromov‑Wasserstein discrepancy

The Gromov-Wasserstein (GW) distance (Mémoli, 2011) generalizes the optimal transport 
to the case where the measures are supported on possibly different metric spaces X  and Y . 

(7)�̄ = argmin
�∈Δn(�

d
++)

K∑
�=1

𝜔
�
MW2

𝜖
(�,��),

(8)MW2
�
(�,�) ∶= min

�∈Md
m,n

(�,�)

∑
i,j

(
tr(�i,j�i,j) + �Ω(�i,j)

)
,

K∑
�=1

�
�
∇�i

MW�(�,�
�) = −

K∑
�=1

�
�
(��

i
)∗,
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Let �x ∈ ℝ
m×m and �y ∈ ℝ

n×n represent the similarity (or distance) between elements in 
metric spaces X  and Y respectively. Let � ∈ Σm and � ∈ Σn be the marginals correspond-
ing to the elements in X  and Y , respectively. Then, the GW discrepancy between the two 
distance-marginal pairs (�x, �) and (�y, �) is defined as

where Dk,l denotes the (k, l)-th element in the matrix � and L is a loss between the distance 
pairs. Common choices of L include the L2 distance and the KL divergence.

We now generalize the GW framework to our setting where the marginals are SPD 
matrix-valued measures. Let (�x,�) and (�y,�) be two distance-marginal pairs, where the 
Dirac measures are given by 

∑
i �i�xi , 

∑
j �j�yj respectively, for {xi}i∈[m] ⊂ X, {yj}j∈[n] ⊂ Y . 

The marginals are tensor-valued with � ∈ Δm(�
d
++

) , � ∈ Δn(�
d
++

) . We define the SPD 
generalized GW discrepancy as

where we use Riemannian optimization (Algorithm 1) to solve problem (9).
Gromov-Wasserstein averaging of distance matrices. The GW formulation with 

scalar-valued probability measures has been used for averaging distance matrices (Peyré 
et  al., 2016). Building on (9), we consider the problem of averaging distance matrices 
where the marginals are SPD-valued. Let {(�� ,��)}K

�=1
 with �� ∈ Δn

�
(�d

++
) , be a set of 

distance-marginal pairs on K incomparable domains. Suppose the barycenter marginals 
�̄ ∈ Δn(�

d
++

) are given, the goal is to find the average distance matrix �̄ by solving

where the given weights satisfy 
∑

�
�
�
= 1 . Problem (10) can be solved via a block coordi-

nate descent method, that iteratively updates the couplings {��}K
�=1

 and the distance matrix 
�̄ . The update of the coupling is performed via Algorithm 1. For the update of the distance 
matrix, we show when the loss L is decomposable, including the case of L2 distance or the 
KL divergence, the optimal �̄ admits a closed-form solution. This is a generalization of the 
result (Peyré et al. 2016, Proposition 3) to SPD-valued marginals.

Proposition 6 Suppose the loss L can be decomposed as L(a, b) = f1(a) + f2(b) − h1(a)h2(b) 

with f �
1
∕h�

1
 invertible, then (10) has a closed form solution given by D̄i,i� =

(
f �
1

h�
1

)−1(
hi,i�

)
 

with

GW((�x, �), (�y, �)) ∶= min
�∈Π(�,�)

∑
i,i�,j,j�

L(Dx
i,i�
,D

y

j,j�
)�i,j�i� ,j� ,

(9)MGW((�x,�), (�y,�)) ∶= min
�∈Md

m×n

∑
i,i�,j,j�

L

(
Dx

i,i�
,D

y

j,j�

)
tr(�i,j�i� ,j� ),

(10)�̄ = argmin
�∈�n∶Di,j≥0

K∑
�=1

𝜔
�
MGW

(
(�, �̄), (�� ,��)

)
,

hi,i� =

⎛⎜⎜⎜⎝

∑K

�=1
𝜔
�
tr
�∑

j �
�

i,j

∑
j� h2(D

�

j,j�
)��

i� ,j�

�

tr(�̄i�̄i� )

⎞⎟⎟⎟⎠
.
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6  Experiments

In this section, we show the utility of the proposed framework in a number of applications. 
For empirical comparisons, we refer to our approaches, block SPD OT (2), the correspond-
ing Wasserstein barycenter (7), and block SPD Gromov-Wasserstein OT (9) & (10), col-
lectively as RMOT (Riemannian optimized Matrix Optimal Transport). For all the experi-
ments, we use the Riemannian steepest descent method using the Manopt toolbox (Boumal 
et al., 2014) for implementing Algorithm 1. The codes are available at https:// github. com/ 
andyj m3/ Block SPDOT.

6.1  Domain adaptation

We apply our OT framework to the application of unsupervised domain adaptation where 
the goal is to align the distribution of the source with the target for subsequent tasks.

Suppose we are given the source � ∈ Σm and target marginals � ∈ Σn , along with sam-
ples {�i}

m
i=1

, {�j}
n
j=1

 from the source and target distributions. The samples are matrix-val-
ued, i.e., �i,�j ∈ ℝ

d×s . We define the cost as �i,j = (�i − �j)(�i − �j)
⊤ . It should be noted 

that tr(�i,j) = ‖�i − �j‖2F is the cost function under the 2-Wasserstein OT setting (1).
For domain adaptation, we first learn an optimal coupling between the source and 

target samples by solving the proposed OT problem (2) with marginals �,� constructed 
as � ∶= {[�i]m×1 ∶ �i = pi�} and � ∶= {[�j]n×1 ∶ �j = qj�} . Finally, the source samples 
are projected to the target domain via barycentric projection. Once the optimal cou-
plings [�∗

i,j
]m×n , the barycentric projection of a source sample �i is computed as

The above approach also works for structured samples. For instance, when the samples are 
SPD, i.e., �i,�j ∈ �

d
++

 , the projected source sample �̂i is now the solution to the matrix 
Lyapunov equation: {�i�̂i}S = {

∑
j �

∗
i,j
�j}S . Here, {�}S = (� + �⊤)∕2.

For the scalar-valued OT case, discussed in Sect. 2.2, the barycentric projection of a 
source sample �i is computed as

where �∗ = [�∗
i,j
] is the optimal coupling matrix of size m × n for the scalar-valued OT 

problem.
Contrasting the barycentric projection operations (11) with (12), we observe that 

(11) allows to capture feature-specific correlations more appropriately. The benefit of 
the matrix-valued OT modeling over the scalar-valued OT modeling is reflected in the 
experiments below.

Experimental setup. We employ domain adaptation to classify the test sets (target) 
of multiclass image datasets, where the training sets (source) have a different class dis-
tribution than the test sets. Suppose we are given a training set {�i}

m
i=1

 and a test set 
{�j}

n
j=1

 where �i,�j ∈ ℝ
d×s are s (normalized) image samples of the same class in d 

dimension for each image set i, j. Instead of constructing the cost directly on the input 

(11)�̂i = argmin
�i∈ℝ

d×s

∑
i,j

tr((�i − �j)(�i − �j)
⊤�∗

i,j
) = �−1

i

(∑
j

�∗
i,j
�j

)
.

(12)�̂i = argmin
�i∈ℝ

d×s

�
i,j

‖�i − �j‖2F�∗i,j = p−1
i

��
j

𝛾∗
i,j
�j

�
,

https://github.com/andyjm3/BlockSPDOT
https://github.com/andyjm3/BlockSPDOT
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space, which are not permutation-invariant, we first compute the sample covariances 
�xi = �i�

⊤
i
∕s and �yj = �j�

⊤
j
∕s , ∀i, j . Now the cost between i,  j is given by 

�i,j = (�xi − �yj )(�xi − �yj )
⊤ . Once the block SPD matrix coupling is learnt, the �xi covar-

inaces are projected using the barycerntric projection to obtain �̂xi , i ∈ [m] . This is fol-
lowed by nearest neighbour classification of j based on the Frobenius distance 
‖�̂xi − �yj‖F∀i, j.

We compare the proposed RMOT (2) with the following baselines: (i) sOT: the 2-Was-
serstein OT (1) with the cost ci,j = tr(�i,j) = ‖�xi − �yj‖2F (Courty et  al., 2016), and (ii) 
SPDOT: the 2-Wasserstein OT (1) with the cost as the squared Riemannian geodesic dis-
tance between the SPD matrices �xi and �yj (Yair et al., 2019).

Datasets. We experiment on three multiclass image datasets - handwritten letters (Frey 
and Slate, 1991), MNIST (LeCun et al., 1998) and Fashion MNIST (Xiao et al., 2017) - 
with various skewed distributions for the training set. MNIST and Fashion MNIST have 10 
classes, while Letters has 26 classes. Specifically, we fix the distribution of the test set to be 
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1
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(a) MNIST
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(b) Fashion MNIST
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Fig. 1  Domain adaptation and classification results for three datasets: MNIST 1a, Fashion MNIST 1b and 
Letters 1c. The skew ratio increases from uniform (uf) to r = 0.5 . For MNIST and Fashion MNIST, uf = 0.1 
and for Letters, uf = 1∕26 . We observe that the proposed RMOT performs significantly better than the 
baselines

(a)

(b)

(c)

t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1

Fig. 2  Tensor-valued shape interpolation obtained using the proposed Gromov-Wasserstein RMOT formu-
lation (Sect. 5.2). We note that each shape consists of several SPD-matrix/tensor valued fields (displayed 
using ellipses). In (a), the tensors follow a uniform distribution. In (b), the tensors are generated with multi-
ple orientation and in (c), tensors vary smoothly in both size and orientation. The proposed approach takes 
the anisotropy and orientation of tensor fields into account while interpolating shapes
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uniform (with the same number of image sets per class). We increase the proportion of the a 
randomly chosen class in the training set to the ratio r, where r = {uf , 0.1, 0.2, 0.3, 0.4, 0.5} 
and uf is the ratio corresponding to the uniform distribution of all classes. We reduce the 
dimension of MNIST, fashion MNIST, and Letters by PCA to d = 5 features. We set s = d , 
m = 250 , and n = 100 for each dataset.

Results. Figs. 1a-c shows the classification accuracy on the three datasets. We observe 
that the proposed RMOT outperforms sOT and SPDOT, especially in more challenging 
domain adaptation settings, i.e., higher skew ratios. This implies the usefulness of the non-
trivial correlations learned by the SPD matrix valued couplings of RMOT.

6.2  Tensor Gromov‑Wasserstein distance averaging for shape interpolation

We consider an application of the proposed block SPD Gromov-Wasserstein OT for-
mulation (Sect. 5.2) for interpolating tensor-valued shapes. We are given two distance-
marginal pairs (�0,�0), (�1,�1) where �0,�1 ∈ ℝ

n×n are distance matrices computed 
from the shapes and �0,�1 are given tensor fields. The aim is to interpolate between the 
distance matrices with weights � = (t, 1 − t), t ∈ [0, 1] . The interpolated distance matrix 
�t is computed by solving (10) via Riemannian optimization and Proposition 6, with the 
barycenter tensor fields �t given. Finally, the shape is recovered by performing multi-
dimensional scaling to the distance matrix.

Figure  2 presents the interpolated shapes with n = 100 sample points for the input 
shapes. The matrices �0,�1 are given by the Euclidean distance and we consider L2 loss 
for L . The input tensor fields �0,�1 are generated as uniformly random in (a), cross-
oriented in (b) and smoothly varying in (c). For simplicity, we consider the barycenter 
tensor fields given by the linear interpolation of the inputs, i.e., �t = (1 − t)�0 + t�1 . In 
Peyré et al. (2016), we highlight that the marginals are scalar-valued and fixed to be uni-
form. Here, on the other hand, the marginals are tensor-valued and the resulting distance 
matrix interpolation would be affected by the relative mass of the tensors, as shown 
by Proposition  6. The results show the proposed Riemannian optimization approach 
(Sect. 4) converges to reasonable stationary solutions for non-convex OT problems.

6.3  Tensor field optimal transport mass interpolation

We consider performing optimal transport and displacement interpolation between two 
tensor fields supported on regular 1-d (or 2-d) grids (Peyré et al., 2019a). We consider 
a common domain D = [0, 1] (or [0, 1]2 ) with the cost defined as �i,j = ‖�i − �j‖2� for 
�i, �j ∈ D . The marginals �,� are given tensor fields. We first compute the balanced 
coupling � by solving an entropy regularized OT problem (8):

where the quantum entropy is defined as H(�i,j) ∶= −tr(�i,j log(�i,j) − �i,j) . Then, the 
coupling is used to interpolate between the two tensor fields by generalizing the displace-
ment interpolation (McCann, 1997) to SPD-valued marginals. Please refer to (Peyré et al. 
2019a, Sect. 2.2) for more details. It should be noted that due to the balanced nature of our 

min
�∈Md

m×n
(�,�)

∑
i,j

(
tr(�i,j�i,j) − �H(�i,j)

)
,



1609Machine Learning (2024) 113:1595–1622 

1 3

formulation, we do not need to adjust the couplings after matching as required in (Peyré 
et al., 2019a).

We compare interpolation results of the proposed (balanced) RMOT with both lin-
ear interpolation (1 − t)� + t� for t ∈ [0, 1] and the unbalanced quantum OT (QOT) of 
(Peyré et al., 2019a). The QOT solves the following problem with quantum KL regulari-
zation, i.e.,

where KL(���) ∶=
∑

i tr
�
�i log(�i) − �i log(�i) − �i +�i

�
 and �1 ∶= [

∑
j(�i,j)]m×1 and 

�⊤
1 ∶= [

∑
i(�i,j)]n×1 . For comparability, we set the same � for both QOT and RMOT.

Figure 3 compares the mass interpolation for both 1-d (top) and 2-d (bottom) grids. 
For the 2-d tensor fields, we further render the tensor fields via a background texture 
where we perform anisotropic smoothing determined by the tensor direction. To be spe-
cific, we follow the procedures in Peyré et  al. (2019a) by applying the tensor to the 
gradient vector of the textures on the grid such that the texture is stretched in the main 
eigenvector directions of the tensor. In both the settings, we observe that the tensor 
fields generated from RMOT respect the marginal constraints more closely.

6.4  Tensor field Wasserstein barycenter

We also analyze the Wasserstein barycenters learned by the proposed RMOT approach and 
qualitatively compare with QOT barycenter (Peyré et al. 2019a, Section 4.1). We test on 
two tensor fields ( n = 4 ) supported 2-d grids.

min
�

∑
i,j

(
tr(�i,j�i,j) − 𝜖H(�i,j) + 𝜌KL(�1|�) + 𝜌KL�⊤

1|�)
)
,

(a) Linear inter-
polation

(b) QOT (ρ=50) (c) QOT(ρ=100) (d) QOT(ρ=500) (e) RMOT

(f) Input
(t = 0)

(g) Input
(t = 1)

(h) QOT
(t = 0.25)

(i) QOT
(t = 0.5)

(j) QOT
(t = 0.75)

(k) RMOT
(t = 0.25)

(l) RMOT
(t = 0.5)

(m)
RMOT
(t = 0.75)

Fig. 3  Tensor field mass interpolation on 1-d (top) and 2-d (bottom) grids. On the top, each row corre-
sponds to an interpolation where we show 7 evenly-spaced interpolated tensor fields. On the bottom, the 
inputs are given in (f) and (g). We set � = 100 for QOT and show 3 evenly-spaced interpolated tensor fields

Fig. 4  Barycenter interpolation. 
From left to right t = 0 (input), 
t = 0.25, 0.5, 0.75 (barycenters), 
t = 1 (input). The top row is QOT 
and the bottom is RMOT
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Figure 4 compares barycenter from QOT (top) and RMOT (bottom) initialized from the nor-
malized solution of QOT. We observe that the QOT solution is not optimal when the marginal 
constraint is enforced and the barycenter obtained does not lie in the simplex of tensors. Such 
a claim is strengthened by comparing the objective value versus the optimal value, obtained by 
the CVX toolbox (Grant and Boyd, 2014). The objective can be further decreased when initial-
ized from the (normalized) QOT solution, see more discussions in "Appendix C".

7  Conclusion

In this paper, we have discussed the balanced optimal transport (OT) problem involving 
SPD matrix-valued measures. For the SPD matrix-valued OT problem, the coupling matrix 
is a block matrix where each block is a symmetric positive definite matrix. The set of such 
coupling matrices can be endowed with Riemannian geometry, which enables optimiza-
tion both linear and non-linear objective functions. We have also shown how the SPD-
valued OT setup extend many optimal transport problems to general SPD-valued margin-
als, including the Wasserstein barycenter and the Gromov-Wasserstein (GW) discrepancy. 
Experiments in a number of applications confirm the benefit of our approach.

Appendix A Convergence of block matrix balancing algorithm 
and validity of retraction

In Sect.  4, we generalize the matrix scaling algorithm to block matrix cases, which is 
essential to derive the retraction for the manifold Md

m,n
 . Here, we empirically show that the 

algorithm quickly converges and the proposed retraction is valid and satisfies the two con-
ditions: 1) Rx(0) = x and 2) DRx(0)[u] = u , where Df (x)[u] is the derivative of a function at 
x along direction u.

Convergence. We show in Fig.  5 the convergence of the proposed block matrix bal-
ancing procedure in Algorithm 2. We generate the marginals as random SPD matrices for 
different dimensions d and size m, n. The convergence is measured as the relative gap to 
satisfy the constraints. We observe that the number of iterations for convergence are similar 
with different parameters while the runtime increases by increasing the dimension and size.
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Fig. 5  Convergence of Algorithm 2 in terms of iterations (a), runtime (b), and validity test for retraction (c). 
For the retraction to be valid, the slope of the continuous line should match the dotted line (which repre-
sents the line h = 0 ) and also start from 0 when h tends to 0
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Validity of retraction. The first condition of retraction is easily satisfied as 
R�(�) = MBalance(�) = � . For the second one, we have for any � ∈ M

d
m,n

 and � ∈ T�M
d
m,n

,

Hence, we need to numerically verify R�(h�) − � = O(h)� for any �,� . We compute an 
approximation error in terms of the inner product on the tangent space T�M

d
m,n

 as

for any � ∈ T�M
d
m,n

 different from � . In Fig. 5(c), we show that the slope of the approxi-
mation error (as a function of h) matches the dotted line h = 0 , which suggests hat the error 
� = O(1) , thereby indicating that the retraction is valid.

Appendix B Discussion on construction of matrix‑valued cost

As highlighted in Proposition 1 for MW(�,�) to be a metric for probability measures there 
are some conditions for the cost [�i,j]m×n to satisfy. In the following, we give some exam-
ples of how such costs are constructed: 

1. Let the samples are given by {�i}i∈[m] , {�j}j∈[n] , where �i,�j ∈ ℝ
d×s . Define 

�i,j = d(�i,�j)
2 � , where d ∶ ℝ

d×s ×ℝ
d×s

�→ ℝ+ is a distance function.
2. Let the samples are given by {�i}i∈[m] , {�j}j∈[n] , where �i,�j ∈ ℝ

d×s , where s ≥ d . 
Assume the matrix �i − �j has column full rank. Define �i,j = (�i − �j)(�i − �j)

⊤.

Proof 

(1) The first definition of cost trivially satisfies all the conditions due to the metric proper-
ties of a well-defined scalar-valued distance.

(2) For the second definition of cost, The first two conditions, i.e., symmetric and positive 
definite conditions are easily satisfied and we only need to verify the third condition 
in Proposition 1. The third condition is also satisfied due to the triangle inequality of 
Mahalanobis distance metric in the vectorized form. That is, for any � ⪰ � , we consider 
three sets of samples {�i}, {�k}, {�j} ⊂ ℝ

d×s . Then, we have 

 where vec(�) denotes the vectorization of matrix � by stacking the columns.

DR�(�)[�] = lim
h�→0

R�(h�) − R�(�)

h
.

� = ��⟨P�(R�(h�) − �),�⟩� − ⟨h�,�⟩���,

√
tr(�i,j�) =

√
tr((�i − �j)

⊤�(�i − �j))

=
√

(vec(�i) − vec(�j))
⊤(�⊗ �)(vec(�i) − vec(�j))

≤

√
(vec(�i) − vec(�k))

⊤(�⊗ �)(vec(�i) − vec(�k))

+
√

(vec(�k) − vec(�j))
⊤(�⊗ �)(vec(Yk) − vec(�j))

=

√
tr((�i − �k)

⊤�(�i − �k)) +
√

tr((�k − �j)
⊤�(�k − �j))

=
√

tr(�i,k�) +
√

tr(�k,j�),
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  ◻

Appendix C Additional experiments

In this section, we give additional experiments to further substantiate the claims made in 
the main text.

C.1 Tensor field optimal transport mass interpolation

We first provide more details on displacement interpolation considered in the experiment. 
After we obtain the optimal �∗ , for t ∈ [0, 1] , we compute the interpolated measure at t as

where xt
i,j

 is the interpolated location on the 2-d grid.
In addition to the experiments presented in the main texts, we also show other exam-

ples of tensor fields mass interpolation in Figs.  6 and 7. In Fig.  6, the inputs are given 
as 1-d tensor fields, which are the first and last row for each subfigure. We compare the 

∑
i,j

((1 − t)�i + t�j)�i,j�xt
i,j
,

Linear QOT ( ρ = 50) QOT ( ρ = 100) QOT ( ρ = 500) RMOT

Fig. 6  1-d tensor fields mass interpolation. Tensor fields are generated as cross-oriented (first row), multi-
oriented (second row), split (third row) and iso-oriented (fourth row)

Input-1 Input-5 QOT-2 QOT-3 QOT-4 RMOT-2 RMOT-3 RMOT-4

Fig. 7  2-d tensor fields mass interpolation
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interpolation given by the linear interpolation (first column), QOT with different values 
of � and RMOT (last column). In Fig.  7, Input-1 and Input-5 are with t = 0 and t = 1 , 
respectively. QOT-2 and RMOT-2 are with t = 0.25 . QOT-3 and RMOT-3 are with t = 0.5 . 
QOT-4 and RMOT-4 are with t = 0.75.

C.2 Tensor field Wasserstein barycenter

We first show how both linear interpolation and QOT solutions are not optimal. We initial-
ize our Riemannian optimizers for �̄ from the linear interpolation and (normalized) QOT. 
We also include uniform initialization as a benchmark.

We compare the objective value of 
∑

�
𝜔
�
MW𝜖(�̄,�

�) against the optimal objective 
value obtained from the CVX toolbox (Grant and Boyd, 2014). This allows to compute the 
optimality gap.

In Fig. 8, we see that the optimality gap keeps reducing with iterations even after prop-
erly normalizing the barycenter from linear interpolation and (normalized) QOT. This 
shows that linear interpolation and (normalized) QOT solutions are not optimal. Also, the 
performance of RMOT with uniform initialization is competitive to that initialized with 
linear interpolation and (normalized) QOT, implying that RMOT is a competitive solver in 
itself and obtains better solutions.
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Fig. 8  Convergence of ( n = 4 ) barycenter update initialized from linear interpolation (li), QOT (qot), and 
uniform identity (uf). Irrespective of the initialization, RMOT continue to achieve better optimality gap (to 
the CVX optimal solution) with iterations. As the initial optimality gap is high for all the cases, it shows 
that the linear interpolation (li) and QOT (qot) solutions are not optimal

Fig. 9  Tensor field Wasserstein barycenter ( n = 16 ). The barycetners are shown in (a) to (e). From left to 
right t = 0 (input), t = 0.25, 0.5, 0.75 (barycenters), t = 1 (input). The top row is QOT and the bottom is 
RMOT
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Additionally, we show the barycenter results for n = 16 along with convergence 
of RMOT in Fig.  9 and 10. From Fig.  9, we see visually no difference in the solutions 
obtained by QOT and RMOT, which suggests the solution by QOT (with normalization) is 
close to optimal. This observation is further validated in Fig. 10 where we see the objective 
value is already quite small when initialized from the QOT solution.

C.3 Additional experiments on domain adaptation

Here, we perform the experiments of domain adaptation on more challenging tasks, 
including video based face recognition with YouTube Celebrities (YTC) dataset (Kim 
et  al., 2008) and texture classification via Dynamic Texture (DynTex) (Ghanem and 

Ahuja, 2010) dataset, where covariance representation learning has shown great prom-
ise Huang et al. (2015); Harandi et al. (2014).

Datasets and experimental setup. YTC (Kim et al., 2008) comprises of 1910 low-
resolution videos of 47 celebrities from YouTube. Here we only select 9 persons with 
video size larger than 15. Following standard preprocessing techniques (Huang et  al., 
2015), we first crop the frames of each video to the detected face regions and resize 
into 10 × 10 intensity images. Then we construct the covariance representation for each 
video, which is a 100 × 100 SPD matrix. We then apply the geometry-aware principal 
component analysis for SPD manifold (Horev et  al., 2016) via the Bures-Wasserstein 
Riemannian metric (Bhatia et al., 2019; Han et al., 2021b, a) to reduce the dimension-
ality to d = 5 . Finally, we obtain a collection of 194 SPD covariance matrices of size 
5 × 5 , each representing one video. Given the relatively small sample size, we select 8 
videos per class as the test data and the rest are treated as the training data. Different 
to the settings in Sect. 6.1, we skew the selected class by sub-selecting a ratio � of the 
samples in the training set, where � = 0.2, 0.4, 0.6, 0.8, 1.0 . This is again due to the small 
data size. To further test the robustness of the algorithms, we then randomly truncate 
the training size to 100. This results in a training set of 100 videos against a test set of 
72 videos. Such randomization of process is repeated 5 times.

DynTex (Ghanem and Ahuja, 2010) collects video sequences of 36 moving scenes, 
such as sea waves, fire, clouds. For our experiment, we choose 10 classes, each with 20 
videos. The subsequent processing steps are the same as for YTC dataset.
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Fig. 10  The convergence plots for RMOT initialized from (normalized) QOT solution. For this setting, the 
solution from QOT is close to optima
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Finally, we also test on Cifar10 (Krizhevsky et al., 2009) under the same settings as in 
Sect. 6.1 in the main text. However, because when d = 5 , much information is lost for this 
complex dataset, we choose d = 17 , which captures 70% of the variance in the samples.

Results. The final results are shown in Fig.  11 where we observe consistent good 
performance of the proposed RMOT compared to both sOT and SPDOT. This strength-
ens the findings that matrix-valued OT is able to explore more variations in the dataset 
compared to scalar-valued OT.

Appendix D Proofs

Proof of Proposition 1 For simplicity, we assume �, � > 0 . Otherwise, we can follow (Peyré 
et al., 2019b) to define p̃j = pj if pj > 0 and 1 otherwise.

We note that � and � are defined as � ∶= {[�i]m×1 ∶ �i = pi�} and 
� ∶= {[�j]n×1 ∶ �j = qi�} , where � is the d × d identity matrix. With a slight abuse of 
notation and for simplicity, we define MW(�,�) ∶= MW(�,�).

First, it is easy to verify the symmetry property, i.e., MW(�,�) = MW(�, �) . For the def-
initeness, when � = � , we have �i,i = � and �i,j ≻ � for i ≠ j . Hence the optimal coupling 
is a block diagonal matrix with �i,i = pi� . Hence MW(�,�) = 0 . For the opposite direction, 
if MW(�,�) = 0 , we always need to have �i,j = � , for i ≠ j because tr(�i,j�i,j) > 0 for any 
�i,j ≻ � and i ≠ j . Thus, �i,i ≠ � , which gives �i,i = � and � = �.

Finally, for triangle inequality, given �, �, � ∈ Σn , and optimal matrix coupling �,� 
between (�,�) and (�, �) , respectively. That is, 

∑
j �i,j = ai�,

∑
i �i,j = bj� and similarly ∑

j �i,j = bi�,
∑

i �i,j = cj� . We now follow the same strategy by gluing the coupling �,� in 
(Peyré et al., 2019b; Villani, 2021). That is, we define a coupling � as

We can verify �i,j ∈ �
d
+
 , given �i,j,�i,j ∈ �

d
+
 . Furthermore, we have ∀i, j,

�i,j =
∑
k

1

2bk
(�i,k�k,j + �k,j�i,k), ∀i, j.

∑
j

�i,j =
∑
k

1

2bk

(
�i,k

∑
j

�k,j +
∑
j

�k,j�i,k

)
=
∑
k

�i,k = ai�,

∑
i

�i,j =
∑
k

1

2bk

(∑
i

�i,k�k,j + �k,j

∑
i

�i,k

)
=
∑
k

�k,j = cj�.
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Fig. 11  Additional results on domain adaptation
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Hence, [�i,j]m×n is a valid coupling between (�, �) . Let �i = ai�,�j = cj� and the corre-
sponding samples as �,�,� for measures �, �, � respectively. Then,

where the second inequality is by assumption (iii) of the proposition and the third inequal-
ity is due to the Minkowski inequality. This completes the proof.   ◻

Proof of Proposition 2 For a given feasible element � ∈ M
d
m,n

(�,�) , we can construct a 
family of feasible elements. For example, choose 0 ≤ 𝜁 < mini,j{𝜆min(�i,j)} . Then, we can 
add/subtract the equal number of �� and the result is still feasible. In other words, the set is 
smooth in a ball around the element � of radius � .   ◻

Proof of Proposition 3 Following (Mishra and Sepulchre, 2016), the projection is derived 
orthogonal to the Riemannian metric (5) as

The Lagrangian of problem (13) is

where �i , �j are dual variables for i ∈ [m], j ∈ [n] . The orthogonal projection follows from 
the stationary conditions of (14).   ◻

Proof of Proposition 4 Given the manifold Md
m,n

 is a submanifold of ×m,n�
d
++

 with affine-
invariant (AI) Riemannian metric, the Riemannian gradient is given by

where gradaiF(�) is the Riemannian gradient of � ∈ �
d
++

 with AI metric. Similarly, the 
Riemannian Hessian HessF(�)[�] = ∇�gradF(�) where ∇ denotes the Riemannian 

MW(�, �) =

(
min

�∈�(n,n,d,�,�)

∑
i,j

tr
(
�i,j�i,j

))1∕2

≤

(∑
i,j

tr
(
�i,j�i,j

))1∕2

=

(∑
i,j,k

1

2bk
tr
(
�i,j(�i,k�k,j + �k,j�i,k)

))1∕2

≤

(∑
i,j,k

1

2bk

(√
tr
(
�i,k(�i,k�k,j + �k,j�i,k)

)
+

√
tr
(
�k,j(�i,k�k,j + �k,j�i,k)

))2
)1∕2

≤

(∑
i,j,k

1

2bk
tr
(
�i,k(�i,k�k,j + �k,j�i,k)

))1∕2

+

(∑
i,j,k

1

2bk
tr
(
�k,j(�i,k�k,j + �k,j�i,k)

))1∕2

=

(∑
i,k

tr
(
�i,k�i,k

))1∕2

+

(∑
k,j

tr
(
�k,j�k,j

))1∕2

= MW(�,�) + MW(�, �),

(13)P�(�) = argmin
�∈T�M

d
m,n

f (�) = −g�(�, �) +
1

2
g�(�,�).

(14)f (�) − tr

(
�i

∑
j

�i,j

)
− tr

(
�j

∑
i

�i,j

)
,

gradF(�) = P�([gradaiF(�i,j)]m×n) = P�([�i,j{∇F(�i,j)}S�i,j]m×n),



1617Machine Learning (2024) 113:1595–1622 

1 3

connection. For submanifolds, the connection ∇�gradF(�) = P�([∇̃�i,j
(gradF(�i,j))]m×n) , 

where ∇̃ represents the connection of �
d
++

 . From (Sra and Hosseini, 2015), 
∇̃�i,j

gradF(�i,j) = DgradF(�i,j)[�i,j] − {�i,j�
−1
i,j
gradF(�i,j)}S . Hence, the proof is com-

plete.   ◻

Proof of Theorem 2 We first write the Lagrange dual function as

where we relax the SPD constraint on �i,j to the semidefinite constraint, i.e. �i,j ⪰ � , for 
some dual variable �i,�j ∈ �

d and �i,j ⪰ � . Given the function F is convex with non-
empty constraint set, by Slater’s condition, strong duality holds and the primal and dual 
variables should jointly satisfy the KKT conditions.

First, we notice by complementary slackness, tr(�∗
i,j
�∗
i,j
) = 0 for �∗

i,j
≻ � . This implies 

that �∗
i,j
= � since �∗

i,j
⪰ � . Note that in some cases �∗

i,j
 may be rank-deficient (i.e., some 

eigenvalues are close to zero), which gives rise to non-zero �∗
i,j

 . Regardless, from the opti-
mality condition, it always satisfies for optimal �∗

i,j
 , �∗

i
 , �∗

j
,

due to that �∗
i,j

 is orthogonal to �∗
i,j

 . ∇F(�∗
i,j
) denotes the block partial derivative of F with 

respect to �i,j at optimality. On the other hand, to perform Riemannian optimization, the 
Riemannian gradient is first computed for the primal objective F as

which from the definition of orthogonal projection, gives

where gradF(�i,j) represents the Riemannian partial derivative and �̃i, �̃j ∈ �
d are com-

puted such that

Comparing (16) to (15), we see that at optimality, there exists �∗
i
,�∗

j
 such that for all 

i,  j, the conditions (16) are satisfied, with �̃i = �∗
i
+ Δ, �̃j = �∗

j
− Δ , for any symmetric 

matrix Δ , i.e., the Riemannian gradient gradF(�∗
i,j
) = � , thus completing the proof.   ◻

Proof of Proposition 5 For each regularized OT problem, we consider the Lagrange dual 
problem of min�∈Md

m,n
MW𝜖(�̄,�

�) , which is given as

g(�,�,�) = min
�=[�i,j]m×n

F(�) +
∑
i

tr

(
�i

(∑
j

�i,j − �i

))

+
∑
j

tr

(
�j

(∑
i

�i,j −�j

))
−
∑
i,j

tr
(
�i,j�i,j

)
,

(15)�∗
i,j
(∇F(�∗

i,j
) + �∗

i
+�∗

j
)�∗

i,j
= �,

gradF(�) = P�([�i,j{∇F(�i,j)}S�i,j]m×n),

gradF(�i,j) = �i,j

(
∇F(�i,j) + �̃i + �̃j

)
�i,j,

(16)
�∑

i �i,j(�i,j + 𝜖∇Ω(�i,j) + �̃i + �̃j)�i,j = �, ∀j∑
j �i,j(�i,j + 𝜖∇Ω(�i,j) + �̃i + �̃j)�i,j = �, ∀i.
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From the Lagrangian (17), it is easy to see the Euclidean gradient of the barycenter prob-
lem with respect to �̄i is −

∑
�
��

i
 with the dual optimal ��

i
 for problem (17). The proof is 

complete by substituting the objective F(�) =
∑

i,j

�
tr(�i,j�i,j + �Ω(�i,j))

�
 as in Theorem 2.  

 ◻

Proof of Proposition 6 First we rewrite SPD matrix-valued GW discrepancy as

where we use the fact that ��

i,j
 are optimal and satisfy the constraints 

∑
j �

�

i,j
= �̄i and ∑

i �
�

i,j
= ��

j
 . By the first order condition, we have

which gives the desired result.   ◻

Appendix E Riemannian geometry for block SPD Wasserstein 
barycenter

Riemannian geometry of Δn(�
d
++

) . In (Mishra et  al., 2019), the authors endow a Rie-
mannian manifold structure for the set Δn(�

d
++

) ∶= {� = [�i]n×1 ∶
∑

i �i = �} . Its tangent 
space is given by T�Δn(�

d
++

) = {(�1, ...,�n) ∶ �i ∈ �
d,
∑

i �i = �}. By introducing the 
affine-invariant metric ⟨�,�⟩� =

∑
i tr(�

−1
i
�i�

−1
i
�i) , Δn(�

d
++

) has a submanifold structure. 
The retraction from the tangent space to the manifold is derived as

where �̂i = �i(exp(�
−1
i
�i)) and �̂sum =

∑
i �̂i.

The Riemannian gradient of a function F ∶ Δn(𝕊
d
++

) → ℝ is computed as

where the orthogonal projection P� of a of � = (�1, �2, ...,�n) such that �i ∈ �
d is

(17)

LMW𝜖
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where � ∈ �
d is the solution to the linear equation 

∑
i �i��i = −

∑
i �i.

Optimization for Wasserstein barycenter. With the Riemannian geometry defined for 
the simplex of SPD matrices, we can update the barycenter by Riemannian optimization as 
shown in Algorithm 3.
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