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Abstract

Understanding customer behavior is necessary to develop efficient marketing strategies or
launch tailored programs with social value for the public. Customer segmentation is a criti-
cal task for understanding diverse and dynamic customer behavior. However, as the popu-
larity of different products varies, building dynamic customer behavior models for products
with few customers may overfit the data. In this paper, we propose a new Bayesian nonpar-
ametric model for dynamic customer segmentation—Hierarchical Fragmentation-Coagu-
lation Processes (HFCP), which allows sharing behavior patterns across multiple products.
We conduct comprehensive empirical evaluations using two real-world purchase datasets.
Our results show that HFCP can: (i) determine the number of groups required to model
diverse customer behavior automatically; (ii) capture the changes such as split and merge
of customer groups over time; (iii) discover behavior patterns shared among products and
identify products with similar or different purchase behavior impacted by promotion, brand
choice and change of seasons; and (iv) overcome overfitting problems and outperform pre-
vious customer segmentation models on estimating behavior for unseen customers. Hence,
HFCP is a flexible and accurate segmentation model that can be used by stakeholders to
understand dynamic customer behavior and compare the purchase behavior for different
products.

Keywords Customer segmentation - Purchase behavior analytics - Temporal data analysis -
Bayesian temporal models

1 Introduction

Modeling customer purchase behavior is a critical task for successful business operation
and marketing. Understanding customer purchase behavior allows businesses to identify
the target customers that are most likely to buy their products, so that they can reach the
right customers at the right time (Wang and Zhang, 2013). An accurate purchase behavior
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model is necessary to develop cost- and time-efficient marketing strategies, or launch tai-
lored programs with social value for the public. In this paper we focus on dynamic cus-
tomer segmentation—identifying groups of customers with similar purchase behavior and
tracking their evolution over time. Dynamic customer segmentation is a critical part in cus-
tomer behavior models.

The main challenges of building an accurate customer behavior model are posed by the
dynamics and diversity of purchase behavior data. The customer purchase behavior can
change dynamically due to various factors, such as the popularity of products, promotional
campaigns and changes of seasons. For example, the availability and price of fruits such
as strawberries are significantly impacted by seasonal changes, so that their sale volume
fluctuates through a year. This requires a flexible temporal model to track the dynamic pur-
chase behavior over time. Moreover, as different customers have diverse shopping habits,
different preferences for products and receptivenesses to price changes, analyzing all cus-
tomers together may overlook important patterns. Some customers may buy a product only
when it is on sale, while another group of customer may purchase regularly without wait-
ing for promotions. It is beneficial to segment customers into different groups and capture
the behavior pattern of each customer group.

The two main customer segmentation approaches include rule-based methods and mix-
ture models. The rule-based methods assume that the customers with different geographic,
demographic or cultural characteristics have different preferences, so the customers are seg-
mented based on these attributes (Song et al., 2001; Dong and Kaiser, 2008; Bottcher et al.,
2009). The mixture modeling approach is data-driven, which identifies different groups
based on their historical purchase records. The behavior of an individual customer is mod-
eled as a mixture of different prototypes of behavior weighted by the membership in those
groups (Bucklin et al., 1998). To model the dynamic behavior, the temporal segmentation
models were designed, and the techniques range from a mixture of stochastic processes
(Kim et al., 2017), dynamic topic modeling (Iwata et al., 2009), collaborative filtering over
time (Li et al., 2011) to Hidden Markov Model (HMM) (Netzer et al., 2008). Recently, a
random partition model Fragmentation-Coagulation Processes (FCP) was adapted to con-
duct dynamic segmentation of customer behavior (Luo et al., 2017). FCP uses a sequence
of partitions to track the evolution of customer groups—it can split one group into smaller
groups when its members start to have divergent behavior, and merge several groups when
their members have similar behavior.

Existing techniques such as those proposed in (Kim et al., 2017; Iwata et al., 2009; Luo
et al., 2017) consider a single product for each model they build. There are two weaknesses
of single-product analysis in this way: (1) business analysts often desire to explore and
compare the purchase behavior of multiple products, which can support them to design
effective promotion strategies across products and optimize product placement (Datta
et al., 2010; Du et al., 2017); and (2) from the data availability perspective, although the
size of the whole purchase dataset can be large, the amount of records for each product
often forms a long-tail distribution, since many products only have small amount of records
(Clemons and Nunes, 2011). When the data of a single product is used to train an advanced
temporal model, the model may overfit the small amount of records for less popular prod-
ucts, making it difficult to find useful patterns or generalize to unseen customers. If the
records of multiple products are simply mixed together, the model may lose the behavior
patterns associated with some minor products and it is also hard to match the identified
patterns with products after getting the model. In this case, a hierarchical model, which
learns shared behavior patterns across multiple products, is a better choice.
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Through the hierarchical structure, a model can describe a customer group using a pat-
tern selected from a shared set of patterns, which is learned given the records of multi-
ple products, but not simply mixing them together. For example, the hierarchical model
can learn that overall there are three patterns A, B and C considering their purchase rates
and cycles, shared by the customers purchasing apples and bananas. The customers buy-
ing apples present patterns A and B, while the customers buying bananas present patterns
B and C. In this way, analyzing the shared patterns across multiple products can support
stakeholders to easily compare the purchase behavior of these products, e.g. detecting
whether the sales of different products are negatively correlated due to the competition
among them. In addition, learning shared patterns is more robust, which overcomes overfit-
ting problems for some products with few transaction records.

Therefore, we are motivated to propose a novel model named Hierarchical Fragmenta-
tion Coagulation Processes (HFCP) for the dynamic customer behavior segmentation of
multiple products. Given the purchase records of a set of customers, HFCP can not only
track the split and merge of customer groups, but more importantly, it can learn the shared
behavior patterns across products and avoid overfitting the records of a single product.
In addition, HFCP can provide stakeholders with a comprehensive understanding of the
dynamic behavior patterns of multiple relevant products, including identifying the similari-
ties and differences of the products.

It is worth noting that HFCP is not a straightforward extension of FCP, and the design
and inference of HFCP involves significant technical challenges. We have tackled the criti-
cal problems to ensure HFCP could have consistent marginal distribution over time and
align customer groups across products. More details about the design of HFCP will be
introduced in Sect. 4.

We conduct empirical evaluations of HFCP using two real-world supermarket pur-
chase transaction datasets. The experimental results demonstrate the main innovations and
strengths of the proposed HFCP model:

1. Itis a Bayesian nonparametric model, which can determine and adjust the number of
groups in the segmentation to model customer behavior for multiple products.

2. It can capture the dynamics of purchase behavior by splitting and merging customer
groups over time.

3. It can discover the behavior patterns shared across multiple products via the hierarchical
approach, which can identify products with similar or different purchase behavior. We
examine the purchase patterns of more than 100 products from two supermarket datasets
using HFCP and compare each product with their counterparts from the same product
category. In the case studies, we explore the impact of promotions, brand choice and
change of seasons on the purchase behavior.

4. Tt outperforms three other customer segmentation models—the mixture of Homogene-
ous Poisson Processes (HomoPP), the mixture of Non-Homogeneous Poisson Processes
(NHPP) and FCP, on estimating the purchase behavior of unseen customers. It dem-
onstrates that sharing patterns across relevant products can overcome the overfitting
problems and improve the model’s generalization capability to handle unseen data.
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2 Related work

Customer segmentation can be used to identify diverse behavior patterns in the market
(Sarkar et al., 2018; Carnein and Trautmann, 2019). Conventional segmentation tech-
niques include rule-based models and mixture models. The rule-based segmentation mod-
els (Dong and Kaiser, 2008) studied purchase behavior based on various criteria, such as
income, race, age and education level. For example, Taylor et al. (2015) developed a scor-
ing system named Healthy Trolley Index to examine dietary quality. They grouped differ-
ent customers by their gender, age and living arrangements and compared the proportions
of food expenditure on different product categories with the benchmark provided in the
official guide to healthy eating. However, the previous analysis found that it may not be
helpful to segment customers based on demographic and psychographic variables for fre-
quently purchased products such as food and drinks (Bucklin and Gupta, 1992), whereas
using behavioural variables is a sensible approach to segmenting customers (Kotler and
Armstrong, 2010). The segmentation based on mixture modeling is data-driven, which
infers the latent customer groups using purchase data. Bucklin et al. (1992; 1998) pro-
posed mixtures of logit models to segment customers based on their brand choice, purchase
events and quantity bought.

Apart from the diverse behavior patterns, the dynamics of customer behavior is another
challenge for modeling. Stochastic processes can be used to capture the dynamics of data
(Ross, 1996; Kim et al., 2014; Costa et al., 2015; Ren et al., 2008; Elliott and Teh, 2016).
Kim et al. (2014) proposed a hierarchical time-rescaling point processes for modeling
temporal patterns such as periodic, bursty, self-exciting and sale-effect patterns. However,
this work only modeled the behavior of individual customers, which may overfit sparse
records. In order to deal with both diversity and dynamics, temporal components can be
integrated to the mixture models. For example, the mixture of NHPP (Luo et al., 2016)
was proposed to group customers based on their behavior patterns, and each group was
described by a Poisson process with an intensity function over time, which combines a
polynomial term and a periodic term. Then a customer can be modeled by their soft mem-
bership in customer groups and the behavior patterns of those groups. Iwata et al. (2009)
proposed a topic tracking model to identify a set of latent topics for customer preferences
and detect the changes of these topics. However, the number of groups needs to be prede-
fined in (Luo et al., 2016) and (Iwata et al., 2009), and the customer group membership
remains unchanged over time. Bayesian nonparametric dynamic models such as (Ren et al.,
2008; Elliott and Teh, 2016) can generate flexible number of groups in clustering. Ren
et al. (2008) proposed dynamic Hierarchical Dirichlet Process to model time-evolving data.
The clustering at each time step is modeled by Dirichlet Process (DP), which can have
unbounded number of groups. The DPs at consecutive time points are linked via a param-
eter to control their similarity. These three models have limitations in tracking the changes
in both customer group membership and group-level behavior. For instance, when a pro-
motion starts, the customers of a group can have different responses to the price change,
which leads to a split of one group into multiple groups.

To capture the dynamics of customer group membership, the models in (Netzer et al.,
2008) and (Xing and Sohn, 2007) were proposed to describe behavior changes via the tran-
sition of latent states of HMM. More specifically, Netzer et al. (2008) proposed a non-
homogeneous HMM with time-varying covariates in the transition matrix to track latent
customer-business relationship states, such as dormant, transitory or active. The number of
states was determined by model selection measures, like log-marginal density and deviance
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information criterion. Xing and Sohn (2007) and Elliott and Teh (2016) segmented data
using HMM, where the different states of an HMM were used to describe the groups of a
partition. Despite its flexibility, this may generate large amount of states, which makes it
hard to learn the transition probabilities between possible states from sparse observations.
The random partition model FCP (Bertoin, 2006) did not match latent states with groups,
but it utilized a sequence of partitions to capture the evolution of groups. FCP conducted
fragmentation and coagulation operations directly on group members, so that it can easily
track how members switch from one group to another. The idea of FCP has been success-
fully adapted in different applications such as genetic analysis (Teh et al., 2011; Elliott and
Teh, 2012), financial markets (Eguiluz and Zimmermann, 2000) and customer segmenta-
tion (Luo et al., 2017). However, the limitation of FCP in (Luo et al., 2017) is that it mod-
eled the purchase behavior of a single product, which makes it hard to analyze behavior
patterns across multiple products and may overfit the purchase records of a single product.

In contrast to above, our HFCP is an innovative Bayesian nonparametric model to con-
duct dynamic customer segmentation, identify purchase behavior patterns shared among
products, which can overcome the overfitting problem for modeling individual customers
or a single product, and also facilitate business analysts to compare the purchase patterns of
different products.

3 Preliminaries

The proposed model HFCP is a hierarchical FCP, and the snapshot (i.e. marginal distribu-
tion) of HFCP at any time step can be interpreted as an HDP, so the basics of FCP and
HDP are introduced in this section as preliminaries.

3.1 Fragmentation-coagulation process

FCP is a random partition process defined based on Chinese Restaurant Processes (CRP)
(Teh et al., 2011). The partition at any time ¢ in FCP follows CRP. CRP is a random parti-
tion model, which can be described by the analogy of customers choosing tables in a Chi-
nese restaurant (Pitman, 2002a).

Each table of CRP corresponds to a customer group in a partition. For a partition
p ~ CRP(A, a, 8)', A is the set of all customers, « is the strength parameter (a > —6), which
controls the number of groups in partition p; and 6 € [0, 1) is the discount parameter,
which controls the probability of generating more tables with few customers (Pitman and
Yor, 1997). For a new customer, the probabilities of joining an existing group (or called
block) b of the partition p or starting a new group are defined in Egs. 1 and 2 respectively,

I’lb—5

P(join group b) =———
@+ Dpe, M

(D

' In our model, the two-parameter version of CRP is used, which has Pitman-Yor Process as the de Finetti
measure (Pitman and Yor, 1997).

@ Springer



286 Machine Learning (2023) 112:281-310

HFCP: Shared Patterns
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Fig. 1 Illustration of FCP (left) and HFCP for two products (right) at two time steps (Color figure online)

a+6|p|

P(start a new group) =—————
@+ e, M

2

where b is a group in partition p, n, is the size of b, and |p| is the number of groups in p.

CRP is a nonparametric model, which does not require specifying the number of groups
in a partition, and the number of groups can increase with the amount of data.

FCP contains a sequence of random partitions following CRP, with temporal dependen-
cies among the partitions defined by the fragmentation and coagulation operations. The
process FCP(A, a, €) contains the partitions of dataset A, the strength parameter a controls
the number of groups, and € € [0, 1) controls the temporal dependency between consecu-
tive partitions. When ¢ = 0, the partition at ¢+ 1 is fully dependent on the partition at ¢,
which means that the partition remains the same over time. When ¢ — 1, the partitions at ¢
and ¢ + 1 are independent.

In discrete-time FCP(A, a, €), the partition at ¢ = 1 is p') ~ CRP(A, a,0). The parti-
tion p®+D (r € {1,...,T}) is generated by splitting (fragmentation operations, FRAG) and
merging (coagulation operations, COAG) its previous partition as follows:

fragmentation p'(t) |p” ~ FRAG(p™",0, ) 3)

coagulation :  pV)p'” ~ COAG(Y'", a/e,0) )

The illustration of discrete-time FCP in Fig. 1 (left). The numbers in the boxes are customer
indices. In the FRAG operation, each block b in p\” is further split based on CRP(b, 0, €) to
get o', Each block in p'® either exists in p® or is a subset of a block b in p®, so that o’ is
a finer partition of A than p®.
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In the COAG operation, all the blocks of p’ @ are treated as elements, and they are par-
titioned based on CRP(p'”, a/e,0) to get p®*V. This operation is performed at the block
level, so the customers in b at t will stay together, joining other blocks or remaining as a
separated block. After the COAG operation, each block in p@*D either exists in p’ @ or it
contains multiple blocks from p’ (’), so that p(*D is a coarser partition of A. The FRAG and
COAG operations are conducted alternately, and generates a sequence of partitions.

It has been proved that FCP is consistent and the marginal distribution of p® remains
CRP(A, a,0) over time (Elliott and Teh, 2012). The marginal distribution of intermediate
partition p’ @ petween two operations is CRP(A, a, €).

3.2 Hierarchical Dirichlet Processes

The Dirichlet Processes (DP) have been widely applied to clustering data with an infinite
number of groups (Sethuraman, 1994). As discussed in (Teh et al., 2006), CRP is one of
the construction approaches of DP. The Hierarchical Dirichlet Processes (HDP) (Teh et al.,
2006) use a set of DP to cluster multiple sets of data such as a collection of documents.
Each DP of HDP learns the topic of a document based on its content, and these topics are
shared across the collection of documents.

Given a collection of random measures {G, ... G,} for J datasets, an HDP model is
defined as follows:

G, ~ DP(y,H) )
G_,‘|G() ~ DP(a, G,) (6)
0;1G; ~ Gy, x;10;; ~ F(6;;) (7)

where y and a are concentration parameters. Gy = ,° | Biby, is a discrete measure with
infinite atoms (¢;);2 . Each ¢, is drawn from the base distribution H and (6, );2, is a prob-
ability measure concentrated at (¢;);2 ;- (B;);2, can be interpreted as the weights of mixture
components. The random measures {G; }J are conditionally independent given the base
measure G,. Most importantly, the atoms (q')k) i Of G are shared among {G }J

To get a partition of the dataset A; = {(ji)|i = 1,2, ...}, each element (]z) 1s associated
with a latent factor ;. Each latent factor 0;; draws an atom ¢, of G;. Since G; is a discrete
distribution, all 6, w1th the same value ¢, are members of group k. Drawmg a sequence of
factors (9,;:)[2 based on Egs. (5)—(7) naturally forms a partition of A The observed data
is drawn from a distribution F, given the latent factor Gji.

In the context of customer behavior analysis, J datasets are the transaction records of
J products; x; is the purchase behavior observation for customer i of product j; (¢h;);2, are
behavior patterns of different customer groups. The behavior patterns are prototypes of
clusters, and these patterns are shared across J products. 6;; is the latent factor for customer
(i) ; and F is the likelihood function of the behavior observation, e.g. the probability den-
sity function of distributions. For example, F' can be Bernoulli distribution if the observa-
tions are binary; F can be Poisson distribution, if the observations are the counts of event
occurrence.
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Fig.2 The graphical models of FCP (Luo et al., 2017) (left) and HFCP (right) at time steps ¢ and ¢ + 1

4 Customer segmentation with HFCP

We focus on dynamic customer purchase behavior segmentation task, which can be for-
mally defined as: given the transaction records of J products segment customer set A; for
each product j based on their purchase behavior x B 1dent1fy the behavior pattern ¢>{’) of
each customer group and track the evolution of customer groups over time.

Although FCP can track the split and merge of customer groups, constructing an inde-
pendent FCP for each product could overfit the purchase records of less popular products,
due to the long-tail distribution of purchase records (Clemons and Nunes, 2011). We are
inspired by the idea of hierarchical approach, by which the behavior patterns can be jointly
learnt and shared among multiple products, to avoid overfitting the records of individual
product. However, adding a layer across multiple FCPs is not straightforward, as the model
has to allow all FCPs to evolve flexibly and ensures that any behavior pattern in a snapshot
of an FCP is selected from a set of patterns shared by multiple FCPs. Our proposed model
Hierarchical Fragmentation-Coagulation Processes (HFCP) has HDP as the marginal dis-
tribution at any time, which is designed to tackle these challenges, overcome the overfitting
problem and enable users to analyze shared dynamic behavior patterns to compare different
products.

An illustration of HFCP, which segments customers of two products, is in Fig. 1 (right)
At time ¢, customers in A are segmented into blocks by p( ) based on FCP. Each block of p
has a behavior pattern q,’)k , such as the number of purchases in one month. A pattern ¢
drawn from a set ¢ = (q,’)(’))k \» Which is shared across all products. Different blocks can
select the same pattern, any block can add a new pattern to the pattern set, and the size of
the pattern set is not limited. For example, in Fig. 1 (right), at ¢ and ¢+ 1, Product 1 (left
box) and Product 2 (right box) share two and three patterns (as shown in the top box),
respectively.

The formal graphical model of HFCP at time steps ¢ and ¢ + 1is shown in Fig. 2 (right),
and the graphical model of discrete-time FCP as defined in (Luo et al., 2017) is on the
left for comparison. The corresponding generative process is presented in Algorithm 1.
In more details, B contains the weights of all behavior patterns, which is drawn from
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GEM(y) (GEM stands for Griffiths, Engen and McCloskey) (Pitman, 2002b), and the
hyperparameter y determines the probability of generating a new pattern. Then, it starts the
main loop over J products. For each product j, the model generates a sequence of partitions
(1 ) based on FRAG and COAG operations. For each block " e p , we draw a pattern
mdex kj() according to the weight . Subscript m is the bloc{< mdex me{l,...,]| p(’) R
where [p.” | is the total number of blocks in this partition. For the pattern index, all the pat-
terns ¢ ((,b,(f) )ie are drawn from the base distribution H, and they are shared across J
products. For tractable inference, the base distribution H is often defined as conjugate to
the observation distribution F.
For each observation x”, it is drawn based on the block allocation ¢ y D of the customer
(ji) , and the pattern d)() (;f that block. The block allocation c() refers t(]) a block in p.
which (ji) belongs to, so we have c(t) b(’) for (ji) € b(t) ' !

Algorithm 1 The generative process of HFCP

Input: customer set A for J products, hyperparameters -, «, €,
1: draw pattern weights 3(*) = (ﬂ(t))k 1 ~ GEM(7)

2: draw patterns ¢l(c )~ H k=12 ...
3: for each product j do

4 fort =1toT do

5 if t = 1 then

6: draw initial partition p{") ~ CRP(A;, a, 0)

7 end if

8 draw partitions

9: o109 ~ FRAG("), 0, ¢)

10: t+1)|p'(t) ~ COAG( ' afe,0)

11: for each block b(t) S pjt) do

12: draw a pattern index k( ) Discrete(3(%))

13: end for

14: for each customer (ji) € b(t) do

. ( ) — p®) (t)

15: assign block allocation c;;” = by, . draw x ~ (¢> )
16: end for
17: end for
18: end for

For the observation data xg), the forms of F! (qbl(f) ) and base distribution H are determined
by the requirement of certain applications. For example, if we desire to distinguish custom-
ers by monthly purchase times, x(’) can be drawn from Poisson(4), where A represents the
expected number of purchases per month. When customer (ji) has pattern k), x( ) is drawn
from P01sson(/1(t)) In this case, the base distribution H can be Gamma(a,, 8, ), Wthh is a
conjugate prior for Poisson distribution. The hyperparameters of the Gamma distribution
are shape a, and scale f,. We could replace Gamma-Poisson by other distributions. For
example, if the behavior data is binary purchase indicator, it could be sampled from a Ber-
noulli distribution with a Beta prior.

The marginal distribution of HFCP at ¢ is designed as an HDP. More specifically, the
behavior patterns shared across products correspond to atoms (¢ );2 | of Gy, with the weight
po = (ﬂ;’)) ~ GEM(y), and they are the prototypes of clusters (1 e. customer groups).
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For the customers of product j, the partition o’ has the marginal distribution CRP(4;, a, 0).
As CRP is one of the construction approaches of DP (Teh et al., 2006), the generative
scheme of CRP is equivalent to the generative procedure of DP on G; level in Egs. (6)-(7).
Therefore the partition of A; and the allocation of shared behavior patterns to all the blocks
in p correspond to constructmg a two-level HDP.

The main advantages of HFCP are:

1) It can automatically determine the number of customer behavior groups, and increase
or decrease it based on data;

2) It can track the changes of customer groups by splitting and merging partitions, provid-
ing information about the size, duration, ancestors and descendants of each customer
group;

3) It can identify behavior patterns shared by different products, which can avoid overfit-
ting for individual products and support users to compare purchase behavior of different
products.

5 Inference

The inference techniques for HFCP are the forward-backward algorithm (Frithwirth-
Schnatter, 1994) and the posterior sampling with an augmented representation (Teh et al.,
2006). We use Gibbs sampling to infer the group and behavior for each customer (ji) at
t € {1,..., T} given the other customers.

Overall, our inference framework samples the following variables iteratively:

1) the block allocation c " of each customer i) ;
2) the pattern 1ndex k;nz of each block 5"
3) the weight ﬁk and the parameter ¢k¥ of each pattern k.

The notations used in the inference are summarized as follows: p represents the projec-
tion of p(’) on A; \ {ji}, which refers to the set A; excludlng customer i) ; |p | is the num-
ber of blocks in p(') k] @ is the pattern 1ndex for block b(t and the variables with a prime
(") are for the intermediate partition p " after fragmentatron operations. We provide a table
of notation in supplementary rnaterral which contains the variables, subscript and super-
script and hyperparameters used in the paper.

The following subsections describe the detailed sampling process of each variable in
the above list. The full inference procedure is illustrated in Algorithm 2 at the end of this
section.

5.1 Sampling block allocation c},-')

Since the temporal dependency among partitions follows FCP, we adopt forward-backward
(F-B) algorithm (Friihwirth-Schnatter, 1994) to infer the sequence of partitions p](l:T) of
A; over time. The F-B algorithm is a commonly used inference framework for dynamic
latent variable models. Our F-B algorithm includes a forward phase for sampling using
Egs. (9)—-(10), with a backward phase for smoothing using messages in Egs. (14)—(15). In
this step, we assume the pattern allocation k"D and U1 are known and given as condi-

tions for all customers except (ji) .
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5.1.1 Posterior distribution

When t=1, we first sample block allocation c ) based on the following posterior
probability:

P<C](_i1) _ a|x(l T),p(l T),p/(l -1 k(l :T) ﬂ(l T))

i A
ocP( b = a|p:lj,z> P(x;l.l)lc;il) =aq, k[(ll) = k) mcV(a) ®
J\. o~
e . LY message
conditional probability likelihood

where p i ) refers to the sequence of partitions p prOJected on A; \ {ji} fromt=1toT.
In the second line, the first term is the condmonal probability of the block allocation given
the partmon of the other customers at time #; the second term is the /ikelihood of behavior
data xj glven block a and pattern k; and the last term is the message, which is the condi-
tional probability of the observations after ¢ given p(’ D and p p¢:1=1)

Then, we sample block allocation for fragmentatlon and coagulation steps iteratively.
For the fragmentation step at t, the posterior distribution of allocating (ji) to @’ is as follows:

P(clgl{> zaflcglf) a.x (l] D, (—}iT)’ /glr D k“ D gl T))
J J J J J
«P(y = a1 = apl. ) (@) ©)
N A,_J
v message

conditional probability

where the two terms on the second line are conditional probability and message.
After that, we sample cj(.f“) for the coagulation step based on the following posterior
distribution:
P<C(t+l) _ a|C/g) =g 1D D) p/(I:T—l)’kﬁl:T)’ﬂ(l;T)>

ji i P 0P i
(t+1) ® t+1) () 1
ocP(cﬂ. = alc'le =d, s P:,,) mc™ D (a)

o J/

message ( 1 O)

~
conditional probability

X (X1 = a, k0D = k)
ji ji a

o /
v~

likelihood

where the term on the last line is the likelihood of behavior data x(’+1)

pattern k.
The conditional probabilities, messages and likelihood used during the inference of
block allocation c(’) are defined as follows.

given block a and

5.1.2 Conditional probabilities

The conditional probability of allocating a block for customer (ji) at ¢t = 11is defined as:

b M ; (D
PEP =alply = Ml T IO TS0 an
K a/(n/{“ —l+a) ifa=¢
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(€]

where n, is the number of customers in a excludmg (ji) , and n ) is the total number of

—ji

customers of product Jj- The condition a € p means that the selected block a for customer
(ji) exists in p ). The second case a = 10} means that customer (i) erl start a new block,
without any members yet. Therefore, the possible space for c Vis{pup? .

—ji
The conditional probabilities of allocating c (t) and c('Jr for the fragmentation and coag-
ulation steps are:

(0 _ 0 _ 10\ _
P(cﬁ =d|c ¢ =a p_w,p _y,l,) =

1 ifa= a’ = q§
elF(’)(a)l/n;;) ~ ifae pﬂﬂ =¢ (12)
i
0] o (1)
(nj‘l’ﬁji - €)/njaﬁji ifa e p“ji’a € F(t)(a)
0 otherwise

(++1) _ /() ro @) @ _
P<le‘ CllC =a ’pﬁﬁ > P _‘/'l‘> -

a/(a+e|p’(’)|) ifa=d =¢

ICO@I @+ el ifa € ) d = g (13
1 ifae p(j;l) a € CYa)

0 otherwise

where F¥(a) in Eq. (12) refers to the set of blocks in P “ \which are split from a; it is
formally defined as F?(a) = {s|s € p'm sCa,s# @) élmllarly, C9a) in Eq. (13)
refers to the set of blocks in p’ " which are merged into a at time (¢ + 1); it is defined as
COa) = {s|s € p’(t) sCa,s# (;5} For any empty block (i.e. a = ¢), it means that (ji) will

start a new block.

5.1.3 Messages

(t+1:7) ) -

Messages are the conditional probabilities of observations x;; if ;" is in block a or d'.
In this way, allocating (ji) at ¢ considers the whole observatlon perlod rather than just the
condition at z. The messages for fragmentation and coagulation steps are denoted as mf and
me, respectively. Given mc"(a) = 1 for all blocks at T, the messages at other time intervals
can be computed in a backward manner recursively according to the following equations:

mfO(d') = ( (1 T)Icl(f) “"PS;iT)’p/(ﬂt,-:,-T_l)’k,(-Hl:T))

= Z(mc(’+l)(a)P<xj(,:+1)|cj(.:+l) =a, kg“) = k)

(1+1)
agp_; Ug .
’ Ba. (16) (14)
(t+]) (0 r @+ (0
xP( =alcy =a,p ,pﬂﬁ))
. ~ J
Eq. (13)
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mc(a) —P( (1 T)l (r) = a k" =k, :t,,T)’ ,(: T-1) k(z+1 r))
me(”(a )P = a1 = a0 (15)
p-yz’p —ji
aEp’qub P J
Eq. (12)

It means that mf®(a') is computed based on mc*V(a) for all possibilities, including all
blocks in p “*D and an empty block. Then mc®(a) is computed based on mf®(a’) of all
blocks in p . and an empty block. These two equations are used in turn until we get mes-
sages for customer (ji) at all time steps and different cases.

5.1.4 Likelihood

We use the Poisson distribution to describe the number of purchases in a period of time.
Given the Poisson distribution, the likelihood of x@ with pattern k is defined as:

(i) et
P(x(’)lc(’) —a k0 = k) - (16)
ji 1 Ra L0
/z :
We use Gamma(e,, f,) as the pr10r for A ), so based on the pattern allocation £k, we can
estimate the intensity parameter /1 by maximum a posteriori (MAP):
(t)
Zﬁ/e‘\ il ta, = ! . .
if pattern k exists
20 = A +(1/ﬁ ) an
L=
Ty X + 4 =1 .
if pattern & is new
Al =1+ (1/8,)

It means that when k is an existing pattern selected by previous customers, we compute
/l(’) based on the other customers (ji') # (ji) in A, who have pattern k. Otherwise, if k is a
new pattern, we compute ﬂ(t) based on the prior knowledge and all the other customers in

A\ {ji}.
5.2 Sampling pattern allocation kj(,‘,z

The pattern allocation starts after completing the block allocation of a sampling round.
Given the block allocation ¢® and the pattern weights ), the pattern allocation for each
block can either select an existing pattern or generate a new pattern. The conditional prob-
abilities of the pattern allocation for block bﬁZ are:

P( 0 = k|c(’) ® ﬁg)>

—ym

pY H(ﬂ)eb‘” P(x; @ |k(’) = k) if pattern k exists. (18)

Jjm

ﬁu [iie 0 P(x (’)lk(’) = k) if pattern k is new.
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where f, =1 — Zsz | By is the weight of a new pattern. As changing the pattern allocation
of a block would affect all the elements in that block, we should consider the joint prob-
abilities of all {ji} € bj(z during the selection of pattern k.

Algorithm 2 The inference procedure of HFCP

Input: purchase behavior X (1:T) of U customers .J products, N sampling iterations
.- (1:T)
Output: partition sequence p 5
1: for iteration=1: N do
for product 5 =1 : J do
for customert =1 : U do
reset all messages m f and mc and intensity A

2
3
4:
5: /I backward filtering: compute messages
6.
7
8

, purchase intensity A

fort =T tol do
compute . f ) and mc(®) based on Eq. (14)~(15)

end for @
9: I forward sampling: block allocation Cji
10: fort=1to (T — 1) do
11: if t == 1 then
12: sample based on Eq. (8), update p§1)
13: if cﬁ) is new, sample kzﬁi and B,(cl) for it
14: end if
15: /l fragmentation step
16: sample based on Eq. (9), update pg-t)
17: if c(.t-) is new, sample k:(-t) and (t) for it
Ji p im k
18: /I coagulation step
19: sample based on Eq. (10), update p’ gt)
20: if ¢/ EZ) is new, sample kgfzb and B,(:) for it
21: end for
22: end for// for customer i

23: end for// for product j

24: update pattern allocation k(:T) based on Eq. (18)
25: update weight BT based on Eq. (19)

26: end for// for one sampling iteration

27: compute A based on segmentation for each product

5.3 Sampling weight ﬂ;(')
Before the end of each sampling round, the pattern weights B are sampled based on:
() (1) ; (1) (1)
(ﬂ N ,ﬁi”) ~ Derhlet(rli , r}y) (19)
where r'(,? denotes the number of blocks with pattern k across all products at time ¢, and the

probability of generating a new pattern is controlled by the hyperparameter y.
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The full inference procedure is summarized in Algorithm 2. The theoretical time com-
plexity of a sampling round is O(JUKT), which increases linearly with the number of cus-
tomers U, the number of products J and the expected number of patterns K of each parti-
tion at time 7. Compared to FCP which has a time complexity O(UKT) for one sampling
round, HFCP cannot parallel the modeling of multiple products of a category. This is due
to the hierarchical design of HFCP, which constructs models for multiple products simulta-
neously by sharing patterns across them.

6 Experiment

We conduct empirical evaluations on two real-world purchase datasets to demonstrate
the capabilities of HFCP from different perspectives. We first analyze the varying num-
ber of customer groups learned from these two datasets. Then, we examine the customer
groups of different products discovered by HFCP, impacted by promotions, brand choice
and change of seasons. Finally, we evaluate the performance of HFCP and compare it with
three customer segmentation methods: HomoPP, NHPP (Luo et al., 2016) and FCP (Elliott
and Teh, 2012; Luo et al., 2017), regarding their generalization capabilities of grouping
unseen customers.

6.1 Experimental setup
6.1.1 Supermarket dataset

The first dataset is from an Australian national-wide supermarket chain, collected through
the supermarket loyalty cards between January 1 and December 31, 2014. There are 931
customers in this dataset. Each transaction contains a unique customer id, product metadata
(id, category, brand and name), timestamp, purchased quantity and cost. We select 38 most
popular products based on the number of customers who bought these products at least 10
times during the observation period. The selected products are from 9 categories, includ-
ing 4 categories for fresh products, and the other 5 for products like soft drinks, snacks and
chilled desserts.

6.1.2 Dunnhumby dataset

The second dataset is collected and published by Dunnhumby. This set contains more than
2 million transaction records of 2500 households over two years in multiple branches of
a retailer. Each transaction has a similar set of attributes as the supermarket dataset. We
use the same criteria to select 66 products, which involves 1877 customers. The selected
products of the Dunnhumby dataset are from 12 categories, including 4 categories for fresh
products, and the other 8 for packed products.

The full lists of the product names and categories for these two datasets are provided in
the supplementary material. This information can help readers to get a better understanding
of the experimental datasets and result discussion.
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Fig.3 Log likelihood of each sampling iteration for 4 categories of products from supermarket dataset (top)
and Dunnhumby dataset (bottom)

6.1.3 Hyperparameter configuration

To set the hyperparameters of HFCP, we selected the purchase records of 5 products from
supermarket dataset from ¢ = 1 to 3 to create a validation set. We performed grid search of
y €[0.2,2], a € [0.2,1], € € [0.1, 1]. We examined the fitness of HFCP model on the data
based on log likelihood, and the number of groups generated after 100 sampling iterations.
Based on the convergence of log likelihood and number of groups, we set the parameters
as follows: y = 0.5, @ = 0.8, ¢ = 0.1. The meaning and impact of these hyperparameters
are given in Sects. 4 and 3.1. For the Gamma prior of purchase intensity /lff), we set shape
a, =2 and scale f, = 0.5. The reasons is that the mode values of the number of purchase
events per time unit for both datasets are O based on observation. To get observation data
with mode 0, the number of purchases x;;) should be drawn from Poisson(4) with 4 € (0, 1].
To satisfy this condition, we use Gamma(2; 0.5), so that the mode of 4 is (a, — 1), = 0.5.
The unit of time is 2-week for the supermarket dataset and 4-week for the Dunnhumby
dataset.

The number of sampling iterations N is 100 for HFCP. We examined the convergence of
HFCP based on the log likelihood of the observed purchase records given clustering results
after each sampling iteration. Figure 3 shows the log likelihood of 100 iterations for 2 cat-
egories of supermarket data and 2 categories of Dunnhumby dataset. The log likelihood
converges within 40 iterations, so N is set as 100 iterations in the experiment.

For comparison, the hyperparameters of FCP are set as a =04, e =0.1, a, =2,
B, = 0.5. The number of groups produced by FCP is mainly controlled by a, so this setting
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Fig.4 Number of customer Overall —~Fruits - Cereal
groups for all products, fruits and
cereal from supermarket dataset
over time (time unit is 2-week)
(Color figure online)
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Fig.5 Number of customer Overall ~Eggs & Meat - Milk

groups for all products, eggs &
meat and milk from Dunnhumby
dataset over time (time unit is
4-week) (Color figure online)
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makes the prior probability of generating a new customer group for one product equivalent
to HFCP withy = 0.5,a = 0.8.

6.2 Customer segmentation results using HFCP

Our HFCP model is constructed using a category of products, and outputs the sequence
of behavior patterns shared by all the customers of different products in this category. We
analyze the HFCP’s capabilities of tracking the changes of customer groups and learning
behavior patterns shared across multiple products.

6.2.1 Dynamic number of groups

As HFCP is a Bayesian nonparametric method, it can learn the number of groups required
for modeling the data without model selection, which improves the flexibility of the model.

For the supermarket dataset, Fig. 4 shows the average numbers of groups at all time
steps over all categories of products (blue squares), fruits (orange triangles) and cereal
products (gray circles). The average numbers of groups are 2.93 for all products, 4.26 for
fruits and 1.84 for cereal.

For the Dunnhumby dataset, the numbers of groups for all categories (blue squares),
eggs & meat (orange triangles) and milk (gray circles) are shown in Fig. 5. The average
numbers of groups are 3.4 overall, 4.72 for eggs & meat, which is the highest among all
categories, and 2.4 for milk.

The main reason of having more customer groups for fruits and meat may be that the
customer behavior of fruits and meat are more diverse than the other categories, which
leads to higher number of distinct patterns than the other categories. On the contrary, the
customers purchasing different brands of cereal or milk have similar and stable behavior. In
addition, the prices of fruits vary more frequently than the other products due to the change
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Bubble plot for biscuits & snacks
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Fig.6 Evolution of customer groups for biscuits & snacks using HFCP. The bubble plots are for the cat-
egory (top), the products Smiths potato chips (middle) and Doritos potato chips (bottom) (Color figure
online)

of seasons. Previous research has found that the price elasticity of fruits is higher than
cereals and milk (Andreyeva et al., 2010). When the demand of fruits of some customers is
more responsive to the price changes than others, it can generate different behavior groups,
so the number of groups fluctuates significantly during the observation period for fruits.

6.2.2 Evolution of customer behavior groups

In this section, we explore the customer groups in more depth, including the size and pur-
chase rate of a group, how groups evolve over time, and the differences among products of
a category.

We present case studies for four categories—biscuits & snacks, soft drinks, chilled des-
serts and fruit, to demonstrate the capabilities of HFCP in: (1) capturing purchase behavior
at both product and category levels and (2) comparing purchase behavior of multiple prod-
ucts from different aspects, such as customers’ receptiveness to promotions, brand choice
and the impact of seasonal changes.

We visualize the size, purchase rate and trajectory of customer groups in bubble plots
such as Fig. 6. Each bubble represents a customer group labeled by a group ID. The size of
a bubble is determined by the proportion of customers in a group. The customer groups of
a product at any time are exclusive and non-overlapping. The weight and transparency of
the links between bubbles denote the numbers of customers switching from the left group
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Fig.7 Customer segmentation for the Smiths potato chips using FCP generates minor groups that overfit
the data

to the right one (the thicker and less transparent line means that more customers switch via
that path).

6.2.2.1 Biscuits and snacks—stable behavior Figure 6 shows the trajectories of the cus-
tomer groups for biscuits & snacks category in the supermarket data. There are 5 products
in this category. This figure shows the customer groups for the category (top, purple) and
two brands of potato chips—Smiths (middle, blue) and Doritos (bottom, blue) as examples.
The top plot for the category contains all behavior patterns shared by 5 products. From the
category-level plot, we find that about 75% of customers had lower purchase rates at about
0.5, while the other 25% of customers had higher purchase rates, between 1.5 and 2.

The Smiths product mainly has two types of customers with high or low purchase rates,
and the customers have stable behavior with few of them switching between groups. Com-
paring the FCP result for the Smiths (in Fig. 7) with HFCP result (middle in Fig. 6), we
notice that FCP model has many minor groups appearing around the major groups, such
as groups 3, 4, 21 and 35, which are less general patterns, implying overfitting problems.
As for Doritos, it has different pattern distributions from the Smiths, with more than 90%
customers having lower purchase rates.
6.2.2.2 Soft drinks—impact of promotions The category-level trajectory of the customer
groups for soft drinks in the supermarket data is shown in Fig. 8 (top, purple). There are 3
products in this category, and we show Coca-Cola (middle, blue) and Schweppes (bottom,
blue) as examples in Fig. 8.

For Coca-Cola, there are three types of behavior patterns, with purchase rates at about
0.5, 2 and 5, respectively. The proportions of customers with three types of patterns are
about 75%, 20% and 5% over time. We find that the customer groups with higher purchase
rates appear regularly, such as the groups 1, 7, 13 and 18. To evaluate the composition of
these groups quantitatively, we analyzed the intersection of every two consecutive groups
to check if they contain the same group of customers. For example, groups 1 and 7, groups
7 and 13, groups 13 and 18, ..., groups 69 and 74, and there are 16 pairs of them in total.
We defined intersection rate as the size of intersection of two groups over the size of the
first group of the pair. The average intersection rate of 16 pairs of consecutive groups with
higher purchase rates is 0.897. We also checked the intersection of the members of group 1
and groups 7, 13, 18, 25, 27, 34, and the average intersection rate is 0.892. The groups with
higher purchase rates appeared about every two time steps, which is one month. This is
consistent with the promotion period of this product, based on the price information. This
means that these customers are receptive to the promotions, forming customer groups with
higher purchase rates during promotions.
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Bubble plot for soft drinks
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Fig.8 Evolution of customer groups for soft drinks using HFCP. The bubble plots are for the category
(top), the product Coca-Cola (middle) and the product Schweppes (bottom) (Color figure online)
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Fig.9 Customer segmentation for the product Schweppes using FCP generates minor groups that overfit the
data

For Schweppes (bottom in Fig. 8), more than 90% of customers have lower purchase
rates and less than 10% of the customers have medium purchase rates. The groups with
higher purchase rates appear only after # = 20. The groups discovered by HFCP (bottom in
Fig. 8) change smoothly over time, while the FCP (in Fig. 9) generates more minor groups
at a time step, especially after # = 21, which implies that FCP overfits the purchase records.
6.2.2.3 Chilled desserts—brand choice The category-level trajectory of the customer
groups for chilled desserts of Dunn-humby data is shown in Fig. 10 (top, purple). Besides
ice cream, this category involves two types of yogurt, which are referred as Yogurt A and
Yogurt B. These two products are from different manufacturers—Yogurt A is a national
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Fig. 10 Evolution of customer groups for chilled desserts using HFCP. The bubbleplots are for the category
(top), yogurt A (national brand) (middle) and yogurtB (private brand) (bottom) (Color figure online)

brand, but Yogurt B is a supermarket private brand. Comparing these two products (middle
and bottom plots in Fig. 10), we notice that the customers of both products can be divided
into two major groups, with high and low purchase rates, respectively. Yogurt B has a larger
proportion of customers with higher purchase rates (> 2), and there are more links between
two groups than Yogurt A. These patterns imply the impact of price and promotions on
purchase behavior, as supermarket private brand usually has lower price than the national
brand. When FCP is applied to customer segmentation, Fig. 11 shows that the customers
with high purchase rates have been identified, with similar patterns as shown in the bottom
plot of Fig. 10, but those with low purchase rates have been split into multiple groups, which
may overfit the observations.

6.2.2.4 Fruit—change of seasons For the fruit category in the Dunnhumby data, the cate-
gory-level segmentation result is shown in the top plot of Fig. 12. As there is a mixture of
different purchase patterns in this category, the category-level segmentation result contains
more customer groups than the other three cases as shown above. For individual product,
HFCP can effectively distinguish the patterns of different products. For example, the pur-
chase of strawberries demonstrate seasonal changes (as shown in Fig. 12, middle), with
higher purchase rates in Spring and Summer (from ¢ = 12 to 19). As for bananas (as shown
in Fig. 12, bottom), their popularity remains stable through the whole observation periods,
comparing to that of strawberries. However, as these two products have few purchase pat-
terns in common, learning shared patterns may lead to a compromise between them. For
example, when modeling strawberries using FCP (as shown in Fig. 13), the purchase rates
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are about 2 for the customers who bought more strawberries (such as groups 5, 6, 11 and 24
in Fig. 13), whereas HFCP models the behavior of these customers using purchase rates that
are greater than 3 (such as groups 10, 18 and 24 in the middle plot of Fig. 12), which are
lifted by other popular products like bananas.

Hence, HFCP can support us to compare the purchase behavior of multiple products
effectively and analyze the impact of promotions, brand choice and seasonal changes. It is
also important to avoid mixing products with significantly different purchase behavior or
imbalanced amount of data when building a model, as the model may underfit one or some
of the products due to the compromise among products or imbalanced datasets.

6.2.3 Distribution of behavior patterns

The customers of a product are split into exclusive and non-overlapping behavior groups
at any time step. The distribution of customers (i.e. proportions of the customers in each
group) for multiple products from the same category can be examined to understand the
similarities and differences of purchase behavior of these products. For example, for the
biscuits & snacks category, there are 2 groups at # = 1 and 4 groups at ¢ = 2. The distribu-
tion of customers of all 5 products in this category at these two time steps are shown in
Fig. 14. At t = 1, the overall distribution (the 1st row) shows that, there are 26% of the
customers in group 1 (lower purchase rate) and 74% of the customers in group 2 (higher
purchase rate). However, the distribution of customers buying the supermarket’s own bis-
cuits (the 5th row) is 5% and 95% in these two groups, which is quite different from overall
distribution. At ¢t = 2, we can discover that (1) Doritos and the supermarket’s own snacks
have very similar customer distributions and (2) the supermarket’s own biscuits are less
popular than the other products, as over 90% of the customers are in groups with low pur-
chase rate (group 5).

In order to extend the comparison to multiple categories quantitatively, we computed
the correlation between the product-level and its corresponding category-level customer
distributions. Figures 15 and 16 show the correlations of all products for the supermarket
dataset and Dunnhumby dataset, respectively. The range of a correlation value is between
—1 and 1, and a higher value means that the customer distribution of that product is more
positively correlated with its category-level distribution. The similarity of a product with
the other products in the category can be inferred from the correlation value. For example,
the product 21—grapes in the supermarket dataset has a negative correlation value, which
indicates the different customer behavior of this product compared with the other prod-
ucts in this category. We examine the average correlation value of each category. For the
supermarket dataset, as shown in Fig. 17, the lowest one is for fruits, 0.48, and the highest
one is for soft drinks, 0.92. For the Dunnhumby dataset, as shown in Fig. 18, the lowest
correlation is for vegetables, 0.70, while the highest two are for soft drinks and cereal, both
0.86. Therefore, different fruits and vegetables have more distinct behavior patterns, while
for soft drinks and cereal, the customer behaviors of different brands are similar. This is
consistent with the result that there are more groups for fruits but less groups for cereal in
Sect. 6.2.1.

6.3 Generalizability of HFCP

The generalizability of customer segmentation models is a critical factor to consider. As
it is difficult to observe the behaviour of whole population in practice, the segmentation
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Fig. 11 Customer segmentation for Yogurt B (private brand) using FCP generates minor groups that overfit
the data
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Fig. 12 Evolution of customer groups for fruits using HFCP. The bubble plots are for the category (top),
strawberries (middle) and bananas (bottom) (Color figure online)

model built on a sample of the population should be generalizable to unseen custom-
ers. Given a set of groups learned based on observed customers, future customers can be
assigned to those existing groups by a generalizable model, with their behaviours accu-
rately represented by the patterns of the allocated groups. We hold out a proportion of
customers for a product during the training, and examine if the patterns learned from the
remaining data of this product together with the other relevant products could group unseen
customers accurately.
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We compare the performance with three customer segmentation models HomoPP,
NHPP and FCP. The HomoPP and NHPP are mixture of Poisson processes. Specifically,
HomoPP describes each customer group using a Poisson process with a fixed intensity
value. NHPP describes each customer group using a non-homogeneous Poisson pro-
cess, which has an intensity function with polynomial and periodic components to cap-
ture dynamic behavior. The customer group memberships remain unchanged over time for
HomoPP and NHPP. FCP is a dynamic segmentation model, but it cannot capture patterns
shared by multiple products.

For HomoPP and NHPP, the number of groups is set as 3. The main reason is that the
average number of groups in (Luo et al., 2016) was 3.37, which was tuned using 27 prod-
ucts. Moreover, the average numbers of groups discovered by HFCP for two datasets are
2.93 and 3.4, respectively. The degree of polynomial component in NHPP is set to 2 based
on (Luo et al., 2016). The hyperparameters of FCP are set as a« = 0.4, ¢ = 0.1, a, = 2,
B, = 0.5 as explained above.

For a target product, we randomly select 10% of its customers. The HFCP model will
be trained using the records of these customers of the target product and the records of the
other products in the same category. After learning the shared patterns of this category,
for each customer in the hold-out set, we select an existing sequence of purchase patterns
(i.e. purchase intensities of groups) that can best fit the observed sequence and measure the
distance between these two sequences. The distance is measured by Mean Absolute Errors
(MAE), which is calculated based on the absolute difference between the estimated and
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Fig. 13 Customer segmentation for strawberries using FCP
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Fig. 14 Distributions of behavior patterns of all products in biscuits & snacks category at ¢ = 1 and ¢ = 2 for
discovering the similarities and differences of purchase behavior (Color figure online)
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Fig. 15 Correlation of the customer distributions between a product and the category-level average for the
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Fig. 16 Correlation of the customer distributions between a product and the category-level average for the
Dunnhumby dataset

actual numbers of purchase events per time step. We use paired t-test to verify if the perfor-
mance of HFCP is statistically different from a baseline model.

For the supermarket dataset, the average MAE across all hold-out sequences for all
products are shown in Fig. 19. The average MAE over all products are 0.61 (std: 0.0037),
0.64 (std: 0.0051), 0.71 (std: 0.0139) and 0.73 (std: 0.0113) for HFCP, FCP, NHPP and
HomoPP, respectively. The post hoc tests (t-test using the Bonferroni correction to adjust
p) show that the error of HFCP is significantly lower than that of FCP, NHPP and HomoPP
(p < 0.001 for all three baselines). For the Dunnhumby dataset (as shown in Fig. 20), the
average MAE over all products are 0.6 (std: 0.0058), 0.7 (std: 0.0116), 0.79 (std: 0.0317)
and 0.83 (std: 0.0267) for HFCP, FCP, NHPP and HomoPP, respectively. The post hoc tests
(t-test using the Bonferroni correction to adjust p) show that the MAE of HFCP is signifi-
cantly lower than the other three methods (p < 0.001 for all three baselines).

We also compare the increase of accuracy after using HFCP for each category. The
“increase of accuracy” can be interpreted as the gap between the blue line (HFCP) and
other lines (corresponding to the other three models) in Figs. 19 and 20. The category
information of each product id is provided in the Supplementary Material. For the super-
market dataset, the categories with large increases include confectionery, chilled desserts
and soft drinks. For the Dunnhumby dataset, the soft drinks, chilled desserts and snacks
have larger increases than categories like cheese, eggs & meat and vegetables. The reason
is that the products from a category like soft drinks have similar purchase patterns. Hence,
the benefit of using shared patterns from the other products in this category is more signifi-
cant than the other categories, when estimating the behavior of unseen customers.

Another important aspect to consider is the runtime of different methods. HomoPP and
NHPP are mixture models implemented using Expectation-Maximization algorithm. FCP
and HFCP are implemented using Gibbs sampling. We collected and analyzed the time
spent on modeling customer segmentation of each product from supermarket dataset for
HomoPP, NHPP and FCP. As HFCP jointly models a category of products, we collected
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Fig. 18 Average correlation values for all categories of the Dunnhumby dataset

the time spent on modeling each category of products for HFCP. The results were com-
puted with a 3.6GHz 8-core computer with 32GB of RAM.

The product-level average runtime is 0.06 s (std: 0.07) for HomoPP, 37.2 s (std: 11.6)
for NHPP, and 1159.2 s (std:1032.9) for FCP. It shows that HomoPP and NHPP are much
more efficient compared to sampling-based method FCP. To compare with HFCP, we
aggregated FCP’s runtime of each product by category. Figure 21 shows the category-level
runtime of FCP and HFCP. FCP is more efficient than HFCP on 8 out of 9 categories.
On average, HFCP spent 14.7% more time than FCP. The possible reason is that HFCP
requires more time to update category-level behavior patterns and the weight of patterns.
In practice, FCP has better scalability than HFCP, because FCP can parallel the modeling
of multiple products, but HFCP has to model a category of products at the same time. The
longer runtime and more hyperparameters of HFCP are the trade-off of learning shared
behavior patterns across multiple products and better generalizability performance.

7 Conclusion

Our dynamic customer segmentation model Hierarchical Fragmentation-Coagulation
Processes (HFCP) uses a Bayesian nonparametric approach to detect customer purchase
behavior groups, model the split and merge of groups over time, and it learns the patterns
shared across products through the hierarchical structure. The two important benefits of
modeling shared patterns are that it can avoid overfitting the purchase records of a single
product, and it can help to compare the purchase behavior of multiple products via the dis-
tribution of different patterns.

Through the comprehensive empirical evaluations of HFCP on two real-world transac-
tion datasets: (1) we analyzed the dynamic number of groups discovered by HFCP, which
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Fig.21 Runtime of FCP and HFCP on all products from supermarket dataset (Color figure online)

is determined automatically based on data; (2) we visualized the evolutions of customer
groups at the category and product levels and explored various impact factors on customer
behavior such as promotions, brand choice and seasonal changes; and (3) we demonstrated
that HFCP can outperform HomoPP, NHPP and FCP on estimating the behavior of unseen
customers. We found that sharing the behavior patterns learned from relevant products can
help modeling a product with fewer records, and the benefit is more significant when the
products have similar behavior.
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In future work, the application of HFCP can be extended to study purchase behaviors
across multiple categories. In addition, we would like to explore how the customers in the
store influence each other’s behavior by using dynamic segmentation results and flexible
relational models (Fan et al., 2021).
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