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Abstract
The model-X conditional randomization test is a generic framework for conditional inde-
pendence testing, unlocking new possibilities to discover features that are conditionally 
associated with a response of interest while controlling type I error rates. An appealing 
advantage of this test is that it can work with any machine learning model to design pow-
erful test statistic. In turn, the common practice in the model-X literature is to form a test 
statistic using machine learning models, trained to maximize predictive accuracy with the 
hope to attain a test with good power. However, the ideal goal here is to drive the model 
(during training) to maximize the power of the test, not merely the predictive accuracy. In 
this paper, we bridge this gap by introducing novel model-fitting schemes that are designed 
to explicitly improve the power of model-X tests. This is done by introducing a new cost 
function that aims at maximizing the test statistic used to measure violations of conditional 
independence. Using synthetic and real data sets, we demonstrate that the combination of 
our proposed loss function with various base predictive models (lasso, elastic net, and deep 
neural networks) consistently increases the number of correct discoveries obtained, while 
maintaining type I error rates under control.
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1  Introduction

An important task in modern data analysis is identifying a subset of explanatory features 
from a larger pool that are associated with a response of interest. For instance, suppose a 
nutritionist is interested in identifying which nutrient intakes are associated with body mass 
index. This information, in turn, could be leveraged to develop diets that improve human 
health (Chen & Li, 2013). Another example is a geneticist who is interested in finding 
which genetic mutations of a virus have developed resistance to a specific antiviral drug. 
To quote Rhee et al. (2006): “[This understanding] is essential for designing new antiviral 
drugs and for using genotypic drug resistance testing to select optimal therapy.” In such 
applications, there are often a large number of explanatory features with complex depend-
encies and a limited number of observations, which make the selection problem a particu-
larly difficult task (Shah & Peters, 2020). To stress this point, consider the genetic example 
from above and notice that a feature selection procedure can make erroneous selections of 
two kinds: (i) false positives—it may select mutations that do not have any effect on drug 
resistance; and (ii) false negatives—it may fail to discover genetic mutations that in fact 
developed resistance to the antiviral drug. This paper presents a novel cost function and 
learning scheme whose goal is to increase the number of discoveries reported by statistical 
methods for feature selection, while maintaining the rate of false positives under control.

To formalize the problem, we denote by Y ∈ ℝ the response variable and by 
X = (X1,X2,… ,Xd) ∈ ℝ

d the feature vector. For example, imagine that Y is a measure 
of drug resistance, and Xj ∈ ℝ—the jth entry in the vector X—indicates the presence or 
absence of a genetic mutation in a specific location. Conditional independence testing 
(Candès et al., 2018; Tansey et al., 2021; Liu et al., 2020; Zhang et al., 2012) deals with the 
question of whether a specific feature Xj is independent of the response variable Y ∈ ℝ after 
accounting for the effect of all the other features X−j = (X1,… ,Xj−1,Xj+1,… ,Xd) ∈ ℝ

d−1 . 
That is, the null hypothesis we seek to test is

against the alternative H1,j ∶ Xj ⟂̸⟂ Y ∣ X−j . In plain words, H0,j inquires whether the knowl-
edge of Xj adds additional information about the response Y beyond what is already con-
tained in X−j . Consequently, we say that the jth feature is null (i.e., unimportant) if H0,j is 
true, and non-null (i.e., important) if H0,j is false.

Imagine we are given n data points {(Xi, Yi)}n
i=1

 , where Xi ∈ ℝ
d and Yi ∈ ℝ are drawn 

i.i.d. from a joint distribution PXY . Statistical tests for conditional independence leverage 
the observed data to formulate a decision rule on whether to reject H0,j and report that 
the feature Xj is likely to be important, or accept H0,j in cases where there is not enough 
evidence to reject the null. A valid test for conditional independence should control the 
probability of making type I error (i.e., rejecting H0,j when it is in fact true), by returning a 
p-value, a random variable that is super-uniform under the null. This p-value is then used 
to rigorously control the type I error rate at any user-specified level � , e.g., of 5%. The 
power of the test (higher is better) is the true positive rate, being the probability of cor-
rectly reporting that the non-null Xj is indeed important.

Thus far we formulated the problem of testing for a specific feature, however, in many 
scientific applications (e.g., genome wide association studies Sesia et al., 2020b; Benner 
et al., 2016) we are interested in selecting a subset of features that are associated with the 
response. In other words, we wish to test for all H0,j, j = 1,… d simultaneously while con-
trolling some statistical notion of type I error. To this end, imagine we have at hand d 

H0,j ∶ Xj ⟂⟂ Y ∣ X−j
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p-values, one for each H0,j , which we denote by pj , j = 1,… , d . Recall that each p-value 
allows us to control the type I error for a specific hypothesis at a desired rate � . However, 
when testing for all the hypotheses simultaneously we must account for the multiplicity 
of the tests, as otherwise the probability that some of the true null hypotheses are rejected 
by chance alone may be excessively high; see the survey by Bender and Lange (2001) for 
details. Hence, we follow the seminal work by Benjamini and Hochberg (1995) and define 
our task as follows: identify the largest possible subset Ŝ ⊆ {1,… , d} of non-null features1 
while ensuring that the false discovery rate (FDR), defined as

falls below a nominal level of choice q ∈ (0, 1) , e.g., q = 0.1 or q = 0.2 . Above, 
H0 ⊆ {1,… , d}⧵H1 contains the indices of the null features for which H0,j is true, H1 is the 
set of non-null features, and | ⋅ | returns the set-size. In words, the FDR is the expected pro-
portion of true nulls among the rejected hypotheses. In our genetic example, the ability to 
control the FDR allows us to form a list of discoveries such that the majority of the selected 
mutations are expected to be conditionally associated with drug resistance, on average. This 
information may be valuable when allocating costly resources, required to further study the 
implications of the reported discoveries (Hawinkel et al., 2019; Manolio et al., 2009). The 
power of the selection procedure (larger is better) is defined as �

[|Ŝ ∩H1|∕|H1|
]
 , being the 

expected proportion of non-nulls that are correctly selected among all the true non-nulls. 
Controlling the FDR can be achieved by plugging the list of p-values pj, j = 1,… , d into 
the Benjamini-Hochberg procedure (BH) (Benjamini & Hochberg, 1995), as described in 
Sect. 2.2. Importantly, the power of this feature selection procedure is affected by the abil-
ity of the underlying conditional independence test to generate small p-values for the non-
null features, indicating strong evidence against the corresponding null hypotheses. Our 
goal in this work is to increase the power of the above controlled feature selection pipeline 
by forming data-driven test statistics that powerfully separate non-nulls from nulls.

The model-X conditional randomization test (Candès et al., 2018) and its computation-
ally efficient version—the holdout randomization test (HRT) (Tansey et al., 2021) that we 
study in this paper—are methods for conditional independence testing that gain a lot of 
attention in recent years. These tools are very attractive since they can leverage any power-
ful predictive model to rigorously test for H0,j , under the assumption that the distribution 
of the explanatory features PX is known. As such, model-X tests are especially beneficial 
in  situations where copious amount of unlabeled data is available compared to labeled 
data, e.g., as happen in genome wide association studies (Sesia et al., 2020a, b; Bates et al., 
2020). At a high level, the HRT is carried out by first splitting the data into a training set 
and a test set, and fit an arbitrary predictive model on the training set. Next, a dummy 
copy X̃j of the original feature Xj is sampled for each sample in the test set, such that X̃j 
is independent of Y given X−j by construction. In our running example, one can think of 
X̃j as a fake genetic mutation (sampled by a computer program) that does not carry any 
new information about Y if we already know all the other mutations. The test proceeds by 
comparing, for each observation in the test set, the accuracy of the trained predictive model 
applied to (i) the original feature vector X, and (ii) its modified version for which only Xj is 

FDR = �

[
|Ŝ ∩H0|

max{|Ŝ|, 1}

]
,

1  We assume there exists a unique Markov blanket S , i.e., a unique smallest subset S such that Y is inde-
pendent of {Xj}j∉S given {Xj}j∈S . We refer the reader to Candès et al. (2018, Section 2) for a detailed dis-
cussion in this regard.
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replaced by X̃j . Here, a decrease in the overall accuracy can serve as an evidence that Xj is 
associated with Y after accounting for the effect of X−j.

In practice, the HRT is deployed by treating the machine learning model as a black-
box, fitted to maximize predictive accuracy with the hope to attain good power. However, 
the ultimate objective here is to maximize the power of the test and not merely the mod-
el’s accuracy, and, currently, there is no method to balance between the two. To stress this 
point further, there is a growing evidence that modern machine learning algorithms tend 
to excessively rely on spurious features—null features that are solely correlated with the 
non-null ones—to make accurate predictions (Sagawa et  al., 2019; McCoy et  al., 2019; 
Arjovsky et al., 2019; Peters et al., 2015; Khani & Liang, 2021). Loosely speaking, in such 
cases, the model tends to up-weight the importance of null features at the cost of down 
weighting the importance of the non-nulls. The consequence of this undesired phenom-
enon is that the predictive model may only show a mild drop in accuracy when replacing 
an important feature with its dummy copy. This renders the test to lose power, as the test 
accounts for the effect of the spurious correlations by design.

1.1 � Our contribution

We propose novel learning schemes to fit models that are designed to explicitly increase the 
power of the HRT. This is done by ‘looking ahead’ (during training) to what will happen 
when the predictive model is integrated within the HRT procedure. This stands in strik-
ing contrast with the common practice, in which the model is merely trained to maximize 
accuracy to the extent possible. Concretely, the core of our contribution is the formulation 
of a novel loss function that encourages the model’s accuracy to drop when replacing the 
original feature Xj with the dummy one X̃j , seeking maximum risk discrepancy (MRD). We 
introduce in Sect. 3 a general, theoretically motivated, stochastic optimization procedure 
that enables us to augment our MRD loss to existing cost functions used in the variable 
selection literature, e.g., sparsity promoting penalty for deep neural networks. That section 
also includes a specialized learning scheme to fit sparse linear regression models (such as 
lasso) with our proposed loss. Extensive experiments on synthetic and real data sets are 
presented in Sect. 5, showing that the combination of the proposed MRD approach with 
existing regression algorithms consistently improves the power of the underlying controlled 
feature selection procedure. In particular, in cases where the signal is weak (i.e., in low 
power regimes), our method may even achieve more than 90% relative improvement com-
pared to existing methods. Importantly, the MRD scheme preserves the validity guarantee 
of the p-values generated by HRT. Furthermore, we demonstrate that our new proposal 
is fairly robust to situations where the distribution of PX—required to sample the dummy 
features—is estimated from data. These situations are of course ubiquitous in real-world 
applications. Lastly, a software package that implements our methods, with code for repro-
ducing experiments, is attached to the Supplementary Material.

2 � Background

2.1 � Model‑X randomization test

The model-X randomization test provides a valid p-value for H0,j in finite samples with-
out making modeling assumptions on the conditional distribution of Y ∣ X . However, this 
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approach assumes that the conditional distribution of Xj ∣ X−j is known. The original con-
ditional randomization test (CRT), developed by Candès et  al. (2018), requires fitting a 
regression model many times in order to be carried out precisely. The HRT, which is exten-
sively used in this paper, bypasses this computational issue at the expense of data split-
ting. Specifically, this test starts by dividing the data into disjoint training and testing sets. 
The training set is used to fit an arbitrary regression model f̂  , formulating a test statistic 
function T(Xj,X−j, Y;f̂ ) ∈ ℝ , e.g., the model’s prediction error. Let {(Xi, Yi)}i∈I be the sam-
ples of the testing set. The HRT proceeds by repeating the following two steps for each 
k = 1,… ,K (treating f̂  as a fixed function):

•	 Sample a dummy feature X̃i
j
∼ PXj|X−j

(Xi
j
|Xi

−j
) , for all samples in the test set i ∈ I .

•	 Compute the test statistic using the dummy variables 

Finally, a p-value p̂j for H0,j is constructed by computing the empirical quantile level of the 
true test statistic t∗ ← 1

�I�
∑

i∈I T(X
i
j
,Xi

−j
, Yi;f̂ ) among the dummy statistics t̃(1)

j
,… , t̃

(K)

j
:

Importantly, the p-value p̂j in (1) is valid, i.e., ℙ[p̂j ≤ 𝛼 ∣ H0,j is true] ≤ 𝛼 . This is because 
(i) X̃j ⟂⟂ Y ∣ X−j by construction, and (ii) under the null, the random variables t∗, t̃(1)

j
,… , t̃

(K)

j
 

are exchangeable (Candès et al., 2018).
The validity of the p-value holds true for any choice of predictive model f̂  , and for any 

choice of test statistic T(⋅) used to compare the distributions of (Y ,Xj,X−j) and (Y , X̃j,X−j) . 
Katsevich and Ramdas (2020) proved that the likelihood ratio is the uniformly most power-
ful statistic, however, it requires the knowledge of the true conditional distribution of Y ∣ X , 
which is unknown. In practice, a common choice for a test statistic—which we use in our 
proposal as well—is the squared error (Tansey et al., 2021; Bates et al., 2020) for which

where we use the notation f̂ (Xj,X−j) = f̂ (X) to stress that f̂  is applied on the vector X with 
its original jth feature Xj , whereas f̂ (X̃j,X−j) is applied to the same feature vector except 
that the original Xj is replaced by its dummy copy X̃j . To handle the controlled feature 
selection problem, the HRT p-values pj , j = 1,… , d are most often plugged into the Ben-
jamini-Hochberg procedure (BH) (Benjamini & Hochberg, 1995) procedure, as discussed 
next.

2.2 � FDR control via the BH procedure

Armed with a list of d p-values pj , one for each H0,j , we can apply the BH procedure (Ben-
jamini & Hochberg, 1995) to control the FDR. This method operates as follows. First, sort 
the given d p-values in a non-decreasing order; we denote by p(k) and H0,(k) the kth small-
est p-value and its corresponding null-hypothesis, respectively. Then, for a given FDR 
target level q, find the largest k0 such that p(k0) ≤

k0

d
q . Lastly, reject the null hypotheses 

H0,(1),H0,(2),… ,H0,(k0)
 . Importantly, the procedure described above is guaranteed to control 

t̃
(k)

j
←

1

|I|
∑
i∈I

T(X̃i
j
,Xi

−j
, Yi;f̂ ).

(1)p̂j =
1 +

|||{k ∶ t∗ ≥ t̃
(k)

j
}
|||

K + 1
.

(2)T(Xj,X−j, Y;f ) = (Y − f̂ (Xj,X−j))
2,
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the FDR under the assumption that the p-values are independent. While the p-values we 
construct in this work do not necessarily satisfy the independence assumption, it is known 
that the BH procedure often controls the FDR empirically even when the p-values are 
dependent (except adversarial cases). This empirical observation is also endorsed in our 
experiments, standing in line with many other methods that plug the dependent p-values 
generated by CRT/HRT to BH (Tansey et al., 2021; Candès et al., 2018). With that said, 
it is worth noting that there exists a variant of the BH that provably controls the FDR for 
any arbitrary dependency structure of pj, j = 1,… , d , however, this comes at the cost of 
reduced power (Benjamini & Yekutieli, 2001).

3 � The proposed method

In this section, we introduce our MRD approach to fit predictive models with the goal to 
explicitly improve the power of the model-X tests. We begin by describing the set of ideas 
that construct the theoretical motivation. Then, we present a general learning scheme to 
fit an arbitrary predictive model (e.g., neural network) using the MRD loss (4). Lastly, we 
design a specialized learning scheme for sparse linear regression models (e.g., lasso).

3.1 � Main idea

A central definition in our proposal is that of the risk discrepancy, expressed as

where f̂  is a fixed (pre-trained) predictive model, and T(⋅) is the squared error (2). In the 
context of the HRT (Sect.  2.1), a test with good power would have large and positive 
empirical risk discrepancy for the non-null features j ∈ H1 . Therefore, during training, we 
wish to encourage the model f̂  to maximize RDj only for that group of features. While this 
is infeasible because we do not have apriori knowledge of which of the features are in H1 , 
we do have access to the sampling distribution of the conditional null through the sampling 
of the dummy copies X̃j . This property is formally presented in the following well-known 
result in the model-X literature (Candès et al., 2018), which we will use later to formulate 
our loss.

Proposition 1  (Candès et al., 2018) Take (X, Y) ∼ PXY , and let X̃j be drawn independently 
from PXj∣X−j

 without looking at Y. If Y ⟂⟂ Xj ∣ X−j , then (Y , X̃j,X−j)
d
= (Y ,Xj,X−j).

Above, the notation d= stands for equality in distribution. For completeness, the proof of 
the above statement is given in Supplementary Section A. A consequence of Proposition 1, 
important to our purposes, is given in the next corollary; see also König et al. (2021).

Corollary 1  Let f̂  be a fixed predictive model, and T(⋅;f̂ ) be any test statis-
tic. Under the setting of Proposition  1, if (Y , X̃j,X−j)

d
= (Y ,Xj,X−j) , then 

�[T(Y , X̃j,X−j;f̂ ) − T(Y ,Xj,X−j;f̂ )] = 0.

This motivates our formulation of a training procedure that drives the model to a solution 
in which the empirical risk discrepancy (evaluated on the training data) is maximized for all 

(3)RDj = �[T(Y , X̃j,X−j;f̂ ) − T(Y ,Xj,X−j;f̂ )],
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features, knowing that this quantity is guaranteed to be small for the null features at test time. 
In fact, in Proposition 2, which is presented formally in Sect. 3.3, we prove that for a linear 
model with uncorrelated features, the solution that minimizes the population version of our 
objective function (described next) satisfies that the estimated regression coefficients of the 
null variables are guaranteed to be zero.

3.2 � A general learning scheme

We now formalize the idea presented above. Given a training set of m i.i.d samples 
{(Xi, Yi)}m

i=1
 , our procedure begins with a generation of a dummy copy X̃i

j
 for each sample and 

feature:

Denote the collection of training features by X ∈ ℝ
m×d , where Xi is the ith row in that 

matrix, and by Y ∈ ℝ
m a vector that contains the response variables Yi as its entries. Let 

Jbase(Y,X;f ) be the objective function of the base predictive model, expressed as

Above, the loss function � measures the prediction error (MSE in our experiments), R is 
a regularization term, and the hyperparameter � trades off the importance of the two. With 
this notation in place, our proposal aims to minimize the following cost function:

X̃i
j
∼ PXj∣X−j

(Xi
j
∣ Xi

−j
), i = 1,… ,m, j = 1… d.

(4)Jbase(Y,X;f ) =
1

m

m∑
i=1

�(f (Xi),Yi) + �R(f ).

(5)f̂ (x) = argmin
f∈F

(1 − 𝜆)Jbase(Y,X;f ) +
𝜆
d

d∑
j=1

D(z, z̃j),
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where z = 1

m

∑m

i=1
T(Yi,Xi

j
,Xi

−j
;f ) and z̃j =

1

m

∑m

i=1
T(Yi, X̃i

j
,Xi

−j
;f ) are the empirical risks 

—MSE in our context since T(⋅) is the squared error (2)—of the model evaluated on the 
original and synthetic triplets, respectively. The function D(z, z̃j) ∈ ℝ measures the differ-
ence between z and z̃j , such that D(z, z̃j) gets smaller as z̃j becomes larger than z. Therefore, 
(5) seeks a model f̂  that aligns with the base objective Jbase while creating a better separa-
tion between z and z̃j . The parameter � ∈ [0, 1] sets the relative weight between the two 
functionals; we present a simple, automatic approach for tuning this parameter in Supple-
mentary Section D. In practice, we define D as follows: D(z, z̃j) = 𝜎(z − z̃j), where �(⋅) is 
the Sigmoid function, i.e., �(s) = 1∕(1 + e−s) . Of course, other forms of this function, such 
as the ratio z∕z̃j , can be considered.

For ease of reference, Algorithm  1 presents a general approach for minimizing  (5). 
In short, we use stochastic optimization and back-propagation, where each gradient step 
updates the model parameters by resampling X̃j for a subset of features from {1,… , d} . We 
sample new dummies at each iteration to reduce algorithmic randomness, which, in turn, 
increases the stability of the procedure. In Supplementary Section B we provide a weak 
form of convergence of this algorithm, where the analysis requires D(⋅) to be bounded from 
below. A requirement that is satisfied by our choice to use the Sigmoid function. Algo-
rithm 1 is used in our experiments, implemented with a neural network as the base predic-
tive model.

Remark 1  Algorithm 1 implements the RD penalty for all features simultaneously, thereby 
avoiding the need to fit a different model for each feature separately. This algorithm can be 
modified to fit a model with an RD penalty defined for any subset of features, and in par-
ticular to a specific feature Xj , as we demonstrate in Supplementary Section G.2.

3.3 � A scheme for sparse linear regression

Next, we offer an optimization procedure tailored for the choice of sparse linear regression 
as the base objective, since it is widely used in the feature selection literature and often 
results in a powerful test (Barber & Candès, 2015; Tansey et al., 2021). To this end, con-
sider the combination of the elastic net objective (Zou & Hastie, 2005) with our MRD loss:

where � ∈ ℝ
d is the regression coefficient vector, and �1, �2 are the elastic net penalty 

parameters. Above, we use the notations z(�) and z̃j(𝛽) to stress that z and z̃j are functions 
of � . Using variable splitting, we can separate the sparsity promoting penalty from the 
remaining terms, and solve the resulting optimization problem using the alternating direc-
tion method of multipliers ADMM (Boyd et al., 2011); see Supplementary Section C for 
more details. Following Supplementary Algorithm 2, the advantage of the above splitting 
strategy is that the minimization with respect to � has a closed-form solution, being a sim-
ple projection onto the elastic net ball (Parikh & Boyd, 2014; Yu, 2013). In practice, we 
run this iterative algorithm until the stopping criteria suggested by Boyd et al. (2011, Sec-
tion 3.3) is met.

𝛽 = argmin
𝛽

(1 − 𝜆)

�
Jbase(Y,X;f )

���������������������������������������������������������
1

2m
��X𝛽 − Y��2

2
+ 𝛼1��𝛽��1 +

𝛼2
2
��𝛽��2

2

�
+

𝜆

d

∑d

j=1
D(z(𝛽), z̃j(𝛽)),
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We conclude this section by showing that under the assumptions of Proposi-
tion  2, the estimated coefficients of the null features 𝛽j, j ∈ H0 obtained by minimiz-
ing the MRD objective will be equal to zero. The proof is provided in Supplementary 
Section A.

Proposition 2  Suppose that the population model is linear Y = XT� + � , where �[XjXk] = 0 
for 1 ≤ k ≠ j ≤ d , and �[�Xj] = 0 for all 1 ≤ j ≤ d . Denote by 𝛽  a solution to the infinite-
data version of the MRD:

Under the above assumptions, for any 0 ≤ 𝜆 < 1 , and for all j ∈ H0 with �j = 0 , the solu-
tion 𝛽  satisfies that 𝛽j = 0 for all j ∈ H0.

4 � Related work

4.1 � Handling unknown conditionals

Our proposed method inherits the model X assumption that the marginal distribution 
PX—required to sample X̃j—is known: this assumption is needed to guarantee that 
(1) is a valid p-value (Candès et al., 2018). However, in most real-world applications 
PX is unknown and thus must be estimated from the data. Here, dummy features of 
poor quality may break the validity of model-X randomization tests (Romano et  al., 
2019; Tansey et al., 2021; Sudarshan et al., 2021), including our proposal. To allevi-
ate this concern, model X tests are equipped with various methodologies to estimate 
PX , including a second-moment multivariate Gaussian estimator (Candès et al., 2018), 
mixture density networks (Tansey et al., 2021), generative adversarial networks (Bel-
lot & van der Schaar, 2019), moment matching networks (Romano et  al., 2019), and 
more (Sesia et  al., 2019; Sudarshan et  al., 2020; Gimenez et  al., 2019; Sudarshan 
et  al., 2021). Furthermore, model-X tests are also equipped with diagnostic tools to 
improve the confidence in the results obtained by this method when the conditionals 
are unknown. These tools include goodness-of-fit tests, designed to quantify the qual-
ity of the generated dummies, as well as controlled semi-synthetic experiments with 
simulated response variables that allow the user to compare the obtained empirical 
FDR with the desired level (Romano et al, 2019, Section 5).

Importantly, empirical evidence show that the model-X tests are robust in the sense 
that the FDR is often controlled in practice, especially when the testing procedure 
is applied with well-approximated dummy features. This is also corroborated by our 
experiments on real and simulated data: we practically obtain FDR control even when 
using the simplest Gaussian approximation to the unknown PX , highlighting the robust-
ness to model misspecification of the HRT in general, and our proposal, in particular.

𝛽 = argmin
𝛽

(1 − 𝜆)�[(XT𝛽 − Y)2]

+
𝜆
d

d∑
j=1

𝜎(�[T(Y , X̃j,X−j;𝛽) − T(Y ,Xj,X−j;𝛽)]).
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4.2 � Relevant prior art

Our proposal is connected to the two-stage “learn-then-test” approach, initiated by the 
influential work of Gretton et al. (2012) in the context of kernel-based tests. The original 
idea here is to optimize the kernel parameters in order to maximize the power of the under-
lying test, where ample evidence shows that this approach is extremely fruitful (Gretton 
et al., 2012; Liu et al., 2016; Chwialkowski et al., 2016). These contributions are in line 
with our proposal, suggest learning techniques to improve power, however ours is very dif-
ferent as it is tailored to work in combination with model-X tests.

Recently, new deep learning methods for feature selection have been proposed to 
improve data analysis with non-linear interactions. In particular, Borisov et  al. (2019), 
Lemhadri et al. (2021), Yamada et al. (2020) offer sparsity-promoting layers that can be 
combined with arbitrary neural network architectures. These techniques can be combined 
with our MRD framework, as demonstrated in Sect.  5, where we utilize the CancelOut 
regularizer developed by Borisov et al. (2019). A different but related line of work is that 
of instance-wise interpretability methods, aiming at identifying a subset of relevant fea-
tures for a single data point (Chen et al., 2018; Yoon et al., 2019). While this line of work 
is outside the scope of this paper, we believe these methods may benefit from our MRD 
approach. For instance, by combining the MRD with the test proposed by Burns et  al. 
(2020), which is capable of finding instance-wise features that a given predictive model 
considers important.

5 � Experiments

In this section, we study the performance of the proposed MRD approach in a wide variety 
of settings. These include experiments with linear and nonlinear simulated data of varying 
signal strength and sample size, model misspecification experiments, and similar experi-
ments with semi-synthetic and real data. The conclusion of this comprehensive study is 
that the MRD approach consistently improves the power of HRT, more significantly in low 
power regimes.

5.1 � Synthetic experiments

To evaluate the performance of our methods, we implement variable selection in a fully 
controlled synthetic setting in which the distribution of X and Y ∣ X are known. This experi-
mental setting allows us to study the validity and statistical efficiency of a wide variety of 
predictive models f̂  integrated with the HRT. Following Candès et  al. (2018), Romano 
et al. (2019), Lu et al. (2018), we generate X ∈ ℝ

d of dimension d = 100 from a multivari-
ate Gaussian distribution N(0,Σ) with Σi,j = �|i−j| and an auto-correlation parameter � . The 
response Y ∈ ℝ is sampled from a sparse regression model of the form

where � ∼ N(0, 1) is the noise component and g is a link function. Throughout the syn-
thetic experiments we consider the following conditional models of Y ∣ X:

•	 M1: linear model, with g(X) = X⊤𝛽 , where � ∈ ℝ
d has 30% randomly chosen non-

zero entries of a random sign and a magnitude equal to c.

(6)Y = g(X) + �,
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•	 M2: polynomial model, we follow Lu et  al. (2018) and set a nonlinear 
g(X) = (X⊤𝛽)3∕2 , where � is chosen as described in M1.

•	 M3: sum of sines is another nonlinear model we explore, with g(X) =
∑

j∈H1
sin (Xj�j) . 

Here, Xj and �j are the jth entries of X and � , respectively; � is defined as in M1.
•	 M4: interaction model, a challenging nonlinear model with g(X) =

∑15

j=1
X2jX2j−1.

Note that for data models M1-M3, a variable Xj is in the non-null set j ∈ H1 if and only if 
{j = 1,… , d ∶ �j ≠ 0} . In the same vein, M4 has 30 non-null variables, those who appear 
in the function g(x).

To apply the test, we first draw m training examples from PXY , which are used to fit a 
predictive model of choice. We then generate an additional independent set of m test points, 
which are used to compute a p-value for each of the hypotheses H0,j, j = 1,… , d . We use 
lasso, elastic net, and neural network as baseline models, where the latter is deployed only 
in the non-linear setting. See Supplementary Section D for additional information on the 
training strategy and choice of hyperparameters. We apply our MRD algorithm in combi-
nation with the above methods using the same choice of hyperparameters. In addition, we 
set the RD penalty parameter � to be proportional to the validation error of the base predic-
tive model. Supplementary Section D describes how we evaluate this error for each base 
model. All models are fit by normalizing the features and response variables to have a zero 
mean and unit variance.

5.1.1 � An illustrative example

We begin with a synthetic experiment that demonstrates the effect of our proposed training 
scheme on the power of the selection procedure. To this end, we use m = 400 samples for 
training, fix the auto-correlation parameter � to be 0.1, and construct Y ∣ X that follows a 
polynomial data generating function (M2) with a signal amplitude c = 0.14.

As a baseline for reference, we fit a lasso regression model on the training set using 
ADMM (Boyd et al., 2011), where the lasso penalty parameter is tuned via cross-valida-
tion. To analyze the influence of the model on the power of the HRT, we measure the extent 
to which the test mean squared error (MSE) is increased after replacing Xj by its dummy 
copy X̃j ; this difference serves as an empirical estimate of RDj (3), which we denote by 
R̂Dj . Recall that in the context of the HRT, a positive R̂Dj serves as an evidence against the 
null, since t̃j > t∗ in (1). The left panel of Fig. 1 presents selected quantiles of {R̂Dj, j ∈ H1} 
and {R̂Dj, j ∈ H0} as a function of the ADMM iterations, where the R̂Dj scores are evalu-
ated on an independent test set. To reduce randomization, the presented R̂Dj are averaged 
over 100 independent train and test sets. As can be seen, the quantiles that represent the 
non-null set increase as the training progresses, demonstrating an improvement in the sen-
sitivity of the model to the replacement of these features by their dummy copies. Notice 
that the lower 25th percentile reaches a final value that is relatively close to the scores that 
correspond to the null set {R̂Dj ∶ j ∈ H0} . Another important observation is that most of 
the null scores are approximately equal to zero, implying that the swap of these features 
with their dummy copies does not lead to significant variations in the test statistics.

Next, we fit the proposed MRD lasso model on the same 100 independent training 
data sets. The test error obtained by our model is similar to that of the baseline approach; 
both result in an averaged root mean squared error (RMSE) that is equal to 0.94. Also, 
similarly to the baseline model, the quantiles of the null R̂Dj scores are close to zero, as 
shown in the right panel of Fig. 1. This phenomenon exemplifies Corollary 1. Turning to 
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the non-null set, we can see that all the quantiles of {R̂Dj ∶ j ∈ H1} obtained by our MRD 
model increase with the training iterations, reaching final values that are higher than the 
baseline approach. This advantage is corroborated by comparing the power of the selec-
tion procedure, applied with a target FDR level of q = 0.2 . The empirical power (averaged 
over 100 independent experiments) obtained by the MRD model is equal to 0.521, higher 
than the one of the baseline model that equals 0.453. In addition, each method results in an 
empirical FDR that falls below the nominal rate. Here, the MRD lasso is less conservative, 
obtaining an FDR of 0.097 whereas the base lasso model results in 0.054.

We also present the regression coefficients obtained by lasso and MRD lasso in Fig. 6 
in Supplementary Section F. In essence, the regression coefficients that correspond to the 
non-null features obtained by MRD lasso have higher absolute values than those obtained 
by lasso. By contrast, the regression coefficients that correspond to the null features are 
closer to zero both for lasso and MRD lasso.

5.1.2 � Experiments with varying signal strength

In the illustrative example presented above we focused on a fixed signal amplitude and 
sample size, as well as a single base predictive model (i.e., lasso). We now turn to study 
the effect of the MRD scheme more systematically, by varying the signal-to-noise ratio and 
also include additional predictive models. We set m = 400 as before, but now we increase 
the auto-correlation parameter to � = 0.25.

We begin with the polynomial model M2 for Y ∣ X , where we control the signal-to-
noise ratio by varying the signal magnitude c. The empirical power ( q = 0.2 ) evaluated 
for each predictive model is summarized in Table 1. As displayed, our MRD approach 
consistently improves the power of all base models, where the gain is more significant in 
the low power regime. Notice that the largest improvement is achieved when using lasso 
as a base model and the smallest gain for the choice of a neural network model (referred 
as NNet). In terms of the actual power obtained by each method, we typically receive 
the following relation in this experiment: MRD elastic net > MRD lasso > elastic net 
> lasso > MRD neural network > neural network. Supplementary Table 5 presents the 
FDR and root mean squared error (RMSE) obtained for each machine learning model, 
showing that the MRD loss tends to achieve RMSE similar to that of the base models. 
This table also includes comparisons to kernel ridge and random forest, concluding that 

Fig. 1   Empirical risk (MSE) difference evaluated on test data as a function of the training iterations. Left: 
baseline lasso model. Right: the proposed MRD method. The red (lasso) and blue (proposed method) 
curves represent the 25th, 50th, and 75th percentiles of the {R̂Dj ∶ j ∈ H1} . The green (lasso) and orange 
(proposed method) color-shaded curves represent the 75th percentile of {R̂Dj ∶ j ∈ H0} . Each point is eval-
uated by averaging R̂Dj over 100 independent data sets
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our MRD elastic net is the most powerful method in this experiment. Turning to the 
validity of the selection procedure, following Supplementary Table 5, we observe that 
all methods obtain FDR below the nominal 20% level, across all data sets. Here, the 
MRD versions of lasso and elastic net are less conservative in the sense that they obtain 
higher empirical FDR compared to their base models, whereas the MRD neural network 
model has comparable FDR to that of its base model. An in-depth analysis of the above 
results is presented in Supplementary Section  G.1. There, we present the empirical 
power and FDR as a function of the FDR target level q, as well as Q-Q plots which com-
pare the quantiles of the produced p-values to those of a uniform distribution U[0, 1].

We also perform a similar analysis to the one presented above for the sum of sines 
model M3 as well as for the linear model M1. We summarize the results in Supple-
mentary Section  G.1 for the linear setting and in Supplementary Section  G.4 for the 
non-linear one. The overall trend in both settings is similar to the one presented above: 
the MRD approach improves the power of the base models, and the FDR is controlled 
empirically. Lastly, Supplementary Section  G.2 demonstrates that the MRD approach 
outperforms the baseline methods when testing for a single non-null hypothesis for a 
wide range of signal strength values. This experiment isolates the effect of the MRD 
penalty on the resulting power compared to the FDR experiments that account for mul-
tiplicity by design.

5.1.3 � Experiments with varying sample size

Thus far we only considered data with a fixed number of samples. In what follows, we 
study the performance of the proposed MRD approach as a function of the sample size 
n. One can view this as a different way to modify the signal-to-noise ratio in the data, 
as the power is expected to increase with the sample size. We focus on the polynomial 
model M2 for Y ∣ X with a correlated design in which the auto-correlation parameter 
� = 0.25 . We generated data with a fixed signal strength c = 0.1 , so that the power will 
be relatively low for the smallest sample size n. Table 2 summarizes the results, where 
we deployed only lasso and MRD lasso to ease with the computational load. Following 
that table we can see that the MRD approach consistently improves the power of the 
baseline model, while keeping the FDR under control.

Table 1   Synthetic non-linear data with varying signal strength c 

The table presents the empirical Power (using FDR target level q = 0.2 ) evaluated by averaging over 100 
independent experiments, and the relative improvement (% imp.) of the MRD models. See Supplementary 
Table 5 for FDR values

Lasso Elastic Net NNet

c Base MRD % imp. Base MRD % imp Base MRD % imp

0.13 0.155 0.243 56.8 0.199 0.269 35.2 0.142 0.156 9.9
0.14 0.343 0.435 26.8 0.389 0.454 16.7 0.272 0.291 7.0
0.15 0.540 0.606 12.2 0.583 0.621 6.5 0.441 0.455 3.2
0.16 0.706 0.740 4.8 0.728 0.753 3.4 0.566 0.606 7.1
0.17 0.818 0.841 2.8 0.832 0.848 1.9 0.673 0.692 2.8
0.18 0.885 0.898 1.5 0.893 0.900 0.8 0.741 0.768 3.6
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5.1.4 � Experiments with interaction model

In the experiments presented thus far, lasso and elastic net were more powerful than neural 
networks, even when applied to nonlinear data. In fact, this phenomenon is in line with 
the experiments reported in Tansey et al. (2021, Section 4). We now conduct experiments 
with a sparse interaction model for the data (M4), for which linear predictive models result 
in zero power in contrast to neural networks. The results are summarized in Fig. 2; we do 
not include linear predictive models as they did not make any discovery.2 Notice that the 
MRD version of the neural network model achieves higher power than the base one, while 
controlling the FDR.

5.1.5 � Experiments with cross‑validation HRT

A limitation of the HRT is the reliance on data splitting, which can lead to a power 
loss especially when the number of samples is limited. When data is scarce, it is more 

Table 2   Synthetic experiments 
with non-linear data (M2) with 
varying number of samples n 

The empirical FDR (nominal level q = 0.2 ) and power are evaluated 
by averaging over 50 independent experiments. All standard errors are 
below 0.02

MRD Lasso Lasso % imp. of

n Power FDR Power FDR power

1000 0.189 0.069 0.097 0.018 94.5
1500 0.403 0.109 0.288 0.048 39.9
2000 0.648 0.106 0.563 0.046 15.1
2500 0.763 0.086 0.697 0.040 9.5
3000 0.823 0.091 0.791 0.057 4.0
4000 0.927 0.116 0.921 0.061 0.7

Fig. 2   Synthetic experiments on a sparse interaction model (M4) with varying signal amplitude. Power and 
FDR ( q = 0.2 ) are evaluated on 50 independent trials

2  Refer to Supplementary Section G.3 for additional details on the data generation process and the training 
strategy.
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sensible to deploy the cross-validation version of the HRT (CV-HRT) proposed by Tan-
sey et  al. (2021, Section 3.1). The CV-HRT leverages the whole data for training and 
testing, resulting in improved power compared to a single split.

In what follows, we study the effect of the MRD approach on the CV-HRT in a small 
sample size regime, where n < d . We explore both linear (M1) and nonlinear (M2) 
data generating functions, where in we set c = 1.5 and the auto-correlation parameter 
� = 0.25 . We implemented the CV-HRT with K = 8 folds and use only lasso as the base 
predictive model to ease the computational load. The results are summarized in Table 3, 
showing that (i) the power is increasing with n; (ii) the MRD lasso consistently outper-
forms the baseline method; and (iii) the FDR is controlled ( q = 0.2).

In Supplementary Section G.7 we also compare our method to the model-X knock-
offs (Candès et al., 2018) and to the state-of-the-art dCRT (Liu et al., 2020) framework. 
The model-X knockoffs is a multiple testing framework for conditional independence 
which provides a finite sample FDR control under an arbitrary structure of (X, Y). The 
dCRT, a test for conditional independence, is a clever technique to reduce the computa-
tional cost of the original CRT while avoiding data splitting. In a nutshell, this is done 
by distilling the high-dimensional information that X−j contains on Y into a low-dimen-
sional representation before applying the CRT. Yet, the complexity of dCRT is often 
higher than that of the CV-HRT as the former requires to fit d different predictive mod-
els—one for each leave-one-covariate-out version of the data—compared to K leave-
fold-out models in the CV-HRT. Section G.7 shows that once combining CV-HRT with 
our MRD approach we achieve competitive power to that of the dCRT and higher power 
than the model-X knockoffs.

Table 3   Synthetic experiments with linear (M1) and non-linear (M2) data with n < d

The empirical FDR (nominal level q = 0.2 ) and power are evaluated by averaging over 50 independent 
experiments, using CV-HRT with 8 folds. All standard errors are below 0.03

Linear

MRD Lasso Lasso % imp. of

n Power FDR Power FDR power

40 0.070 0.044 0.047 0.060 48.9
60 0.185 0.103 0.154 0.096 20.1
70 0.367 0.105 0.304 0.106 20.7
80 0.582 0.101 0.566 0.096 2.8
90 0.868 0.077 0.867 0.072 0.1

Non-Linear

MRD Lasso Lasso % imp. of

n Power FDR Power FDR power

80 0.067 0.081 0.055 0.056 21.8
100 0.125 0.109 0.106 0.099 17.9
150 0.389 0.113 0.345 0.103 12.8
200 0.648 0.080 0.616 0.073 5.2
250 0.788 0.071 0.776 0.064 1.5
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5.1.6 � Experiments under model misspecification

In the experiments presented thus far we sample the dummy features X̃j from the true distri-
bution of Xj ∣ X−j . In practice, however, we often have only access to an approximation of 
the unknown conditionals Xj ∣ X−j . In Supplementary Section G.5, we include experiments 
under such model misspecification. There, we fit our MRD models and apply the HRT by 
sampling approximated dummy features from a data-driven estimation of PX , rather than 
from the true one. We commence by conducting an experiment in which we control the 
accuracy of the estimated conditionals. This experiment demonstrates that an inflation of 
the empirical FDR occurs only when the sampled dummies are of poor quality, as meas-
ured by the covariance goodness-of-fit diagnostic proposed in Romano et al. (2019). Next, 
we study three different settings of increasing difficulty. In the first, X is generated from a 
correlated multivariate Gaussian, and we sample the approximated dummy features from 
a multivariate Gaussian whose parameters are estimated from the data. In the second, X 
is sampled from a Gaussian Mixture Model (GMM), whereas the dummies from a fitted 
multivariate Gaussian as described above. In the third, we sample X from a correlated mul-
tivariate Student t-distribution. When using a naive multivariate Gaussian fit for PX , we 
report a violation in FDR control since the estimated conditionals are of low quality. How-
ever, when applying more flexible density estimation method—a Gaussian Mixture Model 
(Reynolds, 2009)—our method is shown to control the FDR in practice, supporting the 
discussion from Sect. 4.1.

5.1.7 � The effect of the MRD penalty parameter

In the interest of space, we refer the reader to Supplementary Section E that illustrates the 
power of the test as a function of the MRD parameter � in low, medium, and high power 
regimes. This section shows that our automatic approach for selecting � achieves power 
that is relatively close to the best one. This section also shows that, in the high power 
regime ( ≈ 0.9 ), inappropriate choice of � can reduce power compared to the base model. 
By contrast, in the low ( ≈ 0.5 ) and medium ( ≈ 0.7 ) power regimes, the power of the MRD 
approach is higher than the power of the base model (i.e., � = 0) for all presented values of 
𝜆 > 0.

5.2 � Real‑world application

We now apply our methods to a real-world application that already appears in the knockoff 
literature (Barber & Candès, 2015; Romano et al., 2019). Here, the task is to reliably detect 
genetic mutations associated with changes in drug resistance among human immunodefi-
ciency viruses (HIV) of type I (Rhee et al., 2006); we study the resistance to the Lopinavir 
protease inhibitor drug. The response variable Y represents the log-fold increase in drug 
resistance measured in the ith virus, and each of the features Xj ∈ {0, 1} indicates the pres-
ence or absence of a specific mutation. After applying the pre-processing steps described 
by Romano et al. (2019), the data contains n = 1555 samples with d = 150 features. Sup-
plementary Section H provides additional details about this data.

Importantly, in contrast to the fully controlled setup from Sect. 5.1, here PX is unknown and 
thus must be estimated. (Recall that in Supplemetary Section G.5 we also study the robust-
ness of MRD to model misspecification.) Here, we approximate PX by fitting a multivariate 
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Gaussian on all samples {Xi}n
i=1

 . While this estimation is most likely inaccurate due to the 
fact that the features are binary, we follow Romano et al. (2019) and show via semi-synthetic 
experiments (for which Y ∣ X is known) that the selection procedure empirically controls the 
FDR when sampling X̃j from the estimated distribution. Only then, we apply the selection pro-
cedure on the real data.

Experiments with semi-synthetic data
We generate a semi-synthetic data set by simulating Y as described in (6) while treating the 

real X as fixed, using the polynomial non-linear generating function M2. Next, we randomly 
split the data into training and testing sets of equal size, and repeat the same experimental 
protocol, data normalization, and training strategy used in the synthetic experiments from 
Sect. 5.1. (For the neural network base model, we slightly modified the number of training 
epochs due to overfitting; further details are in Supplementary Section D.) Figure 3 displays 
the FDR and power obtained by lasso and elastic net as a function of the signal amplitude; a 
similar figure that describes the results obtained by the base and MRD neural network models 
is presented in Supplementary Section H.2. Following Fig. 3, we can see that all methods con-
trol the FDR ( q = 0.2 ), demonstrating the robustness of the selection procedure to model mis-
specification. Regarding efficiency, our proposal consistently improves the power of the base 
models. In contrast to the fully synthetic experiments (see Table 1), here the gap between the 
power of the base model and its MRD version increases as a function of the signal amplitude. 
Additional semi-synthetic experiments with a linear model that also explore the effect of the 
sample size are presented in Supplementary Sections H.3 and H.4. Both demonstrate that a 
similar gain in performance is consistently obtained by our MRD method.

Experiments with full real data
Next, we perform variable selection on the real data, i.e., with the real (X, Y) pairs. Here, 

we only use lasso and elastic net as base models, and deploy the same training strategy and 
data-normalization step described in the semi-synthetic experiments. We repeat the variable 
selection pipeline for 1000 independent train/test splits and present the results in Fig. 4. As 
portrayed, our MRD models lead to more findings than the baseline methods for various FDR 
levels, which aligns with the semi-synthetic experiment results. Here, this gap increases with 
the target FDR level.

Fig. 3   Semi-synthetic experiments with real HIV mutation features and a simulated non-linear response 
using the generating function M2. Empirical power and FDR with q = 0.2 are evaluated over 20 random 
train/test splits
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6 � Discussion

This paper presents a novel training framework to increase the power of the model-X ran-
domization test. Our method has an advantage over the common practice for which the 
model-fitting step is not tailored to maximize the power of the HRT. Focusing on FDR 
control, through experiments, we demonstrate that our method consistently outperforms a 
wide range of base predictive models in various settings.

This paper advocates conditional independence testing as a statistical approach to avoid 
the selection of “spurious features”, i.e., null features that are only correlated with the non-
null ones. Yet, conditional independence testing has an inherent limitation: it is fundamen-
tally impossible to distinguish nearly identical features features. Put differently, it inevita-
ble that we would suffer from low power when analyzing data with extremely correlated 
features. Figure 19 illustrates this phenomenon, where we apply the HRT for multivariate 
Gaussian X with increasing correlation among the features, controlled by the auto-correla-
tion coefficient � ; see Supplementary Section G.6 for more details. As portrayed, the power 
of the test is reduced with the increase of � , making the selection procedure fundamentally 
harder. Observe that MRD lasso and MRD elastic net yield higher power than their vanilla 
counterparts, where the gap between them is reduced as the problem becomes fundamen-
tally harder.

One way to deal with the hardness of this problem it to group (or even prune) features 
that are nearly identical in a given data. For example, Sesia et al. (2019) apply hierarchi-
cal clustering to identify groups of features in such a way that the correlation between the 
features across the two clusters is not too high. Then, one can apply the selection proce-
dure only on the cluster representatives, which are substantially less correlated by design. 
This strategy increases power, however at the cost of reducing the resolution of the find-
ings (Sesia et al., 2019). Rather than testing at the level of individual features, the test is 
applied to groups of features among which there may be one or more important variables. 
We believe it will be of great importance to continue this line of work in combination with 
our MRD approach, and offer practical tools that allow the use of conditional independ-
ence testing even for highly correlated data.

In a broader view of the controlled variable selection problem, the model-X knock-
off filter (Candès et  al., 2018) provides a rigorous FDR control in finite samples under 
an arbitrary dependency structure of (X,  Y). This stands in contrast with the BH proce-
dure that provably controls the FDR under independence of the p-values constructed by the 

Fig. 4   The average number of 
drug-resistance mutations in the 
HIV discovered by base/MRD 
models
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HRT; see discussion in Sect. 2.2. With that said, sampling the knockoff dummies is more 
challenging and the model fit must be done by augmenting the original features and their 
knockoff dummies, which increases the dimensions of the problem. Therefore, extending 
our proposal to work with the knockoffs framework is not straightforward (to say the least), 
but, at the same time, of great interest.

Appendix A Supplementary proofs

Proof of Proposition 1  For completeness, we prove Proposition  1 by following the steps 
from Romano et al, 2020, Proposition 1. We use discrete random variables for simplicity. 
Denote by x� = x−j and observe that

	�  ◻

Proof of Proposition 2  Following Corollary 1, for any null feature �j = 0 , we know that the 
following holds

for any value of 𝛽j . We now turn to study the effect of 𝛽j, j ∈ H0 on a non-null feature 
k ∈ H1 , by re-writing the test statistic:

The third equality uses the fact that �j = 0 and the last one relies on the assumptions 
that �[Xj,Xk] = 0 for all 1 ≤ j ≠ k ≤ d and �[Xj, �] = 0 for all 1 ≤ j ≤ d . Similarly, since 
�[XjX̃k] = 0 we have also that

ℙ(Y = y,Xj = xj,X−j = x�) = ℙ(Y = y,Xj = xj ∣ X−j = x�) ⋅ ℙ(X−j = x�)

(Since Y ⟂⟂ Xj ∣ X−j) = ℙ(Y = y ∣ X−j = x�) ⋅ ℙ(Xj = xj ∣ X−j = x�)

⋅ ℙ(X−j = x�)

(By construction of X̃j) = ℙ(Y = y ∣ X−j = x�) ⋅ ℙ(X̃j = xj ∣ X−j = x�)

⋅ ℙ(X−j = x�)

(Since Y ⟂⟂ X̃j ∣ X−j) = ℙ(Y = y, X̃j = xj ∣ X−j = x�) ⋅ ℙ(X−j = x�)

= ℙ(Y = y, X̃j = xj,X−j = x�).

�[T(Y , X̃j,X−j;𝛽) − T(Y ,Xj,X−j;𝛽)] = 0,

(A1)

�[T(Y ,Xk,X−k;𝛽)] = �[(Y − Xj𝛽j − Xk𝛽k − XT
−(j,k)

𝛽−(j,k))
2]

= �[(Xj𝛽j + Xk𝛽k + XT
−(j,k)

𝛽−(j,k)

+ 𝜖 − Xj𝛽j − Xk𝛽k − XT
−(j,k)

𝛽−(j,k))
2]

= �

[
(Xk(𝛽k − 𝛽k) + XT

−(j,k)
(𝛽−(j,k)

−𝛽−(j,k)) + 𝜖 − Xj𝛽j)
2
]

= �[(Xk(𝛽k − 𝛽k))
2] + �[(XT

−(j,k)
(𝛽−(j,k) − 𝛽−(j,k)))

2]

+ �[𝜖2] + 𝛽2
j
�[X2

j
].
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As a result, we get that 𝛽j, j ∈ H0 does not influence the risk discrepancy of the null and 
non null features. To complete the proof, we now show that any choice of 𝛽j ≠ 0 can only 
increase the MSE term in the objective function. Applying similar steps as in (A1), we get

which is minimized for the choice of 𝛽j = 0 . 	�  ◻

Appendix B Supplementary analysis of the optimization algorithm

In this section, we follow Romano et al. (2019), Sanjabi et al. (2018) and provide a weak 
form of convergence to the general learning scheme presented in Algorithm 1 of the main 
manuscript. Denote by f�k a predictive model, parameterized by �k (e.g., the weights and 
biases of a neural network), at step k of the optimization procedure. Recall that in Algo-
rithm 1, in each iteration we choose a random subset of indices Pk and generate a fresh 
dummy copy X̃i

j
 of Xi

j
 for all j ∈ Pk . For ease of notation, we denote by X̃k ∈ ℝ

m×|P| the 
dummy matrix with the new X̃i

j
 as its (i, j)’s entry. Thus, conditional on (Pk, X̃k) the objec-

tive function

is a deterministic function of �k . Now, we can define

and denote by ∇J�k
 its gradient with respect to �k . As depicted in Algorithm 1, we estimate 

∇J�k
 by sampling one realization of Pk and X̃k:

resulting in an unbiased estimate of ∇J�k
 . Since all random variables are observed at 

the kth step, gt from (B3) is deterministic and backpropogation can be applied to update 
�k+1 ← �k − �gt , where � is the learning rate (step size). Our analysis assumes that there 
exists a finite Lipschitz constant L, which satisfies the following relation for all �′, �′′:

Denote Δ =
2

L
sup(J�1

− J∗) , where J�1
 is the objective obtained by the initialized model, 

i.e., by assigning �1 in (B2), and J∗ is a lower bound uniformly the value of J�k
 , for all k. 

�[T(Y , X̃k,X−k;𝛽)] = �[(Xk𝛽k − X̃k𝛽k))
2] + �[(XT

−(j,k)
(𝛽−(j,k) − 𝛽−(j,k)))

2]+

�[𝜖2] + 𝛽2
j
�[X2

j
].

�[(Y − XT𝛽)2] = �[(XT
−j
(𝛽−j − 𝛽−j))

2] + �[𝜖2] + 𝛽2
j
�[X2

j
],

J(X,Y, f𝜃k ,Pk, X̃k) = (1 − 𝜆)Jbase(Y,X;f𝜃k ) +
𝜆

|Pk|
∑
j∈Pk

D(z(f𝜃k ), z̃j(f𝜃k )),

(B2)J𝜃k
= �Pk ,X̃k

[J(X,Y, f𝜃k ,Pk, X̃k) ∣ 𝜃k]

(B3)gt = ∇J(X,Y, f𝜃k ,Pk, X̃k),

||∇�P,X̃[J(X,Y, f𝜃 ,P, X̃) ∣ 𝜃
�] − ∇�P,X̃[J(X,Y, f𝜃 ,P, X̃) ∣ 𝜃

��]||2 < L||𝜃� − 𝜃��||2.
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The supremum is taken over all possible values of P, X̃ and �1 . Suppose we can uniformly 
bound from below the RD term, which holds for our choice of D from Sect.  3.2, since 
D(z, z̃j) = 𝜎(z − z̃j) > 0 . Suppose further that we can uniformly lower bound the objec-
tive of the base predictive model; for example, the MSE loss is bounded from below by 0. 
With these notations in place, we can immediately invoke Theorem 2 from Romano et al. 
(2019), which is stated below formally for convenience. In short, Theorem 3 provides us 
a weak form of convergence as it shows that the average squared norm of the gradient 
�[||∇J�k

||2
2
∣ �1] decreases as O(1∕

√
K) ; a detailed discussion on this result is provided by 

Romano et al. (2019); see also Sanjabi et al. (2018).

Theorem 3  (Theorem 2, Romano et al. 2019) Consider a fixed training set X,Y , and use 
the notation from above. Assume

for some � ∈ ℝ . Then for any initial �1 and a suitable value of Δ,

Specifically, choosing � = min{
1

L
,

�0

�
√
K
} for some 𝜂0 > 0 gives

Appendix C Supplementary details on fitting sparse linear regression 
models

Algorithm  2 presents our specialized learning scheme for linear regression model. This 
algorithm minimizes the following objective:

using ADMM (Boyd et al., 2011).

�[||gt − ∇J�k
||2
2
∣ �k] ≤ �2, ∀k ≤ K,

1

K

K∑
k=1

�[||∇J�k
||2
2
∣ �1] ≤

1

K

LΔ

�(2 − L�)
+

L�2�

(2 − L�)
.

1

K

K�
k=1

�[��∇J�k
��2
2
∣ �1] ≤

L2Δ

K
+

�
�0 +

Δ

�0

�
L�√
K
.

𝛽 = argmin
𝛽,v

(1 − 𝜆)

(
1

2m
||Xv − Y||2

2
+ 𝛼1||𝛽||1 +

𝛼2
2
||𝛽||2

2

)
+

𝜆
d

d∑
j=1

D(z(v), z̃j(v))

subject to 𝛽 = v,
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Appendix D Supplementary details on predictive models and training 
strategy

Section 5 of the main manuscript compares the performance of several regression models 
on synthetic and real data sets. Below, we provide additional details on each method.

•	 Lasso: we fit a lasso regression model using Python’s sklearn package and tuned the 
lasso penalty parameter via 5-fold cross-validation.

•	 Elastic net: an elastic net model is fitted using the same Python package and training 
strategy described above.

•	 Neural network (NNet): the network architecture consists of two fully connected lay-
ers with a hidden dimension of 16; the model is fitted using Adam optimizer (Kingma & 
Ba, 2014) with a fixed learning rate of 0.005. To avoid over-fitting, a dropout regulariza-
tion (Srivastava et al., 2014) is deployed, with a rate of 0.5. We also use CancelOut (Bori-
sov et al., 2019) regularization to promote sparsity in the entry layer.3 In Sect. 5.1, we train 
the network for 60 epochs, whereas in Sect. 5.2 we reduced this number due to over-fitting. 

3  The implementation is available online at https://​github.​com/​unnir/​Cance​lOut

https://github.com/unnir/CancelOut
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Specifically, we use 15 epochs for c ∈ {0.5, 0.625, 0.75} , and 10 epochs for c ∈ {1, 1.25} , 
where c is the signal strength of the semi-synthetic data.

•	 MRD lasso: we fit the model by minimizing (5) in combination with lasso regulariza-
tion using Algorithm 2. The lasso penalty parameter is equal to the one used in lasso. 
The MRD penalty � is set to be equal to min{0.8, 0.8 ⋅ ��� − ����������} , where MSE-
Validation is the average MSE evaluated on the 5 folds used to tune the hyperparam-
eter of the baseline lasso model. Regarding the hyperparameter of the ADMM framework, 
we set � = 1 and the stopping criteria parameters �rel = 10−3, �abs = 5 ⋅ 10−4 ; we deployed 
the stopping rule suggested in (Boyd et al, 2011, Section 3.3).

•	 MRD elastic net: here, we combine the elastic net penalty with our RD loss and use the 
same training strategy described in MRD lasso.

•	 MRD neural network: we choose the same architecture, optimizer, and hyperparameters 
outlined in neural network, and fit the model as described in Algorithm 1. We set the 
MRD penalty � to be equal to min{0.8, 0.8 ⋅ ��� − ����������} , where the MSE-Val-
idation is evaluated as follows. First, we split the training data into training (80%) and 
validation (20%) sets. Then, we fit the base neural network model (without the penalty) on 
the training data, and use this model to compute the MSE-Validation on the validation 
set.

We run all the numerical experiments on our local cluster, which consists of two AMD servers 
with 24 CPU cores each.

Appendix E Supplementary details on the effect of �

Section  D of the Supplementary Material presents a simple way to choose the penalty 
parameter � . Here, we demonstrate the impact of different values of � on the performance 
of the MRD approach. Figure 5 presents the empirical power obtained by using the MRD 
lasso, as a function of the penalty parameter � . The vertical green line represents the choice 
of our approach for choosing � . Here, we use the same non-linear synthetic data as in 

Fig. 5   The effect of the MRD regularization on power, demonstrated using a synthetic data with correlated 
multivariate Gaussian features and a simulated response that follows a non-linear model. Each panel dis-
plays the empirical power (evaluated by averaging over 50 independent experiments) as a function of the 
MRD penalty parameter � , using lasso as the base predictive model. The green vertical line represents the 
value obtained by our proposed automatic approach for choosing � . Left: low power regime for which the 
signal amplitude c = 0.14 . Middle: low power regime for which the signal amplitude c = 0.15 . Right: high 
power regime for which the signal amplitude c = 0.18
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Sect. 5.1.1, with three different signal amplitude values, c = 0.14 , c = 0.15 and c = 0.18 , 
representing low, medium and high power regimes. As can be seen, in the low and medium 
power regimes, the choice of every presented value of � results in higher power than the 
base model (i.e., � = 0 ). However, in the high power regime, higher values of � reduces 
the power of the base models. This phenomenon corroborates our approach to choose � to 
be proportional to the prediction error of the base model, as presented in Supplementary 
Section D.

Following that figure, we can also see that our proposed automatic approach for choos-
ing � , returns a penalty parameter that is fairly close the best one.

Appendix F The effect of MRD on lasso’s regression coefficients

In Sect. 3.3 we describe our learning procedure for the choice of sparse linear regression as 
the base objective. Here, we demonstrate the impact of the MRD approach on the estimated 
regression coefficients. Figure  6a presents the average of the estimated regression coef-
ficients of lasso and MRD lasso from the experiment presented in Sect. 5.1.1. As can be 
seen, on average, the estimated regression coefficients of the null features that correspond 
to the MRD lasso are slightly larger than those of lasso, but both are relatively close to 
zero. By contrast, the coefficients of the non-null features have a larger magnitude, where it 
is evident that the MRD approach further increases the coefficients’ magnitude. Figure 6b 
also presents the magnitude of the estimated coefficients of MRD lasso that correspond to 
the non-null features as a function of lasso coefficients. Each color is for a different impor-
tant feature, so there are 100 points per feature, one for a different trial. We can see that the 
MRD lasso’s coefficients are with larger magnitude than those of lasso, where the ampli-
fication of the lower coefficients is more significant than of the higher ones. Specifically, 

Fig. 6   Comparison between MRD lasso regression coefficients and vanilla lasso regression coefficients. 
The predictive models are fitted on the synthetic non linear data from Sect. 5.1.1. Left: the regression coef-
ficients of lasso and MRD lasso for all features. Each point in this panel is obtained by averaging the esti-
mated regression coefficient over 100 independent trials. Green and orange dots represent null features; 
blue and red dots represent non-null features. Right: scatter plot of the magnitude of MRD lasso regression 
coefficients as a function of the vanilla lasso regression coefficients for non-null features. Each color repre-
sent a different non-null feature (Color figure online)
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it can be observed that in several cases lasso nullifies coefficients of important features, 
whereas MRD lasso yields non-zero values (the opposite is not true).

Appendix G Supplementary details on synthetic experiments

G.1 Further Analysis of The Numerical Experiments

Linear Y ∣ X  and additional comparisons
In Table 1 of the main manuscript we compared the performance of MRD lasso, MRD 

elastic net and MRD NNet to their base models by varying the signal strength while fixing 
the target FDR level to q = 0.2 . For completeness, we provide here the root mean squared 
error (RMSE) and the empirical FDR obtained by each model as well as additional com-
parisons to other baseline methods. We also present here the empirical power, FDR and 
RMSE of our experiments in the linear setting, where Y ∣ X follows M1. Table 4 focuses 
on the linear setting, where we include a ridge regression model in addition to lasso and 
elastic net. The penalty parameter of the ridge regression model is tuned via 5-fold cross-
validation. Following that table, we can see that the empirical power obtained by the ridge 
model does not exceed the ones achieved by our proposed MRD methods. Observe also 
that the RMSE scores obtained by MRD lasso and MRD elastic net are similar to that of 
the corresponding baseline models. Turning to the non-linear case, Table 5 summarizes the 
performance of random forest and kernel ridge regression in addition to lasso, elastic net, 
and neural network. We fit the kernel ridge regression model using the sklearn software 
package, where we choose a polynomial kernel of degree 3 and a fixed penalty parameter 
that equal to 1. The random forest model is also fitted using sklearn, where we choose 
the software’s default hyperparameters except the number of trees and the maximum depth 
of each tree; we set both to 100. In terms of power, the kernel ridge model outperforms the 
baseline models, however, it does not exceed the performance of MRD lasso and MRD 
elastic net. The random forest model is less competitive and yields lower power compared 
to the other methods, across all experiments. Regarding the RMSE, overall we can see 
that the MRD models perform similarly to their baseline counterparts, except the case of a 
neural network base model. There, the RMSE of the MRD neural network is slightly impr
oved.

Power as a function of the target FDR
The experiments presented above focus on feature selection with a fixed target FDR 

level. Figures 7, 8 present additional comparisons in which we vary the target FDR level 
while keeping the signal amplitude fixed. Following Fig. 7, which corresponds to the linear 
case (i.e., Y ∣ X follows M1), we can see that the MRD models outperform their baseline 
counterparts in terms of power. Observe that the FDR is controlled in all cases, where the 
base models are more conservative than their MRD versions. A similar trend is illustrated 
in Fig. 8 that represents the nonlinear setting (where Y ∣ X follows M2). Here, we include a 
neural network model in addition to the sparse linear methods. Notice that the MRD neural 
network model attains better power than the baseline method, while the empirical FDR of 
the two is similar, both fall below the target level.

p-value analysis
Herein, we study the behaviour of the p-values produced by the MRD approach. Fig-

ure 12 presents Q-Q plots of the p-values from the experiments summarized in Table 1, 
focusing on the case where c = 0.14 with lasso as the baseline model. The left panel of 
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Table 5   Complementary results to those presented in Table 1. All standard errors are below 0.02

MRD Lasso Lasso MRD Elastic Net Elastic Net

c Power FDR RMSE Power FDR RMSE Power FDR RMSE Power FDR RMSE

0.13 0.243 0.095 0.979 0.155 0.04 0.973 0.269 0.098 0.964 0.199 0.048 0.967
0.14 0.435 0.093 0.949 0.343 0.039 0.946 0.454 0.1 0.938 0.389 0.062 0.941
0.15 0.606 0.09 0.916 0.54 0.049 0.914 0.621 0.105 0.908 0.583 0.063 0.91
0.16 0.74 0.092 0.882 0.706 0.053 0.879 0.753 0.105 0.878 0.728 0.074 0.879
0.17 0.841 0.093 0.851 0.818 0.057 0.849 0.848 0.098 0.849 0.832 0.075 0.849
0.18 0.898 0.093 0.823 0.885 0.06 0.821 0.9 0.101 0.822 0.893 0.075 0.822

MRD NNet NNet Kernel Ridge Random Forest

Power FDR RMSE Power FDR RMSE Power FDR RMSE Power FDR RMSE

0.13 0.156 0.111 0.994 0.142 0.131 1.018 0.204 0.16 0.988 0.044 0.149 0.993
0.14 0.291 0.119 0.964 0.272 0.132 0.984 0.383 0.134 0.956 0.087 0.109 0.986
0.15 0.455 0.124 0.933 0.441 0.14 0.948 0.551 0.139 0.923 0.141 0.14 0.979
0.16 0.606 0.133 0.902 0.566 0.148 0.915 0.714 0.144 0.892 0.21 0.131 0.973
0.17 0.692 0.137 0.873 0.673 0.143 0.885 0.815 0.139 0.864 0.26 0.157 0.968
0.18 0.768 0.144 0.849 0.741 0.137 0.859 0.872 0.137 0.84 0.302 0.14 0.964

Fig. 7   Synthetic experiments with correlated multivariate Gaussian features and a simulated response that 
follows a linear model with a constant signal strength c = 0.12 . Each graph displays the empirical FDR and 
power (evaluated by averaging over 100 independent experiments) as a function of the target FDR level q. 
Left: MRD lasso and lasso. Right: MRD elastic net and elastic net

Fig. 8   Synthetic experiments with correlated multivariate Gaussian features and a simulated response that 
follows a non-linear model. The signal strength is fixed and equals to c = 0.14 . Left: MRD lasso and lasso. 
Middle: MRD elastic net and elastic net. Right: MRD neural network (NNet) and NNet. The other details 
are as in Fig. 7
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Fig. 12 presents the empirical quantiles of the p-values that correspond to the null features 
as a function of the quantiles of the uniform distribution on the [0, 1] segment. As can bee 
seen, the HRT p-values for the null features are valid but conservative both for lasso and 
MRD lasso where the distribution of the latter p-values are closer to the uniform distribu-
tion. The right panel of Fig. 12 presents an analogous plot but for the non-null features. 
Here, when combining HRT with MRD lasso we get p-values with lower quantiles that the 
ones of lasso, and both lie below the quantiles of the uniform distribution. Importantly, the 
MRD lasso leads to smaller p-values than lasso for the non-null features, demonstrating the 
advantage of the MRD approach.

G.2 Testing for a single hypothesis

We now analyze the effect of the MRD approach when testing for a single non-null hypoth-
esis. Specifically, we choose at random a non-null j from H1 , and test for H0,j at level 
� = 0.05 . We first consider the p-value evaluated via the HRT, using the same models and 
data from Tables 4, 5. Figure 9 focuses on the case for which Y ∣ X follows a linear model 
(i.e., M1), presenting the power of lasso, elastic net, and their MRD versions as a function 
of the signal strength c. As can be seen, the results are aligned with the FDR experiments 
in the sense that the MRD approach increases the power of the test. Figure 10 repeats the 
same experiment in the non-linear case (where Y ∣ X follows M2). Here, once more, an 
improvement in power is achieved by the MRD approach. Notice that the gain in perfor-
mance is not consistent for the base neural network model.

Next, we demonstrate the advantage of the MRD when optimizing for a specific feature 
j. To this end, we fit a model via Algorithm 1 but set P = {j} in line 2 of Algorithm 1. We 
use the same synthetic experimental setting with a non linear data model (M2) as in the 
experiments from Sect. 5.1.2. Specifically, we fit MRD lasso and MRD elastic net for a sin-
gle arbitrary non-null feature instead of all the features simultaneously. Figure 11 presents 
the power of lasso, MRD lasso, elastic net, and MRD elastic net as a function of the signal 
strength c. As can be seen, the power of the MRD models is higher than that of the baseline 
models.

Fig. 9   Testing for a single hypothesis on synthetic data with correlated multivariate Gaussian features and 
a simulated response that follows a linear model. The significance level is fixed and equals to � = 0.05 . The 
empirical power is presented as a function of the signal strength c, and evaluated by averaging over 100 
independent experiments. Left: MRD lasso and lasso. Right: MRD elastic net and elastic net
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G.3 Additional experiment with interaction model

In this experiment, we set the auto-correlation parameter � = 0.25 and choose the Y|X to 
be Y =

∑15

j=1
X2jX2j−1 + � (i.e., Y ∣ X follows M2), such that in total there are 30 non-null 

elements out of total d = 100 features. Figure 2 presents the empirical power and FDR 
(target level of q = 0.2 ) obtained by a base model formulated as a neural network. We 
use the same network architecture and training procedure as described in Section D, but 
with total n = 4000 observations ( m = 2000 ), learning-rate of 0.006, fit the model to 
a total of 200 epochs, and set the CancelOut regularization parameter to 0.02. (In this 
experiment, linear predictive models attain zero power, and hence omitted.)

Fig. 10   Testing for a single hypothesis on synthetic data with correlated multivariate Gaussian features and 
a simulated response that follows a non-linear model. Left: MRD lasso and lasso. Middle: MRD elastic net 
and elastic net. Right: MRD neural network (NNet) and NNet. The other details are as in Fig. 9

Fig. 11   Optimizing and testing for a single hypothesis on synthetic data with correlated multivariate Gauss-
ian features and a simulated response that follows a non-linear model. The significance level is fixed and 
equals to � = 0.1 . The empirical power is presented as a function of the signal strength c, and evaluated 
by averaging over 100 independent experiments. Left: MRD lasso and lasso. Right: MRD elastic net and 
elastic net
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G.4 Experiments with sum of sines model

In this section, we provide additional experiment with a different conditional modeling 
Y ∣ X . Here, we use the same synthetic experiment setting as in the experiments with vary-
ing signal strength from Sect. 5.1.2, however generate Y ∣ X that follows M3. Table 6 pre-
sents the empirical power and FDR (q = 0.2) obtained when using the elastic-net and lasso 
as the base predictive models. Following that table, the MRD achieves a gain in power 
compared to the base model, and the FDR is controlled.

G.5 Experiments under model misspecification

A limitation of the model-X randomization test is that PX must be known in order to sam-
ple the dummy features X̃j , which are also used to formulate our RD loss. In this section, 

Fig. 12   Q-Q plots of the p-values produced in the experiment from Table 6 compared to the uniform dis-
tribution U[0, 1]. Left: p-values correspond to the null features. Right: p-values correspond to the non-null 
features

Table 6   Synthetic experiments with correlated multivariate Gaussian features and a simulated response that 
follows a non-linear model with g(X) =

∑
j∈H1

sin (Xj�j)

All standard errors are below 0.02. The other details are as in Table 1

MRD Lasso Lasso % imp. of MRD Elastic Net Elastic Net % imp. of

c Power FDR Power FDR power Power FDR Power FDR power

0.08 0.143 0.066 0.081 0.023 76.5 0.153 0.075 0.113 0.055 35.4
0.10 0.324 0.088 0.233 0.042 39.1 0.375 0.103 0.287 0.070 30.7
0.12 0.550 0.106 0.486 0.074 13.2 0.577 0.123 0.524 0.074 10.1
0.14 0.731 0.095 0.702 0.060 4.1 0.753 0.105 0.715 0.074 5.3
0.16 0.854 0.092 0.838 0.063 1.9 0.856 0.102 0.842 0.070 1.7
0.18 0.919 0.090 0.914 0.069 0.5 0.917 0.097 0.915 0.071 0.2
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we demonstrate that the feature selection pipeline applied with the proposed MRD method 
is fairly robust to unknown or estimated distributions. For ease of computations, we con-
duct our experiments by choosing lasso or elastic net as the base models, fitted in the same 
way described in Section D.

Varying the estimation quality of the conditionals
We begin with an experiment that demonstrates the effect of the density estimation on 

the empirical FDR. We generate features as in Sect. 5.1, but with an auto-correlation coef-
ficient � = 0.5 , higher than the one used in the synthetic experiments from that section. 
Here, the model of Y ∣ X follows M2 with a fixed signal strength c = 0.16 , where we use 
lasso as a base predictive model. To control the quality of the estimation of PX , we sampled 
the dummy features X̃j from QXj∣X−j

 , where QX also follows a multivariate Gaussian however 
with an auto-correlation coefficient 𝜌̂ that can differ from the true � = 0.5 . We evaluate the 
quality of the dummies X̃j ∼ QXj∣X−j

 using the covariance goodness-of-fit diagnostic, pre-
sented by Romano et  al, 2019,  Section  5. In short, this diagnostic presents an unbiased 
estimate of the distance between Cov(Xj,X−j) and Cov(X̃j,X−j) , where larger values imply 
worse estimation of the conditional. The left panel of Fig. 13 depicts the sum of the covari-
ance diagnostics over j = 1,… , p . Each point in that graph is the average value taken over 
50 independent data sets, where each is of size 10, 000 samples. As can be seen, the value 
of the sum covariance diagnostics is close to zero when 𝜌̂ = 0.5 , as expected, and gets 
higher as 𝜌̂ is far from the true value of � = 0.5.

Next, we turn to study the effect of sampling inaccurate dummies on the performance of 
our proposed method. To this end, we use the inaccurate dummies (sampled from QXj∣X−j

 ) 
both for fitting the MRD model and for computing the test p-values. The right panel of 
Fig.  13 depicts the empirical power and FDR of both MRD lasso and its base version, 
evaluated on 50 independent data sets of size n = 1000 each. Following that figure, we 
observe that the MRD lasso is slightly more sensitive to the use of inaccurate dummy fea-
tures, however a violation in the FDR control occurs only when 𝜌̂ ≥ 0.8 for which the sum 
of the covariance diagnostics is above 10. This experiment illustrates that our method is 
fairly robust to inaccurate estimation of PX , where invalid results may be obtained when 
this estimation is of poor quality. Importantly, this statement holds true for all model-X 
randomization tests, as the generated p-values are valid only when PX is known. In terms of 
power, the MRD lasso presents, once again, a solid gain in performance compared to lasso 
when 𝜌̂ = 𝜌 , where the FDR is controlled. (Recall that the correlation structure here is 
more significant than the synthetic experiments from Sect. 5.1, in which � ∈ {0.1, 0.25}.)

Fig. 13   Experiment with dummy features whose quality varies with 𝜌̂ . Here, the true PX follows a multi-
variate Gaussian distribution with with auto-correlation � = 0.5 . Left: sum of covariance diagnostics over 
all j = 1,… , p (lower values correspond to more accurate dummies) as a function of 𝜌̂ . Right: empirical 
power and FDR
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Multivariate Gaussian
Consider the experimental setup from the experiments with varying signal strength in 

Sect. 5.1, where X ∼ N(�,Σ) is drawn from an auto-regression model. There, we fit the 
MRD models and apply the HRT by drawing X̃j from the true PXj∣X−j

 . Here, we conduct 
similar experiments, but sample X̃j from P̂Xj∣X−j

 , where P̂X ∼ N(𝜇̂, Σ̂) with mean 𝜇̂ and 
covariance matrix Σ̂ that are estimated from the observed data. Following Figs. 14, 15, we 
can see that all predictive models—including ours—result in FDR below the nominal 20% 
level, both in the linear and non-linear settings. Notice that our MRD approach consistently 
improves the power of each base model, which is in line with the experiments from 
Sect. 5.1.

Gaussian mixture model
We now present a more challenging experiment in which X is drawn independently from 

a multivariate Gaussian mixture model:

Above, Σ1,Σ2 and Σ3 have the same correlation structure described in Sect.  5.1, with 
auto-correlation coefficients �1 = 0.1 , �2 = 0.2 , and �3 = 0.3 , respectively. Similar to the 
experiments presented above, we assume that X follows a multivariate Gaussian and we 
estimate its parameters from the observed data. This allows us to study the robustness 
of the proposed MRD approach to model misspecification. We follow the experimental 

X ∼

⎧⎪⎨⎪⎩

N(0,Σ1), w.p
1

3
,

N(0,Σ2), w.p
1

3
,

N(0,Σ3), w.p
1

3
.

Fig. 14   Robustness experiments with correlated multivariate Gaussian features and a simulated response 
that follows a linear model with varying signal strength c. The mean and covariance of PX are estimated 
from the data. Left: power (top) and FDR (bottom) of MRD lasso and lasso. Right: power (top) and FDR 
(bottom) of MRD elastic net and elastic net. The performance metrics are averaged over 100 independent 
experiments
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protocol described in the experiments with varying signal strength from Sect. 5.1.2 (with 
M1 for the non-linear setting), and summarize the results in Figs. 16, 17. As can be seen, 
the FDR obtained by all models is below the desired 20% level both in the linear and non-
linear settings, indicating the robustness of the feature selection procedure. Moreover, our 

Fig. 15   Robustness experiments with correlated multivariate Gaussian features and a simulated response 
that follows a non-linear model with varying signal strength c. The other details are as in Fig. 14

Fig. 16   Robustness experiments with correlated multivariate Gaussian mixture features and a simulated 
response that follows a linear model with varying signal strength c. The other details are as in Fig. 14
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MRD approach yields higher power than the base models, demonstrating that the proposed 
method is also effective when the distribution of X is unknown.

Multivariate Student’s t-distribution
In the experiments from previous paragraphs, we use a simple Gaussian approximation 

of PX , and we always obtain a control of the FDR. Now, we turn to a scenario where such 
an approximation does not result in FDR control, and demonstrate that using a better den-
sity estimation for PX addresses tackles this limitation. To this end, we generate n = 1000 
samples of X, where X follows a multivariate Student’s t-distribution with zero mean, 
covariance matrix with entries Σi,j = �|i−j| where � = 0.1 , and � = 5 degrees of freedom; 
refer to (Romano et al, 2019, Section 6.5) for the precise definition of this data generating 
function. We begin this experiment by sampling Y that follows a linear model (i.e., M1) of 
a varying signal strength c, as described in Sect. 5.1 of the main manuscript, where we use 
the same multivariate Gaussian approximation of PX as in the previous paragraphs. The 

Fig. 17   Robustness experiments with correlated multivariate Gaussian mixture features and a simulated 
response that follows a non-linear model with varying signal strength c. The other details are as in Fig. 14

Fig. 18   Experiments with correlated multivariate Student t-distribution features and a simulated response 
with varying signal strength c. Power and FDR are evaluated on 50 independent data sets. Left: response 
that follows a linear model, where the dummies are sampled from a naive multivariate Gaussian approxima-
tion of PX . Middle: response that follows a non linear model, where the dummies are also sampled from a 
naive multivariate Gaussian. Right: response that follows a non linear model, where the dummies are sam-
pled from a GMM approximation of PX
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left panel of Fig. 18 shows the empirical power and FDR evaluated on 50 independent data 
sets, comparing the performance of an elastic net model and its MRD version. Next, we 
generate the response Y using the non linear model M2, and again vary the signal strength 
c as described in Sect. 5.1.2 of the main manuscript. As before, we approximate the dis-
tribution of X by fitting a multivariate Gaussian on the observed data. The middle panel 
of Fig. 18 presents the empirical power and FDR of this non linear setting, demonstrating 
how the MRD elastic net fails to control the FDR while the base elastic net model is below 
the nominal FDR rate. This violation is due to the inccurate estimation of PX provided by 
the naive multivariate Gaussian fit. To alleviate this, we now turn to approximate PX using 
a Gaussian Mixture Model (GMM) (Reynolds, 2009) with 3 components, where we use 
Python’s sklearn package to fit such a GMM model. The right panel of Fig. 18 presents 
the empirical power and FDR obtained by sampling the dummy features from the fitted 
GMM model (Gimenez et al., 2019), instead of a naive multivariate Gaussian, where we 
use the same non-linear setting as in the middle panel. Following the right panel of that fig-
ure, we can see that the FDR is controlled across all signal strength values, showing that by 
using better techniques to approximate PX we get more reliable results. This is in line with 
many other techniques proposed in the model-X literature that offer practical solutions to 
sampling more accurate dummies, as discussed in Sect. 4.1 of the main manuscript. Lastly, 
in terms of power, the one can see that the MRD models outperform their base versions 
across the board, emphasizing the superiority of our proposal.

G.6 Experiments with varying auto‑correlation parameter �

In this section, we study the effect of the correlation between features on the proposed 
MRD approach. To this end, we follow the experimental setting described in Sect.  5.1, 
where Y ∣ X follows M2 with a fixed signal strength c = 0.14 and m = 400 , and vary the 
auto-correlation parameter � . Figure 19 presents the empirical power and FDR, evaluated 
over 100 independent data sets, as a function of � for lasso, elastic net and their MRD ver-
sions. As can be seen, the power of all methods decreases as � increases, indicating the 
challenge of testing for conditional independence with highly correlated features. However, 
the MRD approach results in higher power for almost every � while maintaining the FDR 

Fig. 19   Experiments with correlated features that follow N(0,Σ) where Σi,j = �|i−j| with varying auto-cor-
relation parameter � , and a simulated response. Power and FDR are evaluated on 100 independent data sets
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under control, demonstrating the advantage of the MRD approach even when working with 
correlated features.

G.7 A comparison of CV‑HRT to dCRT and Knockoffs

In this section, we use simulated data to compare the performance of CV-HRT  (Tansey 
et al, 2021, Algorithm 4) to that of dCRT (Liu et al., 2020) and of the model-X knockoffs 
(Candès et  al., 2018). (Recall that the former relies on cross-validating and thus avoids 
the naive data-splitting of the vanilla HRT procedure.) To this end, we generate X ∈ ℝ

d 
that follows an autoregression model with correlation coefficient � = 0.6 , and set d = 100 . 
Then, we generate a response variable Y = (XT� + �)3 , where � ∼ N(0, 1) is a noise com-
ponent, and � ∈ ℝ

d is a sparse vector whose 30 first entries are equal to c = 1.5 ; we set the 
rest 70 elements in � to zero. We choose the elastic net to be the base predictive model for 
both CV-HRT and its MRD version, and compare the performance of these two tests to 
dCRT and to the model-X knockoffs. The CV-HRT is implemented by setting the number 
of folds to be equal to K = 20 . We implemented the dCRT in Python, by following the offi-
cial R package provided by the authors4. we run the dCRT method using the default choice 
of parameters, provided in the official R package. We run the model-X knockoffs with a 
second order estimation for generating the knockoffs, by using the package provided by 
Romano et al. (2019) with its default choice of parameters.5.

Table 7 compares the performance of the above four frameworks (averaged over 50 tri-
als) for a varying number of samples n, where the target FDR level is fixed and equals to 
q = 0.1 . Following that table, we can see that the gap between CV-HRT and the dCRT is 
relatively small, and the MRD approach closes this gap even further, achieving essentially 
the same power as dCRT. The model-X knockoffs achieves lower power than all other 
frameworks. In all experiments, the empirical FDR is controlled, where the MRD ver-
sion of CV-HRT tends to have a lower empirical FDR compared to dCRT and the model-
X knockoffs. Lastly, we note that CV-HRT requires fitting K different models (20 in this 
experiment), less than the d leave-one-covariate-out models that are required to implement 
the dCRT test. Therefore, in general, the computational complexity of CV-HRT may be 
lower than that of the dCRT.

Table 7   Synthetic experiments 
with correlated multivariate 
Gaussian features of dimension 
d = 100 , and a simulated 
response that follows a non-linear 
model with varying number of 
samples n 

The right column represents the result of the dCRT procedure, and 
the rest represent the CV-HRT procedure with 20 folds. The empiri-
cal FDR (nominal level q = 0.1 ) and power are evaluated by averaging 
over 50 independent experiments. All standard errors are below 0.02

Lasso MRD Lasso dCRT​ Knockoffs

n Power FDR Power FDR Power FDR Power FDR

600 0.24 0.02 0.25 0.03 0.25 0.06 0.13 0.05
1000 0.50 0.02 0.52 0.01 0.52 0.05 0.42 0.05
1400 0.70 0.02 0.72 0.02 0.72 0.05 0.59 0.08

4  https://​github.​com/​molei​bobliu/​Disti​llati​on-​CRT.
5  We use the software package from https://​github.​com/​msesia/​deepk​nocko​ffs.

https://github.com/moleibobliu/Distillation-CRT
https://github.com/msesia/deepknockoffs


2353Machine Learning (2023) 112:2317–2357	

1 3

Appendix H Supplementary details on real data experiments

H.1 Description of the data

In Sect.  5.2 of the main manuscript, we analyze which genetic variations are linked to 
changes in human immunodeficiency virus drug-resistance. We download the data set from 
http://​hivdb.​stanf​ord.​edu/​pages/​publi​shed_​analy​sis/​genop​henoP​NAS20​06 and deploy the 
same pre-processing suggested in (Romano et al., 2019). Specifically, we selected d = 150 
features in total, where 75 of them are chosen because they are already reported as impor-
tant,6. and the rest 75 are those who have the most frequently occurring mutations. After 
discarding samples that have missing values, we have 1555 examples with 150 features 
each.

H.2 Semi‑synthetic experiments with a non‑linear model

Here we provide the complementary results of the semi-synthetic non-linear data experi-
ments, discussed in Sect. 5.2. Figure 20 presents the empirical power and FDR evaluated 
over 20 realizations of the data set (random train/test splits of the data), using lasso, elastic 
net and neural network as the base models. In addition to the discussion in Sect. 5.2, it can 
be seen that the improvement of the neural network is consistent but less significant than 
those of the linear predictive models (lasso and elastic net). However, although we mis-
specify the distribution PX , the empirical FDR is below the nominal level q = 0.2 in the 
neural network as well as lasso and elastic net.

H.3 Semi‑synthetic experiments with a linear model

In addition to the non-linear semi-synthetic experiments described in Sect. 5.2 of the main 
manuscript, in this section we perform variable selection with real human immunodefi-
ciency virus mutation features and a simulated response that follows a linear model with 
varying signal strength c. That is, we simulate Y as described in (6) such that y ∣ X follows 
M1, while treating the real features X as fixed. The results are presented in Fig. 21. As dem-
onstrated, the FDR obtained by all methods is below the target level q = 0.2 , indicating the 

Fig. 20   Semi-synthetic experiments with real HIV mutation features and a simulated response that follows 
a non-linear model with varying signal strength c. Empirical power and FDR with q = 0.2 are evaluated 
over 20 random train/test splits of the data. The other details are as in Fig. 3

6  We use the database from https://​hivdb.​stanf​ord.​edu/​dr-​summa​ry/​comme​nts/​PI.

http://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006
https://hivdb.stanford.edu/dr-summary/comments/PI
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robustness of the selection procedure to model misspecification. (Recall that we approxi-
mate the unknown PX as a multivariate Gaussian whose parameters are estimated from the 
whole data.) In terms of power, our MRD methods outperform the base predictive models. 
This is in line with the overall tendency of the experiments presented in this paper, and, in 
particular, with the ones the correspond to the non-linear semi-synthetic case.

H.4 Semi‑synthetic experiments with a varying number of samples

Herein, we extend the experiments from the previous sub-section and study the perfor-
mance of our method as a function of the sample size. We follow the linear semi-synthetic 
setting described in Section H.3 with a fixed signal strength c = 3 , however sample data 
sets of different size by randomly choosing a subset of n < 1555 observations from the 
whole data set. We apply the controlled variable selection procedure only on the selected 

Fig. 21   Semi-synthetic experiments with real human immunodeficiency virus mutation features and a simu-
lated response that follows a linear model with varying signal strength c. Empirical power and FDR with 
q = 0.2 are evaluated over 50 random train/test splits of the data. The other details are as in Fig. 3

Table 8   Semi-Synthetic 
experiments with real features 
and a simulated response that 
follows a linear model with 
varying number of samples n and 
a fixed signal strength c = 3

The empirical FDR (nominal level q = 0.2 ) and power are evaluated 
by averaging over 50 independent experiments. All standard errors are 
below 0.02

MRD Lasso Lasso % imp. of

n Power FDR Power FDR power

100 0.065 0.055 0.040 0.026 62.5
150 0.223 0.062 0.172 0.026 29.7
200 0.341 0.081 0.290 0.060 17.6
250 0.462 0.085 0.430 0.041 7.4
300 0.579 0.088 0.548 0.050 5.7
350 0.646 0.078 0.629 0.050 2.7
500 0.820 0.080 0.810 0.054 1.2
600 0.897 0.075 0.900 0.049 −0.3
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subset, where the marginal distribution of PX is estimated using the entire data set; see 
section 5.2. The results obtained when choosing lasso to be the base predictive model are 
summarized in Table 8. As can be seen, the FDR is empirically controlled across all set-
tings, and the power increases with the sample size. Also, consistent with previous experi-
ments, the MRD approach outperforms the baseline method in terms of power.
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