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Abstract
Label collection is costly in many applications, which poses the need for label-efficient 
learning. In this work, we present Diverse and Consistent Multi-view Networks (DiCoM)—
a novel semi-supervised regression technique based on a multi-view learning framework. 
DiCoM combines diversity with consistency—two seemingly opposing yet complementary 
principles of multi-view learning—based on underlying probabilistic graphical assump-
tions. Given multiple deep views of the same input, DiCoM encourages a negative cor-
relation among the views’ predictions on labeled data, while simultaneously enforces their 
agreement on unlabeled data. DiCoM can utilize either multi-network or multi-branch 
architectures to make a trade-off between computational cost and modeling performance. 
Under realistic evaluation setups, DiCoM outperforms competing methods on tabular, time 
series and image data. Our ablation studies confirm the importance of having both consist-
ency and diversity.

Keywords  Semi-supervised regression · Multi-view learning · Diversity regularization · 
Probabilistic graphical models

1  Introduction

Deep neural networks have achieved tremendous success across several domains, ranging 
from computer vision, natural language processing, to audio analysis (LeCun et al., 2015). 
However, to train neural networks that perform well typically requires a large amount of 
labeled data. In many cases, this requirement for a large labeled dataset presents a chal-
lenge, because the annotation process can be labour-intensive and thus expensive, espe-
cially when specialized expertise is required. To address this challenge, semi-supervised 
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learning methods  (Van Engelen & Hoos, 2020) that can achieve similarly high perfor-
mance with less labeled data by using unlabeled data have been developed.

We focus on semi-supervised learning in the regression setting. There are several 
approaches for semi-supervised regression, including graph-based methods (Zhur & Ghah-
ramanirh, 2002), co-training  (Blum & Mitchell, 1998) and entropy minimization  (Jean 
et al., 2018). Consistency-based approaches that have been popular in the classification set-
ting, such as Mean Teacher  (Tarvainen & Valpola, 2017) and Virtual Adversarial Train-
ing (Miyato et al., 2018), which reinforce the output consistency of the network under input 
perturbations, have also been adapted to the regression setting (Jean et al., 2018). However, 
enforcing consistency alone may not be sufficient for good performance, and may lead to 
model collapsing (Qiao et al., 2018) or confirmation bias issues (Ke et al., 2019).

Another issue is that while the vast majority of semi-supervised learning research 
has been focused on semi-supervised classification  (Van Engelen & Hoos, 2020), semi-
supervised regression has not been receiving as much attention. Although classification 
and regression problems are both concerned with predicting output values for input data 
points, most semi-supervised classification methods cannot be naturally applied to the 
regression setting (Van Engelen & Hoos, 2020). This is because while some assumptions 
of semi-supervised learning such as the smoothness assumption or the manifold assump-
tion (Chapelle et al., 2009) may hold for both classification and regression, other assump-
tions such as the cluster assumption (Chapelle et al., 2006) or the low-density separation 
assumption (Chapelle & Zien, 2005) do not apply to regression. Another issue with state-
of-the-art classification methods such as FixMatch  (Sohn et  al., 2020), UDA (Xie et  al., 
2020) or ReMixMatch (Berthelot et al., 2019) is that they rely heavily on data augmenta-
tion techniques that are specific to visual data only.

To address these issues, we draw inspiration from ensemble learning with neural net-
works for regression. A necessary and sufficient condition for an ensemble of learners to 
be more accurate than any of its individual members is if the base learners are accurate 
and diverse  (Dietterich, 2000). Therefore, the key component that can make or break an 
ensemble is the diversity (or disagreement) among its individual regressors. If this diver-
sity is insufficient, the ensembling may not result in better performance. On the other hand, 
overemphasizing diversity can degrade the learnability of the ensemble members. So far, 
the most successful mechanism to leverage ensemble diversity in regression is Negative 
Correlation Learning (Liu & Yao, 1999; Zhang et al., 2019).

In this work, we propose Diverse and Consistent Multi-view Networks for Semi-super-
vised Regression (DiCoM) that elegantly unifies consistency and diversity in a deep multi-
view learning framework. Based on probabilistic graphical assumptions, we derive a loss 
function that integrates both consistency and diversity components. Diversity is encour-
aged on labeled data, while consistency is enforced on unlabeled data. Having separate 
optimization objectives means that both diversity and consistency can be enforced on the 
same representation level, which is the output label. Our approach has two advantages. 
First, DiCoM is less reliable on domain-specific input-level data augmentation, making 
it suitable for a wide range of data modalities. In our experiments, we compare DiCoM 
against state-of-the-art methods on eight tabular datasets, a crowd counting dataset and a 
remaining useful life dataset, where we show that DiCoM outperforms existing methods. 
Second, DiCoM is sufficiently flexible to be adapted on different network architectures. 
We develop two variants of DiCoM, the first uses multiple networks to achieve better per-
formance, while the second employs a single network with multiple branches to help with 
scalability. Last but not least, we also perform ablation studies to analyze the importance of 
diversity and consistency, and the effect of varying the number of views in the model.
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While other works have leveraged related ideas of complementary and consensus in 
multi-view classification (Xu et al., 2013); or explored commonality and individuality in 
multi-modal curriculum learning (Gong, 2017), these methods were developed for classifi-
cation or clustering tasks, and cannot be easily modified to suit semi-supervised regression.

2 � Related work

Semi-supervised Regression: Semi-supervised learning is a data-efficient learning para-
digm that offers the ability to learn from unlabeled data. In recent years, much work has 
focused on semi-supervised classification, and there have been far fewer studies on semi-
supervised regression. For regression tasks, graph-based methods are among the first to 
be developed. One example is Label Propagation (LP)  (Zhur & Ghahramanirh, 2002) 
which defines a graph of training data and propagates ground-truth labels through high 
density regions of the graph. Kernel methods have also been proposed, such as Semi-
supervised Deep Kernel Learning (SSDKL)  (Jean et  al., 2018). This method minimizes 
the predictive variance in a posterior regularization framework to learn a more general-
izable feature embedding on unlabeled data. Co-training regressors (COREG)  (Zhou & 
Li, 2005) employs k-Nearest neighbor regressors, each of which generate pseudo-labels 
for the other during training; this helps to maximize their agreement on unlabeled data. 
In addition, tree-based methods which offer fast training and good interpretability, have 
also been developed for semi-supervised regression. Some examples are Self-training Tree 
Ensembles (ST-Tree)  (Levatić et  al., 2017), Semi-supervised Predictive Clustering Trees 
(SSL-PCT) (Levatić et al., 2018) and Semi-supervised Oblique Predictive Clustering Trees 
(SSL-SPYCT)  (Stepišnik & Kocev, 2021). These methods have been widely adopted for 
regression tasks on tabular data.

Apart from the aforementioned approaches, consistency-based methods are also gaining 
traction. Mean Teacher (MT) (Tarvainen & Valpola, 2017) enforces posterior consistency 
between two neural networks, a student and a teacher, the latter being an exponential mov-
ing average of the former in the parameter space. An orthogonal approach is to enforce 
consistency on adversarially augmented input, as implemented in Virtual Adversarial 
Training (VAT) (Miyato et al., 2018). These methods were originally developed for clas-
sification, and were subsequently adapted to regression tasks (Jean et al., 2018). However, 
both MT and VAT maintain only a single trainable network, which may lead to problems 
such as confirmation bias  (Ke et  al., 2019) and overly-sensitive hyperparameters. In this 
paper, we show that consistency-based methods can be further improved with ensemble 
diversity.

Ensemble Diversity: Ensembles of neural networks have been extensively studied and 
widely used in many applications. Their effectiveness largely depends on the level of diver-
sity (or disagreement) among members of the ensemble. It is well-understood that a good 
ensemble must manage the trade-off between the accuracy of the individual learners and 
the diversity among them  (Brown et  al., 2005; Tang et  al., 2006). For regression tasks, 
a commonly-used ensemble technique is Negative Correlation Learning (NCL)  (Liu & 
Yao, 1999; Liu et al., 2000), which formulates a diversity-promoting loss using an ambi-
guity decomposition of the squared ensemble loss (Krogh & Vedelsby, 1995). In this for-
mulation, a correlation penalty term (also refered to as an ambiguity term) measures how 
much each member’s prediction deviates from the ensemble output. When this penalty 
term is maximized, the errors of individual learners become negatively correlated. It was 
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theoretically proven (Brown et al., 2005) that the strategy employed by NCL is equivalent 
to leveraging a bias-variance-covariance trade-off (Ueda & Nakano, 1996) of the ensem-
ble error.

Recently, NCL has been extended to semi-supervised learning  (Chen et  al., 2018), 
where the correlation penalty term is extended to the unlabeled data. However, this method 
was demonstrated only on tabular data. Another variant of NCL is Deep Negative Correla-
tion Learning (DNCL) (Shi et al., 2018; Zhang et al., 2019), which is designed for visual 
regression tasks in a purely supervised learning setting.

Multi-view Learning: A dataset is considered as having multiple views when its data 
samples are represented by more than one feature set, each of which is sufficient for the 
learning task. Although each view is supposed to be sufficient for learning the task, a 
model trained on only one single view often faces the risk of overfitting, especially when 
labeled data is limited  (Xu et  al., 2013). To address this problem, multi-view learning 
assigns a modeling function to each view and jointly optimize these functions to improve 
overall generalization performance (Zhao et al., 2017). By analyzing the development of 
various techniques, Xu et al. (2013) summarized two significant principles that underpin 
multi-view learning: consensus and complementary. The consensus principle states that 
a multi-view technique must aim at maximizing the agreement on different views. This is 
similar to how consistency-based semi-supervised learning methods works: for instance, 
MT enforces agreement with its past self. The complementary principle states that in order 
to make improvement, each view must contain some information that the other views do 
not carry. In other words, the views should be sufficiently diverse. This is related to diver-
sity regularization in ensemble learning, where individual learners are encouraged to give 
diverse predictions. Thus, multi-view learning offers a unifying perspective of both con-
sistency and diversity.

3 � Proposed method

With DiCoM, we hope to generate and train multiple regressors that are consistent yet 
diverse with each other. On one hand, DiCoM applies multi-view consistency to ensure 
that through different augmentations and model parameters, the multiple outputs generated 
are still in agreement with each other. On the other hand, DiCoM encourages individual 
regressors to be repulsive to the average of their outputs. This diversity is much needed to 
enrich the total information capacity. Furthermore, as our mathematical analysis will show, 
diversity should be enforced on labeled data, while consistency works best on unlabeled 
data. Figure 1 illustrates the intuition behind DiCoM in comparison with DNCL (Zhang 
et al., 2014) and co-regression (Brefeld et al., 2006).

We will start this section by describing how multiple deep views can be generated from 
input data. Then, we propose our multi-view learning framework for regression, in which 
multiple deep views can be simultaneously optimized via backpropagation. We then dis-
cuss the graphical models that govern the probabilistic dependencies among the ground-
truth label and the deep views. Finally, we derive the DiCoM loss function using these 
graphical models and provide a few insights.

View creation: Consider a regression task where the goal is to estimate a label y ∈ ℝ 
from an input x. To create multiple views, our first approach is to use M neural networks 
F1, F2,… , FM , each parameterized by �1, �2,… , �M , respectively. By applying different 
data augmentations �1, �2,… , �M on the original x, we generate M different augmented 
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inputs xm = �m(x) ∀m=1,… ,M . With each augmented input, the corresponding neural 
network produces a regression output fm(x) = Fm(x

m, �m) ∀m=1,… ,M . Due to the differ-
ent augmentations and network parameters, each output fm can be treated as one deep view 
of the original input x. We call this multi-network setup DiCoM-N, where the N stands for 
‘network’ (see Fig. 2a).

The second approach is to utilize a single network with a shared backbone B and multi-
ple regressor branches R1, R2,… , RM . We use �B to denote the learnable parameters from 
the backbone and �1, �2,… , �M to denote the parameters of the branches. The hidden fea-
tures generated by the backbone serve as input to the branches. While the backbone still 
applies a random augmentation to the input x, each regressor branch Rm applies its own 
random augmentation �m as well. Thus, regression outputs f1, f2,… , fM from the branches 
can be considered as deep views of the original input. We name this setup DiCoM-B, 
where the B is short for ‘branch’ (see Fig. 2b). Multi-branch technique was widely adopted 
for supervised classification  (Xie et  al., 2017). In this work, it allows us to harness the 
power of multi-view learning with a relatively lower number of trainable parameters.

Multi-view learning framework for regression: Regardless of how they are generated, 
the deep views are used together with the true label y to compute a semi-supervised 

Fig. 1   The concepts of a DNCL, b co-regression and c DiCoM, visualized on a 2-D label space. While 
DNCL focuses on promoting ensemble diversity and co-regression enforces mutual agreement among the 
views, DiCoM enables both diversity and consistency simultaneously
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loss function �DiCoM . During training phase, �DiCoM is back-propagated simultaneously 
through the deep views to optimize network parameters �1, �2,… , �M (including �B in 
the case of DiCoM-B). During inference, all augmentations are removed so that the for-
ward pass is applied on the raw input x. The final prediction is computed as the average 
of all deep views: �(x) =

∑M

i=1

1

M
fm(x) . The general DiCoM framework is illustrated in 

Fig. 2. In the next step, we derive �DiCoM based on a probabilistic graphical assumption.
Probabilistic graphical models:  Since the augmented inputs are generated from the 

same sample, the deep views should be close to each other. Motivated by previous work 
in kernel learning (Yu et al., 2011) and linear regression (Nguyen et al., 2019), we con-
sider f1, f2,… , fM as random variables and introduce a consensus function fc as a latent 
variable that connects to each of the deep views. This function enforces the mutual 
agreement among the views. We assume that the difference between the consensus func-
tion and each view follows a zero-mean Gaussian distribution

This probabilistic relation is known as the consensus potential (Yu et al., 2011). Con-
sidering the whole graph, this potential implies that all views are random Gaussian vari-
ables with a shared mean fc and variance �2

m
 . As a result, the views stay consistent w.r.t. 

each other by taking values not too far away from the shared consensus. This graphical 
model, shown in Fig. 3a, is assumed for each unlabeled sample. The joint density asso-
ciated with the graph is given by

where Z is a normalizing constant and �(fc, fm) = exp
[
−

(fc−fm)
2

2�2
m

]
 is the potential function 

of the edge connecting fc and fm . From this model, we derive two important results. On a 
side note, our derivation generalizes to vector-valued labels y, but here we assume scalar 
labels for ease of exposition. The proofs of our results are provided in Appendix A.

(1)fc − fm ∝ N
(
0, �2

m

)
∀m = 1,… ,M.

(2)p
(
fc, f1,… , fM

)
=

1

Z

M∏

m=1

�(fc, fm)

Fig. 2   The DiCoM framework with two variants: a DiCoM-N (multi-network) and b DiCoM-B (multi-
branch)
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(I) Marginalization of the views: By integrating the latent consensus function fc out of 
the joint density, the marginal distribution of the views is

where �m,k =
�
2�2

m
�2
k

�∑
m

1

�2
m

��−1
 . This result implies that the marginal likelihood can be 

factorized as a product of 
(
M

2

)
 terms. Each term is an isotropic Gaussian distribution on 

the difference between a pair of views 
(
fm, fk

)
 , with zero mean and variance 

(
2�m,k

)−1 . The 
equivalent graphical model is shown in Fig. 3b.

(II) Conditional of the consensus function: By applying Bayes’ theorem, the conditional 
distribution of the consensus function fc given all the views is a Gaussian

where �2
�
=
�∑

m
1

�2
m

�−1

 and 𝜇̃ = 𝜎2
𝜇

∑
m

fm

𝜎2
m

 . This result highlights that the conditional dis-
tribution of fc depends only on the weighted average 𝜇̃ , and the values of individual views 
are not required. Furthermore, 𝜇̃ can be treated as a view itself, with a variance that is 
smaller than any of the variances of the views.

Derivation of DiCoM loss function: For simplicity, we assume equal variance for differ-
ent deep views, i.e., �2

m
= �2

v
∀m . For an unlabeled sample (xn) , we directly apply the first 

result (I) to obtain the following negative log likelihood function

For a labeled sample (xn, yn) , since the ground-truth is given, we assume a graphical model 
that involves the final DiCoM prediction, i.e., the averaged output � . This graph is shown 
in Fig. 3c. Since we assume a shared variance �2

v
 , the weighted output now reduces to an 

equal-weight average, following from result (II)

(3)p
(
f1,… , fM

)
∝ exp

[
M∑

m=1

∑

k>m

−𝜆m,k
(
fm − fk

)2
]

(4)fc ∣ f1,… , fM ∼ N

(
𝜇̃, 𝜎2

𝜇

)

(5)Lunl =

M∑

m=1

∑

k>m

1

2M𝜎2
v

[
fm(xn) − fk(xn)

]2

Fig. 3   Undirected probabilistic graphical models of DiCoM: a for an unlabeled sample, b after marginaliza-
tion of the views and c for a labeled sample



2366	 Machine Learning (2023) 112:2359–2395

1 3

Subsequently, we apply result (I) on this graph to get the negative log likelihood as follows

where in Eq. (8), we have applied the ambiguity decomposition (Krogh & Vedelsby, 1995) 
and in Eq. (9), we have assumed that the label is accurate, i.e., 𝜎2

y
≪ 𝜎2

v
.

Given a training batch of labeled samples {(xn, yn)}Ln=1 and unlabeled samples {(xn)}Un=1 , 
assuming that the samples are independently generated, we can add the log-likelihood functions 
across all training samples. This can be done via simply adding up two Eqs. (5) and (9)

where we introduce two hyperparameters �div and �csc to absorb other constants and to ena-
ble a trade-off between diversity and consistency components of the loss.

The DiCoM loss encourages diversity on labeled data, while enforcing consistency 
on unlabeled data. These two seemingly opposing components can both be derived from 
the same underlying graphical assumptions. Furthermore, they should not be weighted 
equally. In fact, we have shown that it depends on the number of views: when M increases, 
diversity grows in O(M), while consistency grows in O(M2) . It is worth noting that our 
method is fundamentally different from other extensions of NCL such as Semi-supervised 
NCL (Chen et al., 2018), which enforces diversity on both labeled and unlabeled data. Last 
but not least, since both diversity and consistency are incorporated in the DiCoM objec-
tive function, our method is highly adaptable to different implementations such as multi-
network or multi-branch, as long as the views are provided.

4 � Experiments

In this section, we study the proposed method in different settings, including (i) regression 
tasks on eight tabular datasets, (ii) crowd counting on image data and (iii) remaining useful 
life prediction on time series data. We provide additional experiment results in Appendix C 
and an additional experiment on toy data in Appendix D.

(6)𝜇̃(xn) =

M∑

m=1

fm(xn)

M
= 𝜇(xn) 𝜎2

𝜇
=

𝜎2
v

M

(7)Llab =
M

2M�2
y
+ 2�2

v

[
yn − �(xn)

]2

(8)=
1

2M�2
y
+ 2�2

v

M∑

m=1

{[
fm(xn) − yn

]2
−
[
fm(xn) − �(xn)

]2}

(9)≈
1

2�2
v

M∑

m=1

{[
fm(xn) − yn

]2
−
[
fm(xn) − �(xn)

]2}

(10)

�DiCoM = 1
L

L
∑

n=1

M
∑

m=1

{

[

fm(xn) − yn
]2 − �div

[

fm(xn) − �(xn)
]2
}

+ 1
U

U
∑

n=1

M
∑

m=1

∑

k>m
�csc

[

fm(xn) − fk(xn)
]2
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4.1 � Regression on tabular data

Datasets: We evaluate DiCoM on eight datasets from the UCI repository  (Dua & Graff, 
2017): skillcraft, parkinsons, elevators, protein, blog, ctslice, buzz, and electric. These 
datasets are collected from real-world regression scenarios, with varying sample sizes and 
input dimensions. For each dataset, we keep 1000 labeled samples as a hold-out test set; 
further retain N = 300 samples for the labeled training set, and keep the rest as the unla-
beled training set. We follow the realistic evaluation setup in (Oliver et al., 2018) and use a 
90%-10% train-validation split, i.e., 270 samples are used for training, leaving only 30 for 
validation.

Experiment Setup: We implement both variants of DiCoM. Our DiCoM-N networks 
adopt the same architecture as  (Jean et  al., 2018; Wilson et  al., 2016), which is a fully-
connected multilayer perceptron with four hidden layers, containing 100, 50, 50 and 2 hid-
den nodes, respectively. Our DiCoM-B also utilizes this architecture, but branch out after 
the third hidden layer, i.e., the backbone contains hidden layers of 100, 50 and 50 nodes, 
while the regressor branches each contains one hidden layers of 2 nodes. This model is 
trained end-to-end, the backbone is trained together with the branches. DiCoM hyperpa-
rameters (�div, �csc) are chosen from a grid of values based on validation errors. Across 10 
random seeds, we report the root-mean-squared errors (RMSE) statistics on the test set. 
For simplicity, we append ‘-M’ to the end of our method name to denote the number of 
views, e.g., DiCoM-B-4 represents the multi-branch DiCoM network with 4 branches. In 
addition to RMSE, we also report the relative-root-mean-squared error (RRMSE), which is 
computed as the percentage between RMSE score of the model and the RMSE of the mean 
predictor (mean of labels from training set). Following (Levatić et al., 2018), the formula 
for RRMSE is as follows:

where T is the number of samples in test set; yn and ŷn are the ground truth label and the 
model’s prediction on the n-th test sample, respectively; ȳ is the mean of target values on 
the labeled training set. Unlike RMSE which is domain-specific and difficult to interpret, 
RRMSE is a domain-independent metric.

Data Augmentation: we apply zero-mean Gaussian noise which is commonly used for 
tabular data. For the DiCoM-B model, Gaussian noise is applied on the input and on the 
features at the beginning of each regressor branch, right after branching out. Since the 
independent Gaussian noise is added during the forward pass, it does not affect the gradi-
ent values during backpropagation. The exact amount of Gaussian noise can be found in 
Appendix B.

We compare DiCoM against eight semi-supervised regression methods: SSDKL (Jean 
et al., 2018), COREG (Zhou & Li, 2005), LP (Zhur & Ghahramanirh, 2002), VAE (Jean 
et al., 2018), MT (Tarvainen & Valpola, 2017), VAT (Miyato et al., 2018), ST-Tree (Levatić 
et  al., 2017), SSL-PCT  (Levatić et  al., 2018) and a Supervised baseline. These methods 
span a wide range of approaches such as consistency regularization (MT, VAT), entropy 
minimization (SSDKL), multi-view learning (COREG), graph-based (LP), generative 
modeling (VAE), or tree-based ensembling (ST-Tree, SSL-PCT). In addition, these com-
peting methods also cover both conventional machine learning methods (LP, COREG, ST-
Tree, SSL-PCT) as well as methods based on deep learning (VAE, MT, VAT, SSDKL). 

(11)RRMSE =

�����
∑T

n=1

�
yn − ŷn

�2

∑T

n=1

�
yn − ȳ

�2 × 100
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Last but not least, the Supervised baseline uses the same network architecture as the back-
bone network. The detailed information about the datasets and experiment setup can be 
found in Appendix B.

Results: Figure 4 shows the experiment results. We observe significant improvements 
compared to the state-of-the-art semi-supervised regression methods. The largest perfor-
mance gains are achieved on parkinsons and ctslice, where DiCoM-N-2 improves upon 
the best competing method by 32.4% and 42.5%, respectively. DiCoM-N-2 also outper-
forms DiCoM-B-2 on all datasets, except for protein. This is expected since DiCoM-N-2 
has almost twice as many learnable parameters as DiCoM-B-2. For elevators, the most fre-
quently selected hyperparameters across 10 random seeds are (�div, �csc) = (1, 0.01) , while 
for ctslice, the most frequently selected values are (�div, �csc) = (0.1, 1) . This shows that 
different datasets require different trade-offs between consistency and diversity. We also 
notice that LP (a graph-based method) and COREG (a nearest-neighbors-based method) 
performs relatively well on blog, ctslice and buzz. Meanwhile, MT and VAT, which are 
based on consistency regularization (without diversity regularization), did not perform well 
on these regression datasets, even though they have been shown to be effective on clas-
sification tasks. Tree-based ensembling methods (ST-Tree, SSL-PCT) yield higher errors 
than DiCoM variants on all datasets. They have relatively comparable performance to MT 
and VAT in most cases, except for ctslice and buzz. In general, the Supervised baseline 
performs worse than deep learning-based methods (SSDKL, VAE, MT, VAT, DiCoM-N-2 
and DiCoM-B-2) and two non deep-learning methods (COREG, LP), but it can outperform 
tree-based methods in some cases. Table 1 shows the relative RMSE errors on UCI data-
sets. While some datasets such as parkinsons and electric have low RRMSE scores, many 
other datasets (skillcraft, protein and blog) caused high relative errors for all competing 
methods, including DiCoM. This implies that some of the UCI datasets remain as chal-
lenging regression tasks, even for the state-of-the-art methods.

Ablation study on the components: We analyse the effect of different components of the 
DiCoM-N-2 model by individually removing them from the model. For the first model, 
Ablation-1, we remove data augmentation. In Ablation-2, we remove the diversity loss 
on the unlabeled data. Next, the consistency loss on labeled data is set to zero for Abla-
tion-3 model. Lastly, we apply diversity loss to both labeled and unlabeled training data for 
model Ablation-4. Note that our Ablation-4 implementation closely resembles the SSNCL 

Fig. 4   Test RMSE on UCI datasets: each subplot shows the results for one dataset. Lower value indicates 
better performance
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model  (Chen et  al., 2018), which also promotes ensemble diversity on both labeled and 
unlabeled data. Using the results of DiCoM-N-2 as the baseline, we also report the per-
centage reduction in test RMSE (% Redc.) for the other methods. This metric allows us 
to comprehend the impact made by each ablation model: a positive reduction in test error 
represents a positive impact and vice versa. The RMSE percentage reduction is computed 
as follows

Table  2 reports the ablation results. The average percentage reduction scores tell us the 
importance of each component. Augmentation has a relatively small impact on the per-
formance of DiCoM-N-2, since the test errors of Ablation-1 are 5.07% larger than that 
of DiCoM-N-2. This supports our understanding that diversity can be enforced backward 
from the output-level representation, so that DiCoM only requires a minimal amount of 
input-level augmentation. Moreover, diversity is also promoted by the stochasticity of net-
work parameters across different views. Mean while, without diversity, the model Abla-
tion-2 performs much worse than the baseline with an average error increase of 14.5%. We 
suspect that the consistency enforcement is too strong, creating a risk of individual views 
collapsing into a single model. On the other hand, the model without consistency (Abla-
tion-3) also suffer an error increase of 10.3%. Here, the lack of consistency regularization 
might have caused the individual views to have higher variance on test samples. Thus, both 
diversity and consistency regularization are important. DiCoM-N-2 outperforms Abla-
tion-4 in all cases, which suggests that a mere reliance on diversity, such as the SSNCL 
approach, is insufficient. In Appendix D, we provide an additional experiment to study the 
impacts of consistency and diversity on the performance of DiCoM.

Varying the number of views: We further evaluate the impact of the number of views 
M. Figure  5 shows the performance of three DiCoM-N models with increasing number 
of views M ∈ {2, 4, 8} . The results show that a larger value of M leads to an improvement 
in the performance. When M increases from 4 to 8, the average reduction in test RMSE is 
3.48% , larger than the average reduction rate of 1.70% when M increases from 2 to 4. While 

(12)Percentage Reduction =
(baseline score − new score) × 100

baseline score

Table 1   Relative test errors (RRMSE, in %) on UCI datasets

Lower value indicates better performance
Bold values indicate the best performance for each setup

Dataset skillcraft parkinsons elevators protein blog ctslice buzz electric

SSDKL 74.45 32.01 63.79 91.44 104.09 44.02 37.55 11.98
COREG 77.52 40.59 82.60 90.10 97.70 45.53 36.89 26.78
LP 73.50 50.88 79.75 87.82 92.36 46.47 41.76 42.94
VAE 85.03 100.93 96.46 99.93 93.76 74.05 53.84 100.32
MT 89.87 82.65 110.33 97.82 101.41 76.53 83.49 71.53
VAT 97.67 100.52 110.16 98.13 98.70 77.19 85.49 94.12
ST-Tree 94.32 92.83 107.26 107.00 113.90 158.16 162.58 129.53
SSL-PCT 97.52 88.63 106.34 100.56 107.90 155.45 161.84 129.01
Supervised 119.55 99.00 175.72 104.80 98.07 100.47 98.35 107.49
DiCoM-N-2 67.29 21.65 61.48 82.79 84.45 25.33 35.08 11.73
DiCoM-B-2 67.72 31.16 61.71 80.48 84.82 39.22 40.66 28.67
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varying the number of views, we also monitor the changes in the model hyperparameters. 
Using the values that were selected to minimize the validation error of DiCoM-N, Table 3 
shows the log ratio of log10(�div∕�csc) . For most datasets, we see that this log ratio tends 
to increase for larger number of views. This is because in �DiCoM , the number of diversity 
terms grows in O(M) while the number of consistency terms grows in O(M2) . Thus, as M 
increases, a larger (�div∕�csc) ratio is required to keep those terms balanced.

Comparing multi-network and multi-branch: In this experiment, we compare the two 
variants of DiCoM against each other, by reporting both their performance and execution 
time (adding train and test time). Table 4 shows the percentage reduction computed using 
Eq. (12) by treating DiCoM-N’s results as the baseline scores and DiCoM-B’s correspond-
ing results as the new scores. It can be seen that DiCoM-N is consistently outperforming 

Fig. 5   Test RMSE of DiCoM-N on UCI datasets with varying number of views M ∈ {2, 4, 8} . The x-axis 
shows number of views M, the y-axis shows test RMSE.

Table 3   Median values of log10(�div/�csc ) across 10 Seeds from DiCoM-N

skillcraft parkinsons elevators protein blog ctslice buzz electric

M = 2 1.849 − 0.151 1.151 0.500 1.000 − 1.000 0.151 1.849
M = 4 2.000 − 0.301 1.151 0.301 1.151 0.199 0.349 2.000
M = 8 1.699 − 0.500 1.500 1.151 1.849 0.349 0.500 2.000

Table 4   From DiCoM-N to DiCoM-B: percentage reduction in test RMSE and execution time

Dataset Test RMSE Execution time

M = 2 M = 4 M = 8 M = 2 M = 4 M = 8

skillcraft − 0.702 2.012 − 2.945 − 33.336 23.505 48.462
parkinsons − 43.903 − 24.177 − 57.821 36.845 55.590 72.481
elevators − 0.436 − 13.126 − 21.811 − 52.633 19.389 60.346
protein 2.798 − 0.536 − 0.520 − 45.076 19.876 62.177
blog − 0.430 − 6.908 − 18.729 − 39.355 39.847 47.129
ctslice − 54.862 − 34.924 − 73.619 45.016 81.627 83.731
buzz − 15.885 − 4.984 − 17.976 4.194 33.759 51.035
Average − 16.203 − 11.806 − 27.632 − 12.049 39.085 60.766
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DiCoM-B in terms of test RMSE. The multi-network variant is also the faster option (by 
12.0%) when M = 2 . However, as the number of views increases, the execution time of 
DiCoM-B is significantly faster, by 39.1% when M = 4 and by 60.8% when M = 8 . This 
shows that while DiCoM-N achieves better test performance, DiCoM-B demonstrates bet-
ter scalability.

4.2 � Crowd counting on image data

In order to show the versatility of DiCoM, we further conduct experiments on a crowd 
counting task. Crowd counting is a fundamental question in the vision community due to 
its far-reaching applications in many scenarios, including video surveillance, metropolis 
security, human behavior analysis. Crowd counting has been recently used as a benchmark 
for deep regression algorithms (Zhang et al., 2019); for this task, counting by regression 
has been perceived as the state-of-the-art approach.

Dataset: We study the ShanghaiTech Part-A dataset (Zhang et al., 2016). This is a new 
large-scale crowd counting dataset that contains extremely congested scenes, with vary-
ing perspective and unfixed resolution. The data are split into 300 training and 182 test 
samples. Among the 300 training samples, we randomly select N ∈ {30, 120, 210} samples 
as the labeled set and use the remaining data as the unlabeled set. We follow the com-
mon practice to report both mean absolute errors (MAE) and root-mean-squared errors 
(RMSE) on the test set. Similar to the UCI experiment, we also report the errors relative to 
the mean-absolute-value of the ground-truth labels in the test set, including RRMSE and 
RMAE. Here, RMAE score is computed by replacing RMSE in (11) with MAE, i.e., by 
dividing the MAE of the model by the MAE of the mean predictor. We note that this data-
set inevitably contains personally identifiable information, which has been made public by 
the owner of the dataset.

Experiment Setup: In our experiments, we adopt the network architecture of CSRNet 
B  (Li et  al., 2018) and implement DiCoM-B-4. More specifically, we use a pre-trained 
VGG16 network as the encoder and append another decoder on top of it. In the penultimate 
layer of the decoder, we enlarge the number of hidden channels by M times. We then apply 
a group-convolutional layer as the last layer, setting both the number of output channels 
and group size to M. Thus, the backbone of DiCoM-B-4 includes the pre-trained VGG16 
and the decoder up to its penultimate layer.

We compare DiCoM with the following competing methods: (i) the supervised base-
line which uses only the labeled training samples and standard MSE loss; (ii) the DNCL 
model (Zhang et al., 2019); and (iii) the Co-Regression model (Brefeld et al., 2006). Since 
we are not running for multiple random seeds, we remove all random data augmentations 
(e.g., cropping, flipping) to enable fair comparison between different methods.

Results: From the results in Fig. 6, we observe that both DNCL and Co-Regression out-
perform the supervised baseline by enforcing either diversity on labeled data or consist-
ency on unlabeled data, and that overall, DiCoM-B-4 outperforms other methods by incor-
porating both diversity and consistency on the unlabeled data. For example, at labeling 
budget N = 30 , DiCoM-B improves MAE by 27.3% and RMSE by 33.9% compared to Co-
Regression, the second best method. At the large budget N = 210 , the improvements are 
1.25% and 5.79% for MAE and RMSE, respectively. Table 5 shows the relative errors on 
ShanghaiTech data. It is interesting to note that these errors are smaller compared to those 
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obtained in some of the UCI datasets. This implies that the crowd counting task is better 
resolved, possibly thanks to the utilization of a pre-trained network.

4.3 � Remaining useful life prediction on time series data

In modern advanced manufacturing, predictive maintenance provides effective tools to 
reduce operational cost of industrial machinery. Among the sub-fields of predictive mainte-
nance, remaining useful life prediction is a core pillar. By definition, remaining useful life 
(RUL) refers to the time duration from the current condition to the failure condition of an 
industrial machine. Precise prediction of RUL plays a crucial role in scheduling mainte-
nance operations.

Recently, deep learning methods have shown state-of-the-art performance for RUL pre-
diction task  (Deutsch & He, 2017). Several deep learning architectures have been adopted 
for RUL task such as deep belief networks  (Deutsch & He, 2017), convolutional neural 
networks (Li et al., 2018; Zhu et al., 2018), and long-short-term memory (LSTM) (Huang 
et al., 2019; Chen et al., 2020). However, labeled data for RUL task can be only obtained 
after machine failure, which is costly and time-consuming, especially for complex 
machines (Ragab et  al., 2020). Meanwhile, unlabeled data are more readily available as 
they can be acquired under normal operation. Thus, an accurate semi-supervised regression 
model would further improve the cost-effectiveness of RUL prediction.

Fig. 6   Test results on ShanghaiTech dataset: a RMSE and b MAE

Table 5   Relative test errors (RRMSE and RMAE, in %) on ShanghaiTech

Lower value indicates better performance
Bold values indicate the best performance for each setup

Supervised baseline DNCL Co-regression DiCoM-B-4

RMAE RRMSE RMAE RRMSE RMAE RRMSE RMAE RRMSE

N = 30 71.93 101.75 60.68 66.52 54.32 63.53 39.52 41.94
N = 120 32.08 38.80 29.03 34.38 31.24 38.08 27.77 33.48
N = 210 26.14 30.54 25.23 30.55 25.03 30.38 24.72 28.62
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Dataset: We use the NASA C-MAPSS dataset (Saxena et al., 2008), a benchmark data-
set that describes the run-to-failure behaviours of aircraft engines. C-MAPSS contains four 
smaller subsets, from FD001 to FD004, each with different failure modes, operating condi-
tions, lifespan and number of engines. These details can be found in Appendix C. Different 
21 sensors have been used to monitor condition for each engine. Following Ragab et al. 
(2020), only most informative sensors that show clear degradation trend have been selected. 
Each data sample is a time series signal consisting of a number of selected pre-processed 
sensory features through 30 consecutive cycles. Given the current conditions of an engine, 
the task is to predict the number of remaining cycles until the engine fails. Ground-truth 
label is a positive integer indicating the number of remaining useful cycles. For model 
evaluation, we employ three evaluation metrics: root-mean-squared error (RMSE), relative 
error to the mean-absolute-value of ground-truth label (RRMSE) and RUL-Score (Heimes, 
2008). Unlike RMSE which treats early and late predictions equally, the RUL-Score penal-
izes late predictions heavily, which is more suitable as a domain-specific metric. The equa-
tion to compute RUL-Score is as follows

where ΔRULi is the difference between the predicted and true RUL for sample xi . Since 
the predictions from RUL models are usually used to schedule maintenance operations, it 
would be undesirable if the engine fails before the predicted number of remaining cycles. 
Thus, the RUL-Score applies heavier penalty on positive ΔRULi errors compared to nega-
tive errors. The reported RUL-Score for the whole dataset is computed as the sum of RUL-
Score from individual samples.

Experiment Setup: In our experiments, we adopt the network architecture used in 
Ragab et al. (2020). It contains an LSTM encoder followed by a regressor network to 
facilitate the regression involved in predicting the RUL. The LSTM is bi-directional 
with 3 hidden layers and a window-length of 30. The regressor is a multi-layer percep-
tron consisting of one hidden layer mapping the output of the LSTM encoder to the final 
RUL prediction output. Upon this architecture, we implement a DiCoM-N model with 
M = 2 views, i.e., DiCoM-N-2. We compare our method against the following meth-
ods which are developed for semi-supervised RUL prediction: Self-supervised Learning 
(SelfSL)  (Krokotsch et  al., 2022), Variational Autoencoder (VAE)  (Yoon et  al., 2017) 
and Restricted Boltzmann Machines (RBM) (Ellefsen et al., 2019).

Results: From the results in Table 6, we can observe that DiCoM-N-2 performs better 
compared to the competing methods, except for a few setups such as FD001 at budget 
2% and FD003 at budgets 10% and 20%. In the best scenario (FD001 at budget 10%), 
DiCoM-N-2 outperforms the best competing method by 35.7% in test RMSE and by 
93.2% in RUL-Score. Another interesting point to note is the RMSE improvements 
of DiCoM-N-2 when the amount of labeled data increases. From 2% to 20% labeling 
budget, we can notice the test RMSE being halved (e.g., 35.6 to 15.8 for FD001), while 
the RMSE reductions of other methods are more gradual. The Supervised baseline per-
forms worse than all semi-supervised methods in general, except for the lowest labe-
ling budget (2%), where Supervised yields better RUL-Score than RBM and SelfSL. 
We believe this is due to the bias and volatile nature of the RUL-Score metric, which 
heavily penalizes positive errors by an exponential function. The RMSE score, being 
a more balanced metric, shows that the Supervised baseline is more error-prone than 

(13)RUL-Scorei =

{
e
−

ΔRULi

13 − 1 for ΔRULi < 0

e
ΔRULi

10 − 1 for ΔRULi ≥ 0
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semi-supervised methods by a large margin. Table 7 shows the relative errors (RRMSE, 
in %). Compared to UCI and ShanghaiTech results, DiCoM-N-2 performs relatively bet-
ter on C-MAPSS, yielding percentage errors less than 30% when labeling budget is 10% 
or 20%. Figure 7 shows the test RMSE and RUL-Score for the subset FD001. Plots from 
the remaining subsets can be found in Appendix C.

5 � Conclusion

In this paper, we proposed novel Diverse and Consistent Multi-view Networks for Semi-
supervised Regression (DiCoM), that elegantly combines ensemble diversity with con-
sistency regularization to tackle generic deep semi-supervised regression tasks. DiCoM 
utilizes probabilistic graphical models to control the underlying dependencies among 
multiple regression outputs and label. Experiments on tabular, visual and sequential 
data demonstrated the effectiveness of the proposed method across different domains. 
We also show that DiCoM is highly flexible, it can be adopted for multi-network or 

Table 7   Relative test errors 
(RRMSE, in %) on C-MAPSS 
Datasets

Lower value indicates better performance
Bold values indicate the best performance for each setup

Budget Subset DiCoM-N-2 VAE RBM SelfSL Supervised

2% FD001 39.67 36.07 37.59 37.39 53.76
FD002 26.43 36.52 31.23 28.93 51.05
FD003 34.37 39.74 43.45 37.86 47.53
FD004 26.80 39.93 39.85 34.51 54.89

10% FD001 19.72 30.75 29.58 29.76 47.43
FD002 18.11 27.45 26.12 24.88 51.56
FD003 25.01 24.01 27.97 25.26 51.79
FD004 24.19 30.58 30.88 26.85 49.74

20% FD001 17.99 25.79 29.53 27.77 47.54
FD002 18.19 25.83 24.32 23.47 51.88
FD003 23.71 20.38 20.57 19.48 52.05
FD004 19.90 28.47 28.50 26.82 50.06

Fig. 7   Test results on C-MAPSS FD001 dataset: a RMSE and b RUL-Score on log scale. Lower value indi-
cates better performance
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multi-branch implementations, the latter significantly improves the scalability of the 
method. On tabular data, our ablation studies validated the importance of both consist-
ency and diversity. In the future, one may extend the DiCoM framework by introducing 
asymmetric views (of non-identical architectures), which naturally causes the final out-
put � to be an unequally-weighted average. Another interesting direction is to explore 
the potential impact of data augmentation techniques, since multi-view learning often 
benefits from diversified inputs.

Appendix A Mathematical proofs

Consider again the general model, where there are M deep views, i.e., {fm}Mm=1 . Graphically, 
these functions are represented by nodes that are connected not directly, but only via the con-
sensus function fc using isotropic Gaussian potentials

We note that in this general case, each deep view is a vector (instead of a scalar) and is 
assigned a separate variance �2

m
 , which are not necessarily equal to each other. In terms 

of notation, we use italic letters for scalar variables and boldface letters for vectors and 
matrices.

A.1 Marginal density of the views

In this proof, we derive the marginal distribution of the views. Given the DiCoM graphical 
model, it is necessary to integrate fc out of the joint density distribution of the graph, because 
fc is a latent variable. The joint density distribution function of this graphical model is as 
follows

where the normalizing factor Z1 is a constant w.r.t. fc, f1,… , fM and

Notice that � ,�,� are constants w.r.t. fc . By applying the following integration rule for a 
multivariate Gaussian variable x Petersen and Pedersen (2008)
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we can integrate fc out of the joint distribution in  (A4) to obtain the following marginal 
likelihood

where Z2 is another constant w.r.t. fc, f1,… , fM , and

A.2 Conditional density of the consensus function

In this proof, we derive the conditional density distribution of the consensus function fc given 
the views. Consider again the general model with M views, i.e., {fm}Mm=1 . Each view is rep-
resented by a random variable connected only to the consensus function fc via an isotropic 
Gaussian potential as defined in  (A1). From  (A2),  (A11), the conditional distribution of fc 
given the views f1,… , fM is
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where the normalizing factor Z3 is a constant w.r.t. fc, f1,… , fM and

Using the definitions (A13), (A19) and (A20), ℵ can be rewritten as follows
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Thus, we can rewrite (A18) in its Gaussian form

Therefore,

Appendix B Experiment setup details

In this section, we provide the detailed setups for our benchmarking experiments. All 
experiments are run on NVIDIA GeForce GTX 1080Ti GPUs, using an Anaconda virtual 
environment installed with CUDA version 10.1, Python version 3.7.10 and Pytorch version 
1.7.0. In each experiment, all the competing methods are evaluated using the same train-
ing/validation/test split.

Experiment setup for DiCoM in UCI experiments:

•	 Network architecture: for DiCoM-N, fully-connected multilayer perceptron with hidden 
layers of size [100, 50, 50, 2]. For DiCoM-B, the backbone includes the first 3 hidden 
layers of size [100, 50, 50] and the branches include one hidden layer of size 2. Note 
that we are not counting the input and output layers.

•	 Parallelization: for DiCoM-B, we use group convolution in order to back-propagate 
through all branches simultaneously.

•	 Random seeds: 20, 40,… , 200 (10 seeds in total).
•	 Training: 2000 epochs with 250 epoch patience for early stopping (stop if no improve-

ment is observed on validation set for 250 consecutive epochs).
•	 Optimizer: Stochastic Gradient Descent with momentum 0.95 and weight decay 10−9 . 

Learning rate is 10−4 for ctslice and is 10−3 for other datasets.
•	 Augmentation: additive random Gaussian noise with mean 0 and standard deviation 

0.05 for DiCoM-N and 0.01 for DiCoM-B.
•	 Diversity hyperparameter search range: �div ∈ {0.01, 0.05, 0.1, 0.5, 1}.
•	 Consistency hyperparameter search range: �csc ∈ {0.01, 0.05, 0.1, 0.5, 1}.
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Experiment setup for DiCoM in ShanghaiTech experiment:

•	 Network architecture: CSRNet B (Li et al., 2018).
•	 Random seed: 9999 (only 1 seed).
•	 Training: 1000 epochs with no early stopping.
•	 Optimizer: Adam with weight decay 10−5 and learning rate 10−5.
•	 Augmentation: None.
•	 Diversity hyperparameter search range: �div ∈ {10−5, 10−4, 10−3}.
•	 Consistency hyperparameter search range: �csc ∈ {10−5, 10−4, 10−3}.

Experiment setup for DiCoM in C-MAPSS experiments:

•	 Network architecture: bi-directional LSTM (Ragab et al., 2020).
•	 Random seeds: 190, 210, 230.
•	 Training: 100 epochs with 60 epochs of early stopping.
•	 Optimizer: AdamW with weight decay 10−2 and learning rate 10−4.
•	 Augmentation: additive random Gaussian noise with mean 0 and standard deviation 

0.05.
•	 Diversity hyperparameter search range: �div ∈ {10−5, 10−2, 10−1}.
•	 Consistency hyperparameter search range: �csc ∈ {10−5, 10−2, 10−1}.

Experiment setup for competing methods in UCI experiments:
We follow the setup in  Jean et  al. (2018) for SSDKL, COREG, LP, VAE, MT and 

VAT, publicly available at: https://github.com/ermongroup/ssdkl. For ST-Tree and 
SSL-PCT, we follow the setup in Levatić et al. (2017, 2018). The setup details for each 
method are as follows:

•	 For SSDKL:

•	 Network architecture: Fully-connected multilayer perceptron with hidden layers 
of size [100, 50, 50, 2].

•	 Random seeds: 20, 40,… , 200 (10 seeds in total).
•	 Training: 2000 epochs.
•	 Optimizer: Adam with momentum 0.9, �1 = 0.9 , �2 = 0.999 . Learning rate is 10−4 

with decay rate of 0.9 every 50 epochs.
•	 Kernel: squared exponential kernel with �l = 1.0 , �f = 1.0 , �n = 1.5.

•	 For COREG:

•	 Random seeds: 20, 40,… , 200 (10 seeds in total).
•	 COREG parameters k1 = 3 , k2 = 3 , p1 = 2 , p2 = 5 , pool size is 100.

•	 For LP:

–	 Initialization: k-NN with k = 5.
–	 Kernel: squared Euclidean, search for �2 in a range of {0.8, 1.35, 1.9, 2.45, 3.0}.

•	 For VAE:

•	 Network architecture: Fully-connected multilayer perceptron with hidden layers 
of size [100, 50, 50, 2, 50, 50, 100].

•	 Random seeds: 20, 40,… , 200 (10 seeds in total).



2382	 Machine Learning (2023) 112:2359–2395

1 3

•	 Training: 2000 epochs.
•	 Optimizer: Adam with momentum 0.9, �1 = 0.9 , �2 = 0.999 . Learning rate is 10−3.

•	 For MT:

•	 Network architecture: Fully-connected multilayer perceptron with hidden layers of 
size [100, 50, 50, 2].

•	 Random seeds: 20, 40,… , 200 (10 seeds in total).
•	 Training: 2000 epochs.
•	 Optimizer: Stochastic Gradient Descent with momentum 0.95. Learning rate is 10−3.
•	 Augmentation: additive random Gaussian noise with mean 0 and standard deviation 

0.4.
•	 Exponential moving average parameter � = 0.999.

•	 For VAT:

•	 Network architecture: Fully-connected multilayer perceptron with hidden layers 
of size [100, 50, 50, 2].

•	 Random seeds: 20, 40,… , 200 (10 seeds in total).
•	 Training: 2000 epochs.
•	 Optimizer: Adam with momentum 0.9, �1 = 0.9 , �2 = 0.999 . Learning rate is 10−4 

with decay rate of 0.9 every 50 epochs.
•	 VAT parameters � = 2.0 , number of power iterations is 1.

•	 For ST-Tree:

•	 Ensemble method: random forest with 100 base-level trees.
•	 Number of semi-supervised learning iterations: 10.
•	 Unlabeled criteria: threshold. Unlabeled samples with confidence of prediction 

greater than threshold 0.8 are added to the training set.
•	 Other parameters are set at their default values.

•	 For SSL-PCT:

•	 Ensemble method: random forest with 100 base-level trees.
•	 Number of semi-supervised learning iterations: 10.
•	 Unlabeled criteria: automatic-OOB-initial. After the initial iteration, unlabeled 

threshold is automatically selected on the basis of reliability scores of out-of-bag 
labeled examples.

•	 Other parameters are set at their default values.

Experiment setup for competing methods in ShanghaiTech experiments:
In ShanghaiTech experiments, for DNCL and Co-Regression: We follow the setup 

in Zhang et al. (2019). Publicly available at: https://github.com/shizenglin/Deep-NCL. 
The setup details for each method are as follows:

•	 For DNCL:

•	 Network architecture: CSRNet B Li et al. (2018).
•	 Random seed: 9999.
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•	 Training: 1000 epochs with no early stopping.
•	 Optimizer: Adam with weight decay 10−5 and learning rate 10−5.
•	 Augmentation: None.
•	 DNCL correlation parameter � = 10−5.

•	 For Co-Regression:

•	 Network architecture: CSRNet B (Li et al., 2018).
•	 Random seed: 9999.
•	 Training: 1000 epochs with no early stopping.
•	 Optimizer: Adam with weight decay 10−5 and learning rate 10−5.
•	 Augmentation: None.
•	 Co-Regression pairwise-disagreement parameter � = 10−5.

Experiment setup for competing methods in C-MAPSS experiments:
In C-MAPSS experiments, for VAE, RBM and SelfSL: We follow the setup 

in  Krokotsch et  al. (2022). Publicly available at: https://github.com/tilman151/self-
supervised-ssl. The setup details for each method are as follows:

•	 For VAE:

•	 Network architecture: Encoder is a 1-D CNN with 6 hidden layers of size 64 each. 
Decoder network is a mirror of the encoder network.

•	 Random seeds: 190, 210, 230.
•	 Training: 200 epochs with 100 epochs of pre-training.
•	 Optimizer: Stochastic Gradient Descent with learning rate 10−4.

•	 For RBM:

•	 Network architecture: RBM with 1 hidden layer of size 64 and ReLU activation.
•	 Random seeds: 190, 210, 230.
•	 Training: 200 epochs with 5 epochs of pre-training.
•	 Optimizer: Adam with learning rate 10−4.

•	 For SelfSL:

•	 Network architecture: 1-D CNN (6 hidden layers of size 64) with an MLP predic-
tion head.

•	 Random seeds: 190, 210, 230.
•	 Training: 200 epochs with 100 epochs of pre-training.
•	 Optimizer: Adam with learning rate 10−4.

Appendix C Additional experiment results

Information of UCI datasets: The detailed statistics of the eight UCI datasets are given in 
Table 8.
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Additional experiment results on UCI datasets with labeling budget N = 300 : Please see 
additional results from Sect. 4.1 in Tables 9 and 10.

Additional experiment results on UCI datasets with labeling budget N = 100 : 
Using the same UCI datasets, we conduct experiments similar to the ones in Sect.  4.1 
with a smaller labeling budget of N = 100 samples. The results are provided in Fig.  8, 
Tables 11, 12, 13, 14 and 15.

Additional experiment results on ShanghaiTech dataset: The numerical results accom-
panying Fig. 6 are provided in Table 16.

Information of C-MAPSS dataset: The detailed statistics of the four C-MAPSS subsets 
are given in Table 17.

Additional experiment results on C-MAPSS datasets: For subsets FD002, FD003 and 
FD004, the plots of test results are provided in Figs. 9, 10 and 11.

Appendix D Additional experiment on toy data

We conduct an experiment on a synthetic toy dataset to illustrate how multi-view diversity 
and consistency work together to affect the training and inference of DiCoM-N.

Dataset: We synthesize a regression dataset where inputs x ∈ ℝ
30 and labels y ∈ ℝ

2 . 
The labels are related to the inputs by y = Ax + � , where A is a fixed 2 × 30 coefficient 
matrix and � ∼ N(0, 0.32I) . Each coordinate of x is drawn from the standard normal distri-
bution. We generate a training set of 100 labeled and 1000 unlabeled samples, and a hold-
out test set of 1000 labeled samples.

Experiment Setup: Our DiCoM-N model has M = 5 views, each uses a simple neural 
network with a single hidden layer containing two hidden nodes. We train the model 
with SGD for 50 epochs with a learning rate of 5 × 10−2 , then evaluate the mean-
squared-error (MSE) of the model on the test set.

Results: We keep �div = 1 and vary �csc on a log scale: �csc ∈ {0.01, 0.1, 1} . Both 
quantitative and qualitative results are shown in Fig.  12. We plot the training losses 
on the top row and visually show the predictions of each network on eight random test 
samples. On the left scenario (Fig. 12a) when 𝜅div ≫ 𝜅csc , the diversity loss dominates 
the consistency component. Even though the total loss converges on the training set, the 

Table 8   UCI regression datasets

Dataset No. of samples Input dim. No. of unique 
Label values

Prediction target

skillcraft 3325 18 7 Skill level of gamers (ordinal classification)
parkinsons 5875 20 1129 Unified Parkinson’s Disease Rating Scale 

(UPDRS) scores
elevators 16,599 18 61 Aileron control of F16 aircraft
protein 45,730 9 15,903 Physicochemical properties of protein tertiary 

structure
blog 52,397 280 438 Number of comments received within 24 hrs
ctslice 53,500 384 53,347 Relative location of the image on the axial axis
buzz 583,250 77 8123 Popularity of a topic in social media
electric 2,049,280 6 4186 Power consumption in one household per minute
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Table 10   Test RMSE of DiCoM-N on UCI Datasets with Varying Number of Views, N = 300

Dataset DiCoM-N-2 DiCoM-N-4 DiCoM-N-8

RMSE RMSE % Redc. 2 → 4 RMSE % Redc. 4 → 8

Skillcraft 0.313 ± 0.005 0.319 ± 0.025 − 1.917 0.304 ± 0.008 4.702
Parkinsons 2.285 ± 0.208 2.291 ± 0.355 − 0.263 2.200 ± 0.219 3.972
Elevators 0.145 ± 0.025 0.135 ± 0.020 7.187 0.125 ± 0.010 7.407
Protein 0.646 ± 0.031 0.636 ± 0.027 1.548 0.635 ± 0.029 0.157
Blog 0.930 ± 0.040 0.912 ± 0.030 1.935 0.897 ± 0.020 1.645
Ctslice 5.575 ± 0.606 6.233 ± 0.524 − 11.795 6.174 ± 0.587 0.947
Buzz 0.715 ± 0.136 0.688 ± 0.078 3.804 0.654 ± 0.041 4.942
Electric 0.114 ± 0.025 0.099 ± 0.008 13.132 0.095 ± 0.012 4.058
Average 1.704 3.479

Fig. 8   Test RMSE on UCI datasets: each subplot shows the results for one dataset, N = 100
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individual views’ losses do not, resulting in their large variance on test samples. This 
can be an issue if the DiCoM-N model contains a smaller number of views. On the other 
hand, the consistency enforcement is too strong on the right scenario (Fig.  12c). The 
individual views and the averaged output seem to have all collapsed into a single point. 
Where the models collapse to is limited by the individual networks’ capacity and may 
not necessarily be the global optimum for the averaged output. Finally, in the middle 
scenario (Fig. 12b), the effects of diversity and consistency losses are balanced, yielding 
a good trade-off. The averaged model output is able to perform better than each indi-
vidual view, and is also the best among three scenarios. These results also suggest that 
even though diversity and consistency are contradicting forces, they can still be applied 
simultaneously on the regression outputs to produce the desirable behaviours.

Table 12   Relative test errors (RRMSE, in %) on UCI datasets with labeling budget N = 100

Lower value indicates better performance
Bold values indicate the best performance for each setup

Dataset skillcraft parkinsons elevators protein blog ctslice buzz electric

SSDKL 79.81 44.72 77.97 94.88 104.74 56.33 44.94 15.72
COREG 79.85 52.81 91.37 96.17 98.99 57.50 41.25 36.55
LP 76.64 66.93 86.44 95.61 103.50 61.13 45.29 50.21
VAE 91.30 101.71 107.60 101.04 97.54 87.96 55.38 101.88
MT 99.18 85.59 115.03 97.03 103.22 79.07 88.77 86.94
VAT 100.66 102.14 111.67 100.43 105.39 81.59 80.80 97.21
ST-Tree 96.16 89.29 108.73 109.02 106.14 136.65 154.33 140.79
SSL-PCT 102.20 89.00 109.75 102.31 105.06 137.07 153.84 140.15
Supervised 125.17 99.10 183.65 106.22 99.46 98.73 101.13 109.17
DiCoM-N-2 75.95 34.05 76.76 88.53 95.66 47.84 41.56 19.20
DiCoM-B-2 73.22 42.25 83.07 86.47 92.60 53.72 48.42 31.97
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Table 14   Test RMSE of DiCoM-N on UCI datasets with varying number of views, N = 100

Dataset DiCoM-N-2 DiCoM-N-4 DiCoM-N-8

RMSE RMSE % Redc. 2 → 4 RMSE % Redc. 4 → 8

skillcraft 0.342 ± 0.011 0.349 ± 0.022 − 1.977 0.334 ± 0.018 4.250
parkinsons 3.580 ± 0.662 3.343 ± 0.394 6.610 3.250 ± 0.323 2.782
elevators 0.179 ± 0.030 0.171 ± 0.026 4.605 0.169 ± 0.028 1.185
protein 0.691 ± 0.021 0.681 ± 0.021 1.456 0.679 ± 0.024 0.294
blog 1.031 ± 0.055 0.975 ± 0.038 5.432 0.961 ± 0.053 1.436
ctslice 10.742 ± 0.629 11.164 ± 1.972 − 3.924 10.457 ± 1.109 6.333
buzz 0.836 ± 0.093 0.832 ± 0.083 0.447 0.796 ± 0.052 4.350
electric 0.185 ± 0.116 0.171 ± 0.059 7.650 0.137 ± 0.029 20.096
Average 2.537 5.091

Table 15   From DiCoM-N to DiCoM-B: Percentage reduction in test RMSE and execution time, N = 100

Dataset Test RMSE Execution time

M = 2 M = 4 M = 8 M = 2 M = 4 M = 8

skillcraft 3.503 − 1.323 − 10.419 − 72.882 18.200 59.470
parkinsons − 24.102 − 30.058 − 57.663 28.085 28.085 65.291
elevators − 8.069 − 13.635 − 20.037 − 11.291 37.481 37.481
protein 2.260 − 5.401 − 15.882 − 57.697 20.049 63.618
blog 3.219 − 4.069 − 11.128 23.903 23.812 56.539
ctslice − 7.157 − 6.599 − 45.748 22.144 42.888 77.162
buzz − 16.619 − 9.784 − 25.956 0.524 46.706 68.124
Average − 6.709 − 10.124 − 26.690 − 9.602 31.032 61.098

Table 16   Test results on ShanghaiTech

Supervised baseline DNCL Co-regression DiCoM-B-4

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

N = 30 297.45 551.68 250.91 360.66 224.63 344.46 ���.�� ���.��

N = 120 132.05 210.82 119.48 186.80 128.57 206.90 ���.�� ���.��

N = 210 107.76 165.91 104.00 165.97 103.20 165.04 ���.�� ���.��

Table 17   C-MAPSS remaining 
useful life subsets

Dataset FD001 FD002 FD003 FD004

No. of training engines 100 260 100 249
No. of training samples 17731 48558 21220 56815
No. of test engines 100 259 100 248
No. of test samples 100 259 100 248
Longest lifespan (cycles) 362 378 512 128
No. of operating conditions 1 6 1 6
No. of failure modes 1 1 2 2
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(a) (b)

Fig. 9   Test results on C-MAPSS FD002 dataset: a RMSE and b RUL-Score on log scale

(a) (b)

Fig. 10   Test results on C-MAPSS FD003 dataset: a RMSE and b RUL-Score on log scale

(a) (b)

Fig. 11   Test results on C-MAPSS FD004 dataset: a RMSE and b RUL-Score on log scale
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