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Abstract
This paper studies how counterfactual explanations can be used to assess the fairness of 
a model. Using machine learning for high-stakes decisions is a threat to fairness as these 
models can amplify bias present in the dataset, and there is no consensus on a universal 
metric to detect this. The appropriate metric and method to tackle the bias in a dataset 
will be case-dependent, and it requires insight into the nature of the bias first. We aim to 
provide this insight by integrating explainable AI (XAI) research with the fairness domain. 
More specifically, apart from being able to use (Predictive) Counterfactual Explanations to 
detect explicit bias when the model is directly using the sensitive attribute, we show that it 
can also be used to detect implicit bias when the model does not use the sensitive attribute 
directly but does use other correlated attributes leading to a substantial disadvantage for a 
protected group. We call this metric PreCoF, or Predictive Counterfactual Fairness. Our 
experimental results show that our metric succeeds in detecting occurrences of implicit 
bias in the model by assessing which attributes are more present in the explanations of the 
protected group compared to the unprotected group. These results could help policymakers 
decide on whether this discrimination is justified or not.
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1  Introduction

More and more, Artificial Intelligence (AI) is making decisions in high stakes domains 
of our life, such as employment, finance, justice, and healthcare. As the influence 
and scope of these decisions is increasing, there are growing concerns that the mod-
els making these decisions might unintentionally encode and even amplify human 
bias  (Corbett-Davies & Goel, 2018). This is why it is of huge importance to under-
stand the decisions models are making and to ensure they are fair. We focus on fairness 
in classification, where the goal is to prevent discrimination against people based on 
their membership of a sensitive group, without compromising the utility of the classi-
fier (Caton & Haas, 2020; Dwork et al., 2012).

Different automatic methods to deal with discrimination, however, make differ-
ent implicit assumptions about the nature of bias in the data and the right method to 
apply will be case-dependent and often policy-related  (Wachter et  al., 2021). Argu-
ably, the data scientist is not the right person to make this call. The necessity for the 
involvement of policymakers and legal scholars enlarges the need for an automated, 
data-driven procedure that can detect and assess the source of automated discrimina-
tion in predictive models to support decision making (Wachter et al., 2021). As other 
authors already argue  (Rudin et al., 2018), it is misguided to focus on fairness while 
not obtaining transparency first as it is not fair that life-changing decisions would be 
made without entitlement to an explanation.

In this paper we answer the call for more transparency in the fairness domain (Rudin 
et al., 2018; Wachter et al., 2021) by linking Explainable AI with fairness, using Coun-
terfactual Explanations. Counterfactual explanations form the basis of an important 
class of explainable AI methods (Adadi & Berrada, 2018), and a counterfactual expla-
nation of a data instance is defined as the smallest change to the instance so that it ends 
up with a different classification outcome. We name our metric PreCoF, which stands 
for Predictive Counterfactual Fairness. PreCoF finds counterfactual explanations for 
each sensitive group by assessing for each of the attributes whether changing it to one 
of the default values would result in a class change. It identifies the attributes that are 
proportionally more present in the explanations of the protected group compared to 
the unprotected group. This term is not to be confused with Counterfactual fairness as 
we will explain in Sect. 2.3.1. The goal of PreCoF will not be to provide yet another 
calculation on the output of a decision making system but to shed light on underlying 
patterns for the discrimination in the model, so that policymakers can decide how to 
handle this appropriately.

A first example of something our metric is able to detect can be seen in the Adult 
Income dataset: the attribute marital status is the attribute that is proportionally the 
most present in the explanations of women compared to men. This offers additional 
insights into the model so that policymakers can decide whether this is a pattern that 
can be kept in the model or if the model should be modified. The results of the other 
datasets are also in line with patterns that we know to be present based on literature or 
through further analysis of the datasets.

It is important to highlight that our metric will make statements about the model but 
not about the underlying data. We expect them to reflect underlying patterns in the data 
but it is possible that two different machine learning models trained on the same data 
will give very different results.
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2 � Background

Machine learning algorithms pose a threat to fairness as they can amplify bias present in 
the dataset, but at the same time, they can also be leveraged to diminish this same bias. 
Humans are inherently biased, and there is arguably no way to verify to what extent this 
influences their decision-making. The bias of machines however, can be checked and this 
is why metrics such as the one proposed in this paper, hold great promise. In this paper, 
we use the term bias to describe the situation in which sensitive groups are substantially 
disadvantaged by an algorithm or model. Bias can seep into a model when it is trained 
on biased data, following the famous garbage in, garbage out principle about how flawed 
input data will result in flawed output  (Geiger et  al., 2020). There are different ways in 
which a dataset can contain bias: An example of this is label bias, which occurs when 
the ground truth and the observed outcome differ: this pattern can be seen in the criminal 
justice system where blacks are more likely to get arrested for minor offenses which taints 
the dataset (Corbett-Davies & Goel, 2018). Subgroup validity happens when the predictive 
power of features varies across groups. Furthermore, it is also possible that the training 
data is not representative of the whole population, which can lead to underperformance 
of the model in certain minority groups  (Corbett-Davies & Goel, 2018). An example of 
this is image classification where programs have more difficulty classifying the gender of 
dark-skinned individuals due to the relative shortage of dark-skinned faces in facial data-
sets (Buolamwini & Gebru, 2018). There exist other kinds of biases that can emerge in the 
model but we will not enumerate them further. Programmers are not writing biases in their 
code on purpose; these biases emerge when the algorithms are trained on data, mimicking 
the biases that were already present in the data (Johnson, 2021).

Legislation is attempting to use a ‘colorblind’ approach that ignores socially-sensitive 
features, which is misguided to begin with  (Johnson, 2021). The idea here is that you 
remove the bias from the dataset by removing the discriminatory attributes from it. How-
ever, in any sufficiently rich dataset, proxy variables will likely exist that closely correlate 
with the sensitive attributes (Kim, 2017) so just removing them will not work. The most 
famous example of this practice is ‘redlining’, where zip codes are used as a proxy for 
race in lending decisions. Removing all the attributes that are correlated with the sensi-
tive attribute is not a good solution either (Kamiran & žliobaitÿe, 2013); in some cases, all 
attributes will be correlated with the sensitive attribute, or some of the correlated attributes 
are too informative to remove (e.g., field of study is correlated with gender but too impor-
tant to remove in hiring decisions).

We make the distinction between explicit bias, when the model involves direct use of 
the sensitive attribute, and implicit bias, when there is a neutral attribute that substantially 
disadvantages the protected group. These are also called direct and indirect discrimination 
respectively. Indirect discrimination is arguably the most likely type of discrimination to 
arise from automated decision making due to the reliance of these system on inference and 
proxies of target variables and protected attributes (Wachter et al., 2020).

Many scholars see value in judging discrimination with common sense (Doyle, 2007), 
however, this is often ineffective in cases of indirect discrimination, especially when 
the relation between the protected attribute and the neutral attribute is not straightfor-
ward  (Wachter et  al., 2021). Intuition might fail us because it cannot be assumed that 
automated systems will discriminate in ways similar to humans or follow their patterns of 
discrimination: new and counterintuitive proxies for traditionally protected attributes can 
emerge but will not necessarily be detected (Wachter et al., 2021). If such an attribute is 
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found that substantially disadvantages the protected group, this is not necessarily a prob-
lem: some attributes can be justified, depending on the context of the case and the rel-
evant legislation. Justified indirect discrimination occurs when the ‘proportionality test’ 
is passed, meaning that the attribute is both legally necessary and proportionate (Wachter 
et  al., 2020). PreCoF is developed to fit in this mindset: can we find the attributes that 
explain why sensitive groups are more often predicted with a negative outcome? This can 
then lead to a discussion about these attributes being justified or not.

There are three main responses when such a bias is detected: First, one can do nothing 
and allow the bias to be amplified; second, fix the technical bias but maintain the soci-
ety status quo and make sure that the machine learning does not make the society more 
biased which is called a bias preserving approach (Wachter et al., 2020). A third option is 
what are called bias transforming metrics and these aim to actively account for historical 
inequalities (Wachter et al., 2020). The adequate response will depend on the situation at 
hand, but doing nothing will in our opinion never be the right call.

2.1 � Fairness metrics

There is no universal definition of fairness, which greatly complicates our research ques-
tion. Some define fairness as fairness through unawareness (Pedreshi et al., 2008), which 
establishes fairness through removing the sensitive attributes from the dataset. However, 
this is not always possible as sometimes sensitive attributes are needed to make predic-
tions. Even when the sensitive attribute is not directly relevant to the prediction task, corre-
lated variables (e.g., race from zip code in the United States) make such a “blind” approach 
less efficient to counter discrimination (Fryer et al., 2008). Other often-used fairness met-
rics include individual fairness  (Dwork et al., 2012), which states that similar individuals 
should be treated similarly, demographic parity (Calders et al., 2009) (which is also called 
disparate impact  (Feldman et al., 2015) or statistical parity  (Dwork et al., 2012)) which 
minimizes the absolute difference in outcome distributions of all groups, equalized oppor-
tunities  (Hardt et  al., 2016), which optimizes towards equal positive rate conditional on 
the target outcome and equalized odds (Hardt et al., 2016), which optimizes towards equal 
positive and negative rate conditional on the target outcome.

Demographic parity, equalized odds and equal opportunity are all group-based crite-
ria, which are more suited to statistical analysis (Ritov et al., 2017) but can be very unfair 
from the point of the individual (Dwork et al., 2012): it provides protection for groups but 
not for specific individuals in those groups and we tend to care more about protection for 
individuals  (Fleisher, 2021). It also does not provide protection against phenomena like 
cherry-picking.1 Even more problematic, many of the group fairness metrics are mutually 
incompatible, which means it is impossible to satisfy all of them at the same time (Klein-
berg et al., 2016; Verma & Rubin, 2018). This has as a consequence that the detection of 
discrimination can be ‘gamed’ through choosing the right fairness metric (Wachter et al., 
2021). It has been shown that all these metrics suffer from deep statistical limitations and 

1  Cherry picking refers to members of sensitive groups being randomly chosen, or chosen for malicious 
reasons as a way to undermine members of those groups (Dwork et al., 2012; Fleisher, 2021) An example 
of this in college applications could be when the majority group is carefully screened, and the same number 
of applicants is randomly selected from the minority group. This is not fair for hard-working members of 
the minority group that will not get admitted, but would be compatible with a variety of group fairness cri-
teria (Fleisher, 2021).
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that they can even negatively impact the well-being of the groups they are trying to pro-
tect  (Corbett-Davies & Goel, 2018). Individual Fairness is more strict than any group-
notion fairness as it imposes a restriction on the decision for each pair of individuals. It 
also forbids a variety of discriminatory practices like explicit discrimination, implicit dis-
crimination, redlining and tokenism (Fleisher, 2021). It can also detect cases of discrimi-
nation that various group fairness criteria miss like cherry-picking. However it is hard to 
define a metric function to measure the similarity of two inputs (Fleisher, 2021; Kim et al., 
2018). A last metric is Counterfactual Fairness (Kusner et al., 2017), which is more related 
to our metric and will be discussed in Sect. 2.3.1.

All the metrics that are conditional on the target outcome such as equalized odds and 
equal opportunity are bias preserving, which means that they will preserve historical 
biases and just ensure that the machine learning model will not amplify these biases or 
insert new bias into the system  (Wachter et  al., 2020). They share the idea that the bias 
present in the target labels is meant to be there (Wachter et al., 2020). Demographic Parity, 
Individual Fairness and Counterfactual Fairness are bias transforming metrics. PreCoF 
is aimed to be a bias transforming metric, but it offers the transparency and flexibility for 
policy makers to decide this for each situation at hand. Choosing an appropriate metric can 
have political, legal and ethical implications and should be subject to more consideration 
and justification than is currently the case (Wachter et al., 2020). The previously discussed 
fairness metrics are not well suited to answer normative and legal questions on how the 
discrimination in the model should be handled and might ultimately prove to be irrelevant 
in court (Wachter et al., 2021).

2.2 � Conditional fairness metrics

In practice, there often exists a certain set of attributes on which we deem it fair to dis-
criminate (Xu et al., 2020). An example of such an attribute is the department choice in the 
Berkeley’s graduate admission problem, where there allegedly was a bias against female 
applicants as they had a lower admission rate then male applicants (Xu et al., 2020; Pearl, 
2009). After conditioning on department choice, this was no longer the case (Pearl, 2009). 
Conditional fairness is a more sound fairness metric where the outcome variables should 
be independent of sensitive variables conditional on these fair attributes (Xu et al., 2020). 
There exist various methods to implement conditional fairness such as explainable discrim-
ination  (Kamiran et  al., 2013; Wachter et  al., 2021) or conditional demographic dispar-
ity (Wachter et al., 2021). They have the point of view that some differences in decisions 
across sensitive groups can be explainable and hence tolerable (Kamiran et al., 2013). For 
example, in job applications the education level of a candidate can be such an explainable 
attribute (Kamiran et al., 2013).

The underlying fairness metrics in explainable discrimination and conditional demo-
graphic disparity are a bit different but they are based on the same principle  (Kamiran 
et  al., 2013; Wachter et  al., 2021): Kamiran et  al. (2013) measure the discrimination as 
the difference in positive rates between two sensitive groups: the discrimination that 
remains after subtracting the discrimination that can be explained by using the conditional 
attribute (explainable discrimination) is the illegal discrimination. Wachter et  al. (2021) 
define demographic disparity as the difference in proportion of people from the protected 
group with a favorable and an unfavorable outcome. Conditional demographic disparity 
(CDD) follows the same principle but adds a conditional attribute: a decision-making sys-
tem has no conditional discrimination if, after conditioning on this attribute, the decisions 
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are statistically independent of the sensitive attribute (Wachter et al., 2021). However, in 
both methods, it is not clear how the attributes on which conditional fairness is calculated 
are chosen: searching over all combinations of attributes would be prone to finding false 
positives  (Wachter et  al., 2021). Developers can be inclined to choose favorable condi-
tions (Wachter et al., 2020) and it should not be up to them to choose these variables, but 
this should be fixed externally by law or domain experts (Kamiran et al., 2013). The selec-
tion of these conditional attributes becomes confusing and debatable as people might not 
agree about which combinations are reasonable (Kamiran et al., 2013). Furthermore, the 
conditional attributes are not necessarily the attributes that are used by the model. In large 
datasets, conditional variables might exist such that the data can be stratified in groups in 
such a way that there is no conditional demographic disparity, while that conditional vari-
able is not even a factor used in the model. We will show this in Sect. 4.3.1.

We agree with the point of view that part of the discrimination can be explainable by 
other attributes, but our goal is to shed light on which attributes are making up the dis-
crimination in the model so that policymakers can decide whether these are justified or not. 
Is it fair to use GPA in law admissions schools even though it is often biased against ethnic 
minorities? Is it desired to trade accuracy for fairness in crime recidivism prediction as this 
can result in a higher crime rate overall? Which biases are socially acceptable and can be 
maintained? Which actions are appropriate for a specific case? These are all questions that 
should be answered case by case in an open and transparent debate.

2.3 � Related metrics

2.3.1 � Counterfactual fairness

In recent years, fairness-aware machine learning has been studied from the causal per-
spective using causal modelling  (Pearl, 2000). In line with this research, Kusner et  al. 
(2017) define Counterfactual Fairness as a notion of fairness derived from Pearl’s causal 
model (Pearl, 2000) where for an individual the prediction of the model is considered as 
fair if it is the same in the real world as it would be if the individual would belong to a 
different demographic group (Kusner et al., 2017; Wu et al., 2019). To measure this, they 
make explicit assumptions about the causal relationships in the data. One way for a predic-
tor to be counterfactually fair is if it is a function of only non-descendants of the sensi-
tive attribute, so this will be different depending on the chosen causal model. The biggest 
drawbacks of this methodology are that you need to make some untestable assumptions for 
such a causal model and that it is not scalable (Xu et al., 2020). It assumes that the causal 
relations between variables in a dataset are known, while in reality this is not the case. 
Furthermore, the legal frameworks that govern discrimination in multiple countries do not 
require a causal relationship with the protected attribute, so Counterfactual Fairness may 
fail to identify occurrences of legally actionable discrimination (Black et al., 2020). Several 
other authors also propose a causal approach to detect various forms of discrimination in 
a dataset (Bonchi et al., 2017; Schölkopf, 2017) but they suffer from the same drawbacks.

2.3.2 � Counterfactual fairness (bis)

Sokol et  al. (2019) already showed how counterfactual explanations can be used to 
check individual fairness. They consider an instance to be treated unfairly if that instance 
received the undesirable label and there exists a counterfactual explanation for that instance 
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that includes at least one protected attribute change  (Sokol et  al., 2019). We follow this 
approach when we use counterfactual explanations to identify explicit bias for an individ-
ual. On top of that, we also show that aggregating these counterfactual explanations can 
give more insights about the patterns of explicit bias in the algorithm.

2.3.3 � CERTIFAI

CERTIFAI  (Sharma et  al., 2019) is a tool that can be applied to any black-box model 
to assess its fairness. It uses a custom genetic algorithm to generate counterfactuals and 
examines the explanations to assess the model’s fairness, both on an individual and on 
a group level. The fitness of an individual is defined as the inverse distance between the 
input instance and its counterfactual. For an individual, if we allow the sensitive attributes 
to change, and the fitness goes up (distance to the counterfactual becomes smaller: desired 
outcome is more easily achieved), then the individual could claim the model is treating 
them unfairly. This tool can also be used to audit fairness on a group level: if the average 
fitness values of generated counterfactuals are lower for women than for men, this could 
be used as evidence that the model is not treating women fairly (Sharma et al., 2019). This 
tool is different from how we use counterfactual explanations as we will focus on the spe-
cific attributes and attribute values that occur in the explanations of both groups and not on 
the distance to the counterfactual instance.

2.3.4 � Fairness in algorithmic recourse

The literature on algorithmic recourse has focused on finding “an actionable set of changes 
a person can undertake in order to improve their outcome” (Joshi et al., 2019; Karimi et al., 
2021). Algorithmic recourse poses its own fairness criteria, where the effort to reach the 
required outcome is taken into account. If individuals from the protected group have to 
work harder than similar individuals from another group to achieve the desired outcome, 
then the concept of equal opportunity is violated (von Kügelgen et al., 2022). This notion 
of unfairness is not captured by predictive notions and is in line with CERTIFAI, as they 
both focus on the difference in effort different individuals have to make. To be able to 
find an ‘actionable’ set of changes, most authors assume, at least partial, causal knowl-
edge. However, as in Sect. 2.3.1, the reliance on causal information creates practical issues 
that may limit its applicability (Black et al., 2020). As we are not necessarily interested in 
actionable counterfactuals, our method will not rely on causal assumptions about the data-
generating process. We explain this further in Sect. 4.5.

2.3.5 � FlipTest

FlipTest is a fairness testing approach, that also does not rely on causal information, but 
instead uses an optimal transport mapping to detect whether a model’s behavior is sensi-
tive to changes in the protected status (Black et al., 2020). Simply changing the protected 
attribute is not sufficient due to correlations in the data. Therefore, a transport map trans-
ports one probability distribution into another, for example women into men, in order to 
have a pair of inputs with which to query the model. An optimal transport map is used to 
minimize the sum of distances between a woman and the man she is mapped to (her coun-
terpart), where the distance quantifies the difference between them. FlipTest analyzes the 
cases where the classifiers’ output is different between the woman and her counterpart, 
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as these are individuals that might be harmed because of their group membership. Like 
FlipTest, PreCoF also aims to shed light on why the model is treating a certain subgroup 
differently but it uses a different method: it does not require to approximate an optimal 
transport mapping and does not depend on the distance function that is used to construct 
the mapping.

3 � Counterfactual explanations as the solution

PreCoF aims to explain the discrimination in a predictive classification model, and cre-
ate transparency regarding which attributes are the most discriminatory between different 
sensitive groups. This insight can then be used for subsequent discussions and decisions 
by law or domain experts on which attributes are justified and which attributes will just 
behave as proxies for the sensitive attribute. An example of Wachter et al. (2021) shows 
how some attributes can be valid in one case but not in another: when reviewing résu-
més for a firemen position, height can be deemed a valid discriminator but it seems highly 
unlikely that this will be the case when reviewing résumés for a CEO position (there it will 
just serve as a proxy for gender).

We agree with Wachter et al. (2021) that fairness is contextual: it is not possible to cre-
ate a system that automatically detects and corrects discriminatory models as each case 
should be handled differently. What is needed is an ‘early warning system’ that provides 
transparency in automated discrimination (Wachter et al., 2021) which is what we aim to 
supply.

As Rudin et al. (2018) also state: it is arguably unfair to have life-changing decisions 
being made by a system without having any insights into the decisions, which brings us 
to the field of Explainable AI (XAI). XAI research aims at explaining how an AI sys-
tem reached its decision  (Gohel et  al., 2021). XAI can enhance transparency as well as 
fairness as it provides explanations that can be understood and as such show bias that is 
present (Gohel et al., 2021; Sokol & Flach, 2021). There exist different sorts of explana-
tion procedures for understanding predictive models, both on the global level as on the 
instance-level. Global explanations provide understanding of the complete model over the 
entire space of training instances and include methods like rule extraction (Craven & Shav-
lik, 1995; Martens et al., 2007) and global feature importance rankings (Breiman, 2001). 
Instance-based explanations aim to explain the model for an individual instance. Sev-
eral types of instance-based explanations exist but the most popular model-agnostic ones 
(which means that they are applicable to any predictive model) are Counterfactual Expla-
nations (Martens & Provost, 2014; Wachter et al., 2017), and feature importance methods 
on the instance-level like LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee, 2017). 
We want to assess fairness on the individual level so we will look at instance-based expla-
nation methods, and we will focus on Counterfactual Explanations as they are better suited 
for our task than LIME or SHAP: the latter explain a prediction score rather than a decision 
so if we talk about unfair decisions, Counterfactual Explanations are better suited as they 
focus on the treatment an individual received  (Fernandez et al., 2020). We focus on fair 
decision making, but in the case we want to assess fair scoring, SHAP values can be used 
in the same set-up. We present the results when using SHAP values instead of counterfac-
tual explanations in Sect. 2. Our main argument that more insight is needed in the nature of 
the bias before deciding on a method to handle it, remains valid for both XAI techniques.
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Assume we have a dataset D that consists of n instances and m attributes, where 
the attribute value of attribute j of an instance i is denoted by xij with i ∈ {1, 2, ..., n} , 
j ∈ {1, 2, ...,m} . The model M will make a decision, which is either a favorable (+, e.g. 
hired, credit granted) or a unfavorable (-, e.g. not hired, credit rejected) outcome.

A counterfactual c of a factual instance xi is an instance for which:

and

So the counterfactual is another instance, while the counterfactual explanation is the dif-
ference between the two: ∣ c − xi ∣ . As mentioned in Sect. 2.3, other metrics also use coun-
terfactual explanations to assess fairness. However, our metric will be different as it does 
not need to assume a causal graph (Kusner et al., 2017), and does not use the distance to 
the counterfactual like Sharma et  al. (2019), but will look at the actual explanations of 
decisions instead. Furthermore, we will use counterfactual explanations not only to show 
explicit bias, as done by Sokol et al. (2019), but also to get insights into the implicit bias, 
which is arguably the more challenging problem.

An advantage of also looking at implicit bias over explicit bias is that it deals with rules 
or patterns of behaviour, and as such can reveal underlying social inequalities and uncover 
structural unfairness in an algorithm (Wachter et al., 2021). Direct discrimination is sim-
pler to detect: the action that is alleged to be discriminatory must explicitly refer to a pro-
tected characteristic while for indirect discrimination it is more difficult: a neutral attribute 
or criterion must be shown to substantially disadvantage the protected group, despite not 
explicitly addressing it (Wachter et al., 2021; Zliobaite, 2015).

4 � Methodology

4.1 � Materials

In this study, we focus on tabular datasets, mostly used in fairness-aware machine learning 
research (Le Quy et al., 2022). We use datasets from the financial (Adult Income dataset), 
criminological (Catalonia Juvenile dataset, Crimes and Communities dataset) and the edu-
cational (Student performance dataset, Law admission dataset) domain. All the datasets in 
this study are publicly available. More information about each dataset can be found in the 
Appendix.

4.2 � Explicit bias

As already highlighted by Sokol et al. (2019), counterfactual explanations can be used to 
highlight explicit bias in a decision-making model, by searching for explanations that con-
tain the sensitive attribute. We detect explicit bias by searching for counterfactual explana-
tions that consist only of the sensitive attribute.

M(�i) ∈ {+,−}

M(xi) ≠ M(c)

d(xi, c) is minimal
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Assume we have a dataset D with sensitive attribute S, where the sensitive value is s, 
and the non sensitive value is ns. The group with sensitive value s is also called the pro-
tected group and the group with sensitive value ns is also called the unprotected group. The 
dataset consists of n instances xi , with m attributes, where the attribute value of attribute j 
for instance i is denoted by xij with i ∈ {1, 2, ..., n} , j ∈ {1, 2, ...,m} . The index of the sensi-
tive attribute is z. The model M will make a decision, where we denote + as the favorable 
outcome and − as the unfavorable outcome.

A decision for the factual instance xi that has a negative predicted outcome: M(xi) = −, 
is deemed to be unfair (explicit bias) if there exists a counterfactual instance c , for the 
instance xi that satisfies:

This means that the instance c that only differs from x with respect to the sensitive attrib-
ute receives a different classification from our prediction model M. An example of such 
an unfair explanation could be: “If you would not have been a woman, you would have 
received the loan.”

This analysis on the individual level could also be aggregated and as such, show pat-
terns in the model. We aggregate the explanations by calculating how many people of each 
group receive such an explanation. How many negatively predicted persons from each sen-
sitive group would have received a positive outcome, simply by changing their sensitive 
attribute? Which categories of the sensitive group experience explicit bias the most?

Machine learning models can also suffer from fairness gerrymandering; when there are 
different sensitive groups, the classifier can be fair for each individual group but can dis-
criminate against structured subgroups (Kearns et al., 2017). Imagine we have two sensi-
tive attributes: race and gender. When analyzing the explicit bias in the model, it is pos-
sible that no explanations are found with gender or race, but only with a combination of the 
two attributes (e.g., "If you would not have been a black woman, you would have received 
the loan."). Our method can take this into account by searching for all explanations that 
contain a combination of the sensitive attributes.

4.3 � Implicit bias

We will use the same terminology as in Sect. 4.2, but now we will remove the sensitive 
attribute from the dataset before training the model; We will name this new dataset D′ . 
This dataset will consist of n instances x’i with m − 1 attributes, where the attribute value 
of attribute j for instance i is denoted by x′ij with i ∈ {1, 2, ..., n} , j ∈ {1, 2, ...,m}⧵z . We 
also have access to the original dataset D, where the sensitive attribute for each instance is 
still available under index z.

What our metric aims to measure, is how much more often a certain attribute is respon-
sible (part of the counterfactual explanation) for a negative outcome decision for members 
of the protected group, compared to members of the unprotected group. So if changing 
height from short to tall is 100 times part of the counterfactual explanation for a non-hire 

xiz ≠ cz(the counterfactual instance has a different value for the sensitive attribute)

∀j ∈ {1, 2, ...,m} ⧵ z ∶

xij = cj(except for the sensitive attribute, the factual and counterfactual instance are identical)
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decision for 100 women (‘if your height would have been tall instead of short, you would 
have been hired’) (100%), and only 10 times of the counterfactual explanation for a non-
hire decision for 100 men (10%), PreCoF will output 90% for the attribute height. We then 
show the features (and feature values) with the highest PreCoF.2

More formally, we test for every instance xi with an unfavorable outcome for every 
attribute j whether changing them to one of the default values results in a counterfactual 
explanation E. We use a set of default values as we will not test every possible attribute 
value: for numerical attributes or very sparse categorical attributes, this will not be feasi-
ble. We select a set of default values, which for numerical attributes are the values of each 
decile. For categorical attributes, we take the most frequent (max 10) values that are at 
least present in 1 percent of the training set. If no attribute value is present in more than 1 
percent of the training set, we will just take the 10 most occurring values.

Afterwards, we look at all negatively affected members of the protected group, and see 
how relatively often we can find a counterfactual explanation that consists only of attribute 
j. This relative number, we call CoF(j, s). Similarly, we measure how often this attribute 
is part of the explanation for the unprotected members with negative outcome: CoF(j, ns). 
Our final metric PreCoF(j) simply calculates the difference between these two.

The mathematical definition for PreCoF is thus as follows (where the counterfactual 
explanation that leads to counterfactual instance c can only consist of a single attribute j 3):

Our metric also allows us to look at the exact feature values of the factual and counter-
factual instances. A difference here is that we only compare the categorical values as the 
numerical values are often too sparse to give us insights about the patterns in values. We 
define PreCoFf  and PreCoFc:

These are calculated in the same way as CoF, but CoFf  will output how often each 
attribute value is present as part of the factual instance and CoFc will output how often 
each attribute value is present as part of the counterfactual instance. PreCoFf  and PreCoFc 
again calculate the difference for CoFf  and CoFc between the protected and the unprotected 

CoF(j, s) =
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PreCoF(j) = CoF(j, s) − CoF(j, ns)

PreCoF1 = Attribute j such that j = argmax
∀j∈{1,2,…,m}�z

PreCoF(j)

2  Like explained in Sect. 4.2, the protected group can also be a combination of multiple sensitive attributes. 
PreCoF can take this into account by comparing the explanations of this subgroup (e.g., black women) with 
the rest of the population.
3  More formally, a counterfactual explanation e that only consists of attribute j means that the counterfac-
tual explanation c satisfies:

M(c) = +

x�
ij
≠ cj

∀h ∈ {1, 2, ...,m} ⧵ [j, z] ∶ x� ih = ch
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group, and PreCoFf1 and PreCoFc1 will be the attribute values for which respectively 
PreCoFf  and PreCoFc are maximal out of all possible attribute values.

By also looking at the specific feature values in the factual and counterfactual instances, we 
can get more insights into the social patterns in the model. Examples of this can be seen in the 
results in Sects. 5.1, 5.2, and 5.4. Our metric is thus able to give us insights into the implicit 
bias of a prediction model, without the prediction model even having access to the sensitive 
attribute.

4.3.1 � Toy example

We will illustrate the use of this metric with a simple toy example.
A machine learning model is trained on this toy dataset in Table 1 after removing the sensi-

tive attribute (gender). Assume the following simple rule-based model:
If School = School2 or IQ = low, predict Fail; else predict Pass
The predicted outcome by this model can be seen in the last column of the table. This 

model scores an accuracy of 80 % but predicts more girls to fail than boys, even though in the 
dataset there are less girls that fail than boys.

We calculate the demographic disparity of our simple rule-based classifier:

This metric just tells us that there is a difference in predicted outcome between boys and 
girls, but tells us nothing about why discrimination occurs and gives policymakers no clues 
on how to handle this. If the reason for this difference in predicted outcome is that the 
rejected girls have on average a lower IQ, and this is used by the model to predict that they 
will fail more often, then this could be a justified reason for a difference in positive rate, 
while for other attributes this will not be the case. This shows that group fairness metrics in 
general are not well suited to answer legal or normative questions as they will not provide 
any reasoning behind the metric.

In this small example, inspired by the Student Performance dataset, it is straightforward to 
see which attribute is inducing this bias. The model has learned that School2 is associated with 
bad grades which disproportionally affects the female students. We will use this toy example 
to show that the PreCoF metric is able to detect this variable and as such give insights into 
why the discrimination occurred.

Demographic disparity = P(ŷ = + ∣ M) − P(ŷ = + ∣ F) = 2∕5 − 1∕5 = 1∕5

Table 1   A toy example Row Gender School Hobby IQ True
Grade

Predicted
Grade

1 M School1 Basket High Pass Pass
2 M School1 Football High Pass Pass
3 M School1 Football Low Fail Fail
4 M School2 Football High Fail Fail
5 M School2 Basket Low Fail Fail
6 F School2 Dance High Fail Fail
7 F School2 Dance High Fail Fail
8 F School2 Music High Pass Fail
9 F School2 Dance High Pass Fail
10 F School1 Music High Pass Pass
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When using the PreCoF metric, we get the following results:

We calculate the attribute for which the difference between the protected (F) and the unpro-
tected group (M) is the largest:

We then use the PreCoF metric to also detect the feature values causing the differences:

PreCoF1 will be School as this is the attribute that is proportionally the most present in the 
explanations of the protected group (girls), compared to the unprotected group (boys). As 
will be discussed in Sect. 5.4, this will also be the case in the real dataset and could have 
implications in various areas such as college admissions, where girls could be incorrectly 
rejected because of the school they went to.

This toy example also shows that this metric will not necessarily point to the vari-
ables that are the most correlated with the sensitive attribute. Hobby is the most corre-
lated with gender here, but it will not come out of the PreCoF metric as the model is not 
using this variable.

This toy example also allows us to highlight the difference of our metric with con-
ditional fairness metrics; we show the difference by using the formulas of discrimina-
tion of Kamiran et  al. (2013). For an explainable attribute E, which could in theory 
be any attribute from the dataset, Kamiran et al. (2013) consider dividing the database 
according to the possible values e1,… , ek of E. For each of the values ei they compute a 
theoretical probability P∗

(
ŷ = + ∣ ei

)
 of being in the positive class by taking the mean 

P(ŷ=+ ∣ ei ,s)+P(ŷ=+ ∣ ei,ns)
2

 , assuming that if this probability of being in the positive class 
differs between the protected and unprotected group, the truth must be in the middle. 
Based on this per-group estimate, they compute what would be the unbiased positive 
class probability for the protected group as follows: 

∑k

i=1
P(ei ∣ s)P

∗(ŷ = + ∣ ei) . The for-
mula for the unprotected group is the same. Hence, the explainable difference between 
the two communities then becomes:

The illegal discrimination then becomes the part of the discrimination that cannot be 
explained by the attribute E:

where Dall is equal to the demographic disparity:

CoF(School,F) = 4∕4, CoF(IQ,F) = 0, CoF(Hobby,F) = 0,

CoF(School,M) = 1∕3, CoF(IQ,M) = 1∕3, CoF(Hobby,M) = 0

PreCoF1 = School (CoF(School,F) − CoF(School,M) = 2∕3,

which is larger than 1/3 and 0)

PreCoF1f = School2

PreCoF1c = School1

Dexplainable(E) =

k∑

i=1

P(ei ∣ s)P
∗(ŷ = + ∣ ei) −

k∑

i=1

P
(
ei ∣ ns

)
P∗

(
ŷ = + ∣ ei

)

=

k∑

i=1

(
P(ei ∣ s) − P(ei ∣ ns)

)
P∗

(
ŷ = + ∣ ei

)

Dillegal(E) =Dall − Dexplainable(E),
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which is 1/5 for our toy dataset as calculated above.
With these formulas we get:

Similarly we can compute Dillegal(School) = −2∕15 , and Dillegal(IQ) = 28∕75.
This example shows that according to the explainable discrimination measure of 

Kamiran et al. (2013), variable (Hobby) could justify the discrimination, while the model 
is not even using this attribute. This shows the key difference with conditional fairness 
and our metric: we look at the factors that could change the decision of the model and 
where these factors differ the most between sensitive groups, while conditional fairness 
will search for a way to create stratified groups that satisfy a fairness metric.

4.4 � Machine learning model

The machine learning model used for our experiments is a Random Forest model, 
tuned through five-fold cross-validation. The parameter grid that is used is 
[10, 50, 100, 500, 1000, 5000] for the number of trees and [10, 100, 500, n] for the maxi-
mum number of leaf nodes.

To measure the explicit and implicit bias we split each dataset in a training and test set, 
train the machine learning model on the training set, and then assess the accuracy and fair-
ness on the test set. We generate all the counterfactuals to assess the explicit bias as well as 
the implicit bias on the test set. For each dataset we compare three situations: the accuracy 
and fairness of the model trained with the sensitive attribute (1), the accuracy and fairness 
of the model trained without the sensitive attribute (2) and the accuracy and fairness of the 
model without the sensitive attribute and PreCoF1 (3). We expect the accuracy to go down 
and the fairness to go up going from situation 1 to situation 3 but the exact trade-off may 
differ per dataset. We calculate the fairness by measuring the demographic disparity, which 
is also equal to Dall.

4.5 � Counterfactual methodology

As described in Sects. 4.2 and 4.3, we do not use an existing counterfactual explana-
tion method but develop one ourselves to check for every attribute whether it results in 
a class change. We use this approach instead of an existing counterfactual explanation 
method to constrain our method to check every attribute, and hence we have a guarantee 
that any attribute that more often results in a class change for one group than for another 
is found.

There exist plenty of counterfactual explanation methods already, and they can lead to 
different explanations as the optimization problem is set up in a different way (Bordt et al., 
2022). Even a single counterfactual explanation method could lead to a large number of 
explanations, where the choice of parameters (e.g., the distance metric) could determine 

Dall = P(ŷ = + ∣ ns) − P(ŷ = + ∣ s),

Dexplainable(Hobby) =(2∕5 − 0) × 1∕2 + (3∕5 − 0) × 1∕3 + (0 − 3∕5) × 0

+ (0 − 2∕5) × 1∕2

=1∕5, giving Dillegal(Hobby) = 0.
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which explanations are returned first. This abundance of explanations is not desirable in 
an adversarial context, as the adversary (in this case the model developer) has consider-
able freedom to choose which explanation it would return and as such hide bias (Irvine 
et al., 2020; Bordt et al., 2022). This is why we use our own counterfactual explanation 
method: it will not rely on any input parameter that can be manipulated, and neither it will 
depend on which explanations are returned first as it will check all the attributes, even 
after several possible explanations are already found. This approach is needed to make 
tangible statements about whether there is explicit bias, or whether attributes are more 
often present in the explanations of one group than the other. A drawback of our method is 
that we limit ourselves to explanations with one feature only, as we do a complete search.

Note that in spite of this reasoning, we did also compare the results found with our 
counterfactual explanation method with the results when using NICE (Brughmans & Mar-
tens, 2021) as counterfactual explanation method. We see that in general the same patterns 
are found, i.e. the same direction of explicit bias and the same PreCoF attributes, but that 
our method is better to detect all cases of explicit bias and is better suited to make robust 
statements about the occurrence of each attribute.

Several works list actionability and plausibility (adherence to data manifold) as desir-
able properties of counterfactual explanations  (Guidotti, 2022; Karimi et  al., 2021; 
Verma et  al., 2020, 2021). These are two distinct concepts where the former restricts 
actions to those that are possible to do, and the latter requires that the resulting counter-
factual instance is realistic or in line with the data manifold  (Karimi et al., 2021). We 
will not take these two properties into account, which is out of line with the algorithmic 
recourse literature: focusing on actionability and plausibility can actually decrease the 
ability of our metric to detect bias. After all, our goal is not to look for realistic and 
actionable advice but to show how the model might be discriminating. For example, the 
counterfactual explanations to change your race or gender are not actionable, however, 
they are valuable to show explicit bias in the model. Wachter (2022) shows that when 
immutable characteristics form the basis for decision-making, the decision is likely to 
be based on undue stereotyping and protection should be offered. That is exactly what 
we seek to find, while allowing both actionable and immutable features to occur in the 
explanations. Likewise, imagine a dataset for hiring decisions where all the men are tall 
and all the women are small: if we want plausible counterfactual explanations, women 
cannot receive the explanation that they should be taller because this will be out of the 
data manifold. However, in our case, this is, once more, exactly what we are interested in 
to detect implicit bias.

Fig. 1   Difference in PreCoF for men and women in the Adult Income dataset
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5 � Results

5.1 � Adult Income dataset

When looking at the positive rate of both men and women in Table 2, we see that men 
have a higher positive rate both before and after removing the sensitive attribute. When 
we investigate the explicit bias of the model (and train the model with the sensitive 
attribute), we see that the explanation: ‘If you would have been a man, you would have 
been predicted to have a high income’ is present 13 times, while the reverse explana-
tion (‘If you would have been a woman, you would have been predicted to have a high 
income’) is only present once. Afterwards, we investigate the implicit bias of the model 
trained without the sensitive attribute. When we compare the explanations between men 
and women in Fig. 1a, we see that women more often receive the explanation marital-
status. When we look at the exact feature values of the explanations received in Fig. 1b, 
so the value of that feature they should change to in order to receive a favorable out-
come, we see that the explanations Marital status: Married to a civilian spouse and 
Relationship status: Husband are much more prevalent for women than for men. The 
latter clearly is a proxy, as we see in Fig. 2b, that this value is only present for men. As 
we see in Fig. 2a, the value Marital status: Married to a civilian spouse is also present 
more often for men than for women. Whether marital status is a reasonable attribute to 
explain the difference in income between men and women, is not for us to decide.

We see in Table  2 that the demographic disparity becomes even larger when we 
remove the sensitive attribute, which is an example of one of the cases where removing 
the sensitive attribute hurts the protected group. When we also remove PreCoF1 (mari-
tal status) it decreases slightly but still remains very large.

5.2 � Catalonia Juvenile dataset

We first use our metric to detect explicit bias in the model trained with the sensitive attrib-
ute. There are 7 foreigners (out of 28) that receive the explanation: ’If you would have 

Fig. 2   Relationship between sex and the attributes marital status/relationship
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been a local, you would have been predicted to not reoffend’ and the reverse case never 
happens. We also see in Table  3, that there is a large demographic disparity in Situation 
1 (the model trained with the sensitive attribute). When we remove the sensitive attribute, 
the demographic disparity goes down but foreigners (Estrangers) are still disadvantaged as 
they are more likely to be predicted to reoffend by our model, compared to locals (Espag-
nols). When we look at the explanations in Fig. 3a, we see that national group is much 
more present in the explanations of foreigners than in the explanations of locals. As can 
be seen in Fig. 4b, this is a clear proxy for foreign status and should also be deleted when 
race attributes are not allowed. When we zoom in on the feature values in the explana-
tions in Fig. 3b, we also see which values of national group occur most in the explana-
tions. We see that foreigners are proportionally most likely to receive the explanation to 

Table 2   Accuracy and fairness metrics for the model trained on on the Adult Income dataset

Situation 1
 Model with  sensitive 
attribute

Situation 2
 Model without sensitive 
attribute

Situation 3 
Model without 
sensitive attribute
 and PreCoF1

Demographic 
disparity

(Positive rate 
unprotected group 
- positive rate 
protected group)

0.170 (0.242−0.073) 0.171 (0.242−0.071) 0.168 (0.236−0.068)

Accuracy of the 
model

86.28% 86.23% 86.30%

Fig. 3   Difference in PreCoF for foreigners and locals in the Catalonia Juvenile dataset

Table 3   Accuracy and fairness metrics for the model trained on the Catalonia juvenile dataset

Situation 1
 Model with sensi-
tive attribute

Situation 2
 Model without 
sensitive attribute

Situation 3
Model without 
sensitive attribute 
and PreCoF1

Demographic disparity (Positive rate 
unprotected group  - positive rate 
protected group)

0.175 (0.897−0.723) 0.119 (0.812−0.752) 0.010 (0.78−0.772)

Accuracy of the model 71.98% 72.37% 70.82%
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change to national group: Spanish in comparison with locals, as it is a proxy for being 
local. Other national groups that often occur are Altres and Europa. When we look at the 
values occurring most often in the factual instances that receive such a class change in 
Fig. 4a, the national groups Central and South America and Magrib are among the most 
present. Hence, in this case, PreCoF succeeds in flagging proxy attributes which could be 
very helpful for deciding which attributes should be omitted from models.

We see in Table 3 that the demographic disparity goes down when removing the sensi-
tive attribute, but nevertheless still remains quite large. When we also remove PreCoF1 
(national group), the demographic disparity almost disappears. The accuracy also goes 
down when removing this attribute but only slightly.

5.3 � Crime and communities dataset

We find no cases of explicit bias in the model trained with the sensitive attributes. Next, 
we train a model without the sensitive attribute and assess the implicit bias. We see in 
Table 4 that the not-black communities in the test set are never predicted to be a violent 
community so their positive rate is 100 %. Black communities are predicted to be violent 
in around 4.5% of the cases. We hence have only explanations for the protected group, so 
we will just see which explanations were the most present for this group. In Fig. 5a, we 

Fig. 5   Crime and Communities dataset: analysis

Fig. 4   Catalonia Juvenile dataset: analysis
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observe that the attribute PctIlleg, which is the percentage of kids born to people who were 
never married, is the most present. When we look at the distribution of this attribute for 
black and non-black communities in Fig. 5b, we indeed see that this percentage tends to be 
higher for black communities. Research on other models trained on this dataset also find 
this to be an important predictor of both the target value (violent community) as well as the 
sensitive attribute (black community)  (Le Quy et al., 2022). When we assess the other top 
attributes in PreCoF, we notice that the four first are related to families with both parents 
being present, or being married. Earlier research already argued that marriage is linked to a 
reduction in crime (Sampson et al., 2006).

We also see in Table 4 that the demographic disparity goes down when we remove the 
sensitive attribute. It does not go down when we remove PreCoF1 , which makes sense as 
the PreCoF1 attribute here (PctIlleg) is very correlated with other attributes of the dataset 
such as NumIlleg.

5.4 � Student performance dataset

We see in Table 5 that our classifier predicts girls to be less likely to have a positive 
label compared to boys. Although they have on average a higher score than boys, they 
are more often predicted to fail in every situation. We might get some insights into 
this phenomenon by looking at how the explanations differ for both groups. We see in 
Fig. 6a that the attribute school is present more often in the explanations for girls and in 
Fig. 6b that they receive the explanation to change to school GP more often. Depending 
on what the machine learning model is used for, this kind of analysis could give very 
important insights. If this model would be used, for example, to determine whether the 
students would be successful in university and should be admitted, this analysis shows 
that girls could be disadvantaged compared to boys because of the school they went to. 
When we look at the explicit bias in the model trained with the sensitive attribute, boys 
are biased against: there are three boys that receive the explanation: ’If you would have 
been a girl, you would have been predicted as scoring above average instead of below’ 
and the reverse does not happen. This example shows that explicit bias and implicit bias 
can work in opposite ways.

We analyse the relations of the attribute school. We see in Fig. 7b that for both boys 
and girls, their average score is higher if they went to school GP: for girls their average 
score on school GP is 13 and on school MS 11.03, while for boys the average score on 
school GP is 12.03 and on school MS 9.95. The average score of girls is also higher 
independent of school: on average girls have a score of 12.25 and boys of 11.41. When 
researching this attribute, we see in Fig. 7a that girls more often go to school MS which 

Table 4   Accuracy and fairness metrics for the model trained on the Crime and Communities dataset

Situation 1 Model with  
sensitive attribute

Situation 2 Model 
without sensitive 
attribute

Situation 3Model 
without  sensitive 
attribute  and  
PreCoF1

Demographic disparity (Positive rate 
unprotected group  - positive rate 
protected group)

0.045 (1−0.955) 0.035 (1−0.965) 0.035 (1−0.965)

Accuracy of the model 84.97% 85.14% 84.81%
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has a lower average score, so they receive the explanation to change to school GP, which 
has a higher average score, more often. So due to the importance of the attribute school 
in the machine learning model, they are predicted to fail more often than boys while 
their true outcome is to fail less. The importance of the school you go to in a machine 
learning model to predict grades reminds of a recent case in England in 2020, where 
an algorithm designed to predict grades for A-level exams amidst COVID-19 increased 
the predicted grades at small private schools but lowered the grades at larger, state-
run schools that have a larger proportion of minority students  (Wachter et  al., 2020). 
In terms of accuracy, this model performed well but as a result high performing stu-
dents from ‘good schools’ received high marks, whereas highly performing students 
from ‘bad schools’ had their marks capped by the lower performance of classmates and 
got a lower mark than deserved (Wachter et al., 2020). This system was not biased on 
purpose: it was the ignorance of the social bias that led to the technical bias in this sys-
tem (Wachter et al., 2020).

We compare the accuracy and fairness of the three situations in Table 5: We see that 
the accuracy of the model goes down after removing attributes, however only slightly. 
We see that the demographic disparity increases after removing the gender attribute, 
which makes sense as girls on average scored better but are disadvantaged by the school 
they go to: this effect will become even larger if gender information is removed. There 
is explicit bias against boys, but implicit bias against girls through the neutral attribute 
school. If we remove PreCoF1 School, the demographic disparity will decrease again but 

Fig. 6   Difference in explanations for boys and girls in the Student performance dataset

Fig. 7   Student performance dataset: analysis
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not until the first level. This situation shows that as mentioned in literature already (Cor-
bett-Davies & Goel, 2018) and as seen in other datasets, removing the sensitive attribute 
can increase the discrimination in the dataset.

5.5 � Law admission dataset

When we look at the explicit bias, we see that there are 45 instances in the test set that receive 
the explanation: ‘If you would have been white, you would have been predicted as admitted 
to pass the bar’ and only 3 the other way around, which shows that the model that is trained 
with the sensitive attribute exhibits explicit bias. This also shows that the model is non-linear 
and both parties can receive such explanations. When we train the model without the sensi-
tive attribute here, we see in Fig. 8a that the only attribute that is relatively more present in the 
explanations of Non-Whites compared to Whites, is the lsat score. The fact that almost all the 
attributes are relatively more present in the explanations of the unprotected group means that 
the rejected individuals in this group are closer to the decision boundary: Changing only one 
attribute more often leads to a change in outcome, while for the protected group more attrib-
ute changes are necessary. It is not surprising that lsat scores pop up as PreCoF1 as it is often 
said that test scores such as GPA and LSAT are racially biased: white test-takers consistently 
score higher than minority test-takers (White, 2000) and there have been calls for law school 
admission committees to deemphasize reliance on LSAT scores and to develop new method-
ologies to assess the skills of each applicant (Hill, 2019). When we look at Fig. 8b, we indeed 
see that the average score of the LSAT is higher for Whites compared to Non-Whites.

When we compare the accuracy and fairness of the three situations in Table 6, we see 
that the accuracy decreases when removing the sensitive attribute and PreCoF1 . When 
removing the sensitive attribute, the demographic disparity decreases slightly but after 
removing PreCoF1 , it decreases substantially. The question can be asked here whether we 
deem it fair that there is a difference in positive rate based on LSAT scores: are these objec-
tive scores or are they already biased in se?

6 � Discussion

In this study, we use counterfactual explanations to shed light on which discrimina-
tion occurred in models trained on some well-known datasets, both in terms of explicit 
and implicit bias. Our experiments reveal that removing PreCoF1 , will decrease the 

Table 5   Accuracy and fairness metrics for the model trained on the Student Performance Dataset

Situation 1
 Model with  
sensitive attribute

Situation 2
Model without  
sensitive attribute

Situation 3
Model without 
sensitive attribute 
and PreCoF1

Demographic disparity
(Positive rate unprotected group
- positive rate protected group)

0.043 (0.610−0.566) 0.115  (0.646−0.531) 0.066 (0.659−0.593)

Accuracy of the model 73.85% 71.28% 70.26%
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demographic disparity in a model, but we want to highlight that this is not the main purpose 
of our metric. It is possible that removing other attributes will decrease the demographic 
disparity even more as it is not the goal of the PreCoF metric to find that variable that 
would make the demographic disparity the smallest. Our purpose is not to give members 
of a protected group an advantage by giving them a better outcome (Wachter et al., 2020), 
but rather to shed light on which attributes resulted in a different outcome and jump-start 
a discussion on whether they are based on historical inequalities or are justified discrimi-
nators. The fairness results (i.e., the decrease in demographic disparity) simply show that 
removing the PreCoF1 variable will result in a smaller difference in positive rate between 
the protected and the unprotected group, which can be a desirable outcome in some cases.

What does our technique add compared to other fairness metrics?
Fairness will depend on context-dependent judgements, so it is dangerous to treat the 

quantitative fairness metrics discussed in Sect. 2.1 as black-box fairness measures (Corbett-
Davies & Goel, 2018). Using group metrics for fairness can abstract away more subtle issues 
that are too difficult to operationalize or to decide upon algorithmically (Yeom & Tschantz, 
2021). There is not one criterion that can ensure fairness in all cases, and when a model 
fails on a fairness metric, this should lead to an investigation as to why this happens (Yeom 
& Tschantz, 2021). We also confirmed that just removing the sensitive attribute is not a 
viable approach as it can even amplify the discrimination of the model, and thus harm the 
group it was supposed to protect (Corbett-Davies & Goel, 2018). Demographic Parity can 
detect whether the model is treating the sensitive groups differently when the model does 
not directly use the protected attribute but correlated one(s), but it does not consider whether 

Fig. 8   Law Admission dataset: analysis

Table 6   Accuracy and fairness metrics of the model trained on the Law Admission dataset

Situation 1
Model with   
sensitive attribute

Situation 2
 Model without  
sensitive attribute

Situation 3
Model without 
sensitive attribute 
and  PreCoF1

Demographic disparity
(Positive rate unprotected group
- positive rate protected group)

0.159 (0.994−0.835) 0.143 (0.990−0.847) 0.075 (0.987−0.912)

Accuracy of the model 89.94% 89.82% 89.63%
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there is sufficient justification for a disparity of outcomes (Yeom & Tschantz, 2021). Other 
tests that do take the ground truth into account such as equalized odds also just examine the 
disparities but not how they were reached (Yeom & Tschantz, 2021).

We do not state that removing PreCoF1 to decrease the demographic disparity will 
be a universal solution to tackle the discrimination in a dataset. We just showcased 
that it is a possible approach. Our point of view is that this should be decided case 
by case: is this attribute a justified discriminator? Does it just behave as a proxy? Is 
it warranted to sacrifice accuracy for extra fairness? Is a difference in positive rate a 
problem when the true outcomes also differ per sensitive group or an accepted conse-
quence? Do the observed outcomes accurately reflect the real world? This last question 
is related to the two worldviews that Friedler et al. (2016) suggested, namely the ‘We 
are all equal’ worldview and the ‘What you see is what you get’ worldviews. These are 
all questions that should be answered for each case individually, and our metric can help 
to decide upon them. The benefits of building more fair models could be very large, as 
fair machine learning models could dramatically improve the equality of consequential 
decisions (Corbett-Davies & Goel, 2018).

7 � Future research and limitations

There are limitations to our metric, which at the same time pose opportunities for future 
research. The patterns detected by this metric will only be trustworthy if both groups in 
the test set are large enough. Therefore, we do not include the German Credit dataset 
into our experiments, as this is a very small and imbalanced dataset. The number of 
individuals with a bad outcome in each sensitive group in the test set will be so small 
that it is not possible to draw conclusions from them.

Furthermore, in the COMPAS Juvenile dataset we detect an interesting pattern; every 
attribute is relatively more present in the explanations of the not African-American 
group than in the African-American group. This pattern occurs because the ‘rejected’ 
individuals (individuals which are predicted the unfavorable outcome by the machine 
learning model) in the former group are on average closer to the decision boundary than 
the individuals in the latter group: for the latter, one attribute change will less often 
be enough to result in a class change. This is related to the fairness notion of CERTI-
FAI (Sharma et al., 2019) and algorithmic recourse (von Kügelgen et al., 2022), where 
the effort of both groups to reach the desired target outcome is taken into account. Our 
metric only looks at univariate changes for now but this could be expanded to changes 
of two or more attributes in future research.

In our experiments, we focus on the rejected individuals. Another interesting research 
avenue would be to focus on the misclassified rejected individuals and see what are the 
most occurring explanations for both sensitive groups. This could be a possible avenue 
to improve the model and reduce misclassifications.

Lastly, this study only takes tabular datasets into account but it will be valuable to 
analyze this on text and behavioral datasets, as they are very sparse. For some tabu-
lar datasets, we know what we can expect as proxies, however for behavioral datasets 
like Facebook likes, this might not be very intuitive. This will be the focus of our next 
research.
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8 � Conclusion

Fairness literature in AI has already revealed that AI creates new challenges for detecting 
discrimination: automated discrimination is less intuitive, subtle and intangible  (Wachter 
et al., 2021). As the algorithmic world will make complex decisions without any reasoning 
behind them, it will be challenging to detect whether you are treated fairly. It is misguided 
to focus on fairness while not obtaining transparency first (Rudin et al., 2018). We aim to 
provide this transparency by providing a tool that can shed light on: how often explicit bias 
in the decision making model occurs for each subgroup, and which factors are a cause of 
the implicit bias in the decision making model in each subgroup.

Appendix A: Used datasets

UCI Adult dataset

The Adult Income dataset,4 or ’Census Income’ dataset contains information extracted 
from the 1994 census data with as target variable whether the income of a person exceeds 
$50,000 a year or not. We use it to assess whether there are gender or race inequalities pre-
sent in people’s annual incomes (Asuncion & Newman, 2007). The Adult dataset contains 
48,842 instances with 14 features. As is common in literature, we drop the features Fnlwgt 
as it does not convey a meaning to its values, EducationNum as it has the same meaning 
as Education and NativeCountry as it has a lot of missing values. We use the features Age, 
Workclass, Education, Marital-status, Occupation, Relationship, Race, Sex, CapitalGain, 
CapitalLoss and HoursPerWeek. The sensitive attributes in this dataset are Race and Sex. 
For our experiments we use Sex as the protected attribute. The favorable outcome in this 
dataset is having an income that exceeds $50,000 a year, the unfavorable outcome is having 
a yearly income below $50,000.

Catalonian Juvenile Dataset

This dataset5 consists of juvenile offenders who were incarcerated in the juvenile justice 
system of Catalonia and who were released in 2010 (Miron et al., 2021). Their recidivism 
behavior was observed between 2010 and 2015. SAVRY is a tool developed in 2003 which 
predicts recidivism (Miron et al., 2021). We build a model on most of the individual and 
criminological variables as in Miron et al. (2021),6 but we also include the variables that 
are used in the SAVRY risk scores such as History of self harm, Delinquent peer group,... 
Our dataset contains 855 instances with 22 attributes. The target variable in this dataset is 
Recid, which is whether the offender has re-offended or not. The favorable outcome here is 
that there is no recidivism, the unfavorable outcome that there is. The sensitive attributes 
in this dataset are Foreigner, Sex and National Group of the offenders, but for our experi-
ments we use Foreigner as protected attribute.

4  https://​github.​com/​Epist​asisL​ab/​pmlb/​tree/​master/​datas​ets/​adult
5  https://​github.​com/​nkund​iushu​ti/​savry/​blob/​master/​dat/​reinc​idenc​iaJus​ticia​Menors.​csv
6  https://​github.​com/​nkund​iushu​ti/​savry/​blob/​master/​Savry_​Fair.​ipynb

https://github.com/EpistasisLab/pmlb/tree/master/datasets/adult
https://github.com/nkundiushuti/savry/blob/master/dat/reincidenciaJusticiaMenors.csv
https://github.com/nkundiushuti/savry/blob/master/Savry_Fair.ipynb
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Crime and communities dataset

This dataset7 contains 1994 samples of socio-economic data from the United States. There 
are 127 attributes in this dataset, but we delete all attributes related to state, race or crime, 
except for the target variable, so that 91 attributes remain. The target variable is whether 
the attribute ViolentCrimesPerPop is above a certain treshold, which then constitutes a vio-
lent community. In line with literature, we also add the attribute Black in order to divide 
the communities in black and non-black communities when the attribute racepctblack is 
above a certain threshold (Kamiran et al., 2013; Le Quy et al., 2022). The protected attrib-
ute here is Black.

Student performance dataset

This dataset8 consists of 649 students and 30 attributes from a Portuguese high school (Cor-
tez & Silva, 2008). The attributes of the dataset contain information about the background 
of the students and their social activities. As commonly done (Hamoud, 2016), we delete 
the results from the first and the second grade (G1,G2) as they are very heavily correlated 
with the final grade (G3). The target variable is scoring above average on their final exam 
of Portuguese, where the favorable outcome is that you score above average and the unfa-
vorable outcome that you score below average. The protected attribute in this dataset is 
Sex.

Law admission dataset

This dataset9 contains a Law School Admission Council (LSAC) survey conducted across 
163 law schools in the United States in 1991 (Wightman, 1998). The dataset consists of 
20,798 students and the following attributes: decile1b,decile3b, lsat, ugpa, zfygpa, zgpa, 
fulltime, fam_inc, male, tier, race and pass_bar. The target variable is whether the student 
will pass the bar exam or not. The protected attribute in this dataset is Race: 92.1% of 
white students pass the bar exam, while this ratio in non-white students is only 72.3%.

Appendix B: PreSHAPF

Alternative XAI techniques can also be employed to investigate the presence of implicit 
bias in a machine learning model. In this section, we use SHAP values as a means of 
examining disparities between two sensitive groups. The results can differ as SHAP values 
focuses on variations in prediction scores, rather than on decisions (which basically is the 
combination of a prediction score and threshold). SHAP values are a computationally effi-
cient way to calculate Shapley values, which are defined as the average marginal contribu-
tion across all possible coalitions (Lundberg & Lee, 2017).

SHAP attributes to each feature the change in the expected model prediction when con-
ditioning on that feature and thus reveals the extent to which each feature contributes to the 

7  https://​github.​com/​taile​quy/​fairn​ess_​datas​et/​blob/​main/​exper​iments/​data/​commu​nities_​crime.​csv
8  https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​stude​nt+​perfo​rmance
9  https://​github.​com/​taile​quy/​fairn​ess_​datas​et/​blob/​main/​exper​iments/​data/​law_​school_​clean.​csv

https://github.com/tailequy/fairness_dataset/blob/main/experiments/data/communities_crime.csv
https://archive.ics.uci.edu/ml/datasets/student+performance
https://github.com/tailequy/fairness_dataset/blob/main/experiments/data/law_school_clean.csv
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prediction score, either positively or negatively (Lundberg & Lee, 2017). As with PreCoF, 
we focus on the negatively affected members of both the protected and the unprotected 
group. We compare the mean SHAP values in both subgroups and PreSHAPF (Predictive 
SHAP Fairness) will reveal for which features the difference between both subgroups is the 
largest.10 There are two main differences between PreCoF and PreSHAPF: First, PreCoF 
focuses on the decisions made by the model, while PreSHAPF focuses on the prediction 
scores. Second, PreCoF returns features (and PreCoFc the feature values for the categorical 
features), while PreSHAPF will always return feature values for the categorical features.

PreCoFvs PreSHAPF

The results for the datasets used in this paper can be found in Fig. 9. For each dataset, we 
calculate PreSHAPF as the discrepancy in mean SHAP values between both subgroups. As 
demonstrated in Fig. 9, the most salient patterns detected with PreCoF are also present in 
PreSHAPF, however, slight variations are observed as they measure distinct phenomena.

As depicted in Fig.  9a, the two features with the largest difference in PreSHAPF, 
namely relationship: 0 and marital-status: 2, correspond to the feature values with the 
highest value in PreCoFc , as can be seen in Fig. 1b. These features, on average, negatively 
impact the prediction score of women (to be predicted to have a high income) compared 
to men. The other top features are different between PreCoF and PreSHAPF. In Fig. 9b, 
we observe that the feature national group: Spanish, which was the PreCoFc attribute in 
Fig. 3b, is the feature value with the highest value in PreSHAPF. For foreigners, this fea-
ture, on average, has a larger positive impact on the prediction score (to be predicted to 
recidive) compared to locals. However, in Fig. 3b, we see that the other values for national 
group, namely Altres and Europa, are also high ranked in PreCoF, but they are not among 
the top features in PreSHAPF. As illustrated in Fig. 9c, the features with the highest Pre-
SHAPF value are the same as the PreCoF attributes (PctIlleg, PctKids2Par, PctFam-
2Par, NumIlleg) in Fig. 5a in a slightly different order. Figure 9d shows that both values 
of School have the highest value in PreSHAPF. These attributes (on average) negatively 
impact the prediction score (to be predicted a good student) of girls compared to boys This 
is in line with the results of PreCoF, as School was the PreCoF attribute in Fig. 6a, but the 
other attributes differ. In Fig. 9e, we observe that all features, on average, have a negative 
impact on the prediction score (to be predicted to pass the bar) of Non-Whites compared to 
Whites. The two features for which this discrepancy is the largest are zgpa and lsat, which 
were also the two attributes with the largest value in PreCoF in Fig. 8a.

Overall, we notice that the global patterns seem consistent over PreCoF and PreSHAPF. 
However, the less important features can vary strongly, which shows that PreCoF and Pre-
SHAPF function differently. When we change the threshold of the machine learning classi-
fier trained on these datasets, the results of PreCoF will strongly change (for some thresh-
olds, all of the top features are different), while this will have no effect on the results of 
PreSHAPF. We add a supplementary illustration which shows the effect of the decision 
threshold on PreCoF and PreSHAPF in Sect. 2.

10  We use the SHAP package TreeExplainer to calculate the SHAP values (as we are explaining a random 
forest) (Lundberg et al., 2020) We use the group difference plots provided by SHAP to graph the difference 
in mean SHAP values between the two subgroups (Lundberg et al., 2020).
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PreCoF versus PreSHAPF on a transparent model

To further demonstrate the functionality of PreCoF and its distinction with SHAP values, 
we present an additional illustration using an existing churn dataset set.11 This dataset aims 
to predict whether a bank customer will churn or not, where the unfavorable outcome is 
that the customer will attrite, and the favorable outcome that the customer will remain 
loyal. The dataset does not contain a sensitive attribute, but we artificially introduce this 

11  https://www.kaggle.com/datasets/syviaw/bankchurners.

Fig. 9   PreSHAPF 
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aspect to the dataset, randomly assigning half of the instances the gender of male and half 
of the instances the gender of female. In contrary to our previous experiments, we use an 
interpretable decision tree (with a restricted number of 7 leaf nodes) to provide insight into 
the model’s functioning and to facilitate a comparison of how counterfactual explanations 
and SHAP values detect bias within the model.

To investigate the implicit bias, we add a proxy that is correlated with the target out-
come and gender. This action is likely to result in the model picking up this biased pattern, 
even after we remove the sensitive attribute (gender) and may result in gender discrimi-
nation in the model’s predictions. As in our previous experiments to detect implicit bias, 
we remove the sensitive attribute (gender) from the data, split the data into a training and 

Fig. 10   Additional illustration with a transparent machine learning model to show the difference between 
PreCoF and PreSHAPF 
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test set, and fit a machine learning on the training set. However, in this scenario, we use a 
simple decision tree, as opposed to a Random Forest model, to compare the results from 
PreCoF and PreSHAPF with the actual model, as depicted in Fig. 10a.

These results clearly illustrate how counterfactual explanations and SHAP values func-
tion differently. The proxy has a large impact on the prediction score, but will not have 
an effect on the decision for any of the instances (both leaf nodes after the biased feature 
split result in the same outcome as the threshold is 0.5). When using PreSHAPF, we see in 
Fig. 10c that the feature with the largest value is proxy. This makes sense, as we see in the 
decision tree, that it has a large effect on the prediction score and we know that it is cor-
related to gender. On the other hand, in Fig. 10b, PreCoF does not report this feature as it 
does not change the decision for any of the instances. If the threshold of the machine learn-
ing classifier changes to 0.7 or 0.8, PreCoF does report proxy as the top feature.

These results indicate that both SHAP values and counterfactual explanations are well-
suited to identify patterns of indirect discrimination, but that they measure distinct phe-
nomena. Their outcomes may vary as counterfactual explanations focus on decisions and 
SHAP values on prediction scores. In this paper, we use counterfactual explanations as our 
focus is on the actual decisions people receive, but using SHAP values is a good alternative 
when the focus is on fair scoring (for example with a varying or unfixed threshold). Our 
main argument that a deeper understanding of the nature of the bias is necessary before 
deciding on a method to address it, remains valid when using both XAI techniques. Finally, 
our experiments further confirm that both PreCoF and PreSHAPF are detecting bias in the 
model, and not in the underlying data. If a biased feature is added to the dataset but not 
picked up by the model, neither PreCoF or PreSHAPF will show this biased feature.
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