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Many methods to explain black-box models, whether local or global, are additive. In this paper, we study global additive
explanations for non-additive models, focusing on four explanation methods: partial dependence, Shapley explanations adapted
to a global setting, distilled additive explanations, and gradient-based explanations.We show that different explanationmethods
characterize non-additive components in a black-box model’s prediction function in different ways. We use the concepts of
main and total effects to anchor additive explanations, and quantitatively evaluate additive and non-additive explanations.
Even though distilled explanations are generally the most accurate additive explanations, non-additive explanations such
as tree explanations that explicitly model non-additive components tend to be even more accurate. Despite this, our user
study showed that machine learning practitioners were better able to leverage additive explanations for various tasks. These
considerations should be taken into account when considering which explanation to trust and use to explain black-box
models.
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1 INTRODUCTION
Whether explicitly or implicitly, many model explanation methods, whether local or global, require characterizing
the impact of a particular feature on the machine learning model’s prediction function. Many of these explanations
are additive, explaining model predictions by adding up the impact of different features. For example, Shapley
additive explanations [45], a local feature importance method, consists of Shapley values that add up to the
prediction for a particular point. LIME [53] fits a locally linear – hence locally additive –model in the neighborhood
around the point, with the weights from the linear model describing how features impact the prediction.
However, when a model’s prediction function has non-additive components, there is no one unique additive

explanation that can perfectly characterize it [28]. Even when models only have additive components, but different
components are correlated [2], there is no one unique additive explanation. This has been demonstrated in several
practical settings; Orlenko and Moore [49] simulated genetic datasets with non-additive epistatic interactions
of different complexity, finding that while feature importance measures, including SHAP, were able to identify
genes with the largest independent main effects, different feature importance measures did not judge genes
involved in non-additive interactions similarly. Lengerich et al. [41] found on the MIMIC-III dataset that the
feature-prediction relationship for blood urea nitrogen (BUN), a feature that participated in a large number of
discovered interactions, was significantly altered after performing a procedure proposed in their paper to move
main effects out of interaction terms.
Hence, we are left with a conundrum – when there exists multiple additive explanations that look different

from each other, how do we know which additive explanation method to trust and use?
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We study this question from several angles in this paper. First, we show how several popular additive explanation
methods – partial dependence [23], Shapley additive explanations [45], distilled additive explanations [63], and
gradient-based additive explanations – differentially characterize main effects of features in the presence of
non-additive interaction effects that involve these features, or correlation between features. We use the concepts
of main and total effects (related to marginal plots [29]), to anchor these additive explanations, and show how each
of them distributes interaction effects in a different way. Secondly, we quantitatively compare different additive
explanations on several regression and classification tasks, finding that distilled explanations are generally the
most accurate additive explanations (unsurprisingly, since their training optimizes for faithfulness to the black-box
model) and that non-additive explanations that explicitly model interactions tend to be the most accurate over all.
Despite these considerations, our investigations in this paper find that non-additive explanations are not a

panacea. In a user study we performed to evaluate the interpretability of additive explanations compared to
non-additive explanations that may not suffer from these same considerations, we found that machine learning
practitioners were able to leverage additive explanations for various tasks, neither trusting the explanation less
due to perceived oversimplification (as in the case of linear explanations) or being overwhelmed by the complexity
of the explanation (as in the case of large decision trees).
The contributions of this paper are:

• Proposing distilled additive explanations. While distilled tree-based explanations have been proposed in
the literature [19], additive models had not been tried as distilled students, and additive explanations were
typically learned using permutation-based approaches such as partial dependence or Shapley values. Our
paper presents insights uncovered when learning additive explanations using distillation.

• A comprehensive study of leading additive explanation methods, writing them in the same mathematical
framework so they can be compared to each other, investigating how they perform under key settings that
not all methods, when first proposed, considered (non-additive interactions between features, correlation
between features). By studying these explanations not just empirically on real data, but also comparing
them to the theoretically grounded main and total effects that can be calculated from synthetic functions,
our analysis provides a fresh view into the differences between these explanation methods beyond simply
fidelity and accuracy of an explanation.

• To the best of our knowledge there has not been any user studies with expert users (like ours) that compare
different classes of global explanations, in particular global additive and global non-additive explanations;
our paper is the first to compare the interpretability of explanations that are visually very different.

The rest of the paper is organized as follows. Section 2 discusses related work. In Section 3 we review several
popular explanation methods and show how they are additive. We consider how additive explanations are
impacted by interaction effects and correlation in Section 4, and provide results of empirical investigations of
these phenomena in Section 5. In Section 6 we describe results from the user study. Section 7 concludes the paper.

2 RELATED WORK
Global explanations. Post-hoc explanations of black-box models can be roughly divided into local methods

that explain predictions at individual points and global methods that explain overall model predictions [20].
Examples of global explanations include using a second interpretable model to approximate the black-box model,
often termed “model distillation” [9, 19, 25, 26, 32, 40, 55], analyzing intermediate representations [10, 47] or
concepts [37] encoded by the black-box model, prototype selection [12, 36, 65], counterfactual explanations [52]
that summarize actions that can be taken to change the black-box model’s predictions for an entire population,
and feature importance measures [13, 18, 22, 45, 68, 71]. We focus on global post-hoc explanations in this paper,
and investigate how many of these explanation methods rely on approximating non-additive functions additively.
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Trustworthiness of explanations. One viewpoint in the community is that post-hoc explanations of black
box models can be unreliable or misleading [54], and that inherently interpretable models should be favored. For
example, Slack et al. showed that one can carefully craft black-box models that lead to innocuous explanations
while still producing biased outputs [60]. A known problem of additive explanations that affects their trustworthi-
ness is their multiplicity. Main effects and interaction effects can freely move around while producing the same
prediction [41]. In addition, different training strategies may lead to significantly different or even contradictory
models [16]. In this paper we empirically investigate this phenomenon on additive explanations.

Evaluation of interpretability. There is no universal definition of interpretability [20]; many recent papers
evaluate interpretability in terms of how a human uses the model to perform downstream tasks. These studies are
typically performed on non-expert humans (e.g. Mechanical Turkers) [39, 51]; recently, there has been more work
evaluating interpretability on expert users [34, 35, 40]. A contribution of this paper is a user study comparing
global additive and non-additive explanations on expert users.

3 BACKGROUND
In this section, we review definitions and concepts that will be used throughout this paper.

3.1 Global and Local Additive Explanations

Let X be a 𝑛 by 𝑝 matrix consisting of feature values of points {𝑥 𝑗

𝑖
, 𝑖 = 1, . . . , 𝑝, 𝑗 = 1, . . . , 𝑛} where 𝑝 is the number

of features and 𝑛 is the number of points. Let the vector 𝑋 𝑗 = (𝑥 𝑗

1, . . . , 𝑥
𝑗
𝑝 ) represent all feature values of the 𝑗th

point, and let the vector 𝑋𝑖 = (𝑥1𝑖 , . . . , 𝑥𝑛𝑖 ) represent the 𝑖th feature value across all points.

Definition 3.1 (Global additive explanations). Given 𝐹 , the prediction function of a black-box model, global
additive explanations 𝐺 decompose 𝐹 , as a sum of effects of 𝑝 features:

𝐺 (X) = ℎ0 +
𝑝∑︁
𝑖=1

ℎ𝑖 (𝑋𝑖 ) +
𝑝∑︁
𝑖=1

𝑝∑︁
𝑖′=1

ℎ𝑖𝑖′ (𝑋𝑖 , 𝑋𝑖′ ) + . . . (1)

and we measure the accuracy of the representation𝐺 (X) by | |𝐹 (X) −𝐺 (X) | | = error𝐺 . ℎ0 is a bias term, ℎ𝑖 (𝑋𝑖 ) is
the “main effect” of feature 𝑋𝑖 on 𝐺 while ℎ𝑖𝑖′ (𝑋𝑖 , 𝑋𝑖′ ) is a second-order “interaction effect” of features 𝑋𝑖 and 𝑋𝑖′

on F (second-order as it consists of two features). This definition of𝐺 also accommodates higher-order interaction
effects, i.e. third-order and beyond. Such a decomposition is not unique and each of the methods examined below
will give different results. We will refer to main effects and interactions in terms of algebraic groupings rather
than how those groupings were derived.

Definition 3.2 (Local additive explanations). Given 𝐹 (𝑋 𝑗 ), the prediction function of a black-box model on a
single point 𝑋 𝑗 = (𝑥 𝑗

1, . . . , 𝑥
𝑗
𝑝 ), local additive explanations Γ 𝑗 decompose 𝐹 (𝑋 𝑗 ), as a sum of effects of 𝑝 features:

Γ 𝑗 (𝑋 𝑗 ) = 𝜙
𝑗

0 +
𝑝∑︁
𝑖=1

𝜙
𝑗

𝑖
(𝑥 𝑗

𝑖
) (2)

In Section 3.2.2 we show how global additive explanations can be constructed from multiple local additive
explanations.

Visualization and interpretability. Global additive explanations can be visualized as in Figure 1 where we
produce one plot per feature, where each plot’s x-axis is the domain of input feature 𝑋𝑖 and the y-axis is the
feature’s contribution to the prediction ℎ𝑖 (𝑋𝑖 ). Partial dependence plots [23] and Shapley dependence plots [45]
are visualized this way. As the number of features 𝑝 increases, there are more plots for a human to review and
understand, which could decrease the interpretability of such explanations.
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3.2 Additive Explanations
We now review several popular explanation methods and show how they can be written as additive equations.

3.2.1 Partial Dependence and Marginal Plots. The partial dependence [23] for feature 𝑋𝑖 is defined as:

𝑞𝑖 (𝑋𝑖 ) = 𝐸𝑋𝐶
[𝐹 (𝑋𝑖 , 𝑋𝐶 )] =

∫
𝐹 (𝑋𝑖 , 𝑋𝐶 )𝑑𝑃 (𝑋𝐶 )

where 𝑋𝐶 is the set of all features excluding the 𝑖th feature. In practice, 𝑞𝑖 (𝑋𝑖 ) is the average prediction from the
data set when the value 𝑋 𝑗

𝑖
is replaced with the 𝑋𝑖 of interest. Specifically, for a specific value 𝑧:

𝑞𝑖 (𝑋𝑖 = 𝑧) = 1
𝑛

𝑛∑︁
𝑗=1

𝐹 (𝑥 𝑗

1, . . . , 𝑥
𝑗

𝑖−1, 𝑥
𝑗

𝑖
= 𝑧, 𝑥

𝑗

𝑖+1, . . . , 𝑥
𝑗
𝑝 )

Partial dependence plots of different features are often interpreted as being summed up as in Equation 1 with
ℎ𝑖 (𝑋𝑖 ) = 𝑞𝑖 (𝑋𝑖 ) to construct a global additive explanation. However, to make this precise, the 𝑞𝑖 (𝑋𝑖 ) need to be
centered. This is because each 𝑞𝑖 (𝑋𝑖 ) averages the values of 𝐹 and their sum will average to approximately 𝑝

times the average of 𝐹 . To center them, we subtract 𝑞𝑖 = 1
|𝑧 |

∑
𝑧 𝑞𝑖 (𝑋𝑖 = 𝑧), the average of 𝑞𝑖 (𝑋𝑖 ) over all possible

values of 𝑧, to obtain the global additive explanation:

𝑃𝐷 (X) = ℎ̂0 +
𝑝∑︁
𝑖=1

{𝑞𝑖 (𝑋𝑖 ) − 𝑞𝑖 } (3)

where ℎ̂0 = 1
𝑛

∑
𝑗 𝐹 (𝑋 𝑗 ). Partial dependence takes the expectation of the prediction function over the marginal

distribution of 𝑋𝐶 , independent of the value of 𝑋𝑖 = 𝑧. Alternatively, this expectation could also be taken over the
conditional distribution 𝑋𝐶 |𝑋𝑖 = 𝑧. This is the marginal plot1 [5, 29, 72], defined as:

𝑟 (𝑋𝑖 ) = 𝐸𝑋𝐶 |𝑋𝑖
[𝐹 (𝑋𝑖 , 𝑋𝐶 ) |𝑋𝑖 ] =

∫
𝐹 (𝑋𝑖 , 𝑋𝐶 )𝑃 (𝑋𝐶 |𝑋𝑖 )𝑑𝑋𝐶

In practice, marginal plots are constructed by finding the collection of points for which𝑋𝑖 = 𝑧,𝑁 (𝑧) = { 𝑗 : 𝑋 𝑗

𝑖
= 𝑧}

and averaging over these for each 𝑧:

𝑟𝑖 (𝑋𝑖 = 𝑧) = 1
|𝑁 (𝑧) |

∑︁
𝑗∈𝑁 (𝑧 )

𝐹 (𝑋 𝑗 )

Marginal plots of different features can also be centered and summed up to construct a global additive explanation:

𝑀 (X) = ℎ̂0 +
𝑝∑︁
𝑖=1

{𝑟𝑖 (𝑋𝑖 ) − 𝑟𝑖 } (4)

where 𝑟𝑖 is constructed using a similar centering procedure on 𝑟𝑖 (𝑋𝑖 ) as was performed on partial dependence
plots. Note that while partial dependence plots will recover components of an underlying additive function,
marginal plots will only do so if the features are all independent.

1The name is counter-intuitive as it is based on the conditional, not marginal distribution.
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Fig. 1. From local Shapley explanations to gSHAP, a global Shapley additive explanation for a particular feature created by
aggregating local Shapley explanations.

3.2.2 Shapley Additive Explanations. The Shapley local additive explanation [45] for a point 𝑋 𝑗 consists of 𝜙 𝑗

𝑖

that are defined to sum to 𝐹 (𝑋 𝑗 ) up as in Equation 2. To achieve this, we need to define prediction functions
𝐹𝑆 (𝑋𝑆 ) for each subset 𝑆 of the features. [45] defines 𝐹𝑆 (𝑋𝑆 ) =

∫
𝐹 (𝑋𝑆 , 𝑋𝐶 )𝑃 (𝑋𝐶 )𝑑𝑋𝐶 as in partial dependence

plots, but alternative formulations are also possible. The Shapley value for feature 𝑋𝑖 at point 𝑋 𝑗 is then given by:

𝜙
𝑗

𝑖
(𝑥 𝑗

𝑖
) =

∑︁
𝑆⊆{𝑥 𝑗

1 ,...,𝑥
𝑗
𝑝 }\𝑥

𝑗

𝑖

|𝑆 |!(𝑝 − |𝑆 | − 1)!
𝑝!

[𝐹𝑆∪{𝑖 } (𝑋 𝑗

𝑆∪{𝑖 }) − 𝐹𝑆 (𝑋 𝑗

𝑆
)] (5)

For example, each blue point in Figure 1 is one such 𝜙 𝑗

𝑖
for feature 𝑖 = “Temperature” and a particular point 𝑗 . In

practice, Equation 5 is computed by approximation, using techniques that repeatedly query the black-box model
such as Kernel SHAP [45], Shapley sampling values [62].

Note, importantly, that while 𝐹 (𝑋 ) = ∑
𝜙
𝑗

𝑖
(𝑋 𝑗

𝑖
) at each point𝑋 𝑗 , this does not directly define an additive model

in the sense of (1) since 𝜙 𝑗

𝑖
(𝑋 𝑗

𝑖
) changes with features other than 𝑋𝑖 . Here we aggregate local explanations that

act on single points to construct a global explanation [11, 56, 67]. For example, the red line in Figure 1 was created
using the basic approach of feature-wise sample mean [11], averaging 𝜙 𝑗

Temperature at each unique temperature
value 𝑧 to construct a global additive explanation that we call gSHAP and define as:

𝑔𝑆𝐻𝐴𝑃 (X) = ℎ̂0 +
𝑝∑︁
𝑖=1

1
𝑛

𝑛∑︁
𝑗=1

𝜙
𝑗

𝑖
(𝑥 𝑗

𝑖
) (6)

While gSHAP is not the only way to construct a global explanation from Shapley local explanations, it is intuitive
and easy to implement on top of Shapley local additive explanations, hence we experiment with it in this paper.
Another example of global Shapley values is SAGE [18] which decomposes a model’s accuracy function, but not
prediction function, into Shapley values of each feature.

3.2.3 Distilled Additive Explanations. Different from the previous methods that construct explanations by repeat-
edly querying the black-box model, this method treats the black-box model as a “teacher” model and uses model
distillation techniques [7, 14, 30] to train a white-box model (“student” model) that approximates and explains
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𝐹 . Different white-box model classes can be as the student model, such as decision trees [19, 25], generalized
additive models [63], linear models, etc. If an additive model is used, the resulting explanation can be written as:

𝐴𝑀 (X) = ℎ̂0 +
𝑝∑︁
𝑖=1

ℎ̂𝑖 (𝑋𝑖 ) (7)

where the ℎ̂𝑖 are obtained by minimizing the mean-squared error between the teacher model’s prediction function
𝐹 and student model’s explanation 𝐴𝑀 on training samples:

ℎ̂0, ℎ̂1, . . . , ℎ̂𝑝 = argmin 𝐿(ℎ0, ℎ1, . . . , ℎ𝑝 ) = argmin
1
𝑛

𝑛∑︁
𝑗=1

∥𝐹 (𝑋 𝑗 ) −𝐺 (𝑋 𝑗 )∥22

= argmin
1
𝑛

𝑛∑︁
𝑗=1

�����𝐹 (𝑋 𝑗 ) −
(
ℎ0 +

𝑝∑︁
𝑖=1

ℎ𝑖 (𝑥 𝑗

𝑖
)
)�����2
2

In this paper we consider two types of additive models: spline-based [69] and tree-based [43] whose resulting
explanations we call Student Additive Splines (SAS) and Student Bagged Additive Boosted Trees (SAT).
For SAS, ℎ̂𝑖 (𝑋𝑖 ) is a cubic regression spline function of feature 𝑋𝑖 implemented using the mgcv library [70]. For
SAT, ℎ̂𝑖 (𝑋𝑖 ) is a bagged tree function of feature 𝑋𝑖 implemented using the InterpretML [48] package. Pairwise
interactions can also be modeled explicitly [44], in the form of ℎ𝑖𝑖′ (𝑥 𝑗

𝑖
, 𝑥

𝑗

𝑖′ ) added to Equation 7. We call this
resulting explanation SAT + pairs.

3.2.4 Gradient-Based Explanations. Finally we consider a gradient-based explanation that involves constructing
an additive function 𝑔𝐺𝑅𝐴𝐷 through the first-order Taylor decomposition of 𝐹 :

𝑔𝐺𝑅𝐴𝐷 (X) = 𝐹 (0) +
𝑝∑︁
𝑖=1

1
𝑛

𝑛∑︁
𝑗=1

𝜕𝐹 (𝑋 𝑗 )
𝜕𝑥

𝑗

𝑖

𝑥
𝑗

𝑖
(8)

This is related to the “gradient*input” method (e.g. [57]) used to generate saliency maps for images. While there
are several other gradient-based feature attribution methods ([8, 57–59]; also see [46] or [3] for a review), the
“gradient*input” method is simple, intuitive, and studied a lot in the literature [1, 3], hence we experiment with it.

4 NON-ADDITIVE INTERACTION EFFECTS AND CORRELATION
We now consider how additive explanations are impacted by non-additive interaction effects and correlation
between features. For ease of exposition, we will assume that the black-box model’s prediction function 𝐹 can be
written as:

𝐹 (X) = 𝑒0 +
𝑝∑︁
𝑖=1

𝑒𝑖 (𝑋𝑖 ) +
𝑝∑︁
𝑖=1

𝑝∑︁
𝑖′=1

𝑒𝑖𝑖′ (𝑋𝑖 , 𝑋𝑖′ ) + error

by decomposing 𝐹 into successive additive components of increasing complexity and using the error term to
capture any remaining effects. Extending to this 2nd-order model allows us to explore the effect of non-additivity
on additive explanations.

Main effect. A simple way to report the impact of feature 𝑋𝑖 on prediction function 𝐹 is to simply ignore (i)
any interaction effects involving 𝑋𝑖 ; (ii) any correlation between 𝑋𝑖 and other features. This results in a measure
of the impact of feature 𝑋𝑖 on 𝐹 that use only the main effect of 𝑋𝑖 :

𝑀 (𝑋𝑖 ) = func[𝑒𝑖 (𝑋𝑖 )] 𝑀 (𝑋𝑖′ ) = func[𝑒𝑖′ (𝑋𝑖′ )] (9)
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For example, when func is the variance function, this is the main effect Sobol index [50, 61]. While main effect
measures undercounts the impact of 𝑋𝑖 on 𝐹 in case of (i) this sidesteps the challenging issue of determining how
to allocate the interaction effect 𝑒𝑖𝑖′ (𝑋𝑖𝑖′ ) between features 𝑋𝑖 and 𝑋𝑖′ .

Total effect. Another simple way to report the impact of feature 𝑋𝑖 on 𝐹 is to attribute an interaction effect to
each feature that was part of that interaction effect. This results in a measure of the impact of feature 𝑋𝑖 on 𝐹

that use the main effect of 𝑋𝑖 and all interaction effects containing 𝑋𝑖 :

𝑇 (𝑋𝑖 ) = func{𝑒𝑖 (𝑋𝑖 ) +
𝑝∑︁

𝑖′=1;𝑖≠𝑖′
𝑒𝑖𝑖′ (𝑋𝑖 , 𝑋𝑖′ )} 𝑇 (𝑋𝑖′ ) = func{𝑒𝑖′ (𝑋𝑖′ ) +

𝑝∑︁
𝑖′=1;𝑖≠𝑖′

𝑒𝑖𝑖′ (𝑋𝑖 , 𝑋𝑖′ )} (10)

For example, when func is the variance function, this is the total effect Sobol index [50, 61], and when func is
the expectation function, depending on the domain that the expectation is taken over, this is either the marginal
effect (the best least squares approximation to 𝐹 using only feature 𝑋𝑖 [29], also called marginal plots in [5]) or
partial dependence plots [23]). In cases where func satisfies countable additivity (e.g. the expectation function,
where the expectation of the sum equals the sum of the expectations), marginal plots can also be produced for
individual interactions or for groups of interactions. While total effect measures overcount the impact of 𝑋𝑖 on 𝐹

in both cases (i) and (ii), this also sidesteps the challenging issue of determining how to allocate the interaction
effect 𝑒𝑖𝑖′ (𝑋𝑖𝑖′ ) between features 𝑋𝑖 and 𝑋𝑖′ , albeit in a different way, by allocating it to all features that make up
that interaction.

Distributed effect. It is clear that neither main nor total effects are the “right" way to allocate an interaction
effect between features, though they can still be useful to anchor other additive explanations. In between them
are approaches that split up an interaction effect between different features – For example, distillation approaches
that train additive student models to mimic the prediction functions of non-additive black-box models [64] express
non-additive components as a best-fit additive approximation added to additive components. Shapley additive
explanations [45] distribute an interaction effect equally among features that made up that interaction. The aim
of this paper is to study these explanations in the presence of non-additive interaction effects and correlation
between features.

4.1 Example
To make this more concrete, we consider an example function for which we have its analytical form and can
hence compute the main and total effects for each feature:

𝐹2 (x) = 𝐹1 (x) + 𝑥1𝑥2 + |𝑥3 |2 |𝑥4 | + sec(𝑥3𝑥5𝑥6) (11)

where

𝐹1 (x) = 3𝑥1 + 𝑥32 − 𝜋𝑥3 + exp(−2𝑥24) +
1

2 + |𝑥5 |
+ 𝑥6 log( |𝑥6 |) +

√︁
2|𝑥7 | +max(0, 𝑥7) + 𝑥48 + 2 cos(𝜋𝑥8) (12)

This non-additive, highly nonlinear function consists of components from synthetic functions proposed by [24],
[31] and [66]. Like [66], we set the domain of all features to be independent and Uniform[-1,1]. Like [24], we add
noise features (𝑥9 and 𝑥10) to our samples that have no effect on 𝐹1 (𝑥).

The main effect for feature 𝑥4 is exp(−2𝑥24). The total effect (specifically, the marginal plot) of feature 𝑥4 is
𝐸

[
exp(−2𝑥24) + |𝑥3 |2 |𝑥4 | |𝑥4

]
= exp(−2𝑥24) +

∫ 1
−1 |𝑥3 |

2 |𝑥4 |𝑑𝑃 (𝑥3 |𝑥4) = exp(−2𝑥24) + 1
2 |𝑥4 |+1 . This contribution of the

interaction term to the impact of feature 𝑥4, 1
2 |𝑥4 |+1 , manifests as the upward pointing cusp (gray line) in Figure 3,

pointier and higher than main effect alone (black line).
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However, for features 𝑥1 and 𝑥2, their total effects are actually the same as theirmain effects, as 𝐸 [𝑥1𝑥2 |𝑥2] =
𝐸 [𝑥1𝑥2 |𝑥1] =

∫ 1
−1 𝑥1𝑥2𝑑𝑃 (𝑥2 |𝑥1) =

𝑥1
2

𝑥2
2
2

���1
−1

= 0, despite the presence of an interaction term 𝑥1𝑥2 in 𝐹2. As we will
see in Figure 3, in this case, all additive explanations were not visually different from the main effects only line
(black line). Hence, in this paper, whenever the black-box model function is known, we will provide the main
and total effects estimates to ground the additive explanations studied.

5 EXPERIMENTS
We now conduct empirical investigations of how non-additive interaction effects and correlation between features
may impact additive explanations.

Black box models: We use multi-layer perceptrons (MLP) neural networks as our black box models, though
other models such as gradient boosted trees or random forests could also be used. These models contain non-
additive interaction effects, even for very shallow networks, which makes them good candidates for our problem.
As is standard, we use ReLU non-linearities between the different layers of the model. We also experimented
with using batch normalization [33] between layers, but we did not observe consistent gains to justify their use.

Models were trained using cross-entropy for classification problems, and root mean square error (RMSE) for
regression ones. We divided the data in train, validation and test splits, where 70% of the data was used for
training, 15% for validation, and 15% for test, and used 5 train-validation folds.

We used random search to find the optimal hyperparameters (number of hidden units per layer, learning rate,
weight decay, dropout probability, batch size, etc) based on average validation performance on the train-validation
splits and multiple random Xavier initializations [27]. Following common practice we select powers of 2 for the
number of hidden units and batch size, and we search using a logarithmic scale to find the optimal learning rate
and weight decay. We use the Adam optimizer [38] with default beta parameters, and early stopping based on
validation loss. Training was performed in PyTorch.

We experimented with different depths (number of layers), and found that models of a given depth behaved in
a consistent manner. In most cases, models with one hidden layer underfit compared to models with two layers,
i.e., both their validation and training loss was higher. Models with three or four hidden layers systematically
obtained almost-perfect training loss, but their performance on the validation and test sets was not as good, even
when strong regularization through dropout and weight decay was applied.

Based on those results, we selected two black box models for our experiments throughout the paper: a 2-hidden
layers model with 512 hidden units per layer (2H-512,512), which will be our main model, and a 1-hidden layer
model with 8 units (1H-8), which will be our low-capacity model used to evaluate trade-offs between accuracy
and interpretability.

Quantitative evaluation of explanations: We will quantitatively evaluate explanations as if they were
models, following Lundberg and Lee [45] who suggested viewing an explanation of a model’s prediction as a
model itself. Specifically, we evaluate accuracy (how well the explanation predicts the original label). A similar
evaluation was performed by [36] who used their explanations (prototypes) to classify test data.
To learn our explanations we follow a similar approach than to train our black box models: we perform 5

different train-validation data splits (70% of the data for train, 15% for validation and 15% for test) and tune all
necessary parameters aiming at maximizing the accuracy on the validation set.

5.1 Preliminaries: do explanation explain the black-box model or the original data?
Hypothesis: Explanations explain the black-box model behavior, not the original data.
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Model SAT explanation (distilled) PD explanation

1H-8 model 0.46 0.46 0.46
2H-512,512 model 0.14 0.12 0.12

Table 1. RMSE of 1H and 2H models, SAT and PD explanations on 𝐹1. The accuracy of a GAM model trained directly on the
data is 0.02 RMSE.

Setup: Given a model trained on data produced by a known formula (e.g. 𝐹1), we can compare an explanation
of the model with the model trained directly on the data. When the explanation of the data is accurate, we can
attribute the differences between the explanations to the black-box model behavior, and not to lack of fidelity of
the explanations. We use function 𝐹1 introduced in Section 4, that does not include any interactions between
features. Although this function is easily modeled by additive models, neural nets struggle to model it accurately
due to how they combine all features through each layer, forcing the introduction of combinations that do not
exist in the original function. We simulate 50,000 samples, and train two neural nets models we aim to explain, a
2H-512,512 and 1H-8, to predict 𝐹1 from the ten features. The high capacity 2H-512,512 neural net obtained a
test accuracy RMSE of 0.14, while the low-capacity 1H-8 neural net obtained a test accuracy RMSE of 0.46, more
than 3x worse (cf . Table 1). Next, we train: (1) An additive model trained directly to predict the labels in the data.
Since this model is very accurate (RMSE of 0.02), it will help us anchor the explanations. (2) Explanations based
on the same additive models, trained to mimic the output from the black-box neural nets. For this experiment,
we focus on tree-based additive explanations, but the conclusions also apply to the other additive explanations.
(3) Explanations based on partial dependence (similar behavior is observed with Shapley additive explanations).

Results: Figure 2 focuses on two features of 𝐹1 (𝑥4 and 𝑥6) and displays: (1) A plot of their analytical expression
(in gray). (2) Main effects of an additive model trained directly on the data (in green). (3) Distilled additive
explanations of the two neural nets (in blue and cyan). (4) Partial dependence plots for the two neural nets (in
red and orange). Their accuracy is shown in Table 1.
We make the following observations:

• Additive models trained to directly predict labels in the data (in green) match almost-perfectly the analytical
expression (in gray), showing that additive models have enough capacity to model additive functions
without interactions. This models achieves a 0.02 RMSE, a very good value compared to the RMSE achieved
by the neural nets (0.14 and 0.46).

• The distilled additive explanation of the 2H-512,512 neural net (in blue) largely matches the analytical
expression (in gray), but fails to match some complex parts of the shape, unlike additive models trained to
directly predict labels in the data (in green). Quantitatively, this model achieves an RMSE of 0.12, comparable
– in fact, better, consistent with other observations regarding model distillation – to the 2H-512,512 teacher,
but worse than the 0.02 RMSE achieved by the additive model trained directly to predict the data labels. Since
the additive model has enough capacity to almost-perfectly model the data, we conclude the differences
observed in the explanation of the 2H-512,512 neural net must be attributed to the neural net behavior.

• The distilled additive explanation of the 1H-8 neural net (in cyan) looks notably different than the distilled
additive explanation of the 2H-512,512 neural net (in blue), and are also less similar to the analytical
expression (in gray). This is consistent with the RMSE error of the 1H model (0.46 RMSE) and the error of
the student (also 0.46 RMSE).

• PD explanations are similar to the distilled explanations, both in terms of accuracy and in terms of shape.
We clearly see the differences in explanations for the 1H and 2H models.
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Fig. 2. For two features of function 𝐹1:Main effect, GAM trained on data, SAT explanation of complex black-box model
(2H-512,512 neural net), PD explanation of the same 2H model, SAT of simpler black-box model (1H-8 neural net), and PD
explanation of the same 1H model.

The behavior on other features and other explanation methods is similar to the one observed with SAT and PD
explanations on features 𝑥4 and 𝑥6.

Implications: Since the additive model trained on original labels was able to almost-perfectly match the data
(0.02 RMSE), and since all additive models were trained following the same protocols, the differences observed on
the distilled explanations can be safely attributed to the behavior of the neural net models. The same conclusion
applies to PD, where we see clear differences between the explanations of the 1H and 2H models which are
similar to the differences observed on the distilled explanations.

5.2 How Do Different Additive Explanations Characterize Non-Additive Interaction Effects?
Hypothesis: We focus on 𝐹2, introduced in Section 4.1. For features 𝑥3 to 𝑥6, where there are non-zero

interactions, we expect the different explanations to differ from the main effects. For features with no interactions
(𝑥7 and 𝑥8) or where the total effect is the same as the main effect (𝑥1 and 𝑥2), we do not expect the explanations
to differ significantly from the main effects.

Setup: Similar to the previous section, we simulate 50,000 samples and then train a 2H-512,512 neural net
to predict 𝐹2. We expect the interaction terms of 𝐹2 to be absorbed by the different explanation methods. As a
comparison, we plot marginal plots that attribute an interaction term to all features that made up that interaction.

Results: Figure 3 shows the main effects (in gray) and total effects (in black) for all the features.‘
Figure 3 also shows the explanations generated by the different methods. In general, the explanation have

relatively similar shapes, although SAT and gSHAP tend to be less smooth than PD. This is not completely
surprising, as SAT relies on tree learners, which do not lead to smooth transitions, and gSHAP uses less points than
PD to compute the empirical contribution, since the gSHAP explanation is based on the conditional distribution
while PD is based on the marginal.

For features involved in interactions with non-zero expected contributions (i.e. features 𝑥3 to 𝑥6), explanation
methods absorb the contributions as expected. This is particularly clear for features 𝑥3, 𝑥4, and 𝑥5, where the
explanations look significantly more similar to the expected contribution of the interactions than to the mains.
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Fig. 3. For all features of function 𝐹2: Main effect, Total effect, SAT explanation of complex black-box model (2H-512,512
neural net), PD explanation of the same 2H model, and gSHAP explanation of the same 2H model. Note that not all features
are in the same scale, and that the scale of features 𝑥5 and 𝑥9 (a noise feature) are significantly smaller than the remaining
features.

Out of the explanation methods, gSHAP is the most similar to the expected behavior, but all explanations are
relatively similar.

Implications: Additive explanations are able to partially absorb the effect of interactions, as evidenced by
the plots of features 𝑥3 to 𝑥6. However, the allocation of these effects is slightly different for each explanation
method. Although we can use total effect as a point of reference, all allocations are valid, and it is not possible to
quantify which characterization is better.

5.3 How Does Correlation Between Features Affect Additive Explanations?
Hypothesis: Explanations can be affected by feature correlation in non-obvious ways, for example by one

feature absorbing, partially or totally, the importance of a different, correlated feature.

Setup: To illustrate the impact of correlation between features on additive explanations, we ran a controlled
experiment, modifying the relationship between a feature and the label, but holding the relationship between
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Performance

Data 𝑛 𝑝 Type 1H 2H

Bikeshare 17,000 12 Regression RMSE 0.60 0.38
Loan 42,506 22 Regression RMSE 2.71 1.91
Magic 19,000 10 Classification AUC 92.52 94.06
Pneumonia 14,199 46 Classification AUC 81.81 82.18
FICO 9,861 24 Classification AUC 79.08 79.37

Table 2. Performance of black-box models. For RMSE, lower is better. For AUC, higher is better.

another correlated feature and the label constant. For this task we use Bikeshare, an UCI data set where the goal is
to predict bike usage given 12 features such as “Season”, “Day of the week”, “Temperature”, “Feeling temperature”,
or “Humidity”.
For points with temperature between 15 and 18, we doubled the value of the label (the number of rented

bikes) without making any modifications to the Feeling temperature feature, which is highly correlated with
Temperature (Pearson correlation: 0.988). Separately, for points with humidify between 55 and 65, we increased
the value of the label by 1.0 without making any modifications to other features. Humidity has low correlation
with other features (the feature with the largest Pearson correlation is Windspeed: 0.346). In both cases, we
retrained a 2H neural net on the modified data, and learned an additive explanation on the modified data. Figure
4 displays the additive explanations trained on the original and modified data. For comparison, we also include
the additive explanations for a 1H neural net trained on the modified data.

Results: Ideally, the additive explanations on the neural net trained on the modified data should be almost
identical to the additive explanations on the neural net trained on the original data, except in that particular
range of the temperature and humidity features, where we should see an abrupt bump corresponding to the
controlled increase that we made. However, we see that a bump also occurs for the Feeling temperature feature,
which is highly correlated with temperature.

Implications: When features are correlated, additive explanations of correlated features distributed effects
across them. This implies that the analysis of correlated features cannot be done independently. This can become
a challenge when the number of correlated features is large.

5.4 How Accurate are Additive Explanations on Non-Additive Models?
Hypothesis: A gap in accuracy between explanations and the original models is expected. Distilled explanations

should generally be more accurate than non-distilled explanations.

Setup: We selected five data sets: two UCI data sets (Bikeshare and Magic), a Loan risk scoring data set from an
online lending company [17], the 2018 FICO Explainable ML Challenge’s credit data set [21], and the pneumonia
data set analyzed by [15]. A 2H-512,512 neural net is used as the main black-box model. We quantitatively compare
the accuracy of different types of global explanations on these data sets: distilled vs non-distilled explanations
(e.g. SAT vs gSHAP) and additive vs non-additive explanations (e.g. SAT vs SAT+pairs or decision trees). We also
compare the effect of explicitly modeling interactions in the explanation.

Results: First, for reference, Table 2 presents the accuracy of the 2H-512,512 black-box model, as well as the
accuracy of a lower-capacity 1H-8 black-box model (provided for comparison purposes) and additional details
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Fig. 4. Additive explanations of two correlated features before and after label modification experiment. When the labels of
certain values of temperature, a feature that is correlated with “Feeling” temperature, are modified, additive explanations of
both features, not just the temperature feature, are impacted

about the datasets. Then, Table 3 presents the accuracy of the different explanation methods on these datasets.
We draw several conclusions.

• SAT and SAS yield similar accuracy, indicating that the particular choice of the base learner did not matter
for these data sets.

• Distilled explanations generally obtain better accuracy than non-distilled explanations. This is not surprising
since distilled explanations were trained specifically to mimic the black-box model. However, on most
datasets, there is still a gap between the accuracy of the explanations and the accuracy of the black box
models.

• Non-linear models such as SAS, SAT, and decision trees outperform the sparse linear models on all datasets.
However, sparse linear can be better than decision trees and competitive with SAS and SAT on some
datasets (particularly Pneumonia and FICO), suggesting that complex models can easily overfit on some
datasets with limited data (FICO and Pneumonia are the datasets with little data and with the largest
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Accuracy Bikeshare Loan Magic Pneumonia FICO
Global Explanation Additive Distilled Interactions RMSE RMSE AUC AUC AUC

SAT Yes Yes No 0.98 ± 0.00 2.35 ± 0.01 90.75 ± 0.06 82.24 ± 0.05 79.42 ± 0.04
SAS Yes Yes No 0.98 ± 0.00 2.34 ± 0.00 90.58 ± 0.02 82.12 ± 0.04 79.51 ± 0.02
Sparse Linear Yes Yes No 1.39 ± 0.00 3.45 ± 0.00 86.91 ± 0.01 82.06 ± 0.02 79.16 ± 0.01

gGRAD Yes No No 1.25 ± 0.00 6.04 ± 0.01 80.95 ± 0.13 81.88 ± 0.05 79.28 ± 0.02
gSHAP Yes No No 1.02 ± 0.00 5.10 ± 0.01 88.98 ± 0.05 82.31 ± 0.03 79.36 ± 0.01
PD Yes No No 1.00 ± 0.00 4.31 ± 0.00 82.78 ± 0.00 82.15 ± 0.00 79.47 ± 0.00

Decision Tree No Yes Yes 0.60 ± 0.01 2.66 ± 0.02 91.44 ± 0.29 79.38 ± 0.38 78.19 ± 0.03
SAT+pairs Yes Yes Yes 0.60 ± 0.00 2.13 ± 0.01 90.75 ± 0.06 82.23 ± 0.06 79.44 ± 0.04

Table 3. Performance of global explanations for 2H black-box models. Performance measured in terms of RMSE for regression
tasks and AUROC for classification tasks.

number of features, cf . Table 2). These datasets are also the ones where the gap between the black-box
models and the explanations is the smallest.

• When explicitly modeling interactions, the RMSE in Bikeshare improves from 0.98 to 0.60. The Magic
dataset is another example where the interactions brought by the decision tree make a significant difference.
However, on some other datasets, decision trees are less accurate than other explanations, and, in the case
of the Pneumonia dataset, even less accurate than a simple explanation based on a linear model.

Figure 5 displays explanations of selected features for Magic and Loan. The explanations produced by PD
tend to be much too smooth, which hurts its accuracy. Second, in all cases, trees and splines produce similar
explanations and obtain equal or better accuracy and fidelity than the other methods. This is not surprising
as the other methods are either local methods adapted to the global setting (gSHAP, gGRAD), or are global
explanations that are not optimized to learn the teacher’s predictions (PD). For reference, gSHAP when used as a
local method (i.e. individual SHAP values, not global explanations) achieved a lower RMSE of 0.37 compared to
1.02 on Bikeshare, and a lower RMSE of 1.99 compared to 5.10 on Loan, which is comparable to its 2H teacher’s
RMSE on test data (Table 2). Hence, methods such as gSHAP excel at local explanations and should be used for
those, but, to produce global explanations, global model distillation methods optimized to learn the teacher’s
predictions perform better.

Implications: Distilled explanations tend to be more accurate than non-distilled explanations. When the
goal is to preserve accuracy, global explanations based on distillation are a better choice. Explicitly capturing
interactions in the explanations may be unnecessary on some datasets (e.g. FICO) or even pernicious (Pneumonia)
while being extremely important in others (e.g. Bikeshare).

6 HOW INTERPRETABLE ARE ADDITIVE EXPLANATIONS?
Thus far, we have considered how different additive explanations differentially allocate interaction effects, as
well as their performance compared to non-additive explanations. We now conduct a user study to evaluate the
interpretability of additive explanations compared to non-additive explanations.

Explanations selected. Given the 2H-512,512 neural net described in Section 5 on the Bikeshare dataset,
we learn four different additive and non-additive explanations using the same distillation techniques: (i) SAT
explanations, (ii) Decision tree (DT) explanations, (iii) sparse linear (SPARSE) explanations, and (iv) Subgroup
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Fig. 5. Example explanations of selected features for Magic data (left), and Loan data (right). SAT and SAS tend to agree.

rules (RULES) explanations2. Denoting the “complexity” of the explanations by explanation-K, where the meaning
of K depends on the underlying model3, we select the following explanations: SAT-5, DT-4, SAT-2, DT-2, RULES-5,
and SPARSE-2.

We selected DT-4 because that is the largest tree that is readable on letter-size paper, and that does not lag too
far behind the depth 6 tree in accuracy: the DT-4 has an accuracy of 1.16 RMSE, compared to the 1.0 RMSE of
DT-6 and the 0.98 RMSE of SAT. For reference, we show the DT-6 tree in Figure 8. DT-6 is slightly more accurate
than DT-4, but much harder to read. DT-4 used five features: Hour, Temperature, Year, Working Day, Season. To
make the explanations more comparable, we select those features for the SAT explanation, hence SAT-5, which
has a comparable accuracy of 1.07 RMSE. Figure 6 displays the exact DT-4 and SAT-5 explanations shown to the
subjects. We also explored smaller and/or less accurate explanations to assess the trade-off between accuracy
and explainability. We selected the top 2 features and built SAT-2 (1.14 RMSE), DT-2 (1.3 RMSE), and SPARSE-2
(1.54 RMSE) explanations. Last, we also considered a rules-based explanation, which is less accurate even with a
larger number of features: RULES-5 achieves an RMSE of 1.47, similar to SPARSE-2. Figure 7 displays the exact
SPARSE-2 and RULES-5 explanations shown to the subjects.

Study design. 50 subjects were recruited to participate in the study. These subjects – STEM PhD students, or
college-educated individuals who had taken a machine learning course – were familiar with concepts such as
if-then-else structures (for trees and rule lists), reading scatterplots (for SAT), and interpreting equations (for
sparse linear models). Each subject only used one explanation model (between-subject design) to answer a set of
questions covering common inferential and comprehension tasks on machine learning models: (1) Rank features
by importance; (2) Describe relationship between a feature and the prediction; (3) Determine how the prediction
changes when a feature changes value; (4) Detect an error in the data, captured by the model. The exact questions
were:

(1) What is the most important variable for predicting bike demand?

2State-of-the-art rule lists [4, 42] do not support regression, which is needed for distillation. We used a slightly older subgroup discovery
algorithm [6] that supports regression but does not generate disjoint rules. This method only achieved reasonable results on Bikeshare.
3For decision trees K represents the depth, and a tree of depth 4 would be denoted as DT-4. For sparse rules, K represents the number of rules,
and a group of 5 rules would be denoted as RULES-5. For SAT and SPARSE, K denotes the number of features to use. In the case of SPARSE, K
is set indirectly by finding the regularization lambda parameter that produced the best accuracy on validation while also producing exactly K
non-zero feature coefficients.
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MODEL 
The additive model below was trained to predict bike demand. Each plot describes a variable on the x-axis and predicted bike 
demand on the y-axis. Hour denotes hour-of-day, i.e. 0, 1, 2, … 23. Temperature is in Celsius. Year has 2 possible values: 2011, 
2012. Season has 4 possible values: Spring, Summer, Fall, Winter.  
 
 

 

 

 
MODEL 

The tree below was trained to predict bike demand. The tree is using five variables: Hour, Temperature, Year, Season, Working day. 
Hour denotes hour­of­day, i.e. 0, 1, 2, … 23. Temperature is in Celsius. Year has 2 possible values: 2011, 2012. Season has 4 
possible values: Spring, Summer, Fall, Winter.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Explanations shown to SAT-5 and DT-4 subjects in user study
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MODEL 
The lasso (sparse linear regression) model below was trained to predict bike demand. Hour denotes hour-of-day, i.e. 0, 1, 2, … 23. 
Temperature is in Celsius. 
 

Predicted bike demand = 1 + 0.056*Hour + 0.063*Temperature 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

MODEL 
The rules below were trained to predict bike demand. The rules are not disjoint, but all the rules together make up one machine 
learning model. If an observation does not fall in any one rule, it gets the last prediction “Otherwise bike demand is …”. Hour 
denotes hour-of-day, i.e. 0, 1, 2, … 23. Temperature is in Celsius. 
 
 
 

If ​year=2012 and workingday=yes​ then bike demand is ​2.42 
If ​season=fall and year=2012 ​then bike demand is ​2.82 
If ​season=summer and year=2012 ​ then bike demand is ​2.61 
If ​season=fall and workingday=yes​ then bike demand is ​2.36 
If ​season=fall and year=2012 and workingday=yes​ then bike demand is ​2.93 
If ​hour=17 and workingday=yes​ then bike demand is ​5 
If ​hour=18 and workingday=yes​ then bike demand is ​4.78 
If ​season=summer and yr=2012 and workingday=yes​ then bike demand is ​2.57 
If ​hour=08 and workingday=yes​ then bike demand is ​4.48 
If h ​our=17 and year=2012 ​ then bike demand is ​5.75 
If ​hour=18 and year=2012 ​ then bike demand is ​5.44 
If ​month=08 and season=fall ​ then bike demand is ​2.42 
Otherwise ​ bike demand is ​1.34 

 
 
 
 
 
 
 
 

Fig. 7. Explanations shown to SPARSE-2 and RULES-5 subjects in user study

(2) Rank all the variables from most important to least important for predicting bike demand.
(3) Describe the relationship between the variable Hour and predicted bike demand.
(4) What are variables for which the relationship between the variables and predicted bike demand is positive?
(5) The Hour is 11. When Temperature increases from 15 to 20, how does predicted bike demand change?
(6) There is one error in the data. Any idea where it might be? “Cannot find the error” is an ok answer.
In the first stage, 24 of 50 subjects were randomly assigned to see output from DT-4 or SAT-5. In the second

stage, we experimented with smaller versions of trees and SAT using only the two most important features,
Hour and Temperature. 14 of 50 subjects were randomly assigned to see output from SAT-2 or DT-2. In the last
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First stage (n=24) Second stage (n=14) Third stage (n=12)

Task SAT-5 DT-4 SAT-2 DT-2 SPARSE-2 RULES-5

Ranked correctly top 2 features 75% 58% 100% 85.7% 83.3% 0%
Ranked correctly all (5) features 45% 0% N/A N/A N/A 0%
NDCG between human ranking of top 5 features

0.94 ± 0.13 0.89 ± 0.11 N/A N/A N/A 0.27 ± 0.11
and ground-truth feature importance

Described increased demand
42% 0% 29% 0% 0% 33%

during rush hour
Described increased demand

33% 0% 29% 0% 0% 33%
during mornings and afternoons

Compute change in prediction
33% 25% 14% 100% 83% 0%

when feature changes

Caught data error 33% 8% N/A N/A N/A 0%

Time taken (minutes) 11.7 ± 5.8 17.5 ± 14.8 7.2 ± 3.2 6.2 ± 2.2 5.2 ± 3.1 14.9 ± 8.4

Table 4. Quantitative results from user study. Since SAT-2, DT-2, and SPARSE-2 only had two features, the task to rank five
features does not apply. Since the data error only appeared in the output of SAT-5, DT-4, and RULES-5, the other subjects
could not have caught the error.

stage, the remaining 12 subjects were randomly assigned to see output from one of the two worst performing
explanations (in terms of accuracy): sparse linear models (SPARSE-2) and subgroup-rules (RULES-5).

Can humans understand and use explanations? From the absolute magnitude of the SAT feature explana-
tions as well as Gini feature importance metrics for the tree, we determined the “ground truth” feature importance
ranking (in decreasing order): Hour, Temperature, Year, Season, Working Day. More SAT-5 than DT-4 subjects
were able to rank the top 2 and all features correctly (75% vs. 58%, see Table 4).

When ranking all 5 features, 0% of the DT-4 and RULES-5 subjects were able to predict the right order, while
45% of the SAT-5 subjects correctly predicted the order of the 5 features, showing that ranking feature importance
for trees is actually a very hard task. The most common mistake made by DT-4 subjects (42% of subjects) was
to invert the ranking of the last two features, Season and Working Day, perhaps because Working Day’s first
appearance in the tree (in terms of depth) was before Season’s first appearance (Figure 6 bottom). We also
evaluate the normalized discounted cumulative gain (NDCG) between the ground truth feature importance and
the user prediction, where we give relevance scores to the feature in decreasing order (i.e., for 5 features, the
most important feature has a relevance score of 5, the second most important 4, etc). This gives us an idea of how
well the features were ranked, even if the ranking is not perfect. We see how SAT-5 obtains a better score than
DT-4, consistent with the previous analysis. RULES-5 obtains a significant lower score.
When asked to describe, in free text, the relationship between the variable Hour and the label, one SAT-5

subject wrote:
There are increases in demand during two periods of commuting hours: morning commute (e.g. 7-9
am) and evening commute (e.g. 4-7 pm). Demand is flat during working hours and predicted to be
especially low overnight,

whereas DT-4 subjects’ answers were not as expressive, e.g.:
Demand is less for early hours, then goes up until afternoon/evening, then goes down again.
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Fig. 8. Tree of depth 6 (64 leaves), the least deep tree that matched SAT’s fidelity. This uses the default tree visualizer in
scikit-learn. Note that the tree is so large that it is hard to read even in digital form at the maximum publishing resolution.
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Fig. 9. User study metrics, as proxies for interpretability, by fidelity (RMSE) for different explanations. Each point is an
individual user in the user study. The metrics are time needed to finish the study (top lefte), length of the description (top
right), and the NDCG of the ranked features (bottom). Key: SAT-5, DT-4, SAT-2, DT-2, RULES-5, SPARSE-2

75% of SAT-5 subjects detected and described the peak patterns in the mornings and late afternoons, and
42% of them explicitly mentioned commuting or rush hour in their description. On the other hand, none of the
DT-4 subjects discovered this pattern on the tree: most (58%) described a concave pattern (low and increasing
during the night/morning, high in the afternoon, decreasing in the evening) or a positively correlated relation
(42%). Similarly, more SAT-5 subjects were able to precisely compute the change in prediction when temperature
changed in value, and detect the error in the data – that spring had lower bike demand whereas winter had high
bike demand (bottom right feature in Figure 6 top).

How do tree depth and number of features affect human performance? We also experimented with
simpler explanations, SAT-2 and DT-2, that used only the two most important features, Hour and Temperature.
As the explanations are simpler, some of the tasks become easier. For example, SAT-2 subjects predict the order
of the top 2 features 100% of the time (vs 75% for SAT-5), and DT-2 subjects, 85% of the time (vs 58% for DT-4).
The most interesting change is in the percentage of subjects able to compute the change in prediction after
changing a feature: only 25% for DT-4, compared to 100% for DT-2. Reducing the complexity of the explanation
made using it easier, at the price of reducing the accuracy of the explanation. Another important aspect is the time
needed to perform the tasks: increasing the number of features from 2 to 5 increases the time needed by the
subjects to finish the study by 60% for the SAT explanation, but increases it by 166% for the DT explanation, that
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is, interpreting a tree becomes much more costly as the tree becomes deeper (and more accurate), and, in general,
subjects make more mistakes. SAT scales up more gracefully.

Remaining explanations: subgroup-rules and sparse linear models. These explanations were the least
accurate and faithful. We found that human subjects can easily read the (few) weights of SPARSE-2, establish
feature importance, and compute prediction changes, and do so quickly – at 5.1 minutes on average, this was the
fastest explanation to interpret. However, the explanation is highly constrained and hid interesting patterns. For
example, 100% of the subjects described the relation between demand and hour as increasing, and 83% predicted
the exact amount of increase, but none were able to provide insights like the ones provided by SAT-5 and DT-4
subjects.

RULES-5 was the second hardest explanation to interpret based on mean time required to answer the questions:
14.9 minutes. Understanding non-disjoint rules appears to be hard: none of the subjects correctly predicted the
feature importance order, even for just two features; none were able to compute exactly the change in prediction
when feature value changes, and none were able to find the data error. The rules in RULES-5 are not disjoint
because we could not find a regression implementation of disjoint rules. However, 66% of the subjects discovered
the peak during rush hour, as that appeared explicitly in some rules, e.g. “If hour=17 and workingday=yes then
bike demand is 5”.

Fidelity vs. interpretability. Figure 9 presents detailed results for individual users by model. On the left
is the time needed to finish the study (left). In the center is the length of the user’s written description of the
relationship between a feature and model predictions. On the right is the NDCG rank loss of user ranking
of feature importance compared to ground-truth feature importance. All of these metrics can be considered
interpretability metrics, when defining interpretability as grounded in human tasks [20]. On the y-axis is fidelity
(RMSE), i.e., how similar is the explanation to the 2H model prediction.

The plots show that there is a trade-off between fidelity and interpretbility (as measured by time to complete,
description length, and NDCG of feature rankings), but not all methods behave similarly. In general, the SPARSE-2
explanation is easy to understand (users typically finish the study rapidly), but fidelity is poor and it leads
to short descriptions. On the other hand, SAT-5 and DT-4 have much better fidelity and lead to more varied
descriptions, but also took longer to understand. DT-2 was faster to complete than DT-4, but the fidelity is lower
and the descriptions shorter. RULES-5 is better than SPARSE-2, but not as good as SAT-5 or DT-4. SAT-5 offers a
reasonable trade-off, being both faithful and relatively easy to understand, while also leading to rich descriptions
for many users.

To summarize, global additive explanations: (1) allowed humans to perform better (than decision trees, sparse
linear models, and rules) at ranking feature importance, pointing out patterns between certain feature values and
predictions, and catching a data error; (2) Additive explanations were also faster to understand than big decision
trees; (3) Very small decision trees and sparse linear models had the edge in calculating how predictions change
when feature values change, but were much less faithful and accurate.

7 CONCLUSIONS
In this work we studied how additive explanations behave when explaining black-box models with non-additive
components. We showed that in this case, there is no one unique additive explanation, with different explanation
methods characterize these non-additive components in different ways. We quantitatively compared different
additive explanations on several regression and classification tasks, finding that distilled explanations are generally
the most accurate additive explanations. Although non-additive explanations that explicitly model interactions
tend to be more accurate, we found, through a user study, that machine learning practitioners were able to leverage
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additive explanations better. When deciding which explanation to use for a black-box model, trustworthiness,
accuracy, and interpretability should all be considered.
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