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Abstract

Hybrid ensemble, an essential branch of ensembles, has flourished in the
regression field, with studies confirming diversity’s importance. How-
ever, previous ensembles consider diversity in the sub-model training
stage, with limited improvement compared to single models. In con-
trast, this study automatically selects and weights sub-models from
a heterogeneous model pool. It solves an optimization problem using
an interior-point filtering linear-search algorithm. The objective func-
tion innovatively incorporates negative correlation learning as a penalty
term, with which a diverse model subset can be selected. The best sub-
models from each model class are selected to build the NCL ensemble,
which performance is better than the simple average and other state-
of-the-art weighting methods. It is also possible to improve the NCL
ensemble with a regularization term in the objective function. In prac-
tice, it is difficult to conclude the optimal sub-model for a dataset
prior due to the model uncertainty. Regardless, our method would
achieve comparable accuracy as the potential optimal sub-models. In
conclusion, the value of this study lies in its ease of use and effective-
ness, allowing the hybrid ensemble to embrace diversity and accuracy.
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1 Introduction

Ensemble learning has been proven to be theoretically and empirically superior
to single models by state-of-the-art literature as a method of combining pre-
trained models in a certain way to obtain final predictions [1–3]. Typically,
ensemble models sample the input space of data and features, such as cross-
validation or down-sampling of data [4]. Meanwhile, features can be selected by
calculating feature importance [3]. Then, ensembles are followed by combining
multiple but homogeneous weak learners to form a strong learner to achieve
higher accuracy. The famous examples of ensemble models are bagging [5],
boosting [6], and stacking [7]. In recent years, solutions based on ensemble
models often achieve good results in Kaggle competitions [8–10].

In some pioneering studies, researchers attempted to train completely het-
erogeneous models for the same input space and then averaged or weighted
the predictions of these models. This approach considered that heterogeneous
models were more likely to increase diversity during training and produce more
robust results compared to homogeneous models [3, 11]. Training with hetero-
geneous models also refers to the hybrid ensemble. For load prediction, Salgado
chose several support vector machines and neural networks, ranked and filtered
the candidates, and finally weighted the predictions of the selected models.
Their hybrid ensemble model improved performance by 25% over the best sin-
gle predictor [12]. Ala’raj took five classifiers and combined their predictions.
The experimental results demonstrated the ability of the proposed method to
improve the accuracy of credit scoring prediction [13]. Qi constructed a hybrid
ensemble model for predicting slope stability in geology, which included six
sub-models, such as support vector machines and artificial neural networks. A
genetic algorithm was introduced to calculate the classification weights for each
model. This hybrid ensemble outperformed any single model, even though the
single model already had its optimal parameters [14]. Some researchers con-
structed ensembles containing both homogeneous and heterogeneous models.
For example, Merz chose six multivariate adaptive regression splines and six
back-propagation networks to build a model pool, ranked the sub-models by
principal components with the variance from the learning process to highlight
the contributions of different sub-models [15].

Scholars have identified model diversity as a critical factor to hybrid ensem-
ble success [2, 16, 17]. In recent years, researchers have put effort into ensemble
diversity and generalization. The authors developed a pruning method for clas-
sification ensembles utilizing the tradeoff between accuracy and diversity [18].
Several methods to increase the diversity of sub-models within an ensemble
are also proposed. For earlier schemes, practitioners trained models with cross-
validation or chose different parameter combinations for homogeneous models,
followed by majority voting or weighted averaging of the model predictions.
Cross-validation yet provided limited improvement for model accuracy, and
Stone proved as early as 1974 that estimators generated by cross-validation
behaved similarly [19]. Hansen and Salomon proposed using neural networks

https://www.kaggle.com/
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to construct ensembles in the 1990s. They used neural networks to fit differ-
ent parts of the training data, which were then majority voted as the result of
ensemble [20]. Both Ting and Cano obtained a diversity of sub-models by using
different subsets of features [21, 22]. Ting emphasized that unstable learners
could generate sufficient diversity of global models since they were more sen-
sitive to data changes [21]. Cano suggested dynamically monitoring the model
pool to eliminate the oldest and weakest sub-models in time for the streaming
data scenario [22]. Sirovetnukul pointed out that a hybrid ensemble could learn
negative knowledge from less well-performed models that were easily ignored
and removed in previous studies. Such knowledge could help the models con-
verge to better solutions while producing diverse results [23]. Brown considered
the negative knowledge across sub-models and provided quantitative methods
for the diversity of hybrid ensembles [1].

Some empirical evidence demonstrated the ability of Negative Correla-
tion learning (NCL) to increase model diversity and improve ensemble models
[2, 23–27]. NCL introduces a correlation penalty term in the objective func-
tion of each sub-model to measure the deviation from the current ensemble.
All sub-models can be trained simultaneously and interactively on the same
training set, and the final experimental results will achieve a bias-variance-
covariance balance, as theoretically deduced. Current applications of NCL are
focused primarily on the training process of ensemble neural networks to diver-
sify each sub-model [24–29]. Although the ensemble neural network trains the
sub-models with diversity under NCL, they are still structurally homogeneous
models, differing only in specific parameters. To our knowledge, only some
studies apply NCL to hybrid ensembles. Next, we will discuss the feasibility of
using NCL to improve hybrid ensembles.

Generally, ensembles contain two stages: sub-model training and combi-
nation [30]. Previous ensembles used NCL as a penalty term to train diverse
sub-models in the first stage, followed by some basic methods, such as major-
ity voting or simple averaging, to combine the predictions, ignoring the role of
diversity in the second stage. In contrast, the hybrid ensemble trains multiple
heterogeneous models based on the consensus that heterogeneous models will
produce diverse predictions in the first stage [3, 11]. In the second stage, if
we apply NCL to the objective function to optimize the weights of each sub-
model, it is possible to select a diverse set of sub-models to obtain the final
results. We present the methods for obtaining diversity at different stages of
the ensemble models in Table 1 for comparison.

To improve hybrid ensembles with NCL, we design a generic scheme in this
study for regression problems. Eleven well-established regression prediction
methods, including ensemble and generalized linear regression models, are fed
to the model pool. Each sub-model is trained and generates a set of predictions.
Cross-validation and grid search are applied to the training process to obtain
the predictor with the optimal parameters. Subsequently, we view the process
of the second stage of hybrid ensembles, sub-model combination, as an opti-
mization problem. This problem can be solved using the interior-point filter
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Table 1. Methods for obtaining diversity at different stages of the ensemble
model.

Ensemble models Stage 1: sub-models training Stage 2: sub-models combination

Ensemble neural
networks

Homogeneous sub-models are
trained simultaneously and
interactively to increase the
diversity of sub-models
during the training process.

Majority voting or simple
averaging is used to combine
the predictions, not considering
the diversity within the ensemble.

Hybrid ensembles
Heterogeneous models are
trained separately to ensure
diversity.

A diverse subset of predictions is
selected and weighted by NCL.

line-search algorithm [31], which is a solver in the Gekko optimizer developed
by Beal [32]. We add NCL as a penalty term to the objective function of the
optimization problem. We designed several experiments to evaluate the pro-
posed method from multiple dimensions. The hybrid ensemble for regression
based on NCL achieves excellent results, demonstrating its great potential.

The main contributions of this study are three-fold:

(1) Initially, this study attempts to migrate the application scenario of NCL
from the traditional sub-model training stage to the sub-model combination
stage, with good results in a hybrid ensemble consisting of heterogeneous
sub-models.

(2) The model selection and combination process is treated as an optimization
problem. This problem leads to a diverse set of sub-models in the model
pool, given by a weight vector.

(3) Ultimately, the approach in this study again verifies that diversity is the key
to the success of ensemble models, and it is an innovation to ensure model
diversity in both stages of the hybrid ensemble.

The rest of this paper is organized as follows. Section 2 introduces the the-
ories and methods involved in the proposed framework. Section 3 presents a
hybrid ensemble based on NCL, accounting for model diversity. In Section 4, we
systematically investigate the application of the proposed method on twenty
publicly available datasets and analyze the contribution of NCL to performance
improvement. Section 5 reviews the background of our proposed method, illus-
trates the method’s ability to remedy some of the shortcomings of current
hybrid ensemble studies, and synthesizes the experimental performance and
scope for improvement of our method. Finally, Section 6 concludes the paper.
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2 Related works

This section first introduces ambiguity and bias-variance-covariance decom-
positions, which are the theoretical basis for Negative Correlation Learning
(NCL) to increase the diversity of hybrid ensembles [1]. The general form of the
NCL is presented in the second part. The third part shows the computational
principles and applications of the interior-point filter line-search algorithm.

2.1 Two types of decomposition

In the context of multiple regression, there is a dataset containing n samples
with {(x1, y1), ..., (xn, yn)}. The objective of the problem is to find a function
f that maps Rn to R1 to gain predictive capability for future data. In machine
learning, f is a model or an estimator.

f(xi) = yi, f : Rn → R1, xi ∈ Rn, yi ∈ R1. (1)

2.1.1 Ambiguity decomposition

In a general scenario, m sub-models can form a hybrid ensemble fh with a
weighted average. fh is a convex combination of all components:

fh =

m∑
j=1

ωjfj , (2)

where
∑m

j=1 ωj = 1, and fj is the predictions of jth sub-model. According
to Brown, the Mean Square Error (MSE) ζh of fh can be expressed as the
difference between the following two terms [1]:

ζh =

m∑
j=1

ωjζj −
1

n

m∑
j=1

n∑
i=1

ωj(fh(xi)− fj(xi))2, (3)

where ζj = 1
n

∑n
i=1 (fj(xi)− yi)2. The first term of Equation (3) is the

weighted average of the MSE of each sub-model; the second is the ambiguity
term. Equation (3) indicates that ζh is less than the weighted average ζj of all
sub-models, given that the sub-models are not identical and the second ambi-
guity term is positive. This fact reveals that the more significant the difference
between each sub-model and the current hybrid ensemble, the larger the ambi-
guity term and the smaller the MSE of the hybrid ensemble. Notably, without
an established criterion to judge the best model in advance, it is efficient to
use the hybrid ensemble directly, even if some member has the lowest error.

2.1.2 Bias-variance-covariance decomposition

The MSE of the sub-models and the hybrid ensemble are employed in the
ambiguity decomposition to measure diversity; the higher the second term
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in Equation (3), the more diverse the ensemble. However, as the sub-models
increase in volume, they are more likely to deviate from the actual value,
although they would get more diverse. This situation leads to an increase in
the first term of ζh when it is not so beneficial to consider increasing the
diversity of the hybrid ensemble. Thus, balancing the diversity and accuracy
of the sub-models and ensemble is of interest. The bias-variance-covariance
decomposition is a well-defined trade-off [1].

For simplicity, given the simple average form of the hybrid ensemble fh =
1
m

∑m
j=1 fj and the unbiased estimation of the ground truth ŷ = E(y), the

bias-variance-covariance decomposition is written as the following equation:

E((fh − ŷ)2) = B2 +
1

m
V + (1− 1

m
)C, (4)

where B, V, and C are the averaged bias, variance, and covariance of each
sub-model in the hybrid ensemble. The equations for the three terms are as
follows:

B =
1

m

m∑
j=1

(E(fj)− ŷ) , (5)

V =
1

m

m∑
j=1

E
(
(fj − E(fj))

2
)
, (6)

C =
1

m(m− 1)

k∑
j=1

∑
k 6=j

E [(fj − E(fj))(fk − E(fk))] . (7)

Unlike ambiguity decomposition, the bias-variance-covariance decomposi-
tion can reduce the error of the hybrid ensemble by decreasing the covariance
without increasing the bias and variance. Additionally, the covariance term
can be negative, implying that negative correlations between sub-models can
contribute to the prediction of the hybrid ensemble.

2.2 Negative Correlation Learning

Liu has proposed to achieve diversity within an ensemble by NCL [24]. They
designed NCL as a training method for neural network ensembles. It adds
a penalty term to the objective function of each network and trains all net-
works simultaneously and interactively before combining them. The purpose
of this training pattern is not to obtain multiple accurate and independent
neural networks but to capture the correlations and derive sub-networks with
negative correlations using penalty terms, which in turn form a robust com-
bination. Brown also used NCL by adding a heuristic penalty term to the
mean squared error as an objective function [33]. They systematically control
the bias-variance-covariance trade-off by optimizing this objective function.
In addition, they derived a systematic upper bound on the strength of neg-
ative correlation, which tended to stabilize as the number of models within
the ensemble increased. As mentioned in Table 1 before, there are sub-model
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training and combination stages in generating an ensemble model. The appli-
cation of NCL in neural network ensembles belongs to the first stage and the
objective function for training the sub-model in a typical ensemble is given
below:

Fj = ζj + λpi(n), (8)

pi(n) =
1

n

n∑
i=1

(fj(xi)− fh(xi))
∑
k 6=j

(fk(xi)− fh(xi))

= − 1

n

n∑
i=1

(fj(xi)− fh(xi))
2.

(9)

It is still given that m networks in the ensemble and n samples in the
dataset. For the jth network, its objective function Fj during training process-
ing is MSE with an NCL penalty term. In Equation (8) and Equation (9), λ is
the negative correlation strength. When λ equals 0, Fj is equivalent to MSE
ζj , and the higher the λ, the stronger the negative correlation strength of the
objective function. Previous approaches to increasing model diversity, such as
changing the model structure, were mainly implicit. Contrastingly, the NCL
controls model diversity explicitly by adding a penalty term to the objective
function using only the parameter λ. The effect of NCL is to pull the predic-
tions of the sub-models away from the ensemble while drawing the ensemble
closer to the actual values [34].

2.3 Interior-point filter line-search algorithm

The interior-point filter linear-search algorithm has mature applications in
many fields as a general-purpose method for solving optimization and pro-
gramming [35? , 36]. This optimization algorithm has been well integrated as
an Interior Point OPTimizer (IPOPT) solver in Gekko for friendly use, which
is designed by Beal [32]. As an algebraic modeling language, it excels in solv-
ing dynamic optimization problems. Additionally, Gekko is a Python library
that integrates model building, analysis tools, and optimization visualization.
Following, we will briefly introduce IPOPT [31].

For convenience, researchers are used to writing the objective function and
constraints of the optimization problem by adding equation constraints and
slack variables in the standard form, as in Equation (10):

arg min
x∈Rn

F (x)

s.t. c(x) = 0,

xi ≥ 0.

(10)

To solve an optimization problem using the interior point method, one
adds an auxiliary barrier to Equation (10) and, correspondingly, removes the
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inequality constraint, as in Equation (11):

arg min
x∈Rn

φµ(x) = F (x)− µ
m∑
i=1

ln(xi)

s.t. c(x) = 0.

(11)

As introduced by Wächter, µ is a logarithmic barrier term, and µ > 0 [31].
As µ → 0, the optimization problem (11) is more likely to converge to an
optimal solution. The solution of Equation (11) starts with a relatively small µ,
such as 0.1, and then iterates using the Newton method combined with a linear
search. IPOPT then determines whether the current feasible solution reduces
φµ(x) compared to the previous feasible solution. In the absence of a feasible
solution, IPOPT transforms the problem (11) into a feasibility restoration
phase by finding a feasible solution that minimizes the norm of the constraint
violation ‖c(x)‖1, temporarily ignoring the objective function, and thus solving
it flexibly. The above steps are repeated, with µ being reduced each time,
until the solution of Equation (11), or the solution satisfying the first-order
optimality condition, is found. All the procedures would be done by Gekko
automatically.
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3 Hybrid ensemble for regression with negative
correlation learning

As one of the most fundamental mathematical problems, regression has
many well-established models designed from different perspectives. A hybrid
ensemble is a method to solve regression by the weighted average of the
predictions of multiple members. In this study, by introducing NCL in the
hybrid ensemble, the sub-models with diversity will be selected, combined, and
weighted to improve the prediction accuracy. Specifically, this section examines
these aspects: model pool construction, sub-model training stage, sub-model
combination stage, evaluations, and the proposed hybrid ensemble framework.

3.1 Model pool construction

Many ensemble models adopt cross-validation to train homogeneous models
and perform majority voting to select models that work well. In contrast, this
study draws on the conclusion of Mendes-Moreira that heterogeneous mod-
els control diversity and perform better than homogeneous candidates in the
model training stage [3]. When constructing the model pool, we chose the
models from different methods. Eleven regression models are selected in this
study, including Simple Linear Regression (SLR) [38], Ridge Regression (RR)
[39], Bayesian Regression (BR) [40], Stochastic Gradient Descent Regression
(SGDR) [41], Polynomial Regression (PR) [42] from Linear methods; Deci-
sion Tree Regression (DTR) [43], Random Forest Regression (RFR) [44], and
Gradient Boosting Decision Tree (GBDT) [45] from Tree-based methods;
Adaptive Boosting Regression (ABR) [46], Support Vector Regression (SVR)
[47], and Multilayer Perceptron Regression (MPR) [48]. Methods, models,
and sub-models will be mentioned several times in this paper, and we have
drawn an example in Figure 1 to distinguish these three terms.

3.2 Sub-model training stage

In practice, grid search is to find the best parameter set of a model to improve
the prediction [49]. Cross-validation is the basis for judging whether a param-
eter set is good or not [50]. In a typical model fitting task, there will be
situations where the training set predicts better than the test set, also known
as over-fitting, which can be solved by cross-validation. In this paper, a 5-fold
cross-validation is used, whereby the training data is divided into five equal
parts, and a model with a particular parameter set is fitted five times. The
model takes one copy of the data from the training set as the validation set
and the remaining four copies as a new training set. After five fits, the predic-
tion scores on each validation set are averaged as the final score of the current
model. Once the grid search has traversed all possible parameter combinations,
the highest-scoring parameter set is taken as optimal.
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Fig. 1. The relationship between the method, models, and sub-models. The
top level is a tree-based method, the middle level is different models, and
the bottom level are sub-models written as Pi with different parameter sets.
The sub-models serve as the members of the hybrid ensembles in this paper.

Figure 2 illustrates the process of grid search and cross-validation. The
value range for each parameter is first set manually to form a discrete parame-
ter space. The grid search then traverses the space to obtain all parameter sets,
calculates the average prediction error on each validation data, and selects the
parameter set with the lowest error. Once the grid search and cross-validation
are finished, we expect to obtain the best parameter set for a model.

Fig. 2. The process of grid search and cross-validation
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3.3 Sub-model combination stage

3.3.1 Objective function for hybrid ensemble

This subsection explains the difference between the proposed NCL-based
hybrid ensemble and the neural network ensemble in [24] and claims the con-
tributions in detail. We have introduced how NCL is used in neural network
ensemble in Section 2.2. If combining the Equations (8) and (9), we get the
error function for each network:

Fj = ζj −
λ

n

n∑
i=1

(fj(xi)− fh(xi))
2
. (12)

All network members optimize the error function (12) during training and
achieve interaction between members by the penalty term in the function.
The ensemble of networks thus is trained on the ‘sub-model training’ stage in
Table 1.

Unlike the neural network ensemble containing homogeneous members, we
applied a heterogeneous ensemble to generate the estimators with specialty
and accuracy in the different regions of solution space [1]. Training and inter-
acting sub-models with different architectures in parallel are challenging, so we
train each model separately, incorporating diversity in the ‘sub-model combi-
nation’ stage. We consider designing an optimization problem to implement a
hybrid ensemble in which candidate sub-models are automatically selected and
assigned weights. We still wrapped the error function of each sub-model as a
penalty term to encourage the emergence of diversity as Equation (12). Then
the objective function of the hybrid ensemble is obtained with the weighted
average of all the error functions and is written as follows:

argmin
ω

Φ(ω) =

m∑
j=1

ωj

{
ζj −

λ

n

n∑
i=1

(fj(xi)− fh(xi))
2
}
,

s.t.

m∑
j=1

ωj = 1,

0 ≤ ω ≤ 1.

(13)

At this point, we claim the contribution of optimizing Formula (13) to the
performance of the final hybrid ensemble. Formula (13) and Formula (3), also
the ambiguity decomposition, are similar in form, with the only difference being
the λ in the second term in Formula (13). Further, the Formula (3) describes
the performance of the hybrid ensemble. The issue then naturally arises on
why hybrid ensemble optimizes Formula (13) instead of Formula (3). There
are three explanations: i) it would be overfitted if one only minimising the
Formula (3) with focus on the training data; ii) the ensemble diversity cannot
be guaranteed if only the second term of Formula (3) is optimized without
causing a change in the first term, as both terms contain variance [16]. iii)
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Formula (3) can be decomposed into the three terms in Formula (4) considering
the sample distribution. The NCL penalty term in Formula (13) could control
the covariance through λ without causing bias and variance terms to change
and obtain the trade-off between accuracy and diversity.

The differences between the hybrid ensemble and the neural network
ensemble can be stated as follows: i) when training the neural network ensem-
ble, each network has the identical error function as Formula (12) and interacts
with other networks. The network optimization and weight updating are simul-
taneous. ii) The proposed ensemble is post-hoc, consisting of heterogeneous
sub-models that are pre-tested for the performance on the validation set before
being combined. This operation avoids the homogeneity of the neural network
ensemble but preserves the interaction and enhances the generalization of the
hybrid ensemble. iii) Formula (13) takes a weighted average of the error func-
tions of all the sub-models instead of optimizing them separately as in the
neural network ensemble. Formula (13) focuses more on optimizing weights
given the known MSE of sub-models on the validation set. If a sub-model has
a higher MSE, Formula (13) puts less emphasis, or weight, on the sub-model.
The weight can be zero if λ = 0. However, if this sub-model has a higher differ-
ence from the current hybrid ensemble at the same time, it contributes to the
diversity of the ensemble and attracts some attention from the Formula (13).
The penalty term achieves the trade-off between diversity and accuracy with
this mechanism.

3.3.2 Automatic search algorithm for negative correlation
penalty

The λ in Formula (13) controls the strength of the negative correlation penalty.
We designed an algorithm to select a suitable λ from a list as Algorithm (1).
The basic idea of searching λ is to traverse from 0 to 1 given the step s. We use
Gekko to solve Formula (13) to obtain weight vector ω regarding the different
sub-models. Algorithm (1) then calculates the error of the generated hybrid
ensemble on the validation set under ω. The error here is a simple average
of RMSE, MAE, and MAPE, considering that these three metrics are the
evaluation criteria in this paper. We attempt to treat these three metrics fairly
without preference. After the algorithm targets the optimal λ∗ with minimum
error, the step s is reduced, and a more refined search is started locally on
that λ∗. In this paper, we retain the lambda with three digits, i.e., the search
stops when s < 0.001.

3.4 Model evaluation metrics

Root Mean Squared Error (RMSE ), Mean Absolute Error (MAE ), and Mean
Absolute Percentage Error (MAPE ) are three metrics to evaluate the accuracy
of regression models. The equations of them are as follows with ŷi the predicted
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Algorithm 1 An automatic search algorithm for optimal λ∗

1: Input:
Fv ← (f1, f2, ..., fm) . Predictions on validation set

2: Initialize:
λ∗ ← 0.1 . Optimal λ
s← 0.1 . Search step
E∗ ←∞ . Errors on the validation set

3: while s >= 0.001 do
4: L ← [λ∗ + i ∗ s, λ∗ − i ∗ s]\λ∗, i = 0, 1, .., 10
5: Remove the λ that λ > 1 or λ < 0 in L
6: for λi in L do
7: Call Gekko to solve Φ(w), and obtain the weight ω
8: Get hybrid ensemble on the validation set: fh = FtωT
9: Compute errors : E = (ERMSE + EMAE + EMAPE)/3

10: if E < E∗ then
11: E∗ ← E
12: λ∗ ← λi
13: end if
14: end for
15: s = s/10
16: end while
17: Output:

Optimal λ∗ and weights for each sub-model ω

value, and yi the true value:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2, (14)

MAE =
1

n

n∑
i=1

|ŷi − yi| , (15)

MAPE =
1

n

n∑
i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣ . (16)

3.5 Framework of the hybrid ensemble

Figure 3 demonstrates our proposed hybrid ensemble framework incorporat-
ing NCL. This framework includes model pool construction, hybrid ensemble
generation, and future data prediction.

Initially, according to expert experience, we select eleven regression sub-
models from different aspects like linear models, ensemble models, and neural
networks with various structures and parameters to construct the hetero-
geneous model pool. Additionally, hybrid ensemble generation contains two
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stages: sub-model training and sub-model combination. In the first stage, the
training set from the dataset is trained individually by the heterogeneous sub-
models in the model pool. Grid Search and 5-fold Cross-Validation are involved
in the training process to find the best parameter set for every model class
and avoid overfitting. In the second stage, the NCL-based objective function
is designed for model selection and weighting to find sub-models whose predic-
tions have negative correlations, thus enhancing the diversity within the hybrid
ensemble. The weights of each sub-model are automatically updated in the
process of solving the objective function using the IPOPT solver in the Gekko
optimizer. Finally, we treat the test set as future data to evaluate the pro-
posed hybrid ensemble with RMSE, MAE, and MAPE, to see an improvement
in contrast to the best-performed sub-model and other benchmarks.

Fig. 3. Framework of the hybrid ensemble
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4 Experiments

This section begins with an introduction of the datasets and model config-
urations in Section 4.1. Subsequently, we design several sets of experiments
from different perspectives to highlight the strength of the proposed approach.
Section 4.2 starts with the simple average of the elements in each ensemble.
Section 4.3 applies the NCL method on the potential ensembles and explores
whether the prediction accuracy will be improved. Section 4.4 analyses the
weights assigned by NCL on sub-models. Section 4.5 performs the compet-
itive analysis between the NCL ensemble and the state-of-the-art weighting
methods. Section 4.6 compares the prediction effect between the NCL ensem-
bles and the best sub-models in each class. As the final experimental section,
Section 4.7 provides a sensitivity analysis of the negative correlation penalty
parameter λ.

4.1 Datasets and model configurations

In this study, we chose twenty public datasets from Kaggle1 and UCI machine
learning repository2 to test the proposed NCL-based ensemble. These datasets
cover the fields of economy, business, meteorology, and energy. The names and
descriptive statistics are listed in Table 2.

Table 2. Description statistics of twenty datasets

Datasets # Samples # Features Max of Y Min of Y Mean of Y Median of Y Std. of Y

01-Car 4,322 7 8,900,000 20,000 504,785 350,500 578,800
02-House 21,613 20 7,700,000 75,000 540,182 450,000 367,362
03-Insurance 1,338 6 63,770 1,121 13,270 9,382 12,110
04-Life Expectancy 2,938 21 89 36 69 72 10
05-Walmart 6,435 7 3,818,686 209,986 1,046,965 960,746 564,323
06-Blackfriday 537,577 10 23,961 185 9,334 8,062 4,981
07-PM25 43,824 12 994 0 99 72 92
08-Temperature 7,752 30 39 17 30 31 3
09-Power 9,568 4 496 420 454 452 17
10-Concret 1,030 8 82 2 36 34 17
11-Gas-2011 7,410 10 119 28 68 66 11
11-Gas-2012 7,628 10 120 12 69 67 10
11-Gas-2013 7,152 10 120 43 70 69 12
11-Gas-2014 7,158 10 118 27 60 59 10
11-Gas-2015 7,384 10 120 26 60 57 11
12-Traffic 48,205 8 7,280 0 3,260 3,380 1,987
13-Produce 1,198 14 1.12 0.23 0.74 0.77 0.17
14-Election 21,644 27 106 0 1.13 0 6.87
15-Bike 8,761 13 3,556 0 705 505 645
16-Steel 35,041 10 157 0 27 5 33

Before modeling, data pre-processing is necessary. We first removed sam-
ples containing null values for each dataset, then transformed nominal variables
into one-hot codes and sequential variables into continuous numeric codes.
This paper divided the datasets into training, validation, and test sets. In our

1https://www.kaggle.com/
2https://archive.ics.uci.edu/ml/index.php
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experiments, the training set was 50% of the overall. When setting the pro-
portion of the validation set, there were two considerations: i) the proportion
of the validation set cannot be too high. Otherwise, the proportion of the test
set would be too low, and the predictions would face a loss of accuracy. ii)
with a high proportion of validation set, the Gekko solver would not produce
a feasible solution due to data overload. Hence for most of the datasets in this
paper, the validation set proportion was 10% of the total sample. As dataset
06-Blackfriday is sufficiently large and dataset 07-PM25 cannot be solved with
a validation set ratio of 10%, the validation set proportions for these two
datasets were set to 1% of the total.

Following this, we set the range of values for the critical parameters of
each model. The grid search and cross-validation will select the optimal set of
parameters from the parameter space for each model. The name, parameter
range, and the number of sets for each model are listed in Table 3. All models
and their parameters form the model pool for this paper. If the model cor-
responding to each parameter set is considered a sub-model, the model pool
contains 2634 elements.

4.2 Comparison of simple average weighting

Starting with the simple average weighting of sub-models, this section considers
the composition of three kinds of ensembles: i) an ensemble of all sub-models;
ii) ensembles of the sub-models within each model class; iii) an ensemble of
the best sub-models in each model class.

4.2.1 Diversity of the ensembles

Intuitively, the more types of models in an ensemble, the higher the level of
diversity. In practice, however, it is difficult to define the model types and thus
to infer whether the ensemble diversity is caused by the variation of parame-
ters or by the model design itself. It has been an opening problem in ensemble
learning that needs a consensus diversity measurement. Nevertheless, we mea-
sured the diversity in an ensemble with correlation coefficients as introduced in
[51]. For several sub-models in an ensemble, we computed the absolute Pearson
correlations pairwise and picked the median value as the diversity measure-
ment. Figure 4 illustrates the diversity values across the ensembles in twenty
datasets with stacked bars.

In Figure 4, the lower values indicate higher diversity since we used the
absolute correlations to measure the diversity within an ensemble. The ensem-
ble SVR has the lowest correlation and the highest diversity, followed by DTR.
Best models ranks 3rd and is better than All models that ranks 10th. This fact
shows that a diverse ensemble does not expect a large amount sub-models.

4.2.2 Performance of the ensembles

To examine the performance of these ensembles statistically, the Friedman and
Nemenyi (FN) tests are used in this section [52]. The FN tests are based on
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Table 3. Parameters sets for each model

Models Parameters # Parameter sets

SLR fit intercept:[True,False] 2

RR

alpha: [0.5,1,2]
max iter:[100,500,1000]
solver:[auto, svd, cholesky, lsqr, sparse cg, sag, saga]
tol:[0.0001,0.001,0.01]

189

BR

n iter:[100,300,500]
tol:[0.0001,0.001,0.01]
alpha 1:[0.000001,0.0001]
alpha 2:[0.000001,0.0001]
lambda 1:[0.000001,0.0001]
lambda 2:[0.000001,0.0001]
compute score:[True,False]
fit intercept:[True,False]

576

SGDR

loss:[squared loss,huber,epsilon insensitive,squared epsilon insensitive]
penalty:[l1,l2,elasticnet]
alpha:[0.00001,0.0001,0.001]
max iter:[500,1000,1500]
tol:[0.0001,0.001,0.01]
learning rate:[constant,optimal,invscaling,adaptive]

1296

PR

polynomialfeatures degree:[2,3]
polynomialfeatures interaction only:[True,False]
polynomialfeatures include bias:[True,False]
polynomialfeatures order:[C,F]

16

RFR

n estimators:[50,100,200]
max depth:[2,3,4]
min samples split:[2,3,4]
min samples leaf:[2,3]
bootstrap:[True,False]

108

ABR
n estimators:[10,50,100]
learning rate:[0.01,0.1,1]
loss:[linear,square,exponential]

27

GBDT

n estimators:[50,100,200]
learning rate:[0.01,0.1,0.5]
loss:[ls,lad,huber,quantile]
min samples split:[2,3]
max depth:[2,3,4]

216

SVR

kernel:[linear,poly,rbf,sigmoid]
degree:[2,3,4]
C:[0.5,1,2]
gamma:[scale,auto]

72

DTR

splitter:[best,random]
min samples split:[2,3]
min samples] leaf:[2,3]
max features:[auto,sqrt,log2]

24

MPR

activation:[identity,logistic,tanh,relu]
solver:[lbfgs,sgd,adam]
alpha:[0.00001,0.0001,0.001]
learning rate:[constant,invscaling,adaptive]

108

the 13 ensembles in Figure 4 ranking on the 20 datasets. The original hypoth-
esis H0 of the Friedman test is that all ensembles do not perform significantly
differently on all datasets. If the Friedman test rejects H0, the Nemenyi test
is further used to test whether a significant difference exists between spe-
cific ensembles. Suppose the difference between the mean ordinal values of the
two ensembles is greater than the threshold range of Nemenyi at a certain
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Fig. 4. The diversity values across the ensembles in twenty datasets. X-axis is
the ensembles. The name Best models is the ensemble of the best sub-models
in each class, All models is the ensemble of all sub-models, and the rest are
ensembles of the sub-models in each class with the same name of the models
in Table 3. Y-axis is the diversity values of each ensemble for all datasets, with
the stacked form.

confidence level. In that case, the predictions of the two ensembles are signifi-
cantly different. The results of the FN tests on RMSE, MAE, and MAPE are
visualized in Figure 5.

Fig. 5. Friedman and Nemenyi test on RMSE (left), MAE (middle), and
MAPE (right). The horizontal axis is the differences in average ranked values
of each ensemble, and the vertical axis is the names of the ensembles.

In Figure 5, each ensemble is represented by a line segment running through
a point. The points are the average orders of an ensemble over all datasets,
and the lower the value on the corresponding horizontal axis, the better the
ensemble performs. The intervals of the line segments are the threshold ranges
of the Nemenyi test. When comparing two ensembles, they are significantly
different if there is no overlapping part of their line segments. We put red
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dashed lines in the figures to indicate the maximum average ranked values of
the Best models ensemble.

As can be seen in Figure 5, the ensemble Best models is significantly bet-
ter than All models, in line with that the Best models is more diverse than
All models in Figure 4. Another fact is that the ensemble of linear models,
except the PR, do not offer either high diversity or good performance. More-
over, we can not tell the significant difference among the ensembles MPR, DTR,
PR, and the Best models. In Figure 4, these good-performing ensembles have
similar diversity and rank in the top 5. This phenomenon provides evidence
from an experimental perspective that ensemble diversity is associated with
performance, whether the ensemble is composed of the same or multiple types
of sub-models. There is still an exception in the ensemble SVR, which performs
unsatisfactorily compared to the others. Although it is far more diverse in
Figure 4 and there are some cases that SVR is the best sub-model in Table 12.
This mismatch inspires the future search for the balance between diversity and
performance, and an ensemble with excessive diversity may be risky.

4.3 Construction of NCL ensemble

This section constructs an NCL ensemble and compares it with other ensem-
bles designed from different aspects. In detail, the NCL-based ensemble was
built through the best sub-models in each model class, containing eleven mem-
bers. The best sub-models were selected by the performance of the model
on the validation set. Then the predictions on the validation set were input
into the Algorithm (1) to finish the search for an optimal negative correlation
strength λ∗. We could also obtain the weights ω for each sub-model through
Algorithm (1). Finally, we weighted average the predictions on the test set
with ω to generate the final outputs of the NCL-based ensemble.

We would compare the NCL-based ensemble with others considering the
sub-model weights 4.3.1, the ensemble members in Section 4.3.2, the objective
function in Section 4.3.3, the training modes in Section 4.3.4, and the number
of sub-models in Section 4.3.5.

4.3.1 NCL-based v.s. simple average ensembles

The difference between NCL-based and simple average ensembles regards the
weights of the sub-models. To explore how the weights influence performance,
we compared two ensembles: one with the NCL method paying different atten-
tion to each sub-models, the other with equal weights. Table 4 demonstrates
the improvement of the NCL-based ensemble over the simple average, in which
the metrics with a prefix Imp are all measured with percentage.

In Table 4, the NCL-based ensemble could improve the simple average in
most cases, around 15% in RMSE, 17% in MAE, and 10% in MAPE on the
average of the twenty datasets. This fact verifies that the ensemble places
varying emphasis on its sub-models to enhance performance further, although
the sub-models are already diverse.
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Table 4. Improvement of the NCL-based ensemble over the simple average
Metrics(%) 01-Car 02-House 03-Insurance 04-Life Expectancy 05-Walmart
ImpRMSE 2.21 18.29 7.00 9.22 59.86
ImpMAE 3.45 19.97 14.16 10.72 71.80
ImpMAPE -4.48 12.96 15.15 16.25 36.15
Metrics(%) 06-Blackfriday 07-PM25 08-Temperature 09-Power 10-Concret
ImpRMSE 2.57 27.22 15.92 1.74 20.11
ImpMAE 4.13 31.76 17.23 1.87 26.04
ImpMAPE -19.42 -18.50 16.35 9.74 22.35
Metrics(%) 11-Gas-2011 11-Gas-2012 11-Gas-2013 11-Gas-2014 11-Gas-2015
ImpRMSE 13.68 22.67 28.56 20.41 16.44
ImpMAE 15.48 23.57 31.35 25.93 18.07
ImpMAPE 12.13 17.52 25.20 48.99 13.24
Metrics(%) 12-Traffic 13-Produce 14-Election 15-Bike 16-Steel
ImpRMSE 0.17 -0.17 8.47 20.65 6.82
ImpMAE 0.42 0.17 4.79 26.69 6.85
ImpMAPE -9.45 -3.02 3.01 6.29 1.56

4.3.2 Best sub-models v.s. other ensemble members

Different types of ensemble members are considered here, including i) the best
sub-models in each model class, ii) all the sub-models in DTR, and iii) the
average sub-models in each model class. The sub-models in DTR are chosen for
the higher diversity and similar performance as the Best-models in Section 4.2.
The NCL method is used in all three ensembles with different members to
generate the weights of sub-models and obtain the final predictions.

Table 5 presents the prediction errors of the three ensembles. The Best-NCL
is the ensemble with the best sub-models of each model class. The DTR-NCL
refers to the ensemble with the sub-models in DTR. The Mean-NCL is the
ensemble comprising the average predictions generated by each model class.
The values with bold font are the minimum values of error metrics.

Table 5. Prediction errors of NCL-based ensembles

Dataset
RMSE MAE MAPE

Best-NCL DTR-NCL Mean-NCL Best-NCL DTR-NCL Mean-NCL Best-NCL DTR-NCL Mean-NCL
01-Car 0.698 0.684 0.696 0.332 0.314 0.341 1.989 1.990 1.999
02-House 0.381 0.401 0.428 0.199 0.204 0.226 1.313 1.403 1.456
03-Insurance 0.348 0.388 0.377 0.191 0.222 0.260 0.558 0.864 0.905
04-Life Expectancy 0.265 0.234 0.319 0.189 0.157 0.238 1.075 0.802 1.551
05-Walmart 0.254 0.284 0.321 0.141 0.155 0.200 1.369 1.437 1.557
06-Blackfriday 0.718 0.712 0.711 0.573 0.552 0.561 7.415 8.131 7.960
07-PM25 0.549 0.500 0.526 0.360 0.306 0.351 1.703 1.647 1.448
08-Temperature 0.319 0.367 0.379 0.240 0.273 0.290 1.117 1.313 1.304
09-Power 0.230 0.208 0.247 0.178 0.154 0.195 1.666 1.102 1.981
10-Concret 0.309 0.323 0.373 0.226 0.239 0.297 0.798 0.839 0.833
11-Gas-2011 0.346 0.343 0.362 0.198 0.207 0.226 1.059 1.189 1.150
11-Gas-2012 0.344 0.356 0.338 0.224 0.238 0.219 1.161 1.443 1.209
11-Gas-2013 0.298 0.353 0.326 0.208 0.241 0.227 1.071 1.313 1.149
11-Gas-2014 0.345 0.358 0.418 0.211 0.222 0.268 1.290 1.506 2.085
11-Gas-2015 0.290 0.294 0.328 0.200 0.189 0.238 0.902 0.834 0.988
12-Traffic 0.975 0.974 0.970 0.848 0.843 0.844 1.459 1.571 1.519
13-Produce 0.498 0.537 0.551 0.295 0.327 0.368 0.568 0.651 0.730
14-Election 0.034 0.029 0.044 0.011 0.004 0.017 0.087 0.027 0.157
15-Bike 0.405 0.373 0.418 0.266 0.236 0.284 1.079 0.924 1.163
16-Steel 0.075 0.056 0.103 0.041 0.029 0.056 0.109 0.100 0.149

Table 5 displays that the Best-NCL and DTR-NCL ensembles take the
majority of the minimum errors. In this case, if an ensemble achieves the
minimum error on a dataset, we count it as a win. The total competition count
for each ensemble is 60, with 20 datasets and 3 metrics. Best-NCL wins 31
times out of 60, more than half of them (9, 9, and 13 counts on the three
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metrics, respectively). DTR-NCL wins 25 times, with 8, 10, and 7 counts on
the three metrics. The Mean-NCL wins just 4 times. The inferior performance
of Mean-NCL could be explained by the spatial distribution of the predictions
from the different models. Taking ‘01-Car’ as an example, we dimensionalized
more than 2000 groups of predictions using the t-SNE technique. We visualized
them on a two-dimensional plane, as shown in Figure 6.

Fig. 6. Predictions distribution in the two-dimensional plane of 01-Car

The visualization provides an intuitive representation of the prediction dis-
tributions. Specifically, predictions generated by one model class with different
parameters are distributed in clusters in space and are distinguished from those
of other models. We further abstract this distribution as shown in Figure 7.

Fig. 7. Illustration of the best and average sub-model predictions for each
model class



Springer Nature 2021 LATEX template

22 A hybrid ensemble method with negative correlation learning for regression

In Figure 7, we suppose there are three model classes, each containing sev-
eral sub-models. According to Figure 6, the predictions from the same model
class form a cluster in the space. A red star is put in the two-dimensional
plane representing the ground truth. The first sub-plot in Figure 7 shows the
location of the ground truth and predictions. The second sub-plot considers
the average of the predictions in each class, which locates in the cluster center.
When combining the three cluster centers to form an ensemble, the predictions
of the ensemble would be in the center of the triangle region in the sub-plot.
In the third sub-plot, we continue to find the best predictions from each class,
which is the point that is nearest to the ground truth. Then it is evident that
the triangle region shrinks as the points are near to the ground truth than
the cluster center. Thus, the ensemble predictions of the best sub-models are
closer to the ground truth.

4.3.3 NCL objective function with regularization term

Section 3.3.1 presents the objective function of the NCL ensemble as Formula
(13), which includes the MSE and NCL penalty terms. As pointed out by [53],
the model is easily overfitted when the data has nontrivial noise. The authors
suggest adding a regularization term in the objective function to alleviate
the overfitting problem. Similar as the neural network ensemble in [53], we
redesigned the Formula (13) as follows:

argmin
ω

Φ(ω) =

m∑
j=1

ωj

{
ζj −

λ

n

n∑
i=1

(fj(xi)− fh(xi))
2
}

+

m∑
j=1

αjω
T
j ωj ,

s.t.

m∑
j=1

ωj = 1,

0 ≤ ω ≤ 1.

(17)

where αj is the strength of the regularization term
∑m

j=1 ω
T
j ω. Now we

compare the NCL ensemble with and without the regularization term. The
αj for each sub-models is set equal to 0.05 for simplicity. Table 6 illustrates
the performance of NCL ensembles on the twenty datasets. The Best-NCL is
the NCL ensemble without regularization term, and Best-NCLR is the NCL
ensemble with α = 0.05. Table 6 shows that the regularization term marginally
improved the NCL ensemble, with more than half of the data sets on each
error metric.

4.3.4 Hybrid ensemble v.s. neural network ensemble

As introduced in Section 2.2, the NCL was developed in the scenario of the
neural network ensemble training period. The hybrid ensemble in this paper
transfers the NCL from model training to the combination stage while keeping
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Table 6. Prediction errors of NCL ensembles with and without regularization
term

Dataset
RMSE MAE MAPE

Best-NCL Best-NCLR Best-NCL Best-NCLR Best-NCL Best-NCLR
01-Car 0.698 0.780 0.332 0.397 1.989 2.358
02-House 0.381 0.368 0.199 0.198 1.313 1.276
03-Insurance 0.348 0.359 0.191 0.194 0.558 0.560
04-Life Expectancy 0.265 0.245 0.189 0.166 1.075 0.941
05-Walmart 0.254 0.257 0.141 0.142 1.369 1.295
06-Blackfriday 0.718 0.714 0.573 0.562 7.415 8.203
07-PM25 0.549 0.544 0.360 0.356 1.703 1.720
08-Temperature 0.319 0.307 0.240 0.233 1.117 1.121
09-Power 0.230 0.228 0.178 0.176 1.666 1.647
10-Concret 0.309 0.312 0.226 0.223 0.798 0.817
11-Gas-2011 0.346 0.345 0.198 0.198 1.059 1.053
11-Gas-2012 0.344 0.344 0.224 0.225 1.161 1.161
11-Gas-2013 0.298 0.305 0.208 0.212 1.071 1.206
11-Gas-2014 0.345 0.343 0.211 0.209 1.290 1.269
11-Gas-2015 0.290 0.285 0.200 0.193 0.902 0.927
12-Traffic 0.975 0.970 0.848 0.845 1.459 1.407
13-Produce 0.498 0.499 0.295 0.296 0.568 0.565
14-Election 0.034 0.032 0.011 0.011 0.087 0.086
15-Bike 0.405 0.394 0.266 0.255 1.079 1.018
16-Steel 0.075 0.070 0.041 0.038 0.109 0.104

heterogeneous sub-models as a diverse model pool. It is still worth comparing
the ensembles where NCL works in separate stages.

Given the well-predicted multilayer perceptron in Figure 5, we set up a fully
connected forward neural network as the sub-model. After tuning the hyper-
parameters, we set each sub-network containing two hidden layers, with 16
neurons in each layer. The forward propagation took sigmoid as the activation
function, and the backward propagation used gradient descent with a regular
term to update the weights and biases with a factor of 0.01. The individual
sub-networks were trained in batches to improve robustness and computational
speed, with a batch size of 256. To match the number of sub-models in the
hybrid ensemble, we also set up 11 sub-networks in the network ensemble. The
learning rate of the network ensemble was 0.001, and the negative correlation
strength λ of both ensembles was 0.5.

Similar to Table 4, Table 7 illustrates the percentage improvement of the
hybrid ensemble consisting of the best sub-models over the network ensem-
ble trained by NCL. In most cases, the hybrid ensemble improves the network
ensemble with around 19% on RMSE, 22% on MAE, and 25% on MAPE on
the average of all the datasets. Compared to the simple average, the NCL-
based hybrid ensemble achieves a higher percentage improvement over the
network ensemble. The results indicate that even a simple averaged heteroge-
neous ensemble outperforms a weight-optimized homogeneous ensemble in our
regression case.

4.3.5 The number of sub-models in the NCL ensemble

In this paper, 11 model classes were initially selected empirically according to
the model design and architecture, and the corresponding 11 best sub-models
were generated based on the prediction results on the validation set, thereby
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Table 7. Improvement of the hybrid ensemble over the network ensemble
Metrics(%) 01-Car 02-House 03-Insurance 04-Life Expectancy 05-Walmart
ImpRMSE -16.38 23.87 4.40 16.69 65.29
ImpMAE -22.82 27.10 13.98 21.96 73.41
ImpMAPE -16.57 32.41 37.91 48.46 44.90
Metrics(%) 06-Blackfriday 07-PM25 08-Temperature 09-Power 10-Concret
ImpRMSE 3.07 30.77 26.19 7.07 11.62
ImpMAE 5.02 34.62 27.13 8.13 14.93
ImpMAPE -35.31 18.43 31.38 3.82 14.15
Metrics(%) 11-Gas-2011 11-Gas-2012 11-Gas-2013 11-Gas-2014 11-Gas-2015
ImpRMSE 8.29 11.59 22.32 20.04 9.30
ImpMAE 9.89 13.49 20.74 23.35 7.17
ImpMAPE 11.02 23.97 38.97 24.54 11.10
Metrics(%) 12-Traffic 13-Produce 14-Election 15-Bike 16-Steel
ImpRMSE -0.14 8.05 71.78 23.80 42.30
ImpMAE -0.55 12.89 82.31 27.35 45.23
ImpMAPE 6.86 22.09 81.57 46.58 60.59

forming the NCL hybrid ensemble. Regarding the number of sub-models in
the NCL ensemble, we construct the ensemble with the top 5 and top 3 sub-
models in each dataset. Table 8 lists the prediction errors of the ensembles
with all the sub-models, the top 5 and top 3 sub-models in each dataset.

Table 8. Prediction errors of NCL ensembles with different numbers of sub-
models

Dataset
RMSE MAE MAPE

NCL-All NCL-T5 NCL-T3 NCL-All NCL-T5 NCL-T3 NCL-All NCL-T5 NCL-T3
01-Car 0.698 0.780 0.780 0.332 0.397 0.397 1.989 2.349 2.349
02-House 0.381 0.388 0.388 0.199 0.209 0.209 1.313 1.336 1.336
03-Insurance 0.348 0.374 0.388 0.191 0.212 0.218 0.558 0.558 0.598
04-Life Expectancy 0.265 0.280 0.306 0.189 0.184 0.201 1.075 1.001 1.101
05-Walmart 0.254 0.248 0.599 0.141 0.143 0.424 1.369 0.969 2.377
06-Blackfriday 0.718 0.737 0.737 0.573 0.572 0.572 7.415 7.873 7.873
07-PM25 0.549 0.673 0.736 0.360 0.464 0.468 1.703 2.287 1.723
08-Temperature 0.319 0.307 0.332 0.240 0.233 0.242 1.117 1.121 1.119
09-Power 0.230 0.212 0.205 0.178 0.160 0.152 1.666 1.290 1.096
10-Concret 0.309 0.300 0.300 0.226 0.224 0.224 0.798 0.785 0.784
11-Gas-2011 0.346 0.367 0.349 0.198 0.221 0.199 1.059 1.202 0.986
11-Gas-2012 0.344 0.374 0.351 0.224 0.248 0.215 1.161 1.557 1.290
11-Gas-2013 0.298 0.321 0.321 0.208 0.224 0.225 1.071 1.314 1.315
11-Gas-2014 0.345 0.340 0.339 0.211 0.206 0.208 1.290 1.208 1.251
11-Gas-2015 0.290 0.287 0.287 0.200 0.196 0.196 0.902 0.941 0.941
12-Traffic 0.975 0.975 0.975 0.848 0.848 0.848 1.459 1.459 1.459
13-Produce 0.498 0.517 0.549 0.295 0.312 0.342 0.568 0.629 0.707
14-Election 0.034 0.037 0.036 0.011 0.013 0.016 0.087 0.100 0.120
15-Bike 0.405 0.384 0.410 0.266 0.243 0.273 1.079 0.901 1.078
16-Steel 0.075 0.069 0.055 0.041 0.036 0.028 0.109 0.116 0.099

In Table 8, the column name NCL-ALL is the NCL ensemble with all the
eleven sub-models, the NCL-T5 and NCL-T3 correspond to the ensembles
with top 5 and top 3 sub-models. The errors with bolded font are the NCL-T5
or NCL-T3 exceeding NCL-ALL. It could be observed that NCL-T5 or NCL-
T3 performs better than NCL-All of each metric only on less than half of the
datasets. This fact leads to the conclusion that the sub-model that constitutes
the ensemble is not necessarily the top performer on the dataset. Some of the
less-performing sub-models could still contribute negative knowledge to the
ensemble, which coincides with the findings of [23].
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4.4 Analysis of sub-model weights

As stated in Section 4.3.5, the components of the ensemble are not necessarily
the good-performing sub-models. In other words, good sub-models may not
always contribute to the hybrid ensemble. In the hybrid ensemble, each sub-
model is assigned a weight obtained by the NCL penalty term. The weights are
regarded as the proportion of the sub-models in the ensemble. This subsection
explores whether the weight values of sub-models are related to their abil-
ity to contribute to the ensemble. Concretely, for each dataset, we computed
the Pearson correlation coefficients between the predictions of each sub-model
and the hybrid ensemble. The sub-models were ranked according to their cor-
relation with the ensemble from highest to lowest. Then followed by another
ranking list of the sub-model weights from maximum to minimum. We make
scatter plots with the two ranking lists as in Figure 8.

Figure 8 illustrates the relationship between the prediction correlation and
weight for each sub-model and dataset. There are some scatters on the top
row of several subplots, such as ‘01-Car’ with five and ‘02-House’ with four.
These scatters correspond to sub-models with zero weights that are filtered
out by the NCL ensemble automatically. Besides that, the other scatters sur-
round the identity line, exhibiting obvious positive correlations. These subplots
reveal that the higher the weight, the more the sub-model correlates with
the ensemble predictions and the more significant its contribution to the final
performance.

4.5 Comparison with state-of-the-art weighting methods

The target of a hybrid ensemble is to assign weights to the sub-model with the
supervised or unsupervised method. Besides the NCL-based hybrid ensemble
proposed in this study, state-of-the-art methods also assign weights to sub-
models. According to the summary of Mendes-Moreira, there are constant and
not-constant weighting methods for building an ensemble [3]. As the name
implies, the constant methods assign constant weights to each sub-model.
On the other hand, the weights generated by the non-constant methods vary
depending on the input data.

4.5.1 Constant weighting methods

The most typical constant weighting method is simple averaging, also called
the Basic Ensemble Method (BEM) in [3]. It does not regard the importance
of any sub-model nor depend on data attributes and assigns the same weight
to all sub-models. In addition to the simple averaging, the sub-models selected
by the NCL-based ensemble are considered here for simple averaging, denoted
as BEM-NCL, which has a filtering effect compared to the simple averaging of
all sub-models.

Another constant method is Generalized Ensemble Method (GEM) [54].
GEM generates weights according to the sub-model errors between the actual
values and predictions. In contrast to the BEM, there is no need to assume that



Springer Nature 2021 LATEX template

26 A hybrid ensemble method with negative correlation learning for regression

Fig. 8. Scatter plot between the rankings of prediction correlation and sub-
model weights for 20 datasets. The x-axis is the correlation rankings of the 11
sub-models, and the y-axis is the weight rankings. Each sub-plot is titled by the
name of the dataset and contains the scatters as sub-models. The identity line
in each subplot indicates that a sub-model has the same ranking in correlation
and weight.

these errors are mutually independent and zero-mean. Let ej(xi) = yi− fj(xi)
is the error between true value yi and prediction fj(xi) from the jth sub-model.
Then let wj be the weight assigned on this sub-model, and it is calculated as:

wj =

∑m
j=1 C

−1
ij∑m

i=1

∑m
j=1 C

−1
ij

, (18)

in which Cij = E[ei(x), ej(x)] is a symmetric correlation matrix of order M .
Linear Regression (LR) is also a constant weighting method, with the pre-

dictions of the individual sub-models as the independent variables and the
true values as the dependent variables. After the linear regression has fitted
the data, the coefficients are taken as the weights for each sub-model. Unlike
GEM, the sum of the linear regression weights does not need to be equal to 1.
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4.5.2 Non-constant weighting methods

Meta Decision Trees (MDT) method was proposed by [55] to solve the classifi-
cation problem, then introduced by [3] as a method of non-constant weighting.
MDT is trained on the predictions of the individual sub-models to target true
values. However, it produces a decision tree model rather than a set of coeffi-
cients, as in linear regression. This decision tree model is fitted over the new
data to produce the final predicted values, and its potential weights are a
decision tree.

Mendes-Moreira classified dynamic weighting, based on the local perfor-
mance of different sub-models, as a non-constant weighting method [3]. Two
intuitive examples are Error Inverse Weighting (EIW) and Error Exponential
Weighting (EEW) from Armstrong’s design [56]. These two weighting meth-
ods connect weights to errors, assuming that the higher the error, the less the
proportion of the sub-model in the overall ensemble. The formulas for EIW
and EEW are

EIWj =
1/Errorj∑m
j=1 1/Errorj

, (19)

EEWj =
e−Errorj∑m
j=1 e

−Errorj
, (20)

in which Errorj can be any of the metrics from RMSE, MAE, and MAPE.
The NCL-based ensemble proposed in this paper is a dynamic weighting

method that integrates model selection with model weighting and belongs to
the category of non-constant weighting.

4.5.3 Comparison with constant and non-constant methods

After an overview of the classical constant and non-constant weighting meth-
ods, this subsection compares the proposed NCL-based ensemble with these
weighting methods. The comparisons between our proposed NCL method
(noted as Best-NCL) and the state-of-the-art weighting methods are listed in
Table 9, Table 10, and Table 11. These three tables contain the RMSE, MAE,
and MAPE results on all twenty datasets. Besides, we add another row to
describe the average ranking of the methods on all datasets in each table.

As illustrated in Table 9, Table 10, and Table 11, some remarks can be
summarised: i) considering the BEM constant weighting method, NCL is a
choice to improve the predictions; ii) Best-NCL performs better than all the
methods regarding the number of datasets; iii) the average ranking of Best-
NCL is higher than all the methods on RMSE and MAE metrics; iv) on the
MAPE metric, the average ranking of Best-NCL is close to that of EEW,
although Best-NCL is better than EEW on more datasets. This is caused by
the extreme errors on MAPE (06-Blackfriday), while EEW is affected less.

To significantly show the comparison between the Best-NCL and other
methods, the FN tests were performed on the prediction results of the eight
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Table 9. Comparison with constant and non-constant methods on RMSE
Dataset BEM BEM-NCL GEM LR MDT EIW EEW Best-NCL
01-Car 0.696 0.683 1.432 1.527 1.050 0.694 0.694 0.678
02-House 0.463 0.423 0.454 0.466 0.521 0.446 0.454 0.377
03-Insurance 0.383 0.375 0.428 0.400 0.526 0.376 0.380 0.355
04-Life Expectancy 0.294 0.294 0.535 0.278 0.596 0.281 0.290 0.266
05-Walmart 0.636 0.321 0.256 0.256 0.404 0.492 0.563 0.256
06-Blackfriday 0.736 0.718 0.717 0.716 0.978 0.732 0.733 0.718
07-PM25 0.752 0.685 0.534 0.533 0.758 0.725 0.732 0.549
08-Temperature 0.376 0.371 0.340 0.346 0.448 0.366 0.372 0.319
09-Power 0.234 0.234 0.217 0.217 0.278 0.231 0.233 0.230
10-Concret 0.380 0.329 0.396 0.363 1.001 0.357 0.369 0.309
11-Gas-2011 0.405 0.348 0.385 0.382 0.730 0.384 0.395 0.346
11-Gas-2012 0.443 0.423 0.474 0.471 0.522 0.406 0.422 0.344
11-Gas-2013 0.419 0.319 0.369 0.395 0.484 0.381 0.400 0.298
11-Gas-2014 0.436 0.423 0.373 0.377 0.606 0.407 0.421 0.345
11-Gas-2015 0.342 0.328 0.329 0.333 0.459 0.321 0.333 0.290
12-Traffic 0.975 0.975 1.030 1.047 1.324 0.975 0.975 0.975
13-Produce 0.490 0.490 0.536 0.500 0.831 0.490 0.490 0.498
14-Election 0.036 0.036 0.009 0.014 0.079 0.016 0.035 0.034
15-Bike 0.511 0.513 0.414 0.414 0.597 0.483 0.496 0.405
16-Steel 0.080 0.080 0.031 0.031 0.064 0.051 0.077 0.075
Average ranking 5.8 3.7 3.9 3.7 7.55 3.35 4.65 1.85

Table 10. Comparison with constant and non-constant methods on MAE
Dataset BEM BEM-NCL GEM LR MDT EIW EEW Best-NCL
01-Car 0.339 0.325 0.677 0.688 0.468 0.337 0.338 0.325
02-House 0.248 0.226 0.265 0.275 0.288 0.234 0.244 0.198
03-Insurance 0.229 0.225 0.266 0.199 0.298 0.213 0.225 0.196
04-Life Expectancy 0.213 0.213 0.383 0.197 0.448 0.198 0.209 0.190
05-Walmart 0.499 0.208 0.151 0.151 0.204 0.329 0.438 0.142
06-Blackfriday 0.597 0.574 0.564 0.564 0.739 0.591 0.593 0.573
07-PM25 0.527 0.476 0.347 0.346 0.478 0.495 0.512 0.360
08-Temperature 0.288 0.281 0.262 0.268 0.330 0.278 0.285 0.240
09-Power 0.182 0.182 0.160 0.160 0.207 0.179 0.182 0.178
10-Concret 0.298 0.253 0.300 0.267 0.819 0.276 0.290 0.226
11-Gas-2011 0.235 0.201 0.236 0.240 0.333 0.219 0.230 0.198
11-Gas-2012 0.293 0.277 0.302 0.302 0.355 0.267 0.284 0.224
11-Gas-2013 0.303 0.236 0.268 0.290 0.331 0.274 0.294 0.208
11-Gas-2014 0.285 0.276 0.235 0.234 0.380 0.258 0.276 0.211
11-Gas-2015 0.242 0.235 0.234 0.236 0.332 0.224 0.236 0.200
12-Traffic 0.851 0.851 0.855 0.857 1.056 0.850 0.850 0.848
13-Produce 0.290 0.290 0.347 0.296 0.504 0.289 0.289 0.295
14-Election 0.011 0.011 0.001 0.001 0.014 0.002 0.011 0.011
15-Bike 0.363 0.354 0.287 0.287 0.443 0.332 0.351 0.266
16-Steel 0.044 0.044 0.016 0.016 0.028 0.024 0.043 0.041
Average Ranking 5.9 3.85 4 3.6 7.35 3.45 4.7 1.85

weighting methods on the 20 datasets. Figure 9 presents the results of the
statistical analysis of the FN test.

From Figure 9, our proposed Best-NCL performs better than the other
methods on RMSE and MAE significantly. In MAPE, Best-NCL performs
comparably to the two non-constant methods, EIW and EEW, and outper-
forms the other weighted methods. These results are in line with what is
observed from Table 9, Table 10, and Table 11. All the constant weighting
methods listed in this section perform unsatisfactorily, although BEM-NCL
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Table 11. Comparison with constant and non-constant methods on MAPE
Dataset BEM BEM-NCL GEM LR MDT EIW EEW Best-NCL
01-Car 1.842 1.817 3.628 3.705 2.380 1.782 1.731 1.923
02-House 1.449 1.476 1.757 1.818 2.050 1.347 1.285 1.269
03-Insurance 0.656 0.678 0.820 0.515 0.651 0.580 0.597 0.555
04-Life Expectancy 1.211 1.211 2.956 1.295 6.873 1.074 1.024 1.013
05-Walmart 2.021 1.590 0.968 0.855 2.900 1.309 0.920 1.277
06-Blackfriday 6.202 7.601 7.909 7.814 14.491 4.350 1.966 7.415
07-PM25 1.434 1.649 1.926 1.916 3.112 1.360 1.317 1.703
08-Temperature 1.322 1.284 1.267 1.337 2.109 1.275 1.255 1.117
09-Power 1.724 1.724 1.303 1.311 2.452 1.583 1.499 1.666
10-Concret 0.999 0.820 1.040 0.954 2.409 0.927 0.913 0.798
11-Gas-2011 1.163 1.079 1.332 1.230 2.228 1.104 1.087 1.059
11-Gas-2012 1.371 1.374 2.037 2.015 2.292 1.300 1.249 1.161
11-Gas-2013 1.452 1.057 1.439 1.403 2.065 1.229 1.116 1.071
11-Gas-2014 2.382 2.303 1.911 1.550 1.929 1.812 1.350 1.290
11-Gas-2015 1.006 1.001 1.160 1.148 1.348 0.960 0.950 0.902
12-Traffic 1.332 1.332 1.849 1.847 4.023 1.308 1.301 1.459
13-Produce 0.557 0.557 0.783 0.558 1.217 0.545 0.551 0.568
14-Election 0.089 0.089 0.011 0.010 0.019 0.021 0.085 0.087
15-Bike 1.355 1.346 1.112 1.110 1.360 1.196 1.125 1.079
16-Steel 0.115 0.115 0.077 0.077 0.128 0.092 0.111 0.109
Average Ranking 5.2 4.55 5.4 4.5 7.4 3.25 2.5 2.85

Fig. 9. Friedman and Nemenyi test on RMSE (left), MAE (middle), and
MAPE (right). The horizontal axis is the differences in average ranked values
of each method with the vertical axis the names of them.

with the same sub-models as Best-NCL. The experiments confirm the supe-
riority of the NCL ensemble and illustrate that fusion of sub-model selection
and weighting is necessary when building the ensemble.

4.6 Comparison with best sub-model in each group

The previous subsections compared and analyzed NCL-based ensemble with
other ensemble methods. This subsection aims to continue the exploration
of the NCL-based ensemble concerning the best sub-models in each model
class. Table 12 lists the model class that the best sub-model belongs to for
each dataset on the validation and test set under the three metrics. There are
columns named ‘λ = 0’ also in Table 12, given that the hybrid ensemble only
selects one sub-model when there is no NCL. Bolded fonts in Table 12 are
the sub-models that perform consistently on the validation and test sets. If
the NCL ensemble outperforms the best sub-model on the final test set, that
sub-model is marked with a star.
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Table 12. Comparison with best sub-models

Dataset
RMSE MAE MAPE

Validation set Test set λ = 0 Validation set Test set λ = 0 Validation set Test set λ = 0
01-Car BR DTR BR RFR SVR BR PR BR BR
02-House GBDT SVR GBDT DTR DTR GBDT ABR SVR GBDT
03-Insurance GBDT MPR* GBDT MPR MPR GBDT RR RFR GBDT
04-Life Expectancy MPR SVR DTR SVR DTR DTR SVR MPR DTR
05-Walmart MPR MPR GBDT MPR MPR* GBDT DTR GBDT GBDT
06-Blackfriday ABR PR* PR SVR ABR PR RFR DTR PR
07-PM25 SVR GBDT* DTR SVR SVR DTR RFR RFR DTR
08-Temperature MPR DTR* MPR DTR SVR* MPR RFR DTR* MPR
09-Power ABR DTR GBDT SVR DTR GBDT PR DTR GBDT
10-Concret MPR MPR* MPR MPR MPR* MPR SVR MPR* MPR
11-Gas-2011 MPR MPR SVR MPR MPR SVR SVR GBDT SVR
11-Gas-2012 MPR MPR* DTR DTR MPR DTR GBDT MPR DTR
11-Gas-2013 DTR DTR* MPR DTR MPR* MPR SGDR MPR MPR
11-Gas-2014 SVR MPR* GBDT DTR MPR* GBDT RFR DTR GBDT
11-Gas-2015 SVR MPR* SVR DTR MPR SVR RFR MPR* SVR
12-Traffic PR GBDT RFR SGDR ABR RFR SVR DTR RFR
13-Produce RFR SDGR* GBDT RFR PR GBDT SVR MPR GBDT
14-Election MPR MPR DTR DTR DTR DTR GBDT DTR DTR
15-Bike DTR DTR GBDT DTR DTR GBDT DTR SVR GBDT
16-Steel DTR MPR GBDT DTR MPR GBDT GBDT DTR GBDT

From Table 12, the single sub-model selected by the NCL ensemble when
λ = 0 might differ from those in the columns ‘Validation set’ since the objective
function takes MSE error. Table 12 is an ideal example of model instability.
In the 20 datasets, only a few sub-models perform both best on the validation
and test sets. Model instability occurs when, despite promising results for
the current local model, the original optimal model is hard to maintain once
new data are available and the data distribution changes. In some cases, our
proposed NCL ensemble is even better than the best-performing sub-models,
according to the star marks in Table 12, and is a relatively robust ensemble
under the RMSE metric.

Building NCL ensembles is a challenging task. Not only do we have to
compare and select sub-models on the validation set thoroughly, but we also
have to manipulate the approach to solve the optimization problem, which
will undoubtedly consume some time. However, if the proposed NCL ensemble
eventually achieves results comparable to the best-performing sub-model, it
means that the ensemble can overcome model instability to some extent. This
is quite important. In practice, testing a best-performing sub-model involves
picking from a large model pool, which is as time-consuming as building an
NCL-based ensemble. Once the data distribution changes in the future, this
sub-model may not continue to predict well, as no perfect single model is
suitable for all data. In this case, the NCL-based ensemble performs more
robustly and is a better choice.

4.7 The sensitivity analysis of negative correlation
strength

The parameter λ in the NCL objective function controls the strength of the
negative correlation. If λ is close to 0, the NCL objective function can only
pick the sub-model with the lowest MSE error on the validation set, which is
no different in methodology from selecting a sub-model based on other metrics.
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If λ is close to 1, The optimization task will search for the most diverse sub-
models for the ensemble. We plot Figure 10 to present how the prediction
errors change with λ.

Fig. 10. Relationship between ensemble performance and λ. The horizon-
tal axis is λ values from 0 to 1 with step 0.1, and the vertical axis is the
corresponding prediction metric RMSE, MAE, and MAPE.

From Figure 10, we observe that the RMSE and MAE errors first decrease
at λ within 0.1 and 0.2. This phenomenon shows in more than half of the
datasets. There are also datasets with higher data volume that decreases at
higher λ, such as 06-BlackFriday, and some datasets take lower λ and will
increase when λ is higher than 0.1. The MAPE error is more sensitive than
the other two metrics on the change of λ. Our findings fit that of Brown [33].
The authors found an upper bound of λ, and λ stabilized when the number
of sub-models in the ensemble increased to a certain level. There is a similar
pattern in our sensitivity analysis of λ. According to Figure 10, it is necessary
to try different λ for different datasets. Thus, the Algorithm 1 designed in this
paper to automatically search λ is beneficial.

5 Discussion

As one of the essential branches of ensemble models, the hybrid ensemble
has made significant progress in research and practice. However, the hybrid
ensemble still faces the problem of choosing the appropriate model subset
and assigning weights to the sub-models. Simply averaging the predictions
of all sub-models does not achieve the expected results; even the corrections
using weighted averaging methods are limited. This study proposes a novel
method for a hybrid ensemble that automatically selects models and generates
appropriate weights, yielding comparable performance with the optimal sub-
models in regression problems.

A body of studies has experimentally demonstrated that diversity is a crit-
ical factor in the success of hybrid ensembles. Most studies investigated the
sub-model training stage, working on sampling the data and modifying the
parameters of homogeneous models, but the diversity generated in this way
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could be improved. This study proposes a regression prediction framework
incorporating NCL, considering the diversity in both the sub-model training
and combination stages. Eleven regression models with different structures
and parameters are chosen in the sub-model training stage to build a model
pool and fit the training set separately. Second, the study extends the use
of NCL from the previous model training to the model combination. Using
the interior-point filter linear-search algorithm in the Gekko solver, we solve
the optimization problem of model selection and combination to select the
negatively correlated model directly sets from the model pool and generate
weighted predictions simultaneously. Furthermore, the solution to the opti-
mization problem depends on the negative correlation strength λ. Based on
this, an algorithm is designed to automatically search for the optimal λ,
avoiding the time wastage of manual search and testing.

The experimental results support that using NCL in the hybrid ensemble is
a beneficial initiative, and the importance of diversity is demonstrated in both
stages of the ensemble. In the sub-model training stage, if all the sub-model
predictions are projected into a two-dimensional plane, it is evident that those
from the same model class will gather into a cluster. Spatially, the best sub-
model in each model class is closer to the true value than the average center
of each class. The range of geometries formed by the best sub-models is thus
more minor, and the ensemble falling in this range has a higher probability of
exceeding the average of each model class. This paper also demonstrates that
the ensemble performance is related to the sub-model diversity and that it is
statistically better to construct the ensemble with the best sub-models from
different model classes.

In the sub-model combination stage, we innovatively considered diversity
and solved the optimization problem by incorporating NCL using an interior-
point filtering linear-search algorithm. The experimental results show some
inspiring points: i) the NCL ensemble improves the simple average that lacks
selecting and weighting procedures; ii) the NCL penalty is beneficial in the sub-
models with higher diversity, such as the best sub-models and DTR members;
iii) the NCL ensemble can be improved further by adding a regularization
term in the objective function; iv) the NCL ensemble performs better than
the network ensemble with training the homogeneous sub-models; v) it is
necessary to keep some not-satisfying sub-models in the ensemble due to the
negative knowledge they may offer; vi) the weights of the sub-models are in
line with the ensemble performance; vii) as a non-constant weighting method,
NCL ensemble is superior to other constant weighting methods; viii) the NCL
ensemble can overcome the model instability and performs close to the best
sub-model; ix) the auto-searching algorithm is helpful in finding an optimal λ.

A limitation of this study is that the eleven sub-models in the model pool
need to cover more established models in the regression field, which also pro-
vides researchers with the freedom to replace candidate models. This study
also needs a more in-depth exploration of how the data features influence the
ensemble effect.
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6 Conclusion

We developed a hybrid ensemble approach incorporating negative correlation
learning, considering model diversity in the sub-model training and combi-
nation stages. NCL acts as a penalty term for the objective function to be
optimized, assisting in the model selection process to find subsets with diver-
sity. Experiments on twenty publicly available regression datasets confirm the
effectiveness of this approach.

First, the proposed method is user-friendly and easy to understand. Practi-
tioners no longer need to evaluate the effectiveness of individual models using
various accuracy indexes to select the best one, nor do they need to blindly
weight the candidate models, since the hybrid ensemble with the addition of
NCL can fully demonstrate prediction accuracy that approximates or exceeds
that of the best sub-model with appropriate penalty strength. Additionally, the
predictions from any model can be added to the model pool as an element for
the calculation. Even if the model does not work well, this method will discard
it automatically. Therefore, our proposed method has practical implications.
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[31] Wächter, A., Biegler, L.T.: On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Math-
ematical Programming 106(1), 25–57 (2006). https://doi.org/10.1007/
s10107-004-0559-y

[32] Beal, L.D., Hill, D.C., Martin, R.A., Hedengren, J.D.: Gekko optimization
suite. Processes 6(8), 106 (2018). https://doi.org/10.3390/pr6080106

[33] Brown, G., Wyatt, J.L., Tino, P., Bengio, Y.: Managing diversity in
regression ensembles. Journal of machine learning research 6(9) (2005)

[34] Reeve, H.W., Brown, G.: Diversity and degrees of freedom in regression
ensembles. Neurocomputing 298, 55–68 (2018). https://doi.org/10.1016/
j.neucom.2017.12.066

https://doi.org/10.1109/IEEM.2011.6117963
https://doi.org/10.1109/IEEM.2011.6117963
https://doi.org/10.1016/S0893-6080(99)00073-8
https://doi.org/10.1016/S0893-6080(99)00073-8
https://doi.org/10.1109/4235.887237
https://doi.org/10.1016/j.ins.2013.12.016
https://doi.org/10.1016/j.ins.2013.12.016
https://doi.org/10.1016/j.renene.2020.03.168
https://doi.org/10.1016/j.renene.2020.03.168
https://doi.org/10.1016/j.neucom.2008.09.022
https://doi.org/10.1016/j.engappai.2015.06.022
https://doi.org/10.1016/j.engappai.2015.06.022
https://doi.org/10.1023/A:1007559205422
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.3390/pr6080106
https://doi.org/10.1016/j.neucom.2017.12.066
https://doi.org/10.1016/j.neucom.2017.12.066


Springer Nature 2021 LATEX template

38 A hybrid ensemble method with negative correlation learning for regression

[35] Simmons, C.R., Arment, J.R., Powell, K.M., Hedengren, J.D.: Proactive
energy optimization in residential buildings with weather and market fore-
casts. Processes 7(12), 929 (2019). https://doi.org/10.3390/pr7120929

[36] Carpio, R.R., Taira, D.P., Ribeiro, L.D., Viera, B.F., Teixeira, A.F.,
Campos, M.M., Secchi, A.R., et al.: Short-term oil production global
optimization with operational constraints: A comparative study of nonlin-
ear and piecewise linear formulations. Journal of Petroleum Science and
Engineering 198, 108141 (2021). https://doi.org/10.1016/j.petrol.2020.
108141

[37] A unifying modeling abstraction for infinite-dimensional optimization.
Computers & Chemical Engineering 156, 107567 (2022). https://doi.org/
10.1016/j.compchemeng.2021.107567

[38] Zou, K.H., Tuncali, K., Silverman, S.G.: Correlation and simple linear
regression. Radiology 227(3), 617–628 (2003). https://doi.org/10.1148/
radiol.2273011499

[39] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics 12(1), 55–67 (1970). https://doi.
org/10.2307/1267351

[40] Box, G.E., Tiao, G.C.: Bayesian Inference in Statistical Analysis vol. 40.
John Wiley & Sons, ??? (2011). https://doi.org/10.1002/9781118033197

[41] Jain, P., Kakade, S.M., Kidambi, R., Netrapalli, P., Sidford, A.: Accelerat-
ing stochastic gradient descent for least squares regression. In: Conference
On Learning Theory, pp. 545–604 (2018). PMLR

[42] Stigler, S.M.: Gergonne’s 1815 paper on the design and analysis of polyno-
mial regression experiments. Historia Mathematica 1(4), 431–439 (1974).
https://doi.org/10.1016/0315-0860(74)90033-0

[43] Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H.,
McLachlan, G.J., Ng, A., Liu, B., Philip, S.Y., et al.: Top 10 algorithms
in data mining. Knowledge and Information Systems 14(1), 1–37 (2008).
https://doi.org/10.1007/s10115-007-0114-2

[44] Ho, T.K.: Random decision forests. In: Proceedings of 3rd International
Conference on Document Analysis and Recognition, vol. 1, pp. 278–282
(1995). https://doi.org/10.1109/ICDAR.1995.598994. IEEE

[45] Friedman, J.H.: Greedy function approximation: a gradient boosting
machine. Annals of Statistics, 1189–1232 (2001). https://doi.org/10.1214/
aos/1013203451

https://doi.org/10.3390/pr7120929
https://doi.org/10.1016/j.petrol.2020.108141
https://doi.org/10.1016/j.petrol.2020.108141
https://doi.org/10.1016/j.compchemeng.2021.107567
https://doi.org/10.1016/j.compchemeng.2021.107567
https://doi.org/10.1148/radiol.2273011499
https://doi.org/10.1148/radiol.2273011499
https://doi.org/10.2307/1267351
https://doi.org/10.2307/1267351
https://doi.org/10.1002/9781118033197
https://doi.org/10.1016/0315-0860(74)90033-0
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451


Springer Nature 2021 LATEX template

A hybrid ensemble method with negative correlation learning for regression 39

[46] Solomatine, D.P., Shrestha, D.L.: Adaboost. rt: a boosting algorithm
for regression problems. In: 2004 IEEE International Joint Conference
on Neural Networks (IEEE Cat. No. 04CH37541), vol. 2, pp. 1163–1168
(2004). https://doi.org/10.1109/IJCNN.2004.1380102. IEEE

[47] Drucker, H., Burges, C.J., Kaufman, L., Smola, A., Vapnik, V., et al.:
Support vector regression machines. Advances in Neural Information
Processing Systems 9, 155–161 (1997). https://doi.org/10.1.1.21.5909

[48] Rosenblatt, F.: Principles of neurodynamics. perceptrons and the the-
ory of brain mechanisms. Technical report, Cornell Aeronautical Lab Inc
Buffalo NY (1961). https://doi.org/10.1007/978-3-642-70911-1 20

[49] Chicco, D.: Ten quick tips for machine learning in computational
biology. BioData Mining 10(1), 1–17 (2017). https://doi.org/10.1186/
s13040-017-0155-3

[50] Geisser, S.: The predictive sample reuse method with applications. Jour-
nal of the American Statistical Association 70(350), 320–328 (1975).
https://doi.org/10.1080/01621459.1975.10479865

[51] Dutta, H.: Measuring diversity in regression ensembles. In: IICAI, vol. 9,
p. 17 (2009). Citeseer
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