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Abstract

Multi-agent reinforcement learning (MARL) algorithms have made promising
progress in recent years by leveraging the centralized training and decentralized
execution (CTDE) paradigm. However, existing MARL algorithms still suffer from
the sample inefficiency problem. In this paper, we propose a simple yet effective
approach, called state-based episodic memory (SEM), to improve sample efficiency
in MARL. SEM adopts episodic memory (EM) to supervise the centralized training
procedure of CTDE in MARL. To the best of our knowledge, SEM is the first
work to introduce EM into MARL. We can theoretically prove that, when using for
MARL, SEM has lower space complexity and time complexity than state and action
based EM (SAEM), which is originally proposed for single-agent reinforcement
learning. Experimental results on StarCraft multi-agent challenge (SMAC) show
that introducing episodic memory into MARL can improve sample efficiency and
SEM can reduce storage cost and time cost compared with SAEM.

1 Introduction

Reinforcement learning (RL) has achieved promising success in a variety of challenging domains,
including game playing [10] and robotics [7]. There are multiple agents to collaboratively make
sequential decisions in many real-world applications, such as autonomous driving [17], intelligent
robotic control [5], and game playing [1, 16]. Therefore, multi-agent reinforcement learning (MARL)
has attracted much attention. In MARL, each agent has its partial observations and chooses its actions
in a shared environment with other agents’ interactions. This complex interaction model causes many
challenges, such as instability, sample inefficiency, the moving target problem (non-stationarity), the
exponential growth of the agents’ action space.

Early MARL methods, such as independent Q-learning [20], adopt the decentralized policy for
training. In these methods, each agent takes action independently and treats other agents as part of
the environment. Since other agents’ policies will change, leading to a non-stationary environment,
these decentralized policy based methods suffer from sample inefficiency and instability problems.
To solve these problems caused by decentralized policies, researchers recently propose to use the
paradigm called centralized training and decentralized execution (CTDE) [12]. Benefiting from
CTDE, value-decomposed MARL algorithms [9, 19, 15, 3, 14, 22] have been proposed in recent
years. During training phase of these algorithms, a joint action-value function, including all agents’

Preprint. Under review.

ar
X

iv
:2

11
0.

09
81

7v
1 

 [
cs

.L
G

] 
 1

9 
O

ct
 2

02
1



individual action-value functions, is learned using additional information such as global states,
actions, or rewards. Each agent can act independently based on its local observation and its individual
action-value function without any additional information in the execution phase. Although value-
decomposed MARL algorithms have achieved promising success, improving sample efficiency is
still a critical problem for MARL. Episodic memory (EM), which can record the best experiences,
has been applied in single-agent RL to improve sample efficiency [13, 2, 6, 8]. However, to our best
knowledge, EM has not been introduced into MARL.

In this paper, we make the first attempt to introduce EM into MARL and propose a novel method,
called state-based episodic memory (SEM), to improve sample efficiency for MARL. The contribu-
tions of this work are briefly outlined as follows:

• SEM is the first work to introduce EM into MARL to improve sample efficiency.

• SEM establishes only one lookup table to record global states and their corresponding highest
discounted return among all executed joint actions. SEM replays the highest discounted
return from the table as the EM target to supervise the centralized training in the paradigm
of CTDE.

• When using for MARL, SEM can be theoretically proved to have lower space complexity
and time complexity than state and action based EM (SAEM), which is originally proposed
for single-agent RL [13, 2, 6, 8].

• Experimental results on StarCraft multi-agent challenge (SMAC) show that introducing
episodic memory into MARL can improve sample efficiency and SEM can reduce storage
cost and time cost compared with SAEM.

2 Notation

In this paper, we adopt similar notations as those in [15]. More specifically, we describe the
fully cooperative multi-agent task as a decentralized partially observable Markov decision pro-
cess (Dec-POMDP) [11]. A Dec-POMDP is defined by a tuple G =< S,U, P, r, Z,O, n, γ >. Here,
S ∈ RF denotes the global state of the environment and U denotes the action space of each agent
a ∈ A ≡ {1, . . . , n}. At each time step, each agent a chooses an action ua ∈ U , forming a joint
action u ∈ U ≡ Un. It results in a transition on the environment according to state transition function
P (s′|s,u) : S ×U× S → [0, 1]. All agents receive the same reward according to the same reward
function r(s,u) : S ×U→ R and γ ∈ [0, 1) is a discount factor. Dec-POMDPs consider partially
observable scenarios in which each agent has individual observation o ∈ O according to observation
function Z(s, a) : S ×A→ O. Each agent has an observation-action history τa ∈ T ≡ (O × U)∗

and chooses its action based on a stochastic policy πa(ua|τa) : T × U → [0, 1]. τ ∈ T ≡ T n is the
joint action-observation history. The joint action-value function of the joint policy π is defined as:
Qπtot (τ t,ut) = Eτ t+1:∞,ut+1:∞ [Rt | τ t,ut], where Rt =

∑∞
i=0 γ

irt+i is the discounted return.

3 Related Work

3.1 EM for Single-Agent RL

In single-agent RL, deep reinforcement learning algorithms need to take millions of interactions
with the environments to attain human-level performance. However, humans can quickly exploit the
high reward after the first discovery by using the hippocampus, which can record EM. Motivated
by the hippocampus’ ability, researchers proposed to use EM to achieve fast learning and improve
sample efficiency for single-agent RL. Model-free episodic control (MFEC) [2] and neural episodic
control (NEC) [13] try to use lookup tables to record the EM and retrieve useful values from lookup
tables for action selection. MFEC and NEC can be seen as tabular RL methods, which lack good
generalization compared with deep neural network-based RL methods. Episodic memory deep
q-network (EMDQN) [8] combines EM with deep q-network (DQN) to achieve good generalization
and improve sample efficiency by accelerating the training process of DQN. EM has been widely
applied in single-agent RL, but it has not been introduced into MARL. Furthermore, all existing
EM-based single-agent RL methods adopt state and action based EM (SAEM). SAEM will face many
difficulties when SAEM is applied into MARL, which will be detailedly described in Section 4.
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3.2 Value-based MARL Algorithms

The most common and straightforward value-based approach in the multi-agent setting is to break
down a multi-agent learning problem into multiple independent single-agent learning problems, which
is called decentralized value-based methods. One of the representative methods is independent Q-
learning (IQL) [20]. Decentralized value-based methods benefit from scalability because each agent
can make decisions based on a decentralized policy. However, each agent has to treat other agents
as a part of the environment. The other agents’ policies will change during the training procedure,
making the environment not stationary. Therefore, these decentralized value-based methods suffer
from sample inefficiency and instability problems.

The sample inefficiency and instability problems caused by decentralized policies can be alleviated
by adding centralized training into MARL, resulting in a MARL paradigm called centralized training
with decentralized execution (CTDE) [12]. Benefiting from the paradigm of CTDE, researchers have
proposed some approaches, called value-decomposed MARL algorithms, that learn a centralized
but decomposed Q value function to improve agent learning performance in recent years [19, 15,
18, 14, 22]. During execution, each agent still acts independently. In the value-decomposed MARL
algorithms, individual-global-max (IGM) is a crucial principle, ensuring that the optimal joint action
across agents in the joint action-value Qtot (τ ,u; θ) and the collection of all optimal individual action
in the [Qa(τ

a, ua; θ)]na=1 are consistent. The parameters θ are learnred by minimizing the following
expected TD error:

L(θ) =

B∑
b=1

T∑
t=1

(Qtot
(
τ bt ,u

b
t ; θ
)
− ybt )2, (1)

where ybt = rbt + γmaxuQtot(τ
b
t+1,u; θ

−) and θ− are the parameters of a target network that are
periodically copied from θ. VDN [19] and QMIX [15] respectively propose two decomposition
structures, additivity and monotonicity, which are sufficient conditions for the IGM. WQMIX [14]
tries to use a weighted projection that places more importance on better joint actions to overcome the
limitation of QMIX. QTRAN [18] tries to realize the entire IGM function class by using extra soft reg-
ularizations, which actually loses the IGM guarantee. QPLEX [22] uses a duplex dueling architecture
and provides a guaranteed IGM consistency. Although these value-decomposed MARL algorithms
can outperform decentralized value-based methods, they still suffer from sample inefficiency and
instability problems.

4 State and Action based Episodic Memory for MARL

The EM for single-agent RL [13, 2, 6, 8] is defined on state and action. This is why we call it state
and action based EM (SAEM) in this paper. To the best of our knowledge, EM, including SAEM, has
not been introduced into MARL before. In this section, we will extend the application of SAEM from
single-agent RL to MARL, by replacing the action in single-agent RL with the joint action in MARL.

More specifically, we establish a lookup table for each joint action and denote this lookup table as
QSA(s,u), where s is the global state and u is the joint action. Each entry in the table QSA(s,u)
records the highest return ever obtained by taking joint action u in state s. At the end of the
episode, we store the episode (o1,u1, s1, r1, ...,oT ,uT , sT , rT ) into the replay buffer H and store
(st,ut, R(st)) into a set M of size |M |, where R(st) =

∑T
i=t γ

i−tri is the discounted return
received after taking joint action ut in state st. QSA is updated when the set M is filled:

QSA (s,u)←
{
RMax(s,u), if (s,u) /∈ QSA;
max

{
QSA(s,u), RMax(s,u)

}
, otherwise, (2)

where RMax(s,u) = maxk{Rk(s,u)} and (s,Rk(s,u)) ∈M , k ∈ {1, 2, ...,K}. For any state and
joint action, we update their values with the highest discounted return. After updating QSA(s,u),
the set M is made empty. The value of each entry in the table QSA is updated increasingly and the
number of entries also increases during training. We limit the maximum size of the table QSA and
remove the least frequently assessed entry when QSA is filled.

In the centralized training phase, the loss function of SAEM is defined as:

L(θ) =

B∑
b=1

T∑
t=1

(1− λ)
(
Qtot

(
τ bt ,u

b
t ; θ
)
− ybt

)2
+ λ

(
Qtot

(
τ bt ,u

b
t ; θ
)
− Eb,u

b
t

st

)2
, (3)
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where ybt = rbt + γmaxuQtot(τ
b
t+1,u; θ

−) is the vanilla target in the value-decomposed MARL

algorithms and Eb,u
b
t

st = QSA(sbt ,u
b
t) is the episodic memory target recorded by QSA. λ ∈ [0, 1] is

the coefficient to balance the trade-off between the two targets.

We can see that SAEM suffers from two deficiencies when using for MARL: high space complexity
and high time complexity. Because SAEM needs |U |n lookup tables, the space complexity is
O(c|U |n), where c > 1 is a constant. Hence, the space complexity is exponentially higher than that
in single-agent RL. The time complexity is also high. In the worst case, there are |M | different joint
actions, and hence |M | tables are needed to be updated when using the set M to update QSA. Hence,
the time complexity of updating QSA is O(|M |) in the worse case. This motivates us to design new
EM mechanisms like state-based EM in the next section.

5 State-based Episodic Memory for MARL

This section introduces our newly proposed EM, called state-based episodic memory (SEM), for
MARL.

5.1 Lookup Table in SEM

In SEM, we establish only one lookup table QS(s), which is indexed by global states. Given the
global state s, each entry in QS(s) records the highest return ever obtained. At the end of episode, we
store the episode (o1,u1, s1, r1, ...,oT ,uT , sT , rT ) into the replay buffer H and store (st, R(st))

into a set M , where R(st) =
∑T
i=t γ

i−tri is the discounted return received after taking joint action
ut in state st. QS is updated according to the set M :

QS (st)←
{
RMax(st), if st /∈ QS;
max

{
QS (st) , RMax(st)

}
, otherwise, (4)

where RMax(st) = maxk{Rk(st)} and (st, Rk(st)) ∈ M , k ∈ {1, 2, ...,K}. For any state, we
update their values with the highest return. After updating QS, the set M is made empty. The value
of each entry in the table QS is updated increasingly and the number of entries also increases during
training. We limit the maximum size of the table QS and remove the least frequently assessed entry
when QS is filled.

5.2 Training Procedure

In the centralized training procedure, the loss function of SEM is defined as:

L(θ) =

B∑
b=1

T∑
t=1

(1− λ)(Qtot(τ bt ,ubt ; θ)− ybt )2 + λ(Qtot(τ
b
t ,u

b
t ; θ)− Ebt )2, (5)

where ybt = rbt + γmaxuQtot(τ
b
t+1,u; θ

−) and Ebt = rbt + γQS(sbt+1). θ
− is the parameter of the

target network which is copied from θ. ybt is a target inferred by the target network and Ebt is an
episodic memory target. λ ∈ [0, 1] is the coefficient to balance the trade-off between two targets.
When λ is set to 0, our method degenerates to the original value-decomposed MARL algorithm.

During training, the vanilla target ybt , approximated by using the target network, might be over-
estimated, which could mislead the training. The episodic memory target Ebt (or Eb,us in SAEM)
is more stable than the vanilla target, because the episodic memory target is retrieved from the
lookup table, rather than approximated by the function. Furthermore, the maximum operator in
updating QS(s) not only records the highest return but also plays the role of the maximum operator
maxuQtot(τ

b
t+1,u; θ

−), because we ignore the action u given the state s in the QS(s). If we
cannot find the QS(sbt+1) in the lookup table, we use maxuQtot(τ

b
t+1,u; θ

−) to replace QS(sbt+1).
Algorithm 1 briefly presents the training procedure of SEM. The architecture of SEM is shown in
Figure 1. Please note that each agent takes actions based on Qa and our method can be combined
with all existing value-decomposed MARL algorithms.
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Algorithm 1 State-based Episodic Memory (SEM) for MARL
Initialize a replay buffer H , an empty set M , an episodic memory table QS.
Initialize network parameter θ and θ− = θ.
for each episode do

for t = 1, 2, 3, ..., T do
Receive observation [oat ]

n
a=1, global state st.

Select a random action uat with probability ε, otherwise uat = argmaxua Qa(τ
a, ua) for each

agent a.
Take action [uat ]

n
a=1.

end for
Store the episode (o1,u1, s1, r1...,oT ,uT , sT , rT ) in H .
for t = T, T − 1, ..., 1 do

Let st = φ(st).
Compute Rt and store (st, Rt) into M .

end for
Sample B episodes from the replay buffer H .
Compute ybt and Ebt .
Update θ by minimizing the loss in (5).
Update target network parameter θ− = θ with period In.
Update QS(st) using M according to (4) when M is filled and then empty M .

end for

SAEM (Simple Extension) SEM (Our Method)

Figure 1: Comparison between SAEM architecture for MARL and SEM architecture. Best viewed in
color.

5.3 Complexity

SEM only need one table to store and update, rather than |U |n tables in SAEM. The space complexity
of SEM is O(cs), where cs is a constant. When QS(s) is updated by the set M , it needs to update the
QS(s) only once. Hence, the time complexity of SEM is O(1). Hence, we can theoretically prove
that SEM has lower space complexity and time complexity than SAEM, when using for MARL.

5.4 State Representation

Although SEM has lower space complexity than SAEM, the storage cost of all global states in the
table QS(s) might still be large if the dimension of state space is high. Similar to [2, 13, 8], we utilize
random projection φ to project a state from the original global state space S with dimension F into a
lower-dimensional space with dimension D. The random projection φ is denoted as φ(s) : s→ V s,
where each entry in V ∈ RD×F is randomly drawn from a standard Gaussian. Based on Johnson-
Lindenstrauss lemma [4], when the random matrix V is drawn from a standard Gaussian, this
transformation approximately keeps relative distances in the original space. Projecting global states
to lower-dimension vectors can accelerate the speed of table lookup. Please note that we still use
QS(s) to denote the table in SEM, omitting φ although random projection is adopted in this paper.
This state representation can also be adopted in SAEM.
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6 Experiment

6.1 StarCraft Multi-Agent Challenge

StarCraft multi-agent challenge (SMAC) 1, based on the real-time strategy game StarCraft II and the
SC2LE environment [21], is a popular benchmark for cooperative multi-agent RL. SMAC focuses on
micromanagement challenges. In SMAC, it involves two armies, one controlled by the build-in AI
and the other controlled by the user. Each unit can be controlled by an independent agent. At each
time-step, agents receive their local observations, which depend on their sight range. The agents are
allowed to take actions, including move[direction], attack[enemy_id], stop and no-op. Agents can
only move in four directions: north, south, east, or west. If the enemy is within the agent’s shooting
range, the agent can perform the action attack[enemy_id]. The maximum number of actions an agent
can take ranges between 7 and 70, depending on the scenario. The goal of agents is to maximize
the win rate for each battle scenario. The default setting of SMAC is to use the shaped reward. For
evaluation, we run 32 evaluation episodes without any exploratory behaviors every 10000 time-steps.
More details about the implementation are included in Appendix of the supplementary materials.

6.2 Effectiveness of Episodic Memory
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Figure 2: Results of SAEM-VDN, SAEM-
QMIX and baselines (VDN and QMIX) on
2c_vs_64zg, including median test win rate
as well as the 25-75% percentiles.

We evaluate SAEM on 2c_vs_64zg, a hard map on
SMAC, to verify the effectiveness of EM for MARL.
We choose two classic value-decomposed MARL algo-
rithms, VDN and QMIX, as the baselines. We combine
SAEM with VDN and QMIX, which are denoted as
SAEM-VDN and SAEM-QMIX, respectively. The co-
efficient λ is set to 0.1. The size of the lookup table is
set to 1 million and the size of M is set to 5K. Other
hyper-parameters are described in Appendix. The re-
sults are shown in Figure 2. We can find that the meth-
ods with SAEM have better performance than baselines
without episodic memory, verifying that introducing
episodic memory into the multi-agent setting is effec-
tive.

6.3 Results of SEM

We evaluate our method, SEM, on the eight maps of SMAC. These maps include 1c3s5z, 2s_vs_1sc,
2s3z, 3s5z, 27m_vs_30m, 2c_vs_64zg, MMM2 and bane_vs_bane. The snapshots and configurations
of these maps are shown in the Appendix. We choose several value-decomposed MARL algorithms
as baselines, including VDN [19], QMIX [15], QPLEX [22], WQMIX [14] 2. The coefficient λ is
set to 0.1. The size of the lookup table is set to 1 million and the size of set M is set to 5K, which
means that the lookup table is updated every 5K time-steps. Other hyper-parameters are described
in Appendix. We show our results, mean and median scores3 over eight maps of SMAC, at 0.25M
time-steps and 0.5M time-steps in Table 1. We can find that the mean scores and median scores of
SEM combined with value-decomposed MARL algorithms all surpass those of the corresponding
vanilla value-decomposed MARL algorithms. It verifies that SEM can improve sample efficiency
compared with baselines that do not use episodic memory.

In Figure 3, we show the training curves of SEM-VDN, SEM-QMIX, VDN and QMIX on six
maps4. Our methods, SEM-QMIX and SEM-VDN, can converge faster than corresponding baselines
and improve sample efficiency on all maps. On 2s3z, the performances of QMIX and VDN both
drop sharply at about 0.2 million time-steps. Our method can alleviate this phenomenon obviously
since episodic memory could help the agents to remember the best experience. On 27m_vs_30m,
SEM-VDN can achieve 40% test battle won while VDN is bound to fail in all the battles. The

1We use SC2.4.6.2.69232 (the same version as that in [16]), instead of the newer version SC2.4.10.
2The weighting function of WQMIX is the centrally-weighting function.
3The formula of mean scores and the formula of median scores are shown in the Appendix.
4Due to the limitation of pages, the training curves of SEM-VDN, SEM-QMIX, VDN, and QMIX on the

other two maps are shown in the Appendix.

6



0.0 0.5 1.0 1.5 2.0
T (mil)

0

20

40

60

80

100

M
ed

ia
n 

Te
st

 W
in

 %

1c3s5z

QMIX
SEM-QMIX
VDN
SEM-VDN

(a) 1c3s5z

0.0 0.5 1.0 1.5 2.0
T (mil)

0

20

40

60

80

100

M
ed

ia
n 

Te
st

 W
in

 %

2s3z

QMIX
SEM-QMIX
VDN
SEM-VDN

(b) 2s3z

0.0 0.5 1.0 1.5 2.0
T (mil)

0

20

40

60

80

100

M
ed

ia
n 

Te
st

 W
in

 %

3s5z

QMIX
SEM-QMIX
VDN
SEM-VDN

(c) 3s5z

0.0 0.5 1.0 1.5 2.0
T (mil)

0

10

20

30

40

50

60

70

M
ed

ia
n 

Te
st

 W
in

 %

27m_vs_30m

QMIX
SEM-QMIX
VDN
SEM-VDN

(d) 27m_vs_30m

0.0 0.5 1.0 1.5 2.0
T (mil)

0

20

40

60

80

100

M
ed

ia
n 

Te
st

 W
in

 %

2c_vs_64zg

QMIX
SEM-QMIX
VDN
SEM-VDN

(e) 2c_vs_64zg

0.0 0.5 1.0 1.5 2.0
T (mil)

0

20

40

60

80

100

M
ed

ia
n 

Te
st

 W
in

 %

bane_vs_bane

QMIX
SEM-QMIX
VDN
SEM-VDN

(f) bane_vs_bane
Figure 3: Results of our methods (SEM-VDN and SEM-QMIX) and baselines (VDN and QMIX),
including the median performance as well as the 25-75% percentiles.

performance of SEM-QMIX has also increased by about 15% compared to that of QMIX. On
2c_vs_64zg, SEM-VDN can achieve 80% test battle won while VDN fails in all battles. SEM-QMIX
can learn faster than QMIX. For bane_vs_bane, the results of QMIX and VDN exhibit a large variance.
Our methods, SEM-QMIX and SEM-VDN, can both outperform the baselines (QMIX and VDN)

Table 1: Mean and median scores for eight maps on SMAC at 0.25M time steps and 0.5M time steps.
"w/o" represents the vanilla baselines and "w/" represents the SEM combined with the baselines.
Boldface numbers indicate best results. The results of each map is shown in the Appendix.

0.25M 0.5M
Baselines Mean Median Mean Median

w/o w/ w/o w/ w/o w/ w/o w/
VDN 26% 36% 1% 25% 33% 55% 14% 64%
QMIX 21% 44% 18% 47% 35% 55% 28% 76%
QPLEX 45% 50% 46% 69% 58% 63% 84% 90%
WQMIX 26% 42% 20% 40% 46% 52% 49% 54%

with a large margin and the median test win of our methods converges to 1 quickly.

6.4 Comparison among Different Targets

To gain the insight of introducing episodic memory into MARL, we try to conduct an in-depth
analysis of the training process. We compare different targets in SAEM-VDN, SEM-VDN and VDN
on 2c_vs_64zg. ybt is denoted as y, which is a target inferred by the target network. Ebt is denoted

as Es, which is an episodic memory target replayed from QS. Eu
s denotes Eb,u

b
t

st , which is replayed
from QSA. The results are shown in Figure 4. Both Es and Eu

s are stable targets, because they are
retrieved from the tables which record the highest return from historical episodes. In VDN, we can
see that y is higher than the episodic memory targets {Es, Eu

s } with a large margin. The gap between
y and {Es, Eu

s } in SEM-VDN and SAEM-VDN is smaller than that in VDN. It illustrates that the
vanilla target y, approximated by using target network, is overestimated and the episodic memory
target can provide centralized training with a stable target. Hence, our methods can improve the
performance and sample efficiency. Furthermore, we can find that the curves of Eu

s and Es are almost
overlapped in Figure 4, which illustrates that using Es to replace Eu

s is reasonable.
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Figure 4: Comparison among different targets, Eu
s , Es and y, in our methods and baselines. (a) VDN.

(b) SEM-VDN. (c) SAEM-VDN. The results are summarized over 5 random runs. For clarity, we
represent the median performance without the 25-75% percentiles.
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Figure 5: (a) Results of SAEM-VDN, SEM-VDN and VDN on 2c_vs_64zg.(b) Test return mean with
respect to wall-clock time of SAEM-VDN, SEM-VDN and VDN during the first 100K time-steps.
6.5 Comparison between SEM and SAEM

Compared with SAEM, it has been theoretically proved in Section 5.3 that SEM has lower space
complexity and time complexity. We choose 2c_vs_64zg and 27m_vs_30m as the test environment
to compare the space complexity and time complexity of SEM and SAEM.

The space complexity of SEM and SAEM is affected by the number of lookup tables. Here, the size
of all lookup tables is set to 1 million, and the dimension D is set to 4. For SEM, the storage cost is
fixed because it has only one lookup table, which needs 0.029GB storage space to store. For SAEM,
the number of lookup tables is equal to the number of joint actions. In 2c_vs_64zg, it contains two
allied agents, and each agent has 70 available actions. SAEM needs 142GB storage space to store
702 lookup tables. In 27m_vs_30m, there are 27 agents, and each agent has 36 actions. SAEM needs
3627 ≈ 1042 lookup tables, which needs 3× 1040GB storage space to store. We can see that the high
storage cost makes the implementation of SAEM difficult and even impossible. But SEM has a much
lower storage cost than SAEM.

For time cost, we choose 2c_vs_64zg to experimentally illustrate that SEM is more time-saving than
SAEM. Here, the size of the set M is set to 5K. Other hyper-parameters are described in Appendix.
In Figure 5(a), we compare the results of SAEM-VDN, SEM-VDN and VDN. In Figure 5(b), we
compare the test return means with respect to the wall-clock time of SAEM-VDN, SEM-VDN and
VDN during the first 100K time-steps using Nvidia Geforce GTX 2080 Ti graphics cards. We can
see that SEM can use relatively less time than SAEM to achieve a similar return and SEM can save
14% of time cost compared with SAEM.

6.6 Learned Policies

In this section, we investigate the learned behaviors of the different policies in our methods to
understand the differences between the strategies better. Here, we choose 27m_vs_30m, 2c_vs_64zg,
MMM2 and bane_vs_bane to investigate. For other scenarios, both our methods and baselines can
learn a good policy, although the baselines have worse sample efficiency than our methods.

In the 27m_vs_30m scenario, the allied army contains 27 Marines and the enemy army contains 30
Marines. For QMIX, the allied units can learn to stand in a line. For VDN, it bounds to fail the battle.
In our methods, the allied army can stand in a line more evenly and more rapidly before the battle
than baselines. Hence, these allied units can join the battle faster than those in baselines, as shown in
Figure 6(a) and Figure 6(b).
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(a) 27m_vs_30m (S1) (b) 27m_vs_30m (S2) (c) 2c_vs_64zg (S1) (d) 2c_vs_64zg (S2)

(e) MMM2 (S1) (f) MMM2 (S2) (g) bane_vs_bane (S1) (h) bane_vs_bane (S2)

Figure 6: Illustration of the learned policy in several scenarios.

The 2c_vs_64zg scenario contains two allied units (Colossi) but 64 enemy units (Zerglings), which
leads to a much larger action space than the other scenarios. In this scenario, the enemy units
are divided into two groups and the allied units are surrounded by enemy units from two opposite
directions. For VDN, it fails most of the battles. For QMIX, although it can learn a good policy, it has
worse sample efficiency than our methods. For our methods, a Colossi attracts most of the Zerglings
to move far away from the other Colossi. The Colossi, with most of the Zerglings, kills some enemy
units and then it is killed. The other Colossi kills the enemy units around it and then it searches for
the remaining enemy units and kills them.

For MMM2, it contains 1 Medivac, 2 Marauders and 7 Marines. The Medivac can heal damage for
Marauders and Marines. Therefore, the key to winning the battle is the Medivac. In our method,
the Medivac can move behind the allied units and avoid sacrifice, which can heal other allied units
continuously. In baselines, the Medivac can also move behind the allied units, but it is too late in the
battle to sacrifice finally and cannot heal other agents continuously.

On the bane_vs_bane scenario, it contains a large number of allied and enemy units. The allied army
and the enemy army contain 20 Zerglings and 4 Banelings, respectively. Both VDN and QMIX
struggle and exhibit large variance, as shown in Figure 3(f). Our methods can learn faster and finally
converge. The essentially learned policy of our method is that the four allied Banelings walk into
the enemy army’s center (Figure 6(g)) and then detonate where it is standing, damaging almost all
of the enemy units (Figure 6(h)). This learned policy is concise and practical, which alleviates the
instability to a large extent.

6.7 Sensitivity to Hyper-Parameters

In order to better understand our method, we investigate the effect of the balance coefficient λ and
the size of the lookup table |QS| on bane_vs_bane, shown in Figure 7. The coefficient λ is chosen
from {0, 0.01, 0.05, 0.1, 0.2, 0.5, 1.0} and |QS| is chosen from {104, 105, 106, 2× 106}. When λ is
set to 0, our method degenerates to the baseline. In most cases, our method performs better than the
baseline. When λ = 1.0, our method only uses episodic memory to supervise the training procedure.
When λ ∈ {0.05, 0.1, 0.2, 0.5, 1}, our method performs better and learns a good policy faster than
the baseline. For |QS|, we can see that when |QS| is small, it would lose some information and then
deteriorate the performance. When |QS| ∈ {105, 106, 2 × 106}, our method performs well. We
also investigate the sensitivity to the other hyper-parameters in the appendix, including the update
frequency of QS and the dimension of random projection for state representation.

7 Conclusion

In this paper, we have proposed a novel and effective method, SEM, to improve sample efficiency
in MARL. To our best knowledge, this is the first work that introduces episodic memory into the
multi-agent setting. Compared with the existing EM mechanisms, SEM has lower space complexity
and time complexity. Experimental results on SMAC have verified the effectiveness and efficiency of
SEM.
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Figure 7: Median performance of SEM-VDN with different value of the coefficient λ and |QS|. The
results are summarized over 5 random runs. For clarity, we represent the median performance without
the 25-75% percentiles.
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A StarCraft Multi-Agent Challenge

A.1 StarCraft Multi-Agent Challenge Setup

We used the open-source implementations of our baseline algorithms, including VDN [19],
QMIX [15], QPLEX [22] and WQMIX [14] based on the PyMARL framework [16]. In Section 6, we
choose eight maps of SMAC, including 1c3s5z, 2s_vs_1sc, 2s3z, 3s5z, 27m_vs_30m, 2c_vs_64zg,
MMM2, bane_vs_bane, as the test environment. The snapshots of eight maps are shown in Figure 8,
and the configurations of these eight maps are described in the Table 2. The hyper-parameters of
SEM are illustrated in Table 3. For common hyper-parameters, we adopt the default implementation
of PyMARL [16]. The replay buffer H stores episodes and its size is set to 5000. We sample B = 32
episodes uniformly from the replay buffer. The neural networks are all trained using RMSprop
when the learning rate is set to 5× 10−4. After every 200 training episodes, the target networks are
updated. During training, each agent a uses ε-greedy action selection for exploration. ε is annealed
linearly from 1.0 to 0.05 over 50K time steps, and then is fixed as a constant. We set γ to 0.99 for all
experiments. The enemy agents are controlled by built-in game AI. Depending on the exact scenario,
each run of SEM-VDN takes between 11 to 26 hours using an Nvidia Geforce GTX 2080 Ti graphics
card.

Table 2: SMAC challenges
Map Name Ally Units Enemy Units

1c3s5z 1 Colossus, 3 Stalkers & 5 Zealots 1 Colossus, 3 Stalkers & 5 Zealots
2s_vs_1sc 2 Stalkers 1 Spine Crawler

2s3z 2 Stalkers & 3 Zealots 2 Stalkers & 3 Zealots
3s5z 3 Stalkers & 5 Zealots 3 Stalkers & 5 Zealots

27m_vs_30m 27 Marines 30 Marines
2c_vs_64zg 2 Colossi 64 Zerglings

MMM2 1 Medivac, 2 Marauders & 7 Marines 1 Medivac, 2 Marauders & 8 Marines
bane_vs_bane 20 Zerglings & 4 Banelings 20 Zerglings & 4 Banelings

(a) 1c3s5z (b) 2s_vs_1sc (c) 2s3z (d) 3s5z

(e) 27m_vs_30m (f) 2c_vs_64zg (g) MMM2 (h) bane_vs_bane

Figure 8: Snapshots of some StarCraft scenarios that we consider.

Table 3: The hyper-parameters in SEM on SMAC.

Hyper-parameter Value
Tha balance coefficient λ 0.1

The dimension of random projection for state representation D 4
The size of lookup table |QS| 106

The update frequency of lookup table |M | 5000
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A.2 SEM Combined with Baselines

We choose several value-decomposed MARL algorithms as baselines, including VDN [19],
QMIX [15], QPLEX [22] and WQMIX [14]. We combine SEM with these value-decomposed MARL
algorithms, respectively denoted as SEM-VDN, SEM-QMIX, SEM-QPLEX, and SEM-WQMIX.

A.2.1 SEM-VDN

The detailed architecture of VDN is illustrated in [19]. For SEM-VDN, the loss is as specified in
Eq (5). The special hyper-parameters of SEM-VDN are illustrated in Table 3. The other hyper-
parameters of SEM-VDN are the same as that in VDN [19].

A.2.2 SEM-QMIX

The architecture of QMIX has been illustrated in [15]. The hyper-parameters of QMIX are the same
as that in QMIX [15]. In SEM-QMIX, the loss is shown in Eq (5). The special hyper-parameters of
SEM-QMIX are the same as that in Table 3.

A.2.3 SEM-QPLEX

The overall architecture of QPLEX consists of two key components: a duplex dueling component and
an individual action-value function, described as [22]. In the centralized training, the parameters of
the whole network are learned by minimizing TD loss as specified in Eq (1). The loss of SEM-QPLEX
is as specified in Eq (5). The special hyper-parameters of SEM-QPLEX are illustrated in Table 3.
The other hyper-parameters of SEM-QPLEX are the same as that in QPLEX [22].

A.2.4 SEM-WQMIX

The architecture of WQMIX is described as [14]. The loss of WQMIX is as follows:

L(θ) =

B∑
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T∑
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We can combine our method, SEM, with WQMIX, called SEM-WQMIX. The loss of SEM-WQMIX
is as follows:

L(θ) = (1− λ)
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(8)

where yi, w(s,u) are the same as the loss of WQMIX and Ebt = rbt +γQ
S(sbt+1). Similar to w(s,u),

we(s,u) is defined as follows:

we(s
b
t ,u

b
t) =

{
1 Ebt > Q̂∗

(
sbt , τ

b
t , û
∗) or ubt = û∗,

α otherwise.
(9)

In WQMIX and SEM-WQMIX, α is set to 0.75. The other hyper-parameters are the same as that
in [14]. For the hyper-parameters of SEM in SEM-WQMIX, they are illustrated as Table 3.
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B Results of SEM on SMAC

In Table 1, we show the mean and median scores of SEM combined with several value-
decomposed methods (VDN, QMIX, QPLEX, WQMIX) on eight maps. Here, we illus-
trate the formula of the mean score and the formula of the median score. We denote
Map={1c3s5z, 2s_vs_1sc, 2s3z, 3s5z, 27m_vs_30m, 2c_vs_64zg, MMM2, bane_vs_bane}. The
formula of the mean score and the formula of the median score are shown as follows:

Mean Score (t) = Mean({P ti }i∈Map), (10)

Median Score (t) = Median({P ti }i∈Map), (11)
where P ti is the mean test battle won for the map i at t time steps. The mean test won at 0.25M time
steps is shown in Table 4 and the mean battle won at 0.5M time steps is shown in Table 5.

Table 4: The mean test battle won P 0.25M at 0.25M time steps on eight maps of SMAC.

Method 1c3s5z 2s_vs_1sc 2s3z 3s5z

VDN 1% 66% 53% 1%
SEM-VDN 25% 66% 71% 24%
QMIX 34% 7% 61% 30%
SEM-QMIX 70% 28% 89% 66%
QPLEX 61% 99% 83% 31%
SEM-QPLEX 60% 77% 90% 77%
WQMIX 17% 63% 44% 23%
SEM-WQMIX 64% 17% 89% 63%

Method 27m_vs_30m 2c_vs_64zg MMM2 bane_vs_bane
VDN 0% 0% 0% 85%
SEM-VDN 0% 0% 0% 99%
QMIX 0% 0% 0% 32%
SEM-QMIX 0% 0% 0% 99%
QPLEX 0% 0% 0% 87%
SEM-QPLEX 0% 0% 0% 99%
WQMIX 0% 0% 0% 61%
SEM-WQMIX 0% 0% 3% 100%

C Training Curves of SEM-VDN and SEM-QMIX

In the main paper, we show the training curves of SEM-VDN and SEM-QMIX on six maps. The
training curves of SEM-VDN and SEM-QMIX on the other two maps, MMM2 and 2s_vs_1sc, are
shown in Figure 9.

D Sensitivity to the Hyper-parameters

D.1 Sensitivity to the Hyper-parameter |M |

We choose bane_vs_bane to investigate the influence of episodic memory table update frequency.
The lookup table QS updates when M is filled and then the set M is made empty. In other words,
the lookup table updates after every |M | time steps. |M | is chosen from {1000, 2500, 5000, 10000}.
The results are shown in Figure 10. We find that a larger |M | might deteriorate the performance
because the entries in the lookup table QS have not been updated timely with better value. When
|M | ∈ {2500, 5000}, our methods perform better.

D.2 Sensitivity to the Hyper-parameter D

We investigate the influence of the dimension of random projection for state representation. D is
chosen from {1, 2, 4, 10}. The results are shown in Figure 11. We can find that if D is too small,
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Table 5: The mean test battle won P 0.5M at 0.5M time steps on eight maps of SMAC.

Method 1c3s5z 2s_vs_1sc 2s3z 3s5z

VDN 14% 94% 81% 14%
SEM-VDN 67% 100% 89% 61%
QMIX 61% 31% 91% 62%
SEM-QMIX 83% 69% 91% 84%
QPLEX 87% 99% 98% 80%
SEM-QPLEX 87% 98% 99% 92%
WQMIX 48% 88% 78% 49%
SEM-WQMIX 72% 19% 95% 75%

Method 27m_vs_30m 2c_vs_64zg MMM2 bane_vs_bane
VDN 0% 0% 0% 60%
SEM-VDN 1% 21% 0% 98%
QMIX 5% 0% 1% 24%
SEM-QMIX 6% 0% 6% 100%
QPLEX 4% 1% 0% 97%
SEM-QPLEX 14% 17% 0% 100%
WQMIX 0% 2% 0% 99%
SEM-WQMIX 5% 35% 15% 100%
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Figure 9: Results of our methods (SEM-VDN and SEM-QMIX) and baselines (VDN and QMIX),
including the median performance as well as the 25-75% percentiles.
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Figure 10: Median performance of SEM-QMIX and SEM-VDN when the episodic memory table is
updated after every |M | time steps. |M | is chosen from {1000, 2500, 5000, 10000}. The results are
summarized over 5 random runs.

performance degrades considerably and if D is too large, the storage overhead is significant. When
D ∈ {2, 4}, it is a reasonable choice.
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Figure 11: Median performance of SEM-QMIX and SEM-VDN when the dimension of the random
projection D is chosen from {1, 2, 4, 10}.
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