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Abstract
When dealing with sensitive data in automated data-driven decision-making, an important 
concern is to learn predictors with high performance towards a class label, whilst 
minimising for the discrimination towards any sensitive attribute, like gender or race, 
induced from biased data. Hybrid tree optimisation criteria have been proposed which 
combine classification performance and fairness. Although the threshold-free ROC-AUC is 
the standard for measuring classification model performance, current fair tree classification 
methods mainly optimise for a fixed threshold on the fairness metric. In this paper, we 
propose SCAFF—splitting criterion AUC for Fairness—a compound decision tree splitting 
criterion which combines the threshold-free strong demographic parity with ROC-AUC 
termed, easily applicable as an ensemble. Our method simultaneously leverages multiple 
sensitive attributes of which the values may be multicategorical, and is tunable with respect 
to the unavoidable performance-fairness trade-off. In our experiments, we demonstrate how 
SCAFF generates effective models with competitive performance and fairness with respect 
to binary, multicategorical, and multiple sensitive attributes.
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1  Introduction

The application of machine learning algorithms for classification has become ubiquitous 
within an abundance of domains  (Brink et al., 2016; Sarker, 2021; Azar & El-Metwally, 
2013; Barata et  al., 2021; Dressel & Farid, 2018). Great dependency on automated 
decision-making, however, gives rise to concerns over model discrimination; e.g., bias 
was reported by Amazon’s automatic recruitment tool in which women unfairly scored 
lower. It turns out that models were trained on resumes submitted mostly by men, thus 
disadvantaging women a priori (Dastian, 2018). To prevent the modelling of historical 
biases, it is of the utmost importance to develop fairness-aware methods  (European 
Commission, 2019).

A fair classification model has two goals: (1) to make adequate class predictions from 
unseen observations; and (2) to ensure that those class predictions are as independent 
of a sensitive attribute as possible  (Hu et al., 2020; Cho et al., 2020). In addition, the 
performance-fairness trade-off —the inevitable situation in which the lesser the fairness 
of an algorithm, the greater its predictive capabilities and vice-versa (Kleinberg et al., 
2016)—should be tunable to satisfy the ethical, legal, and societal needs of the end user 
(i.e., domain expert).

A fair classifier is most commonly learned by jointly optimising towards a 
classification performance measure and a fairness measure. Traditionally, fairness 
measures such as demographic parity (Dwork et al., 2012), equal opportunity (Corbett-
Davies & Goel, 2018), or equalised odds  (Hardt et al., 2016) are used. These fairness 
measures are all threshold-dependent. Considering a classification model with 
continuous output, a decision threshold must be set to produce class predictions, upon 
which those measures are reliant. In other words, fairness would only be ensured with 
respect to that particular threshold. To counter this limitation, the threshold-independent 
fairness measure termed strong demographic parity was proposed in Jiang et al. (2020). 
It extends the aforementioned demographic parity by considering fairness throughout 
the entire range of possible decision thresholds. However, the authors merely considered 
a logistic regression classifier implementation.

Meanwhile, tree-based algorithms are still regarded as a state-of-the-art 
solution  (Zabihi et  al., 2017; Dogru & Subasi, 2018). The prevalence of tree-based 
approaches in the literature is mostly due to (1) their tendency to not overfit when used 
as ensembles, (2) requiring little data pre-processing, and (3) handling mixed data types 
and missingness (Dogru & Subasi, 2018). Past work on tree splitting criteria has shown 
positive results with respect to threshold-dependent fairness (Kamiran et al., 2010).

In this work, we aim at delivering a fair splitting criterion termed SCAFF: Splitting 
Criterion AUC for Fairness, which allows for fair tree classifier learning. In particular, 
we propose a fair tree classifier learning algorithm which simultaneously (1) optimises 
for threshold-independent ROC-AUC classification performance and threshold-
independent strong demographic parity, (2) handles various multicategorical sensitive 
attributes simultaneously, (3) is tunable with respect to the performance-fairness trade-
off during learning, and (4) extends to ensemble methods.

The structure of the paper follows: Sect. 2 expresses our problem statement formally; 
Sect. 3 discusses related work; Sect. 4 elaborates our SCAFF method in detail; Sect. 5 
describes our experiments; Sect.  6 refers to our results; and Sect.  7 concludes and 
recommends research directions.
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2 � Problem statement

We consider the scenario in which a labelled dataset is intrinsically biased with 
respect to one or more sensitive attributes of which the values may be either binary 
or multicategorical. Our task is to learn a fair predictive model from the biased data, 
such that future predictions are independent from the sensitive attribute(s). We require 
that the definitions of model performance and fairness do not depend on a decision 
threshold set upon the output. Since there is no unique solution in the trade-off between 
performance and fairness, the fair model must also be tunable in this regard.

Formally, consider a dataset D with n samples, m features, and two classes. Without 
loss of generality, assume the case in which a single binary sensitive attribute exists. 
Let X ⊆ ℝ , {Y+, Y−} ⊆ Y  , and {S+, S−} ⊆ S be the underlying variable distributions 
representing the feature space, class labels, and sensitive attribute, respectively, from 
which the n samples were drawn. Accordingly, each sample may be represented as 
(xi, yi, si) , for i = 1, 2,… , n.

The goal of the fair learning algorithm is to learn the distribution for which the 
conditional P(Y ∣ X) ≈ P(Y ∣ X, S) . In practice, this amounts to learning, from the 
data, a mapping function f ∶ x ∈ X → z ∈ Z ⊆ R , where Z represents the model 
output (i.e., classification score), which aims at the strong demographic parity 
condition P[(Z ∣ S+) > (Z ∣ S−)] = P[(Z ∣ S−) > (Z ∣ S+)] , whilst maximising the 
traditional threshold-independent classification performance P[(Z ∣ Y+) > (Z ∣ Y−)] . 
The compromise between strong demographic parity and the corresponding maximal 
predictive performance must also be tunable.

3 � Related work

In this section, we discuss the concepts from the literature related to our work: the 
measures of fairness (Sect. 3.1), and the fair tree splitting criteria used towards fair tree 
classification learning (Sect. 3.2).

3.1 � Measures of fairness

Several fairness measures exist in the literature, which may be categorised as either (a) 
threshold-dependent or (b) threshold-independent. The three most prevalent threshold-
dependent measures are: (1) demographic parity  (Dwork et  al., 2012); (2) equal 
opportunity (Corbett-Davies & Goel, 2018); and (3) equalised odds (Hardt et al., 2016).

First, demographic parity is the condition under which candidates of each 
sensitive group (e.g. male/female) should be granted positive outcomes at equal rates: 
P(Ŷ+ ∣ S+) = P(Ŷ+ ∣ S−) . As a fairness measure, it is defined as the absolute difference 
between the proportion of positive class predictions Ŷ+ in instances with a positive 
sensitive attribute value S+ and instances with a negative sensitive attribute value S− ; 
formally: |P(Ŷ+ ∣ S+) − P(Ŷ+ ∣ S−)|.

Second, the condition of equal opportunity accounts for the predictive reliability within 
each sensitive group: P(Ŷ+ ∣ S+, Y+) = P(Ŷ+ ∣ S−, Y+) . As a fairness measure, it is computed 
by taking the absolute difference between the true positive rate of the instance groups 
composed of the positive and negative sensitive values |P(Ŷ+ ∣ S+, Y+) − P(Ŷ+ ∣ S−, Y+)|.
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Third, equalised odds condition extends the previous definition by also 
incorporating the unreliability of predictions in the sensitive groups, met 
when P(Ŷ+ ∣ S+, Y−) = P(Ŷ+ ∣ S−, Y−) . As a fairness measure, it is computed as 
||P(Ŷ+ ∣ S+, Y+) − P(Ŷ+ ∣ S−, Y+)| − |P(Ŷ+ ∣ S+, Y−) − P(Ŷ+ ∣ S−, Y−)||.

Albeit computationally different, the three measures share at least one common aspect: 
the output of the classification model must be binary; i.e., a decision threshold must be 
placed upon the continuous output which induces the class prediction. By being threshold-
dependent, these measures of fairness are limited to being exclusively reliable for the 
specific threshold which produces the class prediction; i.e., there is no guarantee that 
fairness holds for different threshold values. In other words, a learned classifier is restricted 
to the decision threshold for which the fairness measure was optimised. This is an issue 
since, in real-world applications, the decision-threshold is volatile and dependent on the 
specific domain requirements.

To counter this, the notion of threshold-dependent demographic parity has 
been extended to the threshold-independent case, termed the strong demographic 
parity condition, introduced in Jiang et  al. (2020). It considers the continuous 
model output Z, with respect to the sensitive groups {S+, S−} ⊆ S , and is met when 
P[(Z ∣ S+) > (Z ∣ S−)] = P[(Z ∣ S−) > (Z ∣ S+)] (Sect.  2). Put simply, the strong 
demographic parity condition considers the ordering (or ranking) of the output Z, and 
is met when the sensitive groups are indiscernible by score. In Sect. 4.1, we describe its 
computation as a fairness measure.

However, the aforementioned work only considered the implementation of strong 
demographic parity for the logistic regression case. This impacts applicability since state-
of-the-art non-linear models cannot be learned which directly optimise towards the strong 
demographic parity condition. We therefore focus on expanding the implementation 
of strong demographic parity towards non-linear models, specifically to tree-based 
architectures.

3.2 � Fair tree splitting criteria

One clear advantage of tree learning algorithms is that they may be designed with any 
arbitrary splitting-selection criterion. The criterion does not have to be differentiable, as 
long as it is computationally tractable. A second advantage of tree frameworks over other 
architectures is their verified performance within different domains, making them a state-
of-the-art solution to classification problems (Zabihi et al., 2017; Dogru & Subasi, 2018).

The practice of learning fairness-aware tree classifiers is directly linked to the splitting 
criterion used to construct the tree structure, the possibility to tune the performance-
fairness trade-off, and their ensemble capability. Within thefair tree literature, we 
recommend the works by Zhang & Weiss (2022); Zhang et al. (2021), and Kamiran et al. 
(2010).

Although the two former works are the most recent, managing to ensure both (a) 
performance-fairness tunability and (b) ensemble capability, in this paper, we will 
explicitly focus on the work by Kamiran et al. (2010). The reasons for this follow. On the 
one hand, Zhang & Weiss (2022) focus on a censored setup in which a class label is not 
directly available; this is inherently distinct from our case in which we assume class label 
availability. On the other hand, from Zhang et  al. (2021), the fair classification setup is 
based on online component classifiers with constant updates using streaming data (i.e., 
Hoeffding trees); our setup does not involve nor support streaming data. In contrast to 
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the aforementioned works, Kamiran et al. (2010) focus on static non-streaming and non-
censored data, which is akin to our problem.

In their work, Kamiran et al. (2010) address the fair classification problem by extending 
the concept of information gain in traditional classification towards the sensitive attribute. 
Given data D, a split is evaluated as the information gain with respect to the class label:

and the information gain with respect to the sensitive attribute:

where HY and HS denote the entropy with respect to the class label and the sensitive 
attribute, respectively, and Di, i = 1,… , k denotes the partitions of D induced by the split 
under evaluation. Both information gains are then merged to produce three distinct 
compound splitting criteria, each using a different operator: (1) IGY + IGS ( KamiranSum ); 
(2) IGY − IGS ( KamiranSub ); or (3) 

IGY

IGS

 ( KamiranDiv);

In addition, the authors incorporate a leaf-relabelling step after a tree is constructed, in 
which a terminal leaf node assigned as a class label prediction is re-assigned the opposite 
class label prediction. In other words, if a node represents Ŷ+ , then it swaps to Ŷ− , and 
vice-versa.

This step aims at minimising the discrimination—as a function of demographic parity—
of the classifier, whilst minimising the loss in accuracy stemming from node relabelling. It 
is approached heuristically, as a form of the knapsack problem: in which the ranking order 
for each leaf node relabelling is given as a function of its impact on the change in 
discrimination (demographic parity) and accuracy Δdiscrimination

Δaccuracy
 . Given a discrimination 

allowance � ∈ [0, 1] , then the leaf nodes are relabelled successively by rank, until � is met.
In their experiments, it is shown that, for individual trees, the � parameter is able to tune 

the performance-fairness trade-off well. Moreover, shape of the trade-off curve is shown 
to be dependent of the operator approach used when generating the compound fairness 
criterion.

The approaches described according to splitting criterion ( KamiranSum , KamiranSub , 
and KamiranDiv ), alongside �-tuning of the performance-fairness trade-off, present some 
limitations, three of which deserve to be named in particular: (1) the construction processes 
was developed with only threshold-dependent fairness in mind; (2) only single binary 
sensitive attributes are considered; and (3) the ensemble capability was not assessed (e.g., 
random forest experimentation). In the following section, we describe our proposed treed-
based framework which lifts these limitations.

4 � Method

In this section we describe our proposed method. It is a probabilistic tree learning 
framework which (1) optimises for strong demographic parity, (2) is tunable with respect 
to the performance-fairness trade-off, and (3) addresses multiple multicategorical sensitive 
attributes simultaneously.

(1)IGY = HY (D) −

k∑
i=1

∣ Di ∣

∣ D ∣
⋅ HY (Di),

(2)IGS = HS(D) −

k∑
i=1

∣ Di ∣

∣ D ∣
⋅ HS(Di),
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We begin by addressing how the measure of strong demographic parity is tractable in 
Sect. 4.1. In Sect. 4.2, we provide our compound splitting criterion which incorporates a 
tunable parameter towards the trade-off between classification performance and fairness. 
Following, Sect. 4.3 details the assignment of Z scores to instances, which are required for 
our method. Section 4.4 addresses the AUC computation under a decision tree framework. 
Finally, in Sect.  4.5, we describe the tree construction process. A working Python 
implementation of our algorithm can be found in Pereira Barata (2021).

4.1 � Strong demographic parity

The strong demographic parity condition is met when there is homogeneity in the rankings 
of scores of candidates across sensitive groups, regardless of any arbitrary decision 
threshold t. For simplicity, here we follow with the binary sensitive attribute case.

The strong demographic parity condition is met when, as per Sects.  2 and  3.1, 
P[(Z ∣ S+) > (Z ∣ S−)] = P[(Z ∣ S−) > (Z ∣ S+)] which may be rewritten as 
P[(Z ∣ S+) > (Z ∣ S−)]− P[(Z ∣ S+) > (Z ∣ S−)] − P[(Z ∣ S−) > (Z ∣ S+)] = 0 . In prac-
tice, it is found by minimising |P[(Z ∣ S+) > (Z ∣ S−)] − P[(Z ∣ S−) > (Z ∣ S+)]| . 
Since P[(Z ∣ S−) > (Z ∣ S+)] = 1 − P[(Z ∣ S+) ≥ (Z ∣ S−)] , then, by allowing 
P[(Z ∣ S+) > (Z ∣ S−)] = P[(Z ∣ S+) ≥ (Z ∣ S−)] under ordinal constraint (i.e., of any two 
samples, it is always possible to assess which has greater Z):

The probability term is computed as the normalised Mann–Whitney U statistic (Mann & 
Whitney, 1947), from groups {S+, S−} ⊆ S and scoring Z:

Here, s+ and s− are the number of instances S+ and S− respectively, and Zi and Zj represent 
the Z output scores of each corresponding instance. To note, the Zi = Zj condition 
accounts for ties in ranking when the ordinality of Z cannot be imposed. Furthermore, the 
normalised Mann–Whitney U statistic is equivalent to the ROC-AUC (hereinafter, AUC) 
Mason and Graham (2002):

Finally, we have:

As a result, the strong demographic parity is minimal when AUC(Z, S) = 0.5.

(3)strong demographic parity = |2 ⋅ P[(Z ∣ S+) ≥ (Z ∣ S−)] − 1|.

(4)
P[(Z ∣ S+) ≥ (Z ∣ S−)] =

U(Z, S)

s+ ⋅ s−
=

s+∑
i=1

s−∑
j=1

�(Zi, Zj)

s+ ⋅ s−
,

(5)𝜎(Zi, Zj) =

⎧
⎪⎨⎪⎩

1, if Zi > Zj
1

2
, if Zi = Zj

0, otherwise

.

(6)AUC(Z, S) =
U(Z, S)

s+ ⋅ s−
.

(7)strong demographic parity = |2 ⋅ AUC(Z, S) − 1|.
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We extend the notion of strong demographic parity via AUC(Z, S) to the multicategorical 
case by following a one-versus-rest (OvR) approach:

Here, m represents the number of unique sensitive values for a specific sensitive 
attribute, and Sk represents the sensitive value itself. For multiple sensitive attributes, the 
same approach is applied, in which the max is taken across all sensitive attributes, after 
considering the max across all values per attribute.

4.2 � Splitting criterion AUC for fairness

In order to reach our goal of a fair tree learner (Sect. 2), our proposed compound splitting 
criterion must join the strong demographic measure with the traditional threshold-
independent classification performance measure given as P[(Z ∣ Y+) ≥ (Z ∣ Y−)] , or simply 
the AUC(Z, Y) (Mason & Graham, 2002).

Yet, during tree construction (i.e., node split evaluation), the straightforward measure 
of AUC(Z, Y) is lacking. It lacks because it considers only P[(Z ∣ Y+) ≥ (Z ∣ Y−)] : a split 
which maximises P[(Z ∣ Y−) ≥ (Z ∣ Y+)] ( = 1 − P[(Z ∣ Y+) ≥ (Z ∣ Y−)] ) is equally as good 
at separability (Lee, 2019). Therefore, we define the classification performance component 
of our criterion:

The objective becomes finding a split which maximises the classification performance 
component (Eq.  10) and minimises the strong demographic parity component (Eq.  7). 
Moreover, we propose an orthogonality parameter Θ ∈ [0, 1] which we incorporate into 
our splitting criterion to tune the trade-off between classification performance and fairness: 
Θ = 0 only promotes classification performance; and Θ = 1 only promotes fairness. 
Accordingly, for the simplest fair classification problem given instance scores Z, class label 
Y, and sensitive attribute S, we define SCAFF —Splitting Criterion AUC for Fairness—as:

4.3 � Assigning Z scores

For tree building, a straightforward solution is to consider the proportion of positive 
class label instances in that node Z = P(Y+ ∣ node) . To be more explicit, this is the ratio 
between (a) the number of positive class samples Y+ in the node and (b) the total number 
of samples in that node. Conversely, Z = P(Y− ∣ node) is also a viable option since, as per 
Sect.  4.2, our classification performance component is invariant to which class label is 
being considered.

Yet, other solutions are possible. For example, under a boosting ensemble, the Z scores 
of the instances in a node are iteratively updated such that, at each iteration, instances in 
the same node may have different scores. In other words, to apply SCAFF within a boosting 
framework, it is only necessary to append its computation to an existing algorithm (such as 

(8)strong demographic parity = max
Sk∈S

[|2 ⋅ AUC(Z, Sk) − 1|],

(9)AUC(Z, Sk) = P[(Z ∣ Sk) ≥ (Z ∣ ¬Sk)], k ∈ {1, 2,…m}.

(10)classification performance component = |2 ⋅ AUC(Z, Y) − 1|.

(11)SCAFF(Z, Y , S,Θ) = (1 − Θ) ⋅ |2 ⋅ AUC(Z, Y) − 1| − Θ ⋅ |2 ⋅ AUC(Z, S) − 1|.
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the standard gradient boosting algorithm (Friedman, 2001)) which already determines the 
Z scores of the instances. At each split evaluation and instance score update, SCAFF would 
be computed and serve as the splitting criterion.

To make predictions, it is sensible that only Z = P(Y+ ∣ node) is considered as 
traditionally high scores are associated with the positive class label. This approach trivially 
enables bagging ensembles (i.e., random forest), by computing the average Z across 
all weak learners. We further remark that this is the setup we will use in our upcoming 
experimental setup.

4.4 � AUC computation

Traditionally, the computation of AUC has a time complexity O(n ⋅ log(n)) (Eq.  5). Yet, 
from Lee (2019), the AUC can re-formulated as a function of the true positive rate and 
the false positive rate, if there exist at most two unique Z values across the instances 
( |{z ∈ Z}| ≤ 2 ). This is the case for the example Z = P(Y+ ∣ node) or Z = P(Y− ∣ node) . 
The AUC function then becomes:

These computations hold for AUC(Z, S) by replacing the class Y with sensitive attribute S, 
and defining Ŝ according to Z (Eq. 13).

4.5 � Tree construction

During the iterative tree learning process, (feature,  value) pairs are considered, which 
induce child nodes nodeL and nodeR from a parent node nodeP . Given nodeP with instance 
scores Z, and nodeL and nodeR with instance scores Z′ , the SCAFF Gain (SG) associated 
with that split is defined as:

In addition, as per Lee (2019), we incorporate into SG a normalisation component which 
is simply the information entropy of the frequency of instances in the child nodes with 
respect to the parent node. Let |node| indicate the number of samples a node represents; 
naturally: |nodeP| = |nodeL| + |nodeR| . The normalisation component Split Info (SI) of a 
candidate split is defined as:

(12)AUC(Z,Y) =
1 + TPR(Ŷ , Y) − FPR(Ŷ , Y)

2
,

(13)Ŷ =

{
Ŷ+ if Z ≥ max{z ∈ Z},

Ŷ− otherwise
,

(14)TPR(Ŷ , Y) =P(Ŷ+ ∣ Y+) =
P(Ŷ+ ∩ Y+)

P(Y+)
, and

(15)FPR(Ŷ , Y) =P(Ŷ+ ∣ Y−) =
P(Ŷ+ ∩ Y−)

P(Y−)
.

(16)SG = SCAFF(Z�, Y , S,Θ) − SCAFF(Z, Y , S,Θ).
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Finally, we define the SCAFF Gain Ratio (SGR) of a split as:

The split with maximal SGR across all splits is selected if its corresponding SGR ≥ 0 . An 
example of SCAFF evaluation can be viewed in Fig. 1.

In the example, the Z scores are defined as P(Y+ ∣ node) , which (as previously mentioned) 
trivially enables bagging methods. For orthogonality Θ = 0.5 , then 
SCAFF(Z�, Y , S,Θ) = (1 − 0.5) ⋅ |2 ⋅ 0.8 − 1| − 0.5 ⋅max(|2 ⋅ 0.6 − 1|, |2 ⋅ 0.917 − 1|)   , 
SCAFF(Z, Y , S,Θ) = (1 − 0.5) ⋅ |2 ⋅ 0.5 − 1| − 0.5 ⋅max(|2 ⋅ 0.5 − 1|, |2 ⋅ 0.5 − 1|) , result-
ing in a SG = −0.117 log2 . The evaluation of the regularisation component is SI = −

5

10
⋅

log2

(
5

10

)
−

5

10
⋅ log2

(
5

10

)
= 1 . Finally, SGR =

−0.117

1
= −0.117 . The reason for the poor 

SGR is clear: the split heavily segregated individuals based on race. Since the value of SGR is 
negative, the split is not selected.

5 � Experiments

For the description of our experiments, we begin by mentioning the datasets and how 
we used them (Sect. 5.1); we then characterise the experimental setup deployed to (1) 
gather the performance and fairness values and (2) report on the relationship between 
the threshold-independent and threshold-dependent demographic parities (Sect. 5.2).

We compared SCAFF against other fair splitting criteria by using benchmark 
fairness datasets. Since the methods against which we compare our approach are neither 
suited for multivariate nor category-valued sensitive attributes, we focus on the single 
binary sensitive attribute case first. We additionally experimented on a single dataset 

(17)SI = −
|nodeL|
|nodeP| ⋅ log2

(|nodeL|
|nodeP|

)
−

|nodeR|
|nodeP| ⋅ log2

(|nodeR|
|nodeP|

)
.

(18)SGR =
SG

SI

Fig. 1   Computing necessary AUC values for split evaluation, with 2 sensitive attributes (race and gender). 
Instances pertaining to a node are assigned its respective positive class probability as their Z scores, denoted 
above each child node
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to explore how SCAFF handles multiple sensitive attributes simultaneously as well as 
multicategorical values. Lastly, we tested the quantitative relationship of the strong 
demographic parity yielded by our method with the corresponding demographic parity 
at different decision-thresholds. For reproducibility, our experiments are made available 
in Pereira Barata (2021).

5.1 � Datasets

Two binary classification datasets were used, typically used in the fairness literature (Le 
Quy et al., 2022). Specifically, we employed the following: (a) Adult (30, 913 instances, 
10 features), where the sensitive attribute may be either (1) gender ∈ {male, female} , 
(2) race ∈ {black, white} , or (3) the discretised age ∈ {≤ 24, 25–49,≥ 50} ; and (b) Bank 
(45,  203 instances, 14 features) in which the sensitive attribute is the discretised age 
∈ {≤ 21, 22–64,≥ 65}.

For the binary sensitive attribute case, we considered the following dataset-attribute 
pairs individually:  Adult (Gender), and  Adult (Race). With respect to the scenario 
of a multicategorical sensitive attribute, we considered Bank (Age), and Adult (Age). 
Finally, for the scenario under which multiple sensitive attributes exist—binary or 
multicategorical—we considered simultaneously all sensitive attributes of Adult (All).

5.2 � Experimental setup

To provide an adequate evaluation of our method, we considered (a) traditional 
–baseline– non-fairness-aware methods, and (b) previous work in fair splitting criteria 
by Kamiran et al. (2010). The purpose of the former is to establish control measurements 
for classification performance and fairness, while the latter serves as the benchmark 
upon which we wish to improve. To note, the fair splitting criteria methods from the 
literature could only be deployed upon the datasets of which the sensitive attributes 
were binary, as per their design.

Two baseline methods were used: (1) BaselineIG , the standard tree learning algorithm 
based on information gain (Eq.  1); and (2) BaselineAUC , the tree learning algorithm 
based on AUC Gain Ratio Lee (2019). To note, the second baseline method is equivalent 
to our SCAFF method when Θ = 0 . With respect to fairness-aware tree learners, three 
methods were implemented: (1) KamiranSum ; (2) KamiranSub ; and (3) KamiranDiv . Each 
of these was deployed with the inclusion of the post-processing leaf relabelling step 
(Sect. 3.2).

To assess the tunability of the our method, a range of 9 values were used for 
orthogonality Θ ∈ [0.1, 0.9] . Towards comparing this tunability with the fairness-aware 
method, 9 values for � ∈ [0.1, 0.9] were used in the post-processing leaf relabelling 
(Sect. 3.2). Here, we note that Θ = 1 − � and that, for simplicity, we hereinafter consider 
tunability in terms of Θ.

We measured classification performance and fairness in both (1) threshold-independent 
and (2) threshold-dependent fashions. For the first, the measures of AUC classification per-
formance and strong demographic parity were used. For the second, classification perfor-
mance was measured via macro F1-score—the unweighted average of the harmonic mean 
of the precision and recall across class labels—and fairness was measured via demographic 
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parity. For threshold-dependent measures, 9 decision thresholds were selected based on a 
range of quantiles of Z.

We computed also the difference between performance and fairness as a function of 
each of the aforementioned measures. Specifically, prior to evaluating the difference, 
the performance and fairness measures were normalised to be within the same range of 
values [0,  1] by using the maximum and minimum values of the respective measures 
across all methods. This measure serves as a normalised score for the performance-
fairness trade-off: large values of this score translate to large fairness gains at the cost 
of small performance losses.

To relate the threshold-dependent and threshold-independent demographic parities, 
we measured at each decision threshold—along Θ values—the Pearson correlation 
coefficient Pearson’s correlation coefficient (2008), and the respective null hypothesis 
p-values, between strong demographic parity and demographic parity. The purpose is to 
check whether the behaviour of strong demographic parity across Θ transfers to that of 
the demographic parity.

For each dataset configuration, the same 10-fold cross validation was applied across 
all methods, and the means and standard deviations were recorded for performance and 
fairness. The classification scores Z of samples were computed as the proportion of 
positive samples of the terminal leaf node—P(Y+ ∣ node) , Sect. 4.3—of a single tree, as 
illustrated in Fig. 1.

To achieve state-of-the-art performance, all methods were deployed as a bagging 
ensemble (i.e., random forest) Breiman (2001). Accordingly, the final classification 
score of a sample is the average Z across all different trees. Bootstrapping, random 
feature selection, and continuous-feature discretisation were also applied, given their 
prevalence in real-world implementations of tree-based algorithms, such as XGBoost 
Chen and Guestrin (2016). For the full implementation details, see Pereira Barata 
(2021).

6 � Results

In this section, we present the results of our experiments with benchmark fairness 
datasets. We invite the reader to access our results online Pereira Barata (2021), where 
the three-dimensional plots are interactive. We begin by reporting on the classification 
performance and fairness obtained across our method and the competing approaches for 
the binary sensitive attribute configurations (Sect. 6.1). We follow with the performance 
and fairness produced by our SCAFF approach for the multicategorical case (Sect. 6.2). 
In Sect. 6.3, we show the results of our method applied simultaneously to binary and 
multicategorical sensitive attributes. Lastly, we show how strong demographic parity 
relates to demographic parity across different decision thresholds (Sect. 6.4).

6.1 � Binary sensitive attribute

We present the results pertaining to the Adult  (Race) setup in Fig. 2, and the Adult  (Gen-
der) setup in Fig. 3. The left side of the figures correspond to the threshold-independent 
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measures (AUC and strong demographic parity), while the right side corresponds to the 
threshold-dependent measures ( F1 and demographic parity).

Overall, our method consistently performs better in the combination of classifica-
tion performance and fairness, allowing for a suitable target point of orthogonality Θ . 
Explicitly, our method provides a larger coverage of the performance-fairness trade-off 

Fig. 2   Performance-fairness in the binary sensitive attribute setup Adult  (Race)
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(see performance-fairness curve). Moreover, our method is able to achieve higher val-
ues of performance-fairness difference.

Fig. 3   Performance-fairness in the binary sensitive attribute setup Adult  (Gender)
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Fig. 4   Performance-fairness in the multicategorical sensitive attribute setup Adult  (Age)
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Fig. 5   Performance-fairness in the multicategorical sensitive attribute setup Bank  (Age)
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Fig. 6   Performance-fairness in the multiple sensitive attribute setup Bank  (All)
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6.2 � Multicategorical sensitive attribute

We present the results pertaining to the Adult  (Race) setup in Fig.  4, and the Bank  
(Age) setup in Fig. 5. The left side of the figures correspond to the threshold-independ-
ent measures (AUC and strong demographic parity), while the right side corresponds to 
the threshold-dependent measures ( F1 and demographic parity). Different colours indi-
cate different age categories.

For both experimental setups, our method was able to simultaneously increase model fair-
ness towards all categories, while maintaining adequate classification performance. Remark-
ably, SCAFF was able to achieve large values of performance-fairness difference (more pro-
nounced for Adult (Age), which translates to the method being able to generate models which 
are able to immensely increase fairness at a minimal cost of classification performance.

6.3 � Multiple sensitive attributes

We present the results pertaining to the Bank  (All) setup in Fig. 6. The left side of the figures 
correspond to the threshold-independent measures (AUC and strong demographic parity), 

Fig. 7   Pearson correlation coefficient between strong demographic parity and demographic parity at differ-
ent decision thresholds. Each cell corresponds to the correlation between the fairness measures over orthog-
onality Θ across all folds
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while the right side corresponds to the threshold-dependent measures ( F1 and demographic 
parity).

For multiple binary and multicategorical sensitive attributes, SCAFF was able to generate 
adequately-fair classification models with respect to all sensitive attributes. We note here that, 
the greater the number of constraints the more difficult it is to minimise the performance 
detriment which accompanies the gain in fairness. Yet, the results are overall positive even 
within this difficult scenario.

6.4 � Relationship with demographic parity

In Fig  7, the relationship between the threshold-dependent and threshold-independent 
fairness measures is made explicit. Each row depicts a decision threshold upon which 
demographic parity was computed, whereas a column indicates a dataset configuration. 
Accordingly, a cell depicts the Pearson correlation coefficient between the two measures of 
fairness along the parameter Θ , for a given decision threshold. The coefficients consider (a) 
the strong demographic parity and (b) its threshold-induced counterpart, as seen in the left 
and right Fairness over Orthogonality visualisations, respectively (Sects. 6.1–6.3).

The coefficients represent how similar the behaviour between threshold-dependent and 
- independent demographic parities is, induced by shifts in Θ . It is advantageous to main-
tain the behaviours similar, regardless of the selected threshold. Noteworthily, all statisti-
cal results tested significantly ( � = 0.05 ) against the null hypothesis of no correlation; i.e., 
there is statistical evidence indicative of positive correlation. This shows that the effect of 
shifting the orthogonality parameter Θ in our method, which optimises for the threshold-
independent strong demographic parity, mostly carries over to the threshold-dependent 
demographic parity.

We remark, however, that the distribution of the correlation coefficients is not 
homogeneous. Namely, for extreme decision thresholds (e.g., 0.1 and 0.9), the correlation 
drops albeit still positive and of statistical significance. On a similar note, for Bank  (Age) 
≤ 21 , the correlation coefficients were lower than those of other configurations. This is 
congruent with the (high) standard deviations in fairness shown in Fig. 5 which, in turn, 
are most probably caused by the low frequency of instances in which age ≤ 21 ; per test 
fold, only  17 instances have that sensitive attribute value. In other words, we attribute (a) 
the lower correlation values and (b) higher standard deviation of fairness to (c) the low 
frequency of samples exhibiting that specific attribute value.

7 � Conclusion

In the present work, we introduced SCAFF: the Splitting Criterion AUC for Fairness. By 
doing so, we proposed a learning algorithm which simultaneously (1) optimises for thresh-
old-independent ROC-AUC classification performance and threshold-independent strong 
demographic parity, (2) handles various multicategorical sensitive attributes simultane-
ously, (3) is tunable with respect to the performance-fairness trade-off, and (4) extends to 
ensemble methods.

We empirically validated our method through experimentation on benchmark datasets 
traditionally used in the fairness literature. Within our experiments with real datasets, we 
showed that our approach outperformed the competing state-of-the-art criteria methods, 
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not only in terms of predictive performance and model fairness, but also by its capability 
of handling multiple sensitive attributes simultaneously, of which the values may be valued 
multicategorically. Moreover, we demonstrated how the behaviour of strong demographic 
parity induced by our method extends to demographic parity.

As future work, we recommend to extend the current framework from learning 
classification problems towards other learning paradigms. Ultimately, the development and 
deployment of fair machine learning approaches within sensitive domains should be the 
ulterior goal in this field of research.
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