1909.01051v4 [cs.CV] 12 Jan 2023

arXiv

Noname manuscript No.
(will be inserted by the editor)

MANAS: Multi-Agent Neural Architecture Search

Vasco Lopes - Fabio Maria Carlucci -
Pedro M Esperanga - Marco Singh -
Antoine Yang - Victor Gabillon - Hang
Xu - Zewei Chen - Jun Wang

Received: date / Accepted: date

Abstract The Neural Architecture Search (NAS) problem is typically for-
mulated as a graph search problem where the goal is to learn the optimal
operations over edges in order to maximize a graph-level global objective.
Due to the large architecture parameter space, efficiency is a key bottleneck
preventing NAS from its practical use. In this work, we address the issue by
framing NAS as a multi-agent problem where agents control a subset of the
network and coordinate to reach optimal architectures. We provide two distinct
lightweight implementations, with reduced memory requirements (1/8th of
state-of-the-art), and performances above those of much more computationally
expensive methods. Theoretically, we demonstrate vanishing regrets of the
form O(v/T), with T being the total number of rounds. Finally, we perform
experiments on CIFAR-10 and ImageNet, and aware that random search and
random sampling are (often ignored) effective baselines, we conducted addi-
tional experiments on 3 alternative datasets, with complexity constraints, and
2 network configurations, and achieve competitive results in comparison with
the baselines and other methods.

Keywords Neural Architecture Search - Multi Arm Bandits - AutoML -
Computer Vision - Object Recognition

V. Lopes,
NOVA Lincs, Universidade da Beira Interior

F.M. Carlucci, P.M. Esperanca, M. Singh, A. Yang, V. Gabillon, X. Hang, Z. Chen
Huawei Noah’s Ark Lab
E-mail: fabiom.carlucci@gmail.com

J. Wang
University College London

2 Vasco Lopes et al.

1 Introduction

Determining an optimal architecture is key to accurate deep neural networks
(DNNs) with good generalisation properties [39] 19 18] [I7), 11} [31]. Neural
architecture search (NAS), which has been formulated as a graph search prob-
lem, can potentially reduce the need for application-specific expert designers
allowing for a wide-adoption of sophisticated networks in various industries.
[53] presented the first modern algorithm automating structure design, and
showed that resulting architectures can indeed outperform human-designed
state-of-the-art convolutional networks [20} [26]. However, even in the current
settings where flexibility is limited by expertly-designed search spaces, NAS
problems are computationally very intensive with early methods requiring
hundreds or thousands of GPU-days to discover state-of-the-art architectures
B3, 37, 24 25).

Researchers have used a wealth of techniques ranging from reinforcement
learning, where a controller network is trained to sample promising architec-
tures [53), [54] B3], [], to evolutionary algorithms that evolve a population of
networks for optimal DNN design [36] 25 27], to optimization on random
graphs [38]. Alas, these approaches are inefficient and can be extremely com-
putationally and/or memory intensive as some require all tested architectures
to be trained from scratch. Weight-sharing, introduced in ENAS [33], can
alleviate this problem. Even so, these techniques cannot easily scale to large
datasets, e.g., ImageNet, relying on human-defined heuristics for architecture
transfer. Recently, low-fidelity estimates, performance predictors and guiding
mechanisms have also been studied to improve the search cost and reduce the
memory and computation required [30} 28], 44] [32] [45] 29]. More, gradient-based
frameworks enabled efficient solutions by introducing a continuous relaxation
of the search space. For example, DARTS [26] uses this relaxation to optimise
architecture parameters using gradient descent in a bi-level optimisation prob-
lem, while SNAS [46] updates architecture parameters and network weights
under one generic loss. Still, due to memory constraints the search has to be
performed on 8 cells, which are then stacked 20 times for the final architecture.
This solution is a coarse approximation to the original problem as shown in
Section |§| of this work and in [47, 50} 22], receiving some criticisms outlined in
[51L [47), 41]. In fact, we show that searching directly over 20 cells leads to a
reduction in test error (8% relative to [26]). ProxylessNAS [6] is one exception,
as it can search for the final models directly; nonetheless they still require
twice the amount of memory used by our proposed algorithm, while offering
no theoretical guarantees.

To enable the possibility of large-scale joint optimisation of deep architec-
tures we contribute MANAS, the first multi-agent learning algorithm for neural
architecture search. Our algorithm combines the memory and computational
efficiency of multi-agent systems, which is achieved through action coordination
with the theoretical rigour of online machine learning, allowing us to balance ex-
ploration versus exploitation optimally. Due to its distributed nature, MANAS
enables large-scale optimisation of deeper networks while learning different

MANAS: Multi-Agent Neural Architecture Search 3

operations per cell. Theoretically, we demonstrate that MANAS implicitly
coordinates learners to recover vanishing regrets, guaranteeing convergence.
Empirically, we show that our method achieves state-of-the-art accuracy re-
sults among methods using the same evaluation protocol but with significant
reductions in memory (1/8th of [26]) and search time (70% of [26]).

The multi-agent (MA) framework is inherently scalable and allows us to
tackle an optimization problem that would be extremely challenging to solve
efficiently otherwise: the search space of a single cell is 84 and there is no fast
way of learning the joint distribution, as needed by a single controller. More
cells to learn exacerbates the problem, and this is why MA is required, as for
each agent the size of the search space is always constant.

In short, our contributions can be summarised as: (1) framing NAS as
a multi-agent learning problem (MANAS) where each agent supervises a
subset of the network; agents coordinate through a credit assignment technique
which infers the quality of each operation in the network, without suffering
from the combinatorial explosion of potential solutions. (2) Proposing two
lightweight implementations of our framework that are theoretically grounded.
The algorithms are computationally and memory efficient, and achieve state-
of-the-art results on CIFAR-~10 and ImageNet when compared with competing
methods. Furthermore, MANAS allows search directly on large datasets (e.g.
ImageNet). (3) Presenting 3 news datasets for NAS evaluation to minimise
algorithmic overfitting; offering a fair comparison with the often ignored random
search [22] and random sampling [47], [50] baselines; and presenting a complexity
constraint analysis of MANAS.

2 Related work

MANAS derives its search space from DARTS [26] and is therefore most related
to other gradient-based NAS methods that use the same search space. SNAS
[46] appears similar at a high level, but has important differences: 1) it uses GD
to learn the architecture parameters. This requires a differentiable objective
(MANAS does not) and leads to 2) having to forward all operations (see their
Eqgs.5,6), thus negating any memory advantages (which MANAS has), and
effectively requiring repeated cells and preventing search on ImageNet. Sequent
gradient-base proposals improve upon baselines by introducing regularization
mechanisms to improve the final performance of the generated architectures
[511, 8, @], whilst still suffering from the aforementioned problems.

ENAS [33] is also very different: its use of RL implies dependence on
past states (the previous operations in the cell). It explores not only the
stochastic reward function but also the relationship between states, which is
where most of the complexity lies. Furthermore, RL has to balance exploration
and exploitation by relying on sub-optimal heuristics, while MANAS, due to
its theoretically optimal approach from online learning, is more sample efficient.
Finally, ENAS uses a single LSTM (which adds complexity and problems
such as exploding/vanishing gradients) to control the entire process, and is

4 Vasco Lopes et al.

thus following a monolithic approach. Indeed, at a high level, our multi-agent
framework can be seen as a way of decomposing the monolithic controller into
a set of simpler, independent sub-policies. This provides a more scalable and
memory efficient approach that leads to higher accuracy, as confirmed by our
experiments.

3 Preliminary: Neural Architecture Search

We consider the NAS problem as formalised in DARTS [26]. At a higher
level, the architecture is composed of a computation cell that is a building
block to be learned and stacked in the network. The cell is represented by a
directed acyclic graph with V nodes and N edges; edges connect all nodes
i,j from i to j where i < j. Each vertex (¥ is a latent representation for
i € {1,...,V}. Each directed edge (i,7) (with i < j) is associated with an
operation o(%7) that transforms (9. Intermediate node values are computed
based on all of its predecessors as x(/) = Do 0l47) (@), For each edge, an
architect needs to intelligently select one operation 0(7) from a finite set of K
operations, O = {oy(-)}._,, where operations represents some function to be
applied to £ to compute), e.g., convolutions or pooling layers. To each

o7 (.) is associated a set of operat10nal weights ("’ that needs to be learned
(e.g. the weights of a convolution filter). Additionally, a parameter oz,(cw JeR
characterises the importance of operation k within the pool O for edge (i, j).
The sets of all the operational weights {w,(:’j)} and architecture parameters
(edge weights) {a(”])} are denoted by w and «, respectively. DARTS defined
the operation 6(*7) () as

(7 7)

K
0" (a =Z < oo @) (1)
=1 Zk/f e*w

in which a encodes the network architecture; and the optimal choice of archi-
tecture is defined by

o = min L (o, w* () s.t. w*(a) = arg min L5 (o, w). (2)
(e w

The final objective is to obtain a sparse architecture Z* = {Z(i’j)},Vi,j
where 203 = 20" 2097 with 27 = 1 for k corresponding to the best
operation and 0 otherwise. That is, for each pair (i,j) a single operation is
selected.

4 Online Multi-agent Learning for AutoML

NAS suffers from a combinatorial explosion in its search space. A recently
proposed approach to tackle this problem is to approximate the discrete
optimisation variables (i.e., edges in our case) with continuous counterparts

MANAS: Multi-Agent Neural Architecture Search 5

2 2 2 .
Al ~ 1Pa) af? ~ xD(@?) - 2l -

Fig. 1 MANAS with single cell. Between each pair of nodes, an agent A; selects action a®
according to 7(?). Feedback from the validation loss is used to update the policy.

and then use gradient-based optimisation methods. DARTS [26] introduced
this method for NAS, though it suffers from two important drawbacks. First,
the algorithm is memory and computationally intensive (O(NK) with K being
total number of operations between a pair of nodes and N the number of
nodes) as it requires loading all operation parameters into GPU memory. As a
result, DARTS only optimises over a small subset of 8 repeating cells, which
are then stacked together to form a deep network of 20. Naturally, such an
approximation is bound to be sub-optimal. Second, evaluating an architecture
on validation requires the optimal set of network parameters. Learning these,
unfortunately, is highly demanding since for an architecture Z;, one would
like to compute Egval) (Z:, w}) where w} = argmin,, E,Etmin)(w, Z;). DARTS,
uses weight sharing that updates w; once per architecture, with the hope of
tracking w} over learning rounds. Although this technique leads to significant
speed up in computation, it is not clear how this approximation affects the
validation loss function.

Next, we detail a novel methodology based on a combination of multi-agent
and online learning to tackle the above two problems (Figure . Multi-agent
learning scales our algorithm, reducing memory consumption by an order
of magnitude from O(NK) to O(N); and online learning enables rigorous
understanding of the effect of tracking w; over rounds.

4.1 NAS as a multi-agent problem

To address the computational complexity we use the weight sharing technique
used in DARTS. However, we handle in a more theoretically grounded way

the effect of approximating Egval) (2, w}) by /.ngal) (Z¢,w;). Indeed, such an

6 Vasco Lopes et al.

approximation can lead to arbitrary bad solutions due to the uncontrollable
weight component. To analyse the learning problem with no stochastic assump-
tions on the process generating v = {L£41,...,Lr} we adopt an adversarial
online learning framework.

Algorithm 1 GENERAL FRAMEWORK: [steps with asterisks (*) are specified
in section

1: Initialize: ! is uniform random over all j € {1,... N}. And random w; weights.

2: Fort=1,...,T v o

3: * Agent A; samples a} ~ 7j(a}) for all i € {1,..., N}, forming architecture Z;.

4 Compute the training loss Eitrair_])(at) = Litrair')(zt, wi)

5 Update wyy1 for all operation ay in Z; from w; using back-propagation.
6: Compute the validation loss EEVHI) (at) = E,Eval) (Z¢, wis1)
7
8

: * Update 7'(';:_‘_1 for all i € {1,... N} using Z1,...,2Z; and Egval), RN Lgval).
: Recommend Zp 1, after round T, where a%w_l ~ Tr,}+1(a§,+1) foralli € {1,...,N}.

NAS as Multi-Agent Combinatorial Online Learning. In Section [3] we defined
a NAS problem where one out of K operations needs to be recommended for
each pair of nodes (4,7) in a DAG. In this section, we associate each pair of
nodes with an agent in charge of exploring and quantifying the quality of these
K operations, to ultimately recommend one. The only feedback for each agent
is the loss that is associated with a global architecture Z, which depends on
all agents’ choices.

We introduce N decision makers, Aj, ..., Ay (see Figureand Algorithm.
At training round ¢, each agent chooses an operation (e.g., convolution or
pooling filter) according to its local action-distribution (or policy) aj ~ =7, for
all j € {1,...,N} with a] € {1,..., K}. These operations have corresponding
operational weights w; that are learned in parallel. Altogether, these choices
a; = a},...,al define a sparse graph/architecture Z; = a; for which a
validation loss ﬁ,(fval) (2, w;) is computed and used by the agents to update their
policies. After T' rounds, an architecture is recommended by sampling a7 Y
W%« 4y forallj € {1,..., N}. These dynamics resemble bandit algorithms where
the actions for an agent A; are viewed as separate arms. This framework leaves
open the design of 1) the sampling strategy 7/ and 2) how 7/ is updated from
the observed loss.

Minimization of worst-case regret under any loss. The following two notions
of regret motivate our proposed NAS method. Given a policy 7 the cumulative
regret R . and the simple regret r7. . after T rounds and under the worst

MANAS: Multi-Agent Neural Architecture Search 7

possible environment v, are:

T T
Rin= supEZ Li(at) — minz Li(a), (3)
Yoooi=1 =
T T
T = supEZ Li(aryr) — minz Li(a) (4)
Vooot=1 =

where the expectation is taken over both the losses and policy distributions,
and a = {a(““j)}é\’:1 denotes a joint action profile. The simple regret leads to
minimising the loss of the recommended architecture ar,1, while minimising
the cumulative regret adds the extra requirement of having to sample, at any
time ¢, architectures with close-to-optimal losses. We discuss in the appendix [7]
how this requirement could improve in practice the tracking of w; by w;. We
let £:(a;) be potentially adversarilly designed to account for the difference
between w; and w; and make no assumption on its convergence. Our models
and solutions in Section [5| are designed to be robust to arbitrary L£:(a:).

Because of the discrete nature of the NAS problem, during search the loss
can take on large values or alternate between large and small values arbitrarily.
Gradient-descent methods perform best under smooth loss functions, which
is not the case in NAS. The worst-case regret minimization is a theoretically-
grounded objective which we make use of in order to provide guarantees on the
convergence of the algorithm when no assumptions are made on the process
generating the losses.

5 Adversarial Implementations

In the following subsections we will describe our proposed approaches for
NAS when considering adversarial losses. We present two algorithms, MANAS
and MANAS-LS, that implement two different credit assignment techniques
specifying the update rule in line [7] of Algorithm [I] The first approximates
the validation loss as a linear combination of edge weights, while the second
handles non-linear losses.

Note that adversarial in this context refers to the adversarial multi-arm
bandit [3] framework: we model the fact that a weight-sharing supernetwork
returns noisy rewards as having an adversary that explicitly tries to confuse
the learner. Adversarial multi-arm bandit is the strongest generalization of the
bandit problem, as it removes all assumptions on the distribution. Our MA
formulation and algorithm explicitly account for this adversarial nature and
provide a principled solution that is provably robust.

5.1 MANAS-LS

Linear Decomposition of the Loss. A simple credit assignment strategy is
to approximate edge-importance (or edge-weight) by a vector B, € REN

8 Vasco Lopes et al.

representing the importance of all K operations for each of the IV agents. 3;
is an arbitrary, potentially adversarially-chosen vector and varies with time s
to account for the fact that the operational weights w, are learned online and
to avoid any restrictive assumption on their convergence. The relation between
the observed loss £§Va1) and the architecture selected at each sampling stage s
is modeled through a linear combination of the architecture’s edges (agents’
actions) as

L0 =Bl Z, (5)

where Z € {0, I}K N is a vectorised one-hot encoding of the architecture Z;
(active edges are 1, otherwise 0). After evaluating S architectures, at round ¢
we estimate B by solving the following via least-squares:

- 5 2
Credit assignment: B, = arg mﬁmz (Lgval) - ﬁTZS) . (6)
s=1

The solution gives an efficient way for agents to update their correspond-
ing action-selection rules and leads to implicit coordination. Indeed, in Ap-
pendix [C| we demonstrate that the worst-case regret R can actually be
decomposed into an agent-specific form R (7ri, I/i) defined in the appendix:

% =sup, Ry(mw,v) < sup,: R (Tl'i, Vi) , i=1,...,N. This decomposi-
tion allows us to significantly reduce the search space complexity by letting
each agent A; determine the best operation for the corresponding graph edge.

Zipf Sampling for v .. A; samples an operation k proportionally to the inverse

—~i —~
of its estimated rank (k),, where (k), is computed by sorting the operations of
agent A; w.r.t Bi[k], as

Sampling policy: i [k] = 1 / (k),JogK where TogK = 1+1/2+...+1/K.

Zipf explores efficiently, is anytime, parameter free, minimises optimally the
simple regret in multi-armed bandits when the losses are adversarially designed
and adapts optimally to stationary losses [1].

We prove for this new algorithm an exponentially decreasing simple regret
rp =0 (e_T/ H), where H is a measure of the complexity for discriminat-
ing sub-optimal solutions as H = N(min;4+ 1<i<n} Br[j] — Bi[k}]), where
kf = minj<j<x B%[j]) and BL[j] = Zle ,BﬁA")[j]. The proof in given in
Appendix

5.2 MANAS

Coordinated Descent for Non-Linear Losses. In some cases the linear approxi-
mation may be crude. An alternative is to make no assumptions on the loss
function and have each agent directly associate the quality of their actions
with the loss Lgval) (at). This results in all the agents performing a coordinated

MANAS: Multi-Agent Neural Architecture Search 9

descent, approach to the problem. Each agent updates for operation k its §§ [k]
as

Credit assignment: Bi[k] = Bi_|[k] + L§Va” .]la;;:k/ﬂ'ti [k]. (7)

Softmaz Sampling for R% . Following EXP3 [2], actions are sampled from a

softmax distribution (with temperature 1) w.r.t. Bi[k]:
. ~ . K ~ .
Sampling policy: 7, [k] = exp (nBz [k]) /Zexp (nBz []]) .
j=1

Using this sampling strategy, EXP3 [2] is run for each agent in parallel. If
the regret of each agent is computed by considering the rest of the agent as
fixed, then each agent has regret O (\/TK log K) which sums over agents to

o (N\/TK log K). The proof is given in Appendix

On credit assignment. Our MA formulation provides a gradient-free, credit
assignment strategy. Gradient methods are more susceptible to bad initialisation
and can get trapped in local minima more easily than our approach, which, not
only explores more widely the search space, but makes this search optimally
according to multi-armed bandit derived regret minimization. Concretely,
MANAS can easily escape from local minima as the reward is scaled by the
probability of selecting an action (Eq. @ Thus, the algorithm has a higher
chance of revising its estimate of the quality of a solution based on new evidence.
This is important as one-shot methods (such as MANAS and DARTS) change
the network—and thus the environment—throughout the search process. Put
differently, MANAS’ optimal exploration-exploitation allows the algorithm to
move away from ‘good’ solutions towards ‘very good’ solutions that do not live
in the former’s proximity; in contrast, gradient methods will tend to stay in
the vicinity of a ‘good’ discovered solution.

6 Experiments

We (1) compare MANAS against existing NAS methods on the well established
CIFAR-10 dataset; (2) evaluate MANAS on ImageNet; (3) compare MANAS,
DARTS, Random Sampling and Random Search with WS [22] on 3 new datasets
(Sport-8, Caltech-101, MIT-67); and (4) evaluate MANAS with inference time
as complexity constraint. Descriptions of the datasets and details of the search
are provided in the Appendix. We report the performance of two algorithms,
MANAS and MANAS-LS, as described in Section [5| Note that, with the
exception of results marked as +AutoAugment, all experiments were run with
the same final training protocol as DARTS [26], for fair comparison.

10 Vasco Lopes et al.

Search Spaces. We use the same CNN search space as [26]. Since MANAS
is memory efficient, it can search for the final architecture without needing
to stack a posteriori repeated cells; thus, all our cells are unique. For fair
comparison, we use 20 cells on CIFAR-10 and 14 on ImageNet. Experiments
on Sport-8, Caltech-101 and MIT-67 in Section [6.3 use both 8 and 14 cell
networks.

Search Protocols. For datasets other than ImageNet, we use 500 epochs during
the search phase for architectures with 20 cells, 400 epochs for 14 cells, and
50 epochs for 8 cells. All other hyperparameters are as in [26]. For ImageNet,
we use 14 cells and 100 epochs during search. In our experiments on the three
new datasets we rerun the DARTS code to optimise an 8 cell architecture; for
14 cells we simply stacked the best cells for the appropriate number of times.

Synthetic experiment. To illustrate the theoretical properties of MANAS we
apply it to the Gaussian Squeeze task, a problem where agents must coordinate
their actions in order to optimize a global objective function that depends on
the actions of each agent [48] [10]. Specifically, N homogeneous agents determine

. (z=p)?
their individual actions a) to jointly optimize the objective G (x) = xe™ =)

where z = Z;V:1 a). This synthetic setup has the same characteristics of the
multi-agent NAS problem, namely a group of agents implicitly coordinating
their actions to achieve a global objective, and is therefore a good experiment
to showcase the theoretical properties of the MANAS algorithm.

We confirm that (1) MANAS progresses steadily towards zero regret while
the Random Search baseline struggles to move beyond the initial starting
poin; (2) MANAS stays well within the theoretical cumulative regret bound

(Figure [2).

30 —— Random Search —— Empirical MANAS
—— MANAS Theoretical upper bound

H
o
3

@
3

&
S

N
S

cumulative regret (x1075)
@
3

[

0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
iteration iteration

o

Fig. 2 Left: Regret for the Gaussian Squeeze Domain experiment with 100 agents, 10 actions,
u =1, 0 = 10. Right: Theoretical bound for the MANAS cumulative regret (2N+/TK log K;
see Appendix and the observed counterpart for the Gaussian Squeeze Domain experiment
with 100 agents, 10 actions, p =1, o = 10.

MANAS: Multi-Agent Neural Architecture Search 11

Table 1 Comparison with state-of-the-art image classifiers on CIFAR-10. The four row
blocks represent: human-designed, NAS, MANAS search with DARTS training protocol and
best searched MANAS retrained with extended protocol (AutoAugment + 1500 Epochs +
50 Channels). Unless specified, all architectures use 20 cells.

Architecture Test Error Params Search Cost Search Method
(%) (M) (GPU days)

DenseNet-BC [19] 3.46 25.6 — manual

NASNet-A [54] 2.65 3.3 1800 RL

AmoebaNet-B [36] 2.55 2.8 3150 evolution

PNAS [24] 3.41 3.2 225 SMBO

ENAS [33] 2.89 46 0.5 RL

SNAS [46] 2.85 2.8 1.5 gradient

DARTS, 1st order [26] 3.00 3.3 1.5t gradient

DARTS, 2nd order [26] 2.76 3.3 4t gradient

SDARTS-ADV [§] 2.61 3.3 4.3 gradient

DARTS- [9] 2.63 3.5 4t gradient

GDAS|[14] 3.75 3.4 0.17 gradient

NPENAS-BO[43] 2.52 4.0 2.5 evolution

EffPNet[42] 3.49 2.54 3 evolution

BANANAS[44] 2.64 - 11.8 BO + predictor

Random + cutout [26] 3.29 3.2 — —

Random Search WS [22] 2.85 4.3 9.7 random search

MANAS (8 cells) 3.05 1.6 0.8t MA

MANAS 2.63 3.4 2.8f MA

MANAS-LS 2.52 3.4 4f MA

MANAS + AutoAugment 1.97 3.4 — MA

MANAS-LS + AutoAugment 1.85 3.4 — MA

T Search cost is for 4 runs and test error is for the best result (for a fair comparison with
other methods).

6.1 Results on CIFAR-10

Evaluation. To evaluate our NAS algorithm, we follow DARTS’s protocol: we
run MANAS 4 times with different random seeds and pick the best architecture
based on its validation performance. We then randomly reinitialize the weights
and retrain for 600 epochs. During search we use half of the training set as
validation. To fairly compare with more recent methods, we also re-train the
best searched architecture using AutoAugment and Extended Training [12].

Results. Both MANAS implementations perform well on this dataset (Table .
Our algorithm is designed to perform comparably to [26] but with an order of
magnitude less memory. However, MANAS actually achieves higher accuracy.
The reason for this is that DARTS is forced to search for an 8 cell architecture
and subsequently stack the same cells 20 times; MANAS, on the other hand,
can directly search on the final number of cells leading to better results. We
also report our results when using only 8 cells: even though the network is
much smaller, it still performs competitively with 1st-order 20-cell DARTS.
This is explored in more depth in Section In terms of memory usage with
a batch size of 1, MANAS 8 cells required only 1GB of GPU memory, while
DARTSv1 utilized more than 8.5GB and DARTSv2 required 9.6GB, making

12 Vasco Lopes et al.

Table 2 Comparison with state-of-the-art image classifiers on ImageNet (mobile setting).
The four row blocks represent: human-designed, NAS, MANAS search with DART'S training
protocol and best searched MANAS retrained with extended protocol (AutoAugment + 600
Epochs + 60 Channels).

Architecture Test Error Params Search Cost Search
(%) (M) (GPU days) Method
ShuffleNet 2x (v2) [52] 26.3 5 — manual
NASNet-A [54] 26.0 5.3 1800 RL
AmoebatNet-C [36] 24.3 6.4 3150 evolution
PNAS [24] 25.8 5.1 225 SMBO
SNAS [46] (search on C10) 27.3 4.3 1.5 gradient
DARTS [26] (search on C10) 26.7 4.7 4 gradient
GDAS [I4] (search on C10) 27.5 4.4 0.17 gradient
EffPNet [42] (search on C10) 27.1 — 3 evolution
NASP [49] (search on C10) 26.3 9.5 0.2 proximal
Random sampling 27.75 2.5 — —
MANAS (search on C10) 26.47 2.6 2.8 MA
MANAS (search on IN) 26.15 2.6 110 MA
MANAS (search on C10) + AutoAugment 26.81 2.6 — MA
MANAS (search on IN) + AutoAugment 25.26 2.6 — MA

both versions of DARTS unpractical to work with datasets with larger image
sizes.

[6] is another method designed as an efficient alternative to DARTS; unfor-
tunately the authors decided to a) use a different search space (PyramidNet
backbone; [I7]) and b) offer no comparison to random sampling in the given
search space. For these reasons we feel a numerical comparison to be unfair.
Furthermore our algorithm uses half the GPU memory (they sample 2 paths at
a time) and does not require the reward to be differentiable. Lastly, we observe
similar gains when training the best MANAS/MANAS-LS architectures with
an extended protocol (AutoAugment + 1500 Epochs 4+ 50 Channels, in addition
to the DARTS protocol).

6.2 Results on ImageNet

Evaluation. To evaluate the results on ImageNet we train the final architecture
for 250 epochs. We report the result of the best architecture out of 4, as chosen
on the validation set for a fair comparison with competing methods. As search
and augmentation are very expensive we use only MANAS and not MANAS-
LS, as the former is computationally cheaper and performs slightly better on
average.

Results. We provide results for networks searched both on CIFAR-10 and
directly on ImageNet, which is made possible by the computational efficiency
of MANAS (Table . When compared to SNAS, DARTS, GDAS and other
methods, using the same search space, MANAS achieves state-of-the-art results
both with architectures searched directly on ImageNet and also with archi-
tectures transferred from CIFAR-10. We observe similar improvements when

MANAS: Multi-Agent Neural Architecture Search 13

8 cells 14 cells

|

84 84 68
Sport-8 Caltech-101 MIT-67 Sport-8 Caltech-101 MIT-67

W NANAS MANAS-LS W Random WEEN RandomS WEEE DARTS | W WANAS MANAS-LS WEEN Random WEEN RandondS W DARTS |

Fig. 3 Comparing MANAS, random sampling, random search with WS [22] and DARTS
[26] on 8 and 14 cells. Average results of 8 runs. Note that DARTS was only optimised for 8
cells due to memory constraints.

training the best MANAS architecture with an extended training protocol (Au-
toAugment + 600 Epochs + 60 Channels, in addition to the DARTS protocol),
resulting in a final test error of 25.26% when directly searching on ImageNet.

6.3 Results on new datasets: Sport-8, Caltech-101, MIT-67

Evaluation. The idea behind NAS is that of finding the optimal architecture,
given any sets of data and labels. Limiting the evaluation of current methods
to CIFAR-10 and ImageNet could potentially lead to algorithmic overfitting.
Indeed, recent results suggest that the search space was engineered in a way that
makes it very hard to find a a bad architecture [22] [50] 47, [40]. To mitigate this,
we propose testing NAS algorithms on 3 datasets (composed of regular sized
images) that were never before used in this setting, but have been historically
used in the CV field: Sport-8, Caltech-101 and MIT-67, described briefly in
the Appendix. For these set of experiments we run the algorithm 8 times and
report mean and std. We perform this both for 8 and 14 cells; we do the same
with DARTS (which, due to memory constraints can only search for 8 cells). As
baselines, we consider random search and random sampling. For the latter we
simply sample uniformly 8 architectures from the search space. To efficiently
implement random search, we follow [22] and perform experiments on random
search with WS. Each proposed architecture is trained from scratch for 600
epochs as in the previous section.

Results. MANAS manages to outperform the random baselines and significantly
outperform DARTS, especially on 14 cells (Figure : this clearly shows that
the optimal cell architecture for 8 cells is not the optimal one for 14 cells.

6.4 Results with Complexity Constraint
Evaluation. To evaluate the results of MANAS in a complexity constraint

setting, we eadded the inference time of the generated architectures as a
complexity constraint to the training. For this, we update the training loss

14 Vasco Lopes et al.

Table 3 Results of MANAS with complexity constraints using different penalty (\) values
on CIFAR-10.

A Test Error (%) Inference Time (ms)
0 291 1.255 £ 0.012
0.1 3.12 1.196 £ 0.009
0.25 294 1.190 £ 0.008
0.5 3.04 1.183 £ 0.006
0.75 2.54 1.179 £ 0.005
1 2.69 1.164 £ 0.006

with the constraint of the inference time that the generated architecture takes
to classify an image: Lg”ai“) (a;) = L',Etrain)(Zt, wy) + AL¢ (24, wy), where Ly is
the inference time to classify one image, and A\ defines the importance given
to L;. Here, the A serves the purpose of varying the importance given to the
inference time whilst searching. By increasing A, the inference time constraint
has a higher importance.

Results. We evaluate MANAS with different A values using a single GPU
(Table[3]), and observe that by increasing the importance given to the inference,
MANAS consistently generates architectures with a lower inference time, with
similar accuracies. This experiment shows that MANAS can be extended for
searching with multiple objectives, by modifying the training loss.

7 Discussion

Random Baselines. Clearly, in specific settings, random sampling performs
very competitively. On one hand, since the search space is very large (between
8112 and 8280 architectures exist in the DARTS experiments), finding the
global optimum is practically impossible. Why is it then that the randomly
sampled architectures are able to deliver nearly state-of-the-art results? Previous
experiments [50, [22] together with the results presented here seem to indicate
that the available operations and meta-structure have been carefully chosen
and, as a consequence, most architectures in this space generate very good
results. This suggests that human effort has simply transitioned from finding
a good architecture to finding a good search space—a problem that needs
careful consideration in future work. Random search with WS [22], has also
shown to perform competitively but it is clearly sub-optimal compared to our
multi-agent framework.

On fair evaluation. It is worth stressing that we performed all comparisons
using the same final training protocol. This is extremely relevant as there has
been a recent trend to boost results simply by stacking more training tricks
on to the evaluation protocol. As such, any improvement in the final accuracy
is solely due to how the network was trained rather than the quality of the
search method used or the architecture discovered [47].

MANAS: Multi-Agent Neural Architecture Search 15

Agent coordination, combinatorial explosion and approrimate credit assignment.
Our set-up introduces multiple agents in need of coordination. Centralised
critics use explicit coordination and learn the value of coordinated actions
across all agents [35], but the complexity of the problem grows exponentially
with the number of possible architectures Z, which equals K~V. We argue
instead for an implicit approach where coordination is achieved through a joint
loss function depending on the actions of all agents. This approach is scalable
as each agent searches its local action space—small and finite—for optimal
action-selection rules. Both credit assignment methods proposed learn, for each
operation k belonging to an agent A;, a quantity B:[k] (similar to a in Section
that quantifies the contribution of the operation to the observed losses.

8 Conclusions

We presented MANAS, a theoretically grounded multi-agent online learning
framework for NAS. We proposed two extremely lightweight implementations
that, within the same search space, outperform state-of-the-art while reducing
memory consumption by an order of magnitude compared to [26]. We provide
vanishing regret proofs for our algorithms. Furthermore, we evaluate MANAS
on 3 new datasets, empirically showing its effectiveness in a variety of settings.
Finally, we confirm concerns raised in recent works [50, 22], 47] claiming that
NAS algorithms often achieve minor gains over random architectures. We
however demonstrate, that MANAS still produces competitive results with
limited computational budgets.

Funding

Financial support to the authors was received from “FCT - Fundacao para
a Ciéncia e Tecnologia”, through the research grant “2020.04588.BD” [Vasco
Lopes]; and from Huawei Technologies R&D (UK) Ltd [all other authors].

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not required.

Consent to participate

Not required.

16

Vasco Lopes et al.

Consent for publication

Not required.

Availability of data

All data used is publicly available.

Code availability

Code will be publicly available.

Authors’ contributions

Conceptualization: Vasco Lopes, Fabio Maria Carlucci, Pedro M Esperanga,
Marco Singh, Antoine Yang, Jun Wang; Methodology: Vasco Lopes, Fabio
Maria Carlucci, Pedro M Esperanca, Marco Singh, Antoine Yang, Victor
Gabillon, Hang Xu, Zewei Chen; Formal analysis and investigation: Vasco
Lopes, Fabio Maria Carlucci, Pedro M Esperanca, Marco Singh, Antoine
Yang, Victor Gabillon; Writing - original draft preparation: Fabio Maria
Carlucci, Pedro M Esperanca, Marco Singh, Antoine Yang, Victor Gabillon;
Writing - review and editing: Vasco Lopes, Fabio Maria Carlucci, Pedro
M Esperanca; Supervision: Jun Wang.

References

1.

Abbasi-Yadkori, Y., Bartlett, P., Gabillon, V., Malek, A., Valko, M.: Best
of both worlds: Stochastic & adversarial best-arm identification. In: Con-
ference on Learning Theory (COLT) (2018)

Auer, P., Cesa—Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic
multiarmed bandit problem. SIAM journal on computing 32(1), 48-77
(2002)

Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: Gambling in a
rigged casino: The adversarial multi-armed bandit problem. In: Proceedings
of IEEE 36th Annual Foundations of Computer Science, pp. 322-331. IEEE
(1995)

. Bender, G., Liu, H., Chen, B., Chu, G., Cheng, S., Kindermans, P.J.,

Le, Q.V.: Can weight sharing outperform random architecture search? an
investigation with tunas. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 14323-14332 (2020)

. Bubeck, S., Cesa-Bianchi, N.; et al.: Regret analysis of stochastic and

nonstochastic multi-armed bandit problems. Foundations and Trends®) in
Machine Learning 5(1), 1-122 (2012)

MANAS: Multi-Agent Neural Architecture Search 17

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Cai, H., Zhu, L., Han, S.: ProxylessNAS: Direct neural architecture search
on target task and hardware. In: International Conference on Learning
Representations (ICLR) (2019)

Cesa-Bianchi, N., Lugosi, G.: Combinatorial bandits. Journal of Computer
and System Sciences 78(5), 1404-1422 (2012)

Chen, X., Hsieh, C.: Stabilizing differentiable architecture search via
perturbation-based regularization. In: Proceedings of the 37th International
Conference on Machine Learning, ICML 2020 (2020)

Chu, X., Wang, X., Zhang, B., Lu, S., Wei, X., Yan, J.: DARTS-: ro-
bustly stepping out of performance collapse without indicators. In: 9th
International Conference on Learning Representations, ICLR (2021)
Colby, M.K., Kharaghani, S., HolmesParker, C., Tumer, K.: Counterfactual
exploration for improving multiagent learning. In: Autonomous Agents and
Multiagent Systems (AAMAS 2015), pp. 171-179. International Foundation
for Autonomous Agents and Multiagent Systems (2015)

Conneau, A., Schwenk, H., Barrault, L., Lecun, Y.: Very deep convolutional
networks for text classification. In: European Chapter of the Association
for Computational Linguistics: Volume 1, Long Papers, pp. 1107-1116
(2017)

Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment:
Learning augmentation policies from data. arXiv:1805.09501 (2018)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A
large-scale hierarchical image database. In: Computer Vision and Pattern
Recognition (CVPR), pp. 248-255 (2009)

Dong, X., Yang, Y.: Searching for a robust neural architecture in four GPU
hours. In: IEEE Conference on Computer Vision and Pattern Recognition,
CVPR. Computer Vision Foundation / IEEE (2019)

Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from
few training examples: An incremental bayesian approach tested on 101
object categories. Computer Vision and Image Understanding 106(1),
59-70 (2007)

Freedman, D.A.: On tail probabilities for martingales. The Annals of
Probability pp. 100-118 (1975)

Han, D., Kim, J., Kim, J.: Deep pyramidal residual networks. In: Computer
Vision and Pattern Recognition (CVPR), pp. 5927-5935 (2017)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image
recognition. In: Computer Vision and Pattern Recognition (CVPR), pp.
770-778 (2016)

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely con-
nected convolutional networks. In: Computer Vision and Pattern Recogni-
tion (CVPR), pp. 4700-4708 (2017)

Ko, B.: Imagenet classification leaderboard. https://kobiso.github.io/
Computer-Vision-Leaderboard/imagenet| (2019)

Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech.
rep., University of Toronto (2009)

https://kobiso.github.io/Computer-Vision-Leaderboard/imagenet
https://kobiso.github.io/Computer-Vision-Leaderboard/imagenet

18

Vasco Lopes et al.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Li, L., Talwalkar, A.: Random search and reproducibility for neural archi-
tecture search. arXiv:1902.07638 (2019)

Li, L.J., Fei-Fei, L.: What, where and who? classifying events by scene
and object recognition. In: International Conference on Computer Vision
(ICCV), pp. 1-8 (2007)

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.J., Fei-Fei, L.,
Yuille, A., Huang, J., Murphy, K.: Progressive neural architecture search.
In: European Conference on Computer Vision (ECCV), pp. 19-34 (2018)
Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hier-
archical representations for efficient architecture search. In: International
Conference on Learning Representations (ICLR) (2018)

Liu, H., Simonyan, K., Yang, Y.: DARTS: Differentiable architecture search.
In: International Conference on Learning Representations (ICLR) (2019)
Lopes, V., Alexandre, L.A.: Towards less constrained macro-neural archi-
tecture search. arXiv preprint arXiv:2203.05508 (2022)

Lopes, V., Alirezazadeh, S., Alexandre, L.A.: EPE-NAS: Efficient per-
formance estimation without training for neural architecture search. In:
International Conference on Artificial Neural Networks (2021)

Lopes, V., Santos, M., Degardin, B., Alexandre, L.A.: Efficient guided
evolution for neural architecture search. In: Proceedings of the Genetic
and Evolutionary Computation Conference (2022)

Mellor, J., Turner, J., Storkey, A., Crowley, E.J.: Neural architecture search
without training. In: International Conference on Machine Learning (2021)
Merity, S., Keskar, N.S., Socher, R.: Regularizing and optimizing LSTM
language models. In: International Conference on Learning Representations
(ICLR) (2018)

Ning, X., Tang, C., Li, W., Zhou, Z., Liang, S., Yang, H., Wang, Y.: Eval-
uating efficient performance estimators of neural architectures. Advances
in Neural Information Processing Systems 34 (2021)

Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J.: Efficient neural architecture
search via parameter sharing. In: International Conference on Machine
Learning (ICML), pp. 40924101 (2018)

Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: Computer Vision
and Pattern Recognition (CVPR), pp. 413420 (2009)

Rashid, T., Samvelyan, M., Witt, C.S., Farquhar, G., Foerster, J., Whiteson,
S.: QMIX: Monotonic value function factorisation for deep multi-agent
reinforcement learning. In: International Conference on Machine Learning
(ICML), pp. 4292-4301 (2018)

Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for
image classifier architecture search. arXiv:1802.01548 (2018)

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan, J., Le, Q.V.,
Kurakin, A.: Large-scale evolution of image classifiers. In: International
Conference on Machine Learning (ICML), pp. 2902-2911 (2017)

Ru, R., Esperanga, P.M., Carlucci, F.M.: Neural architecture generator
optimization. Advances in Neural Information Processing Systems 33,
12057-12069 (2020)

MANAS: Multi-Agent Neural Architecture Search 19

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

92.

53.

Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, Inception-
ResNet and the impact of residual connections on learning. In: AAAI
Conference on Artificial Intelligence (2017)

Wan, X., Ru, B., Esperanca, P.M., Li, Z.: On redundancy and diversity
in cell-based neural architecture search. In: International Conference on
Learning Representations (2022)

Wan, X., Ru, B., Esperanca, P.M., Li, Z.: On redundancy and diversity
in cell-based neural architecture search. In: International Conference on
Learning Representations (ICLR) (2022)

Wang, B., Xue, B., Zhang, M.: Surrogate-assisted particle swarm optimiza-
tion for evolving variable-length transferable blocks for image classification.
IEEE transactions on neural networks and learning systems (2021)

Wei, C., Niu, C., Tang, Y., Wang, Y., Hu, H., Liang, J.: Npenas: Neural pre-
dictor guided evolution for neural architecture search. IEEE Transactions
on Neural Networks and Learning Systems (2022)

White, C., Neiswanger, W., Savani, Y.: Bananas: Bayesian optimization
with neural architectures for neural architecture search. In: Proceedings of
the AAAT Conference on Artificial Intelligence (2021)

White, C., Zela, A., Ru, R., Liu, Y., Hutter, F.: How powerful are per-
formance predictors in neural architecture search? Advances in Neural
Information Processing Systems 34 (2021)

Xie, S., Zheng, H., Liu, C., Lin, L.: SNAS: Stochastic neural architecture
search. In: International Conference on Learning Representations (ICLR)
(2019)

Yang, A., Esperancga, P.M., Carlucci, F.M.: NAS evaluation is frustratingly
hard. In: International Conference on Learning Representations (ICLR)
(2020)

Yang, Y., Luo, R., Li, M., Zhou, M., Zhang, W., Wang, J.: Mean field multi-
agent reinforcement learning. In: International Conference on Machine
Learning (ICML) (2018)

Yao, Q., Xu, J., Tu, W., Zhu, Z.: Efficient neural architecture search via
proximal iterations. In: The Thirty-Fourth AAAT Conference on Artificial
Intelligence, AAAT 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI. AAAT Press (2020)

Yu, K., Sciuto, C., Jaggi, M., Musat, C., Salzmann, M.: Evaluating the
search phase of neural architecture search. In: International Conference on
Learning Representations (ICLR) (2019)

Zela, A., Elsken, T., Saikia, T., Marrakchi, Y., Brox, T., Hutter, F.: Un-
derstanding and robustifying differentiable architecture search. In: Inter-
national Conference on Learning Representations (ICLR) (2020)

Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: An extremely efficient con-
volutional neural network for mobile devices. In: Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 6848-6856 (2018)

Zoph, B.; Le, Q.: Neural architecture search with reinforcement learning.
In: International Conference on Learning Representations (ICLR) (2017)

20 Vasco Lopes et al.

54. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable archi-
tectures for scalable image recognition. In: Computer Vision and Pattern
Recognition (CVPR), pp. 8697-8710 (2018)

A Datasets

CIFAR-10. The CIFAR-10 dataset [21] is a dataset with 10 classes and consists of 50,000
training images and 10,000 test images of size 32x32. We use standard data pre-processing
and augmentation techniques, i.e. subtracting the channel mean and dividing the channel
standard deviation; centrally padding the training images to 40x40 and randomly cropping
them back to 32x32; and randomly flipping them horizontally.

ImageNet. The TmageNet dataset [I3] is a dataset with 1000 classes and consists of
1,281,167 training images and 50,000 test images of different sizes. We use standard data
pre-processing and augmentation techniques, i.e. subtracting the channel mean and dividing
the channel standard deviation, cropping the training images to random size and aspect ratio,
resizing them to 224x224, and randomly changing their brightness, contrast, and saturation,
while resizing test images to 256256 and cropping them at the center.

Sport-8. This is an action recognition dataset containing 8 sport event categories and a
total of 1579 images [23]. The tiny size of this dataset stresses the generalization capabilities
of any NAS method applied to it.

Caltech-101. This dataset contains 101 categories, each with 40 to 800 images of size
roughly 300x200 [I5].

MIT-67. This is a dataset of 67 classes representing different indoor scenes and consists
of 15,620 images of different sizes [34].

In experiments on Sport-8, Caltech-101 and MIT-67, we split each dataset into a training
set containing 80% of the data and a test set containing 20% of the data. For each of them,
we use the same data pre-processing techniques as for ImageNet.

B Implementation details

B.1 Methods
MANAS. Our code is based on a modified variant of [26]. To set the temperature
and gamma, we used as starting estimates the values suggested by [B]: t = % with n =

0.957V:1[((K) (K number of actions, n number of architectures seen in the whole training);

and v = 1.05%(1{). We then tuned them to increase validation accuracy during the search.

MANAS-LS. For our Least-Squares solution, we alternate between one epoch of training
(in which all 8 are frozen and the w are updated) and one or more epochs in which we
build the Z matrix from Section 4 (in which both 8 and w are frozen). The exact number of
iterations we perform in this latter step is dependant on the size of both the dataset and the
searched architecture: our goal is simply to have a number of rows greater than the number
of columns for Z. We then solve Et = (ZZT)T Z L, and repeat the whole procedure until
the end of training. This method requires no additional meta-parameters.

MANAS: Multi-Agent Neural Architecture Search 21

Number of agents. In both MANAS variants, the number of agents is defined by the
search space and thus is not tuned. Specifically, for the image datasets, there exists one agent
for each pair of nodes, tasked with selecting the optimal operation. As there are 14 pairs in
each cell, the total number of agents is 14 x C, with C being the number of cells (8, 14 or 20,
depending on the experiment).

B.2 Computational resources

ImageNet experiments were performed on multi-GPU machines loaded with 8 x Nvidia Tesla
V100 16GB GPUs (used in parallel). All other experiments were performed on single-GPU
machines loaded with 1x GeForce GTX 1080 8GB GPU.

C Factorizing the Regret

Factorizing the Regret: Let us firstly formulate the multi-agent combinatorial online
learning in a more formal way. Recall, at each round, agent A; samples an action from
a fixed discrete collection {ag.Ai)}]K:l. Therefore, after each agent makes a choice of its
action at round t, the resulting network architecture Z; is described by joint action pro-
file a; = [a%‘l)’[t], .. .,aiﬁN)’[t]} and thus, we will use Z; and a; interchangeably. Due
to the discrete nature of the joint action space, the validation loss vector at round t
is given by Zival) = (Eival) (Zt(l)> ,...,ﬂgval) (Zt(KN)>> and for the environment one

~(val ~(val
can write v = (ﬁgva), .. .,l:(;a)). The interconnection between joint policy 7 and an

environment v works in a sequential manner as follows: at round ¢, the architecture
z (val) (val)y . . . (val) (val)

t o~ me(-|21,L7 7, ..., 2¢—1,L, ;") is sampled and validation loss L; =L, (Z)
is observecEl As we mentioned previously, assuming linear contribution of each individual
actions to the validating loss, one goal is to find a policy 7 that keeps the regret:

T T
_ Ty oo T
Ry(m,v)=E [; Bi Z: — min [1 B; Z” (8)

t=

small with respect to all possible forms of environment v. We reason here with the cumulative
regret the reasoning applies as well to the simple regret. Here, 3: €]RfN is a contribution
vector of all actions and Z; is binary representation of architecture Z; and F C [0, l]K N
is set of all feasible architecturesEl In other words, the quality of the policy is defined with
respect to worst-case regret:

R} = sup R (,v) ©)

1 Please notice, the observed reward is actually a random variable

2 We assume that architecture is feasible if and only if each agent chooses exactly one
action.

22 Vasco Lopes et al.

Notice, that linear decomposition of the validation loss allows to rewrite the total regret

as a sum of agent-specific regret expressions ’R&Ai) (ﬂ'(Ai), V(Ai)) fori=1,...,N:
T N
Rr(m,v)=E Z Zﬁ<A i) TZ(A Z mln |:Z ,B(A Z<Ai>:|
t=1 \i=1 i=1 z(Ai)EBH 1o (0)
o a AT (A & A, T
SN w10
i=1 |t=1 zAdes(f) 1o,1(®) Li=1

_ ingn (W(A»,V(An)

where 8 = [T, ;“N’T]T and Z, = [2{*47,.. .,zt(AN)’T]T, Z = [2ADT . zAn.T]T
are decomposition of the corresponding vectors on agent-specific parts, joint policy m(-) =
H?;l w(Ai) (), and joint environment v = Hfi1 v(A9) | and Bﬁ H) (0) is unit ball with
respect to || - ||o norm centered at O in [0, 1]%. Moreover, the worst-case regret @ also can
be decomposed into agent-specific form:

Ry =supRp(mw,v) < sup R< i) (ﬂ'(Ai),V(Ai)) , t=1,...,N.
v LAY

This decomposition allows us to significantly reduce the search space and apply the two
following algorithms for each agent .A; in a completely parallel fashion.

D Theoretical Guarantees

D.1 MANAS-LS

First, we need to be more specific on the way to obtain the estimates ,@A") [K].
In order to obtain theoretical guaranties we considered the least-square estimates as
in [7] as

5 E(val)PTZt where P = E [ZZT] with Z has law m(1_.[ﬂ-<A)((10)

Our analysis is under the assumption that each B; € REYN belongs to the linear space
spanned by the space of sparse architecture Z. This is not a strong assumption as the only
condition on a sparse architecture comes with the sole restriction that one operation for each
agent is active.

Theorem 1 Let us consider neural architecture search problem in a multi-agent combina-
torial online learning form with N agents such that each agent has K actions. Then after
T rounds, MANAS-LS achieves joint policy {ﬂ't}t 1 with expected simple regret (Equa-
tzon@) bounded by O (_T/H) in any adversarial environment with complezity bounded by

H = N(mins icqa,....ny BY V(] = BEY k7)), where kY = minje (e BE V(]

Proof In Equation we use the same constructions of estimates B¢ as in ComBand. Using
Corollary 14 in [7] we then have that By is an unbiased estimates of By.

Given the adversary losses, the random variables Bt can be dependent of each other and
t € [T] as m¢ depends on previous observations at previous rounds. Therefore, we use the
Azuma inequality for martingale differences by [16].

MANAS: Multi-Agent Neural Architecture Search 23

Without loss of generality we assume that the loss Lgval) are bounded such that zﬁva” €
[0,1] for all ¢t. Therefore we can bound the simple regret of each agent by the probability of

misidentifying of the best operation P(k} # a;\j_l).

We consider a fixed adversary of complexity bounded by H. For simplicity, and without
loss of generality, we order the operations from such that B;Ai)[l] < B(TAi>[2] <...<
B;Ai) [K] for all agents.

We denote for k > 1, Ay, = BSV k] — B (k] and Ay = As.

We also have Ap,in as the smallest nonzero eigenvalue of M where M is M = E[ZZT]

where Z is a random vector representing a sparse architecture distributed according to the
uniform distribution.

Pk} # aT+1 =P <3k e{L,...,K}: E;Ai)[l] 2 E;Ai)[kn

<P (ak e{1,...,K}: BYIk] - BP9k > L?’“ or B[] - B 1) > L?l)

K
P((A)[1] B(»A)[1] > TAI) T Z (B’,(Z“Al)[k] B(A)[k] > TAk)

k=2
@ & (AR)2T
< 2 o ® (= Niag(30))
(A)°T
< Kexp (_ 2N10g(K)/Amin) ’

where (a) is using Azuma’s inequality for martingales applied to the sum of the random
variables with mean zero that are ,ék,t — B+ for which we have the following bounds on the
range. The range of Bk,t is [0, Nlog(K)/Amin]. Indeed our sampling policy is uniform with
probability 1/log(K) therefore one can bound 5k,t as in [7, Theorem 1] Therefore we have

1Bkt — Br.t] < Nlog(K)/Amin-
‘We recover the result with a union bound on all agents.

D.2 MANAS

We consider a simplified notion of regret that is a regret per agent where each agent is
considering the rest of the agents as part of the adversarial environment. Let us fix our new
objective as to minimise

N T

ZR}’Z(W(A i) Z sup E Zﬁgval)(aEAi),a_i) — min ZE(Val)(a a_i)||,
i=1 19—V =1 a€{l,..K}

where a_; is a fixed set of actions played by all agents to the exception of agent A; for the T'

rounds of the game and v contains all the losses as v = {Lival)(a)}te{l,” Thae{l, .., KN}-

We then can prove the following bound for that new notion of regret.

Theorem 2 Let us consider neural architecture search problem in a multi-agent combina-
torial online learning form with N agents such that each agent has K actions. Then after T
rounds, MANAS achieves joint policy {ﬂ't}z;l with expected cumulative regret bounded by

O (NVTKTogK).

Proof First we look at the problem for each given agent A; and we define and look at

T T
Ry (aAD Ja_y) = st;pE > £ (a{*, a) - ae{rﬂi?,}(} {Z £ (a, ai)H ,

t=1 t=1

24 Vasco Lopes et al.

We want to relate that the game that agent i plays against an adversary when the actions of
all the other agents are fixed to a_; to the vanilla EXP3 setting. To be more precise on why

this is the EXP3 setting, first we have that Egval)(at) is a function of a; that can take KV

arbitrary values. When we fix a_;, £§Val)(a§Ai>,a_i) is a function of aﬁAi)

take K arbitrary values.

One can redefine Et@’(val) (aEAi)) = Lgval)(aEAi), a_;)

that can only

and then the game boils down to

the vanilla adversarial multi-arm bandit where each time the learner plays aEAi) e{1,...,K}
and observes/incur the loss [,t@’(val) (aEAi)). Said differently this defines a game where the

new v’ contains all the losses as v/ = {Ei@’(va1> (a(Ai))}te{l o ThalADe(1,.. K}

For all a_;
RyHEXP3,a_;) < 2¢/TK log(K)
Then we have

RN EXP3) < sup 2y/TK log(K)

a_;
=2y/TKlog(K)
Then we have
N .
> RPHEXP3) < 2N+/TK log(K)
=1

E Relation between weight sharing and cumulative regret

Ideally we would like to obtain for any given architecture Z the value L, (2, w*(Z2)).
However obtaining w*(Z) = arg minw Lirain(w, Z) for any given fixed Z would already
require heavy computations. In our approach the w; that we compute and update is actually
common to all Z; as w; replaces w*(Z;). This is a simplification that leads to learning
a weight w; that tend to minimise the loss Ezr, [Lyq1(Z, w(Z)] instead of minimising
Lyai(Ze,w(Z). If m¢ is concentrated on a fixed Z then these two previous expressions
would be close. Moreover when 7; is concentrated on Z then w; will approximate accurately
w*(Z2) after a few steps. Note that this gives an argument for using sampling algorithm
that minimise the cumulative regret as they naturally tend to play almost all the time one
specific architecture. However there is a potential pitfall of converging to a local minimal
solution as w; might not have learned well enough to compute accurately the loss of other
and potentially better architectures.

	1 Introduction
	2 Related work
	3 Preliminary: Neural Architecture Search
	4 Online Multi-agent Learning for AutoML
	5 Adversarial Implementations
	6 Experiments
	7 Discussion
	8 Conclusions
	A Datasets
	B Implementation details
	C Factorizing the Regret
	D Theoretical Guarantees
	E Relation between weight sharing and cumulative regret

