
Springer Nature 2021 LATEX template

Heterogeneous Multi-Task Gaussian Cox

Processes

Feng Zhou1,2, Quyu Kong3, Zhijie Deng2,4, Fengxiang
He5, Peng Cui2 and Jun Zhu2*

1Center for Applied Statistics and School of Statistics, Renmin
University of China.

2Dept. of Comp. Sci. & Tech., BNRist Center, THU-Bosch Joint
ML Center, Tsinghua University.

3Data Science Institute, University of Technology Sydney.
4Qing Yuan Research Institute, Shanghai Jiao Tong University.

5JD Explore Academy, JD.com Inc.

*Corresponding author(s). E-mail(s): dcszj@tsinghua.edu.cn;
Contributing authors: feng.zhou@ruc.edu.cn;
quyu.kong@uts.edu.au; zhijied@sjtu.edu.cn;

fengxiang.f.he@gmail.com; cuip22@mails.tsinghua.edu.cn;

Abstract

This paper presents a novel extension of multi-task Gaussian Cox
processes for modeling multiple heterogeneous correlated tasks jointly,
e.g., classification and regression, via multi-output Gaussian processes
(MOGP). A MOGP prior over the parameters of the dedicated likeli-
hoods for classification, regression and point process tasks can facilitate
sharing of information between heterogeneous tasks, while allowing for
nonparametric parameter estimation. To circumvent the non-conjugate
Bayesian inference in the MOGP modulated heterogeneous multi-task
framework, we employ the data augmentation technique and derive a
mean-field approximation to realize closed-form iterative updates for esti-
mating model parameters. We demonstrate the performance and inference
on both 1D synthetic data as well as 2D urban data of Vancouver.

Keywords: heterogeneous correlation, multi-task learning, Cox process,
multi-output Gaussian processes, conditionally conjugate
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1 Introduction

Inhomogeneous Poisson process data defined on a continuous spatio-temporal
domain has attracted immense attention recently in a wide variety of applica-
tions, including reliability analysis in manufacturing systems (Soleimani et al,
2017), event capture in sensing regions (Mutny and Krause, 2021), crime pre-
diction in urban area (Shirota and Gelfand, 2017) and disease diagnosis based
on medical records (Lasko, 2014). The reliable training of an inhomogeneous
Poisson process model critically relies on a large amount of data to avoid
overfitting, especially when modeling high-dimensional point processes. How-
ever, one challenge is that the available training data is routinely sparse or
even partially missing in specific applications. Taking manufacturing failure
and healthcare analysis as motivating examples: the modern manufacturing
machines are reliable and sparsely fail; the individuals with healthy constitu-
tion will not visit hospital very often. The data missing problems also arise,
e.g., the event location capture is intermittent for sensing systems because of
weather or other related barriers. To handle data sparse/missing problems,
the correlation between multiple tasks can be exploited to facilitate sharing
of information between all tasks to improve the generalization capabilities,
forming a multi-task learning paradigm.

A popular approach to modeling multi-task inhomogeneous Poisson pro-
cesses is to use Gaussian process (GP) (Williams and Rasmussen, 2006)
based Bayesian framework to induce correlation among tasks. This kind of
multi-task inhomogeneous Poisson processes are also called multi-task Cox
processes (Møller et al, 1998). Multi-task Cox processes have been investigated
extensively in recent years, e.g., hierarchical-GP based version (Lian et al, 2015)
and multi-output Gaussian processes (MOGP) based versions (Aglietti et al,
2019; Jahani et al, 2021). Yet to our knowledge, all the aforementioned works
focus on homogeneous multi-task Cox processes learning, i.e., all correlated
tasks are exclusively point process tasks. It is not free to apply them to the
more general heterogeneous multi-task scenarios where correlated tasks include
other types of tasks except Cox processes. Take the urban data of Vancouver in
Fig. 3 as a motivating example where we have three types of tasks: employment
income (regression), education degree (classification), theft of vehicle (Cox pro-
cess) and non-market house (Cox process). When the crime data is missing in
certain areas of the city, training on this single task is prone to overfitting since
the model may try to fit the available data too closely, leading to inaccurate pre-
dictions or poor generalization to unseen data. Can we leverage the information
of employment income, education degree and non-market housing to assist the
prediction of crime rate in the missing areas? Or, can we make use of income,
education and crime to help predict the number of non-market housing projects
in certain missing areas? Based on our knowledge, only a few heterogeneous
frameworks exist, such as Moreno-Muñoz et al (2018). However, Moreno-Muñoz
et al (2018) discretized the point process task into Poisson distribution prob-
lems and does not preserve conjugate operations. To make further progress,
we generalize the homogeneous multi-task Cox processes to the heterogeneous
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setup using MOGP to enable the transfer of knowledge between supervised
(regression and classification) and unsupervised tasks (Cox processes).

Most existing Cox process works focus on the log Gaussian Cox process
(LGCP) (Møller et al, 1998) where a GP function is passed through an exponen-
tial link function to model the positive intensity rate. Due to the nonconjugacy
between point process likelihood and GP prior, practitioners need to apply
Markov chain Monte Carlo (MCMC) (Neal, 1993) or variational inference (Blei
et al, 2017) methods to infer the posterior distribution of model parameters.
For MCMC, the specialised MCMC algorithms, such as Metropolis-adjusted
Langevin algorithm (MALA) (Møller et al, 1998; Besag, 1994), as well as the
probabilistic programming languages based on MCMC (Wood et al, 2014)
where one does not need to write a sampler by hand, can be used for sam-
pling from the posterior of intensity function. Although MCMC provides the
guarantee of asymptotic consistency, this accuracy comes at the expense of a
high computational cost. On the contrary, variational inference can be faster
than MCMC, although it induces approximation error. For the efficiency rea-
son, we focus on variational inference in this work. For variational inference,
a Gaussian variational posterior is typically assumed to render the evidence
lower bound (ELBO) tractable (Dezfouli and Bonilla, 2015; Lloyd et al, 2015).
While this variational inference method is quite generic, it can exhibit low effi-
ciency (although it is still faster than MCMC) (Wenzel et al, 2019), exposing
opportunities for improvement. It is worth noting that the same problem also
occurs in GP classification tasks. This work remediates these issues by basing
our model on sigmoidal Gaussian Cox process (SGCP) (Adams et al, 2009),
using a scaled sigmoid function as link function in point process tasks, and the
logistic regression model in classification tasks. The reason we choose sigmoid
as link function in both types of tasks is we can exploit the data augmenta-
tion technique (Polson et al, 2013; Donner and Opper, 2018) to construct a
mean-field approximation that has closed-form iterative updates. As shown
later, the proposed mean-field approximation exhibits superior efficiency and
fast convergence.

Specifically, we make the following contributions. (1) From a modeling
perspective, we establish a MOGP based heterogeneous multi-task Gaussian
Cox processes (HMGCP) model that provides an extension of the homogeneous
version to account for multiple heterogeneous correlated tasks. (2) From an
inference perspective, we adopt the data augmentation technique to derive
an efficient mean-field approximation with analytical expressions. As far as
we know, this work should be the first attempt to use data augmentation in
the MOGP setting. (3) In experiments, we provide evidence of the benefits of
modeling heterogeneous correlated tasks and the predominant efficiency and
convergence of our inference method.
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2 Related Work

Multi-Output Gaussian Processes

Multi-output Gaussian processes (Álvarez et al, 2012) extend the single-output
Gaussian process to model vector-valued functions, providing a powerful
Bayesian tool for multi-task learning as it accounts for the correlation between
multiple outputs. Bonilla et al (2007) has shown that if multiple outputs are
correlated, exploiting such correlation can provide insightful information about
each output and better predictions in the case of sparse/missing data. More
importantly, as a Bayesian nonparametric approach, it offers higher flexibility
over parametric alternatives and a natural mechanism for uncertainty quan-
tification. To define a MOGP, we need to define a suitable cross-covariance
function that accounts for the correlation between multiple outputs, which
leads to a valid covariance function for the joint GP (Álvarez et al, 2019).
The two common ways to define cross-covariance functions are linear model
of coregionalization (LMC) (Journel and Huijbregts, 1976) and process con-
volution (Ver Hoef and Barry, 1998). In this work, we focus on the LMC
approach.

Multi-Task Cox Processes

Extensive works have been accumulated on the single-task Gaussian Cox
process (Møller et al, 1998; Diggle et al, 2013). Recently, many works tried
to extend the single-task Cox process to the multi-task setup to introduce
correlation between tasks. For example, Lian et al (2015) proposed a multi-task
Cox process model that leverages information from all tasks via a hierarchical
GP. In a different way, Aglietti et al (2019) and Jahani et al (2021) adopted
the MOGP based on LMC and process convolution respectively to model
the intensity functions of multiple Cox processes, which facilitates sharing
of information and allows for flexible event occurrence rate. All these works
exclusively focus on homogeneous multi-task Cox processes. On the contrary, we
extend to the heterogeneous scenarios to enable transfer of knowledge between
Cox process, regression and classification tasks.

Data Augmentation

In GP regression, the conjugacy between likelihood and prior makes the poste-
rior computing easy and closed-form. However, in GP classification and point
process, such conjugacy no longer holds and one may resort to variational
inference to approximate the true posterior. Most generic non-conjugate varia-
tional inference, assuming a Gaussian variational posterior to make the ELBO
tractable, exhibits low efficiency due to computing of expectations (Dezfouli
and Bonilla, 2015). Recently, another inference method based on data augmen-
tation1 has been established for GP classification (Polson et al, 2013; Wenzel
et al, 2019) and point process (Donner and Opper, 2018; Zhou et al, 2020,
2021, 2022). The core idea is to augment likelihood by auxiliary latent variables

1The notion of data augmentation in statistics is different from that in deep learning.
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to convert the non-conjugate problem to a conditionally conjugate one, thus
making inference easy (Li et al, 2014). Here, such an idea is extended to the
MOGP modulated multi-task framework.

3 Problem Formulation

Traditionally, existing works have considered the homogeneous multi-task Cox
processes learning where all tasks are Cox processes (Aglietti et al, 2019; Jahani
et al, 2021). The homogeneous model is not applicable to the more general het-
erogeneous scenario which includes various types of tasks except Cox processes.
In this work, we are interested in the more general heterogeneous scenario where
correlated tasks are a mix of supervised (regression and classification) and
unsupervised tasks (Cox processes). Let us consider a problem setting where
we have data from I tasks, among which Ir tasks are regression problems with

dataset Dr = {{(xr
i,n, y

r
i,n)}

Nr
i

n=1}
Ir
i=1, Ic tasks are classification problems with

dataset Dc = {{(xc
i,n, y

c
i,n)}

Nc
i

n=1}
Ic
i=1 and Ip tasks are point process problems

with dataset Dp = {{(xp
i,n)}

Np
i

n=1}
Ip
i=1. x ∈ X ⊂ RD is the D-dimensional input;

y ∈ R is the output in regression tasks and {−1, 1} in classification tasks2.
Point process tasks are unsupervised learning problems so they only include x.
Throughout the paper, we use index r, c, p to indicate regression, classification
and point process tasks, respectively.

3.1 Heterogeneous Likelihood

In order to use GP to represent the likelihood parameters in three types of
tasks, we need to design the appropriate transformation to map the GP output
to the domain of specific parameters. For regression tasks, following tradition,
we use Gaussian distribution as likelihood, where the mean is modeled as
a GP function and the variance is treated as a hyperparameter. For binary
classification tasks, we use Bernoulli distribution (Uspensky et al, 1937) as
likelihood whose parameter is modeled by the sigmoid transformation of a
GP function, mapping R → [0, 1], which is also called logistic regression. For
Cox process tasks, although many existing works focus on LGCP, our work
adopts the SGCP instead, i.e., the intensity of i-th Cox process is assumed to
be λi(x) = λ̄is(gi(x)) where a task-specific GP function gi is passed through a
sigmoid function s(·) and then scaled by an upper-bound λ̄i. The reason we
choose the sigmoid link function in both classification and point process tasks
is that we can exploit the data augmentation to make inference easy and fast.
Specifically, three types of likelihoods are:

p(yr | {gri }
Ir
i=1) =

Ir∏
i=1

Nr
i∏

n=1

N (yri,n | gri,n, σ2
i ), (1a)

2We focus on binary classification here. Extension to multi-class classification is discussed in
Section D.
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p(yc | {gci }
Ic
i=1) =

Ic∏
i=1

Nc
i∏

n=1

s(yci,ng
c
i,n), (1b)

p(xp | {λ̄i, gpi }
Ip
i=1) =

Ip∏
i=1

Np
i∏

n=1

λ̄is(g
p
i,n) exp

(
−
∫
X
λ̄is(g

p
i (x))dx

)
, (1c)

where gi is the task-specific GP function and we call it latent function (Ras-
mussen, 2003) afterwards; gri , g

c
i , g

p
i are the corresponding i-th output of the

regression, classification and point process tasks, respectively; g·i,n indicates
g·i(x

·
i,n). Equation (1a) is the likelihood for regression; Eq. (1b) is the likelihood

for binary classification; Eq. (1c) is the likelihood for point process (Daley and
Vere-Jones, 2003).

3.2 MOGP Prior

Instead of modeling each gi independently, we apply the MOGP prior on
g’s to introduce correlation between multiple tasks in order to improve the
generalization capability of our model especially when data is sparse or missing.
In this work, we use the LMC (Journel and Huijbregts, 1976) approach to define
the cross-covariance function. Specifically, we assume each latent function gi is
a linear combination of Q basis functions which are drawn from Q independent
zero-mean GP prior, i.e., {fq ∼ GP(0, kq)}Qq=1 where kq is a covariance function.

Each latent function can be written as gi =
∑Q

q=1 wi,qfq where wi,q ∈ R is the
mixing weight capturing the contribution of q-th basis function to i-th latent
function. It is easy to see that the mean of gi is zero and the cross-covariance
kgi,gj (x,x

′) = cov[gi(x), gj(x
′)] =

∑Q
q=1 wi,qwj,qkq(x,x

′). If we define gi to be
the vector of latent function values on the inputs of i-th task, we have the
following MOGP prior: g ∼ N (0,K), where g = [g⊤

1 , . . . ,g
⊤
I ]

⊤, I = Ir+Ic+Ip,

K is a block-wise matrix with blocks given by {Kgi,gj}
I,I
i=1,j=1 whose entries

are kgi,gj (x,x
′). x and x′ are the inputs of i-th and j-th tasks, respectively.

It is worth noting that each task can have a different set of inputs, but when
all tasks have the same set of inputs, e.g., X, the computing of K can be
simplified as the sum of Kronecker products K =

∑Q
q=1 wqw

⊤
q ⊗Kq where wq =

[w1,q, . . . , wI,q]
⊤, Kq is the square matrix of kq(x,x

′) with x,x′ ∈ X (Moreno-
Muñoz et al, 2018). This property cooperates well with the inducing inputs
formalism which is discussed later.
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4 Inference

According to Bayes’ theorem, the posterior of latent functions and intensity
upper-bounds can be computed as:

p(g, λ̄ | yr,yc,xp) ∝

p(yr | {gri }
Ir
i=1)︸ ︷︷ ︸

regression

p(yc | {gci }
Ic
i=1)︸ ︷︷ ︸

classification

p(xp | {λ̄i, gpi }
Ip
i=1)︸ ︷︷ ︸

Cox process

p(g)︸︷︷︸
MOGP

p(λ̄),

where g = [g1, . . . , gI ]
⊤, λ̄ = [λ̄1, . . . , λ̄Ip ]

⊤, p(g) is the infinite-dimensional

version of MOGP, p(λ̄) ∝
∏Ip

i=1
1
λ̄i

is the improper prior. The likelihood of
regression is conjugate to the prior. However, such conjugacy is no longer valid
for classification and Cox process tasks, so the posterior has no closed-form
solution.

To address the non-conjugate issue for classification or Cox process, many
works applied the variational inference that assumed a Gaussian variational
distribution to render the ELBO tractable (Dezfouli and Bonilla, 2015; Hensman
et al, 2015; Aglietti et al, 2019; Jahani et al, 2021). However, such generic
variational inference exhibits low efficiency due to computing of expectations
in ELBO (Wenzel et al, 2019). In this work, borrowing the idea of data
augmentation, we augment Pólya-Gamma latent variables (Polson et al, 2013)
and marked Poisson latent processes (Donner and Opper, 2018) into the
likelihood of classification and Cox process. Finally, the augmented likelihood
is conditionally conjugate to the MOGP prior. Based on the augmented model,
we derive a mean-field approximation with closed-form iterative updates to
provide an approximate posterior. The proofs of all relevant formulas below
are provided in the appendix.

4.1 Augmentation for Classification Tasks

Polson et al (2013) proposed a novel Pólya-Gamma augmentation strategy
for Bayesian logistic regression. The core idea is that the binomial likelihood
parametrized by log odds can be represented as a mixture of Gaussians w.r.t.
a Pólya-Gamma distribution.

If ω ∼ pPG(ω | b, 0) denotes the Pólya-Gamma random variable with ω ∈ R+

and b > 0, the following integral identity holds for a ∈ R:

(ez)a

(1 + ez)b
= 2−be(a−b/2)z

∫ ∞

0

e−z2ω/2pPG(ω | b, 0)dω.

In this work, we do not need to know the exact form of the Pólya-Gamma
distribution, but only its first moment. Setting a = b = 1 yields the factorization
of sigmoid function:

s(z) =
ez

1 + ez
=

∫ ∞

0

eh(ω,z)pPG(ω | 1, 0)dω, (2)
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where h(ω, z) = z/2− z2ω/2− log 2. Substituting Eq. (2) into the classification
likelihood in Eq. (1b), we obtain the augmented classification likelihood which
has the elegant conditionally conjugate property. After augmenting Pólya-
Gamma random variables, the logistic regression likelihood in Eq. (1b) is
augmented to be:

p(yc,ωc | {gci }
Ic
i=1) =

Ic∏
i=1

Nc
i∏

n=1

eh(ω
c
i,n,y

c
i,ng

c
i,n)pPG(ω

c
i,n | 1, 0), (3)

where ωc
i,n is the Pólya-Gamma latent variable on the n-th observed sample

in the i-th classification task, ωc
i = [ωc

i,1, . . . , ω
c
i,Nc

i
]⊤, ωc = [ωc

1
⊤, . . . ,ωc

Ic
⊤]⊤.

The derivation is provided in Section A. The augmented classification likelihood
in Eq. (3) is conditionally conjugate to the MOGP prior.

4.2 Augmentation for Cox Process Tasks

The augmentation for Cox process is more challenging than classification
because the Cox process likelihood depends not only on the latent function
values on observed samples but also on the whole latent function due to the
exponential integral term. Borrowing the idea from Donner and Opper (2018),
in addition to augmenting Pólya-Gamma latent variables on observed samples
as in classification tasks, we also augment a marked Poisson latent process to
linearize the exponential integral term.

Define a marked Poisson process Π = {(xr, ωr)} ∼ p(Π | λ̄pPG(ω | 1, 0))
where xr is the location of r-th point, the Pólya-Gamma latent variable ωr

denotes the independent mark at each point xr, p(Π | λ̄pPG(ω | 1, 0)) denotes
the probability measure of Π with intensity Λ(x, ω) = λ̄pPG(ω | 1, 0). Given
the marked Poisson process defined above, the following identity holds:

exp

(
−
∫
X
λ̄s(g(x))dx

)
= EpΛ

∏
(ω,x)∈Π

eh(ω,−g(x)), (4)

where pΛ indicates p(Π | Λ(x, ω) = λ̄pPG(ω | 1, 0)). Substituting Eqs. (2) and (4)
into the Cox process likelihood in Eq. (1c), we obtain the augmented Cox process
likelihood which has the conditionally conjugate property. After augmenting
the Pólya-Gamma latent variables on observed samples and the marked Poisson
latent process, the Cox process likelihood in Eq. (1c) is augmented to be:

p(xp,ωp,Π | λ̄, {gpi }
Ip
i=1) =

Ip∏
i=1

Np
i∏

n=1

Λi(x
p
i,n, ω

p
i,n)e

h(ωp
i,n,g

p
i,n)pΛi(Πi | λ̄i)

∏
(ω,x)∈Πi

eh(ω,−gp
i (x)),

(5)
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where ωp
i,n is the Pólya-Gamma latent variable on n-th observed sample in

the i-th Cox process task, ωp
i = [ωp

i,1, . . . , ω
p
i,Np

i
]⊤, ωp = [ωp

1
⊤
, . . . ,ωp

Ip

⊤
]⊤,

Λi(x, ω) = λ̄ipPG(ω | 1, 0), Π = {Πi}
Ip
i=1. The derivation is provided in Section B.

The augmented Cox process likelihood in Eq. (5) is conditionally conjugate to
the MOGP prior.

4.3 Mean-Field Approximation

Based on the augmented likelihoods for classification and Cox process in Eqs. (3)
and (5), we obtain the augmented joint distribution for all variables:

p(yr,yc,xp,ωc,ωp,Π, g, λ̄) =

p(yr | {gri }
Ir
i=1)︸ ︷︷ ︸

regression

p(yc,ωc | {gci }
Ic
i=1)︸ ︷︷ ︸

augmented classification

p(xp,ωp,Π | λ̄, {gpi }
Ip
i=1)︸ ︷︷ ︸

augmented Cox process

p(g)︸︷︷︸
MOGP

p(λ̄). (6)

Finally, our efforts are rewarded: after data augmentation, the model likelihood
is conditionally conjugate to the prior and a simple Gibbs sampler can be derived
to sample from the exact posterior by drawing a sample from each conditional
distribution alternately. The samples of latent functions and intensity upper-
bounds will be from the true posterior asymptotically. However, the sampling
approach has a prohibitive computational cost and does not scale to large
datasets. The comparison of efficiency between Gibbs sampler and variational
inference is outside of the scope of this paper. Here we adopt the augmented
model to derive an efficient mean-field approximation, which has closed-form
iterative updates.

Following the standard derivation of mean-field approximation, we assume
the posterior p(ωc,ωp,Π, g, λ̄ | yr,yc,xp) is approximated by a variational
posterior:

q(ωc,ωp,Π, g, λ̄) = q1(ω
c,ωp,Π)q2(g, λ̄).

The independence of two sets of variables is the only assumption of the varia-
tional posterior. To minimize the Kullback–Leibler (KL) divergence between
q and p, it can be proved that the optimal distribution of each factor is the
expectation of the logarithm of Eq. (6) taken over variables in the other
factor (Bishop, 2006; Blei et al, 2017):

q∗1(ω
c,ωp,Π) ∝ eEq2 [log p(yr,yc,xp,ωc,ωp,Π,g,λ̄)],

q∗2(g, λ̄) ∝ eEq1
[log p(yr,yc,xp,ωc,ωp,Π,g,λ̄)].

(7)

A prominent weakness of GP is that it suffers from a cubic complexity
w.r.t. the number of samples. In multi-task scenario, although the samples in a
single task can be few, the total number of samples in all tasks can be large.
To make our mean-field approximation scalable, we employ the inducing points
formalism (Alvarez and Lawrence, 2008; Titsias, 2009). We denote M inducing
inputs [x1 . . . ,xM ]⊤ on the domain X for each task. The function values of basis
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function fq at these inducing inputs are defined as fq,xm
. Then we can obtain

the i-th task latent function gi at these inducing inputs gi
xm

=
∑Q

q=1 wi,qfq,xm
3.

If we define gxm
= [g1⊤

xm
, . . . ,gI⊤

xm
]⊤, gxm

∼ N (0,Kxmxm
) where Kxmxm

is the
MOGP covariance on xm for all tasks and gi

xm
∼ N (0,Ki

xmxm
) where Ki

xmxm

is i-th diagonal block of Kxmxm
. Given gi

xm
, we assume p(gi(x) | gi

xm
) =

N (ki⊤
xmxK

i−1

xmxm
gi
xm
, kixx − ki⊤

xmxK
i−1

xmxm
ki
xmx) where ki

xmx is the kernel w.r.t.
inducing points and the predictive point, kixx is the kernel w.r.t. the predictive
point for i-th task.

After substituting Eq. (6) into Eq. (7) and introducing the inducing points,
we can obtain the optimal variational distribution of each factor in the following
closed-form expressions (derivation provided in Section C):

The Optimal Density of Pólya-Gamma Latent Variables

The optimal variational posteriors of ωc and ωp are:

q1(ω
c) =

Ic∏
i=1

Nc
i∏

n=1

pPG(ω
c
i,n | 1, g̃ci,n), (8)

q1(ω
p) =

Ip∏
i=1

Np
i∏

n=1

pPG(ω
p
i,n | 1, g̃pi,n), (9)

where g̃·i,n =
√

E[g·i,n
2].

The Optimal Intensity of Marked Poisson Processes

The optimal variational posterior intensity of Π = {Πi}
Ip
i=1 is:

Λ1
i (x, ω) = λ̄1i s(−g̃

p
i (x))pPG(ω | 1, g̃pi (x))e

(g̃p
i (x)−ḡp

i (x))/2, (10)

where λ̄1i = eE[log λ̄i], g̃pi (x) =

√
E[gpi (x)

2
] and ḡpi (x) = E[gpi (x)].

The Optimal Density of Intensity Upper-bounds

The optimal variational posterior of λ̄ is:

q2(λ̄) =

Ip∏
i=1

pGa(λ̄i | Np
i +Ri, |X |), (11)

where pGa is Gamma density, Ri =
∫
X
∫∞
0

Λ1
i (x, ω)dωdx, |X | is the domain size.

3For the compactness of notation, the task index i is sometimes moved from subscript to
superscript, which does not cause confusion because we use i consistently.
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The Optimal Density of Latent Functions

The optimal variational posterior of gxm
is:

q2(gxm) = N (gxm | mxm ,Σxm), (12)

where gxm = [gr⊤
xm
,gc⊤

xm
,gp⊤

xm
]⊤, g·

xm
= [g·⊤

1,xm
, . . . ,g·⊤

I·,xm
]⊤ and

Σxm
=
[
diag

(
Hr

xm
,Hc

xm
,Hp

xm

)
+K−1

xmxm

]−1
,mxm

= Σxm
[vr⊤

xm
,vc⊤

xm
,vp⊤

xm
]⊤,

where H·
xm

= diag(H·
1,xm

, . . . ,H·
I·,xm

), v·
xm

= [v·⊤
1,xm

, . . . ,v·⊤
I·,xm

]⊤ and

Hr
i,xm

= Kr,i−1

xmxm
Kr,i

xmxn
Dr

iK
r,i⊤
xmxn

Kr,i−1

xmxm
,vr

i,xm
= Kr,i−1

xmxm
Kr,i

xmxn

yr
i

σ2
i

,

Hc
i,xm

= Kc,i−1

xmxm
Kc,i

xmxn
Dc

iK
c,i⊤
xmxn

Kc,i−1

xmxm
,vc

i,xm
= Kc,i−1

xmxm
Kc,i

xmxn

yc
i

2
,

Hp
i,xm

= Kp,i−1

xmxm

∫
X
Ai(x)k

p,i
xmxk

p,i⊤
xmxdxK

p,i−1

xmxm
,

vp
i,xm

= Kp,i−1

xmxm

∫
X
Bi(x)k

p,i
xmxdx,

where Dr
i = diag(1/σ2

i ), D
c
i = diag(E[ωc

i ]) and

Ai(x) =

Np
i∑

n=1

E[ωp
i,n]δ(x− xp

i,n) +

∫ ∞

0

ωΛ1
i (x, ω)dω,

Bi(x) =
1

2

Np
i∑

n=1

δ(x− xp
i,n)−

1

2

∫ ∞

0

Λ1
i (x, ω)dω.

Predictive Distribution

The posterior distribution of the task-specific latent function gi at a predictive
point x is approximated by

q(gi(x)) =

∫
p(gi(x) | gi

xm
)q(gi

xm
)dgi

xm
= N (gi(x) | µ, σ2),

where µ = ki⊤
xmxK

i−1

xmxm
mi

xm
, σ2 = kixx − ki⊤

xmxK
i−1

xmxm
ki
xmx +

ki⊤
xmxK

i−1

xmxm
Σi

xm
Ki−1

xmxm
ki
xmx. Therefore, g̃i(x) =

√
µ2 + σ2, ḡi(x) = µ,

E[ω] = b
2c tanh

c
2 for pPG(ω | b, c) (Polson et al, 2013), E[log λ̄i] = ψ(Np

i +
Ri)− log(|X |) where ψ(·) is digamma function. The intractable integral over X
is solved by numerical quadrature. Updating the variational posterior of each
factor alternately by Eqs. (8) to (12), we obtain approximate posteriors of λ̄
and gxm

.
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Hyperparameters and Computation Complexity

The model hyperparameter Θ comprises the kernel hyperparameters {θq}Qq=1

associated to the covariance functions {kq}Qq=1, the mixing weights {wq}Qq=1,

the inducing inputs {xm}Mm=1 and the noise variance {σ2
i }

Ir
i=1 in regression

tasks. In this work, the inducing points are uniformly located on the domain,
which means the kernel matrix has Toeplitz structure (Cunningham et al, 2008)
and this can lead to more efficient matrix inversion. In the implementation,
we do not apply this method and instead use the naive matrix inversion.
{θq}Qq=1, {wq}Qq=1 and {σ2

i }
Ir
i=1 are optimized by maximizing the marginal

likelihood, which is also called the empirical Bayes. Due to the intractability of
marginal likelihood, we adopt an approximate approach: maximize the ELBO
as a function of hyperparameters by alternating between updating variational
parameters and hyperparameters. In the following, we derive the ELBO:

log p(yr,yc,xp) ≥
Eq[log p(y

r,yc,xp | ωc,ωp,Π, g, λ̄)]−KL(q(ωc,ωp,Π, g, λ̄)∥p(ωc,ωp,Π, g, λ̄))

= Eq[log p(y
r | {gri }

Ir
i=1)] + Eq[log p(y

c | ωc, {gci }
Ic
i=1)]

+ Eq[log p(x
p | ωp,Π, {gpi }

Ip
i=1, λ̄)]−KL(q(g)∥p(g))

−KL(q(ωc,ωp,Π, λ̄)∥p(ωc,ωp,Π, λ̄)),

where we omit the conditioning on hyperparameters. It is straightforward to
see that, given variational posteriors, only the first term includes the noise
variance {σ2

i }
Ir
i=1 and only the fourth term includes the kernel hyperparameters

{θq}Qq=1 and the mixing weights {wq}Qq=1. All other terms are constant w.r.t.
hyperparameters. After introducing the inducing points on g, we obtain the
inducing points version:

Eq[log p(y
r | {gri }

Ir
i=1)] =

Ir∑
i=1

Nr
i∑

n=1

− log(σi
√
2π)− 1

2σ2
i

(yr
2

i,n − 2yri,nḡ
r
i,n + g̃r

2

i,n)

(13a)

KL(q(gxm)∥p(gxm)) =

1

2

(
log|Kxmxm

| − log|Σxm
| −M · I +Tr[K−1

xmxm
Σxm

] +m⊤
xm

K−1
xmxm

mxm

)
,

(13b)

where we assume p(gxm) = N (gxm | 0,Kxmxm). Maximizing Eq. (13a), we
obtain the optimal noise variance:

σ2∗
i =

 Nr
i∑

n=1

yr
2

i,n − 2yri,nḡ
r
i,n + g̃r

2

i,n

 /Nr
i . (14)
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Minimizing Eq. (13b), we obtain the optimal kernel hyperparameters {θq}Qq=1

and mixing weights {wq}Qq=1, which has no closed-form solution and we resort
to the automatic differentiation technique. The pseudocode of mean-field
approximation is provided in Algorithm 1.

Algorithm 1 Mean-Field Approximation

1: Initialize hyperparameters and variational parameters.
2: repeat
3: Update the optimal variational distribution of Pólya-Gamma variables

for classification tasks in Eq. (8);
4: Update the optimal variational distribution of Pólya-Gamma variables

for Cox process tasks in Eq. (9);
5: Update the optimal variational intensity of marked Poisson processes

for Cox process tasks in Eq. (10);
6: Update the optimal variational distribution of intensity upper-bounds

for Cox process tasks in Eq. (11);
7: Update the optimal variational distribution of latent functions for all

tasks in Eq. (12);

8: Update the hyperparameters {θq,wq}Qq=1 by minimizing Eq. (13b);

9: Update the hyperparameter σ2 by Eq. (14).
10: until convergence
11: return gri (x) for regression task, s(gci (x)) for classification task and

λ̄is(g
p
i (x)) for Cox process task.

Defining S as the number of quadrature nodes on all point process tasks,
the computational complexity of our mean-field approximation is dominated by
the matrix inversion O(M3I3) and product O(M2(Nr +N c +Np + S)) where
N · is the number of samples in the corresponding tasks.

Convergence and Minibatch

The theoretical analysis in Hoffman et al (2013) shows that performing the mean-
field iteration for a conditionally conjugate model is equivalent to updating
parameters by the natural gradient descent (Amari, 1998) with a step size of
one. Therefore, our proposed mean-field approximation has inherently a faster
convergence than the standard gradient descent.

The mean-field algorithm above uses all data. For further acceleration, we
can resort to the stochastic variational inference (Hoffman et al, 2013) by
subsampling the tasks, and samples in regression and classification tasks.

5 Experiments

In this section, we analyze our model and inference on synthetic and real-
world datasets to demonstrate the performance in terms of transfer capability,



Springer Nature 2021 LATEX template

14 Heterogeneous Multi-Task Gaussian Cox Processes

efficiency and convergence. For all experiments, we use the RBF kernel
k(x,x′) = θ0 exp (− θ1

2 ∥x− x′∥2) as covariance functions, and the usage of
other kernels is outside of the scope of this paper. The implementation code is
publicly available at https://github.com/zhoufeng6288/HGCox.

Baselines

To show the superiority of our approach, we compare our model HMGCP
against the single-task Cox process model: variational LGCP (Nguyen and
Bonilla, 2014), and the multi-task models: MLGCP (Taylor et al, 2015) and
MCPM (Aglietti et al, 2019).

Metrics

We provide the comparison result of our model with baselines in terms of
estimation error (EE), test log-likelihood (TLL), running time (RT) and con-
vergence rate (CR). EE is the root mean square error (RMSE) between the
estimated parameter and the ground truth. It is worth noting that EE is only
applicable to synthetic data because the ground truth is required. TLL is the
log-likelihood on test data using the posterior mean of parameters estimated
from training data. RT is the running time of the inference algorithm. CR is
the convergence rate of training log-likelihood w.r.t. the number of iterations.

5.1 Synthetic Data: Complete

To illustrate the performance of transfer capability, efficiency and convergence of
our approach, we simulate three heterogeneous correlated tasks (one regression,
one binary classification and one Cox process) by sampling three latent functions
from a MOGP prior and using them to simulate the observed samples in
regression, classification and Cox process tasks. We simulate three sets of
synthetic data using three different sets of hyperparameters where latent
functions vary from gently to drastically; each synthetic dataset contains both
training and test data. We use two basis functions. The hyperparameters
are σ2 = 0.1, θ1 = [1, 0.001], θ2 = [1, 0.001], w1 = [0.9, 0.5, 0.1] and w2 =
[0.1, 0.5, 0.9] for the first dataset; σ2 = 0.1, θ1 = [1, 0.02], θ2 = [2, 0.001],
w1 = [0.9, 0.5, 0.1] and w2 = [0.1, 0.5, 0.9] for the second dataset; σ2 = 0.1,
θ1 = [1, 0.1], θ2 = [2, 0.1], w1 = [0.9, 0.5, 0.1] and w2 = [0.1, 0.5, 0.9] for the
third dataset.

For each dataset, we draw two basis functions {fq}2q=1 on the domain [0, 100]
from two independent zero-mean GP priors with the corresponding kernel
hyperparameters. The task-specific latent functions are {gi =

∑2
q=1 wi,qfq}3i=1.

g1 is used as the mean of a Gaussian distribution N (g1(x), σ
2) to draw samples

for the regression task. g2 is passed through a sigmoid function and then used
as the parameter of a Bernoulli distribution to draw samples for the binary
classification task. g3 is passed through a sigmoid function and then scaled by
λ̄ to serve as the intensity for simulating a Cox process. For regression and
classification tasks, we assume the samples are uniformly distributed on the
domain.

https://github.com/zhoufeng6288/HGCox
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Table 1: The performance of EE, TLL and RT for HMGCP and LGCP on
three synthetic datasets. EE is the RMSE between posterior mean and ground
truth. Time in seconds.

Model EE(reg) EE(cla) EE(Cox) TLL(reg) TLL(cla) TLL(Cox) RT

1
HMGCP 0.046 0.074 0.114 -33.17 -63.57 -89.05 0.73
LGCP × × 0.147 × × -90.23 2.70

2
HMGCP 0.098 0.048 0.319 -28.54 -55.23 -63.54 1.09
LGCP × × 0.385 × × -65.19 2.73

3
HMGCP 0.167 0.067 0.272 -42.43 -56.14 -72.75 0.69
LGCP × × 0.433 × × -79.17 2.71

Our goal is to recover the intensity upper-bound λ̄ and latent functions
{gi}3i=1. We use 30 inducing points that are uniformly distributed on the
domain and 100 Gaussian quadrature nodes for the intractable integral. For
initialization, the initial hyperparameters σ2, {θq,wq}2q=1 are set to the ground-
truth hyperparameters and the variational parameters are initialized randomly.
In the training process, the variational parameters and hyperparameters are
updated concurrently. Specifically, the variational parameters are updated by
the mean-filed iteration, the kernel hyperparameters {θq,wq}2q=1 are updated
by minimizing Eq. (13b) using the ‘SLSQP’ method, and the noise variance
σ2 is updated by Eq. (14). Figure 1 represents the estimated result for three
datasets where we can see HMGCP is able to recover the ground truth. For
convergence, HMGCP only takes 2-3 steps to converge in terms of training
log-likelihood, which is much faster than the first-order gradient-based LGCP
requiring more than 500 steps. More importantly, HMGCP has the better EE
and TLL (Table 1) than the single-task LGCP that is trained independently
and not able to transfer information to help recover the intensity of Cox process.
For a fair comparison of efficiency, we run both HMGCP and LGCP on a single
Cox process task with 400 iterations, and our inference is at least twice as fast
as LGCP (Table 1) demonstrating its outstanding efficiency.

5.2 Synthetic Data: Missing

As far as we know, all current multi-task Cox process models exclusively
focus on homogeneous scenarios. This does not apply to the more general
heterogeneous multi-task setup where we need to transfer knowledge between
multiple heterogeneous correlated tasks. In this section, we compare HMGCP
against homogeneous multi-task baselines: MLGCP and MCPM. We construct
four heterogeneous correlated tasks (one regression, one binary classification and
two Cox processes) using the same method as in Section 5.1. We simulate one
set of synthetic data that contains both training and test data. We use two basis
functions. The hyperparameters are σ2 = 0.1, θ1 = [1, 0.02], θ2 = [2, 0.001],
w1 = [0.9, 0.1, 0.3, 1.0] and w2 = [0.1, 0.9, 0.5, 1.0]. To further illustrate the
heterogeneous transfer capability of our approach, in addition to the complete
data, we follow the experimental setup of Aglietti et al (2019): we create
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(a) First Dataset (latent functions vary gently)
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(b) Second Dataset (latent functions vary moderately)
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(c) Third Dataset (latent functions vary drastically)

Fig. 1: HMGCP recovers the latent functions g1, s(g2) and λ̄s(g3) in three
datasets whose posterior is constructed by 100 samples of g and λ̄ from the
corresponding variational posterior. The shading area indicates one standard
deviation. Blue dots are samples in regression task; red circles and blue crosses
are positive and negative samples in classification task; blue bars are samples
in Cox process task. For LGCP, we show the posterior mean intensity for the
Cox process task.

some missing gaps by evenly partitioning the domain into several regions and
randomly masking four non-overlapping regions on four tasks (one for each
task). To demonstrate the transfer capability on problems with different levels
of difficulty, we experiment with two missing-gap widths: 5 and 10, where a
wider missing gap means a more difficult transfer problem. For each missing-gap
width, we experiment with ten random configurations of missing gaps.

We use 10 inducing points which are uniformly distributed on the domain.
All the other experimental settings are the same as in Section 5.1. HMGCP
successfully transfers knowledge between heterogeneous tasks by exploiting
commonalities between them to recover the missing-gap latent functions for
all tasks (Fig. 2), whereas MLGCP and MCPM exhibit the inferior generaliza-
tion capability since they can only share information between Cox processes.
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Table 2: The performance of EE and TLL for HMGCP, MLGCP and MCPM
over ten random configurations of missing gaps with three different missing-
gap widths (0 means complete data). The mean and standard deviation (in
brackets) are provided. EE(Cox)/TLL(Cox) is the sum of EEs/TLLs of two
Cox processes.

Gap Width Model EE(reg) EE(cla) EE(Cox) TLL(reg) TLL(cla) TLL(Cox)

0
HMGCP 0.093 0.066 0.390 -50.61 -56.67 -120.55
MLGCP × × 0.535 × × -136.28
MCPM × × 0.676 × × -126.73

5
HMGCP 0.095(0.006) 0.066(0.005) 0.461(0.056) -50.76(0.92) -56.74(0.51) -122.94(2.27)
MLGCP × × 0.601(0.051) × × -126.24(3.39)
MCPM × × 0.725(0.035) × × -129.82(2.53)

10
HMGCP 0.111(0.006) 0.072(0.008) 0.664(0.071) -52.14(1.94) -56.82(0.69) -128.49(5.74)
MLGCP × × 0.791(0.070) × × -128.59(5.33)
MCPM × × 0.765(0.024) × × -131.59(1.99)

Figure 2 shows the estimated latent functions for several configurations with 3
different missing-gap widths across tasks. Generally, the transfer of knowledge
in regression and classification tasks is easier than that in Cox process tasks.
This is because the likelihood of regression and classification only considers
observed points, the function in the missing gap is entirely determined by the
smoothness induced by prior. However, in addition to observed points, the Cox
process likelihood also considers the domain where no points appear, so the func-
tion in the missing gap is determined by both prior and likelihood (zero-valued
intensity). This makes the estimated intensity in the missing gap generally lower
than the ground truth. For each missing-gap width, we report the statistics
of EE and TLL for HMGCP, MLGCP and MCPM over ten random config-
urations of missing gaps in Table 2 where HMGCP outperforms alternatives
in all experiments. The reason is HMGCP extracts useful information from
regression, classification and other Cox processes to improve the estimation of
intensity for the current Cox process, while MLGCP and MCPM cannot incor-
porate the information existing in heterogeneous tasks. As in Section 5.1, we
run HMGCP, MLGCP and MCPM only on the complete Cox process data for
a fair comparison of efficiency: HMGCP consumes 3.68 seconds, while MLGCP
and MCPM consume 12.15 and 21.36 seconds, respectively (2000 iterations).

5.3 Real Data

In this section, we demonstrate the superiority of HMGCP in terms of het-
erogeneous knowledge transfer, efficiency and convergence on a real-world 2D
urban data of Vancouver. The dataset4 contains four parts of data (Fig. 3): (1)
Employment income in Vancouver : the median employment income for full-year
full-time workers in 2015 in the neighbourhoods of Vancouver; (2) Education
in Vancouver : the number of population holding university certificate, diploma
or degree at bachelor level or above in the neighbourhoods of Vancouver; (3)

4The income, education and non-market housing data is from the Vancouver Open
Data Catalog (https://opendata.vancouver.ca/pages/home/). The crime data is from Kaggle
(https://www.kaggle.com/datasets/wosaku/crime-in-vancouver).
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(a) Missing-Gap Width: 0 (Complete Data)
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(b) Missing-Gap Width: 5
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(c) Missing-Gap Width: 10

Fig. 2: The estimated posterior of latent functions g1, s(g2), λ̄3s(g3) and
λ̄4s(g4) from HMGCP with missing-gap width being (a) 0, (b) 5 and (c) 10.
For missing-gap widths 5 and 10, we show two configurations of missing gaps
across tasks. The grey areas indicate the masked missing gaps. For MLGCP and
MCPM, we show the posterior mean intensities for two Cox process tasks. The
posterior variance in the missing gap does not increase significantly meaning
HMGCP successfully transfers heterogeneous knowledge.
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Fig. 3: The median employment income (top left), education degree (top
right), theft of vehicle (bottom left) and non-market house (bottom right) in
22 neighbourhoods of Vancouver.

Crime in Vancouver : the recording of miscellaneous crimes (type, neighbour-
hood, latitude, longitude) in 2015 in Vancouver; (4) Non-market housing in
Vancouver : the information of non-market housing projects (name, address,
neighbourhood, latitude, longitude) that is for low and moderate income singles
and families.

For the first dataset, we formulate it as a regression task, and use the
centroid of each neighbourhood as the input, the median income as the output;
for the second dataset, we formulate it as a binary classification task according
to the degree of education: we divide the 22 neighbourhoods into ‘+1’ if there
are more people holding university certificate, diploma or degree at bachelor
level or above, and ‘−1’ if not; for the third and fourth datasets, we extract
the locations of ‘Theft of Vehicle’ records in 2015 and non-market housing
projects respectively, and formulate them as two Cox process tasks. On the
basis of common sense, the income level, education degree, crime rate and
non-market housing are closely correlated. Therefore, their integrative analysis
offers more advantages compared to learning multiple tasks independently,
which is susceptible to overfitting.

To show the heterogeneous transfer capability of our approach, we compare
HMGCP against MLGCP and MCPM. Due to lack of ground-truth latent
functions, we cannot compare them in terms of EE but only TLL. We scale
the area of Vancouver between longitude [−123.226,−123.022] and latitude
[49.20, 49.30] to the domain [0, 100]× [0, 50]. We choose three basis functions
by trial and error: we gradually increase the number of basis functions and find
that using three basis functions can achieve excellent performance. Using more
basis functions only has a slight impact on the performance on the test data, but
leads to longer training time. The initial hyperparameters are set to σ2 = 0.1,
θ1 = [1, 0.01], θ2 = [1, 0.005], θ3 = [1, 0.001], w1 = [0.5, 0.5, 0.1, 0.1], w2 =
[0.1, 0.5, 0.2, 0.5] and w3 = [0.5, 0.1, 0.5, 0.2], and the variational parameters
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Fig. 4: The estimated posterior mean latent functions g1, s(g2), λ̄3s(g3) and
λ̄4s(g4) from HMGCP with the mask size being (a) 5× 5, (b) 10× 10 and (c)
20× 20 on each Cox process task. We show one configuration of masked regions
across Cox process tasks. The black boxes indicate the masked regions.
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(c) Size of mask: 20× 20 (top: MLGCP, bottom: MCPM)

Fig. 5: The estimated posterior mean intensity functions for two Cox process
tasks from MLGCP and MCPM with the mask size being (a) 5× 5, (b) 10× 10
and (c) 20×20 on each Cox process task. We show one configuration of masked
regions across Cox process tasks. The black boxes indicate the masked regions.
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are initialized randomly. In the training process, the variational parameters
and hyperparameters are updated concurrently. Specifically, the variational
parameters are updated by the mean-filed iteration, the kernel hyperparameters
{θq,wq}3q=1 are updated by minimizing Eq. (13b) using the ‘SLSQP’ method,
and the noise variance σ2 is updated by Eq. (14). To assess the transfer
capability with different levels of difficulty, we follow the experimental setup
in Section 5.2: we randomly mask two non-overlapping regions on Crime in
Vancouver and Non-market housing in Vancouver, one for each task, with three
different mask sizes: 5× 5, 10× 10 and 20× 20. A larger mask indicates a more
difficult transfer problem. For each mask size, we experiment with ten random
configurations of masks.

We use 10 × 5 uniformly distributed inducing points horizontally and
vertically on each task and 50×25 Gaussian quadrature nodes for the intractable
integral. We randomly mask regions as explained above, and use the remaining
data for training and the masked data for testing. Figure 4 shows several
examples of estimated latent functions from HMGCP with 3 different mask sizes
(two examples for each size), while Fig. 5 shows the corresponding estimated
intensity functions from MLGCP and MCPM. The black boxes in Fig. 4
represent several possible configuration of masked regions on two Cox process
tasks. It is easily observed in the data that in terms of income level and
education degree, the west is significantly higher than the east; while for crime
rate and non-market housing, it is the other way around. HMGCP successfully
transfers knowledge existing in regression and classification tasks to help recover
the intensity functions in masked regions for Cox process tasks (Fig. 4), while
MLGCP and MCPM are prone to overfitting because they can only transfer
homogeneous knowledge (Fig. 5). Therefore, HMGCP defeats the competing
baselines MLGCP and MCPM in terms of TLL in all experiments (Table 3).
More importantly, HMGCP has a faster convergence, which needs 40-50 steps
to converge in terms of training log-likelihood, than the first-order gradient-
based MLGCP and MCPM requiring more than 400 and 1000 steps respectively
(Fig. 6). Besides, HMGCP significantly outperforms MLGCP and MCPM in
terms of efficiency (Table 3, only on two Cox process tasks for a fair comparison).

6 Conclusion

The main objective of this study is to provide a heterogeneous multi-task
learning framework for the analysis of multivariate inhomogeneous Poisson
processes data with correlated regression and classification tasks. We adopt
the MOGP prior to provide a shared representation to allow the transfer of
knowledge between heterogeneous tasks. To circumvent the non-conjugate
Bayesian inference, we employ the data augmentation technique to derive a
closed-form mean-field approximation. Experimental results on synthetic and
real data demonstrate that our model successfully shares the heterogeneous
information to enhance the generalization capability and our inference approach
has the predominant efficiency and convergence.
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Table 3: The performance of TLL and RT for HMGCP, MLGCP and MCPM
on the real data over ten random configurations of masked regions with three
different sizes of mask. The mean and standard deviation (in brackets) are
provided. Time in seconds.

Size of Mask Model TLL (crime) TLL (non-market house) RT (per step)

5× 5
HMGCP -14.20(12.14) -14.22(9.71) 2.70
MLGCP -22.71(22.67) -23.67(21.67) 7.82
MCPM -24.40(23.32) -20.08(13.93) 12.02

10× 10
HMGCP -66.58(28.91) -33.55(22.90) 2.67
MLGCP -111.55(70.76) -48.54(16.59) 7.39
MCPM -115.18(64.25) -47.76(14.12) 11.81

20× 20
HMGCP -313.75(133.26) -143.11(82.89) 2.49
MLGCP -776.84(425.69) -363.07(305.55) 6.13
MCPM -558.02(205.73) -223.67(101.72) 11.85
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(c) Size of mask: 20× 20

Fig. 6: The training log-likelihood convergence of HMGCP, MLGCP and
MCPM. HMGCP only takes 40-50 steps to converge, while MCPM and MLGCP
require more than 400 and 1000 steps to converge respectively. MLGCP and
MCPM achieve the higher training log-likelihood due to overfitting.

We adopted the LMC based MOGP to incorporate the correlation between
multiple heterogeneous tasks. An interesting research track in the future may
be the extension to MOGP based on process convolution, which may bring
more benefits on computation efficiency. Moreover, we only consider three kinds
of heterogeneous tasks: regression, classification and Cox process in this work;
other kinds of unsupervised tasks, such as clustering, can also be attempted to
be introduced to the multi-task framework.
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Appendix A Proof of Augmented Likelihood
for Classification

Substituting Eq. (2) in the paper into the classification likelihood Eq. (1b) in
the paper, we can obtain

p(yc | {gci }
Ic
i=1) =

Ic∏
i=1

Nc
i∏

n=1

∫ ∞

0

eh(ω
c
i,n,y

c
i,ng

c
i,n)pPG(ω

c
i,n | 1, 0)dωc

i,n, (A1)

where the integrand is the augmented likelihood:

p(yc,ωc | {gci }
Ic
i=1) =

Ic∏
i=1

Nc
i∏

n=1

eh(ω
c
i,n,y

c
i,ng

c
i,n)pPG(ω

c
i,n | 1, 0). (A2)

Appendix B Proof of Augmented Likelihood
for Cox Process

Substituting Eqs. (2) and (4) in the paper into the product and exponential
integral terms respectively in the Cox process likelihood Eq. (1c) in the paper,
we can obtain

p(xp | {λ̄i, gpi }
Ip
i=1) =

Ip∏
i=1

Np
i∏

n=1

∫ ∞

0

Λi(x
p
i,n, ω

p
i,n)e

h(ωp
i,n,g

p
i,n)dωp

i,n∫
X

∫ ∞

0

pΛi(Πi | λ̄i)
∏

(ω,x)∈Πi

eh(ω,−gp
i (x))dωdx,

(B3)

where the integrand is the augmented likelihood:

p(xp,ωp,Π | λ̄, {gpi }
Ip
i=1) =

Ip∏
i=1

Np
i∏

n=1

Λi(x
p
i,n, ω

p
i,n)e

h(ωp
i,n,g

p
i,n)pΛi

(Πi | λ̄i)∏
(ω,x)∈Πi

eh(ω,−gp
i (x)).

(B4)
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Appendix C Proof of Mean-Field
Approximation

The augmented joint distribution can be written as:

p(yr,yc,xp,ωc,ωp,Π, g, λ̄)

= p(yr | {gri }
Ir
i=1)︸ ︷︷ ︸

regression

p(yc,ωc | {gci }
Ic
i=1)︸ ︷︷ ︸

augmented classification

p(xp,ωp,Π | λ̄, {gpi }
Ip
i=1)︸ ︷︷ ︸

augmented Cox process

p(g)︸︷︷︸
MOGP

p(λ̄)

=

Ir∏
i=1

Nr
i∏

n=1

N (yri,n | gri,n, σ2
i )

Ic∏
i=1

Nc
i∏

n=1

eh(ω
c
i,n,y

c
i,ng

c
i,n)pPG(ω

c
i,n | 1, 0)

Ip∏
i=1

Np
i∏

n=1

Λi(x
p
i,n, ω

p
i,n)e

h(ωp
i,n,g

p
i,n)pΛi(Πi | λ̄i)

∏
(ω,x)∈Πi

eh(ω,−gp
i (x))p(g)p(λ̄).

(C5)
Here, we assume the variational posterior q(ωc,ωp,Π, g, λ̄) =
q1(ω

c,ωp,Π)q2(g, λ̄). To minimize the KL divergence between variational
posterior and true posterior, it can be proved that the optimal distribution of
each factor is the expectation of the logarithm of the joint distribution taken
over variables in the other factor (Bishop, 2006):

q∗1(ω
c,ωp,Π) ∝ eEq2 [log p(yr,yc,xp,ωc,ωp,Π,g,λ̄)],

q∗2(g, λ̄) ∝ eEq1
[log p(yr,yc,xp,ωc,ωp,Π,g,λ̄)].

(C6)

Substituting Eq. (C5) into Eq. (C6), we can obtain the optimal variational
distributions. The process of deriving variational posteriors for ωc, ωp, Π, and
λ̄ is similar to that in Donner and Opper (2018). The primary distinction lies
in the treatment of the latent function g. Further details are provided below.

The optimal density for Pólya-Gamma latent variables

The optimal variational posteriors of ωc and ωp are

q1(ω
c) =

Ic∏
i=1

Nc
i∏

n=1

pPG(ω
c
i,n | 1, g̃ci,n), q1(ω

p) =

Ip∏
i=1

Np
i∏

n=1

pPG(ω
p
i,n | 1, g̃pi,n),

(C7)

where g̃·i,n =
√
E[g·i,n

2] and we adopt the tilted Pólya-Gamma distribution

pPG(ω | b, c) ∝ e−c2ω/2pPG(ω | b, 0) (Polson et al, 2013).
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The optimal intensity for marked Poisson processes

The derivation of optimal variational posterior of Π = {Πi}
Ip
i=1 is challenging,

so we provide some details below. After taking expectation, we can obtain

q1(Πi) =
pΛ̃i

(Πi | λ̄1i )
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E[gp
i
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=
∏
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2 ω−log 2
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2 ω−log 2dωdx
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(C8)
where λ̄1i = eE[log λ̄i] and Λ̃i(x, ω) = λ̄1i pPG(ω | 1, 0). The second line

of Eq. (C8) used Campbell’s theorem EΠi

[
exp

(∑
(x,ω)∈Πi

h(x, ω)
)]

=

exp
[∫∫ (

eh(x,ω) − 1
)
Λ̃i(x, ω)dωdx

]
. It is easy to see the posterior intensity of

Πi is

Λ1
i (x, ω) = λ̄1i pPG(ω | 1, 0)e−

E[gp
i
(x)]

2 −
E[gp

i
(x)2]

2 ω−log 2

= λ̄1i s(−g̃
p
i (x))pPG(ω | 1, g̃pi (x))e
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i (x)−ḡp

i (x))/2,
(C9)

where we adopt e−c2ω/2pPG(ω | b, 0) = 2s(−c)ec/2pPG(ω | b, c) (Polson et al,

2013), g̃pi (x) =

√
E[gpi (x)

2
], ḡpi (x) = E[gpi (x)].

The optimal density for intensity upper-bounds

The optimal variational posterior of λ̄ is

q2(λ̄) =

Ip∏
i=1

pGa(λ̄i | Np
i +Ri, |X |), (C10)

where pGa is Gamma density, Ri =
∫
X
∫∞
0

Λ1
i (x, ω)dωdx, |X | is the domain size.
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The optimal density for latent functions

The derivation of optimal variational posterior of g is challenging, so we provide
some details below. After taking expectation, we can obtain

log q2(g) =

Ir∑
i=1

Nr
i∑

n=1

logN (yri,n | gri,n, σ2
i ) +
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(C11)

where Ai(x) =
∑Np

i
n=1 E[ω

p
i,n]δ(x − xp

i,n) +
∫∞
0
ωΛ1

i (x, ω)dω and Bi(x) =
1
2

∑Np
i

n=1 δ(x− xp
i,n)− 1

2

∫∞
0

Λ1
i (x, ω)dω.

The computation of Eq. (C11) suffers from a cubic complexity w.r.t. the
number of data points in regression, classification and point process tasks. We
use the inducing inputs formalism to make the inference scalable. We denote
M inducing inputs [x1 . . . ,xM ]⊤ on the domain X for each task. The function
values of basis function fq at these inducing inputs are defined as fq,xm . Then
we can obtain the function values of task-specific latent function gi at these
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inducing inputs gi
xm

=
∑Q

q=1 wi,qfq,xm
. If we define gxm

= [g⊤
1,xm

, . . . ,g⊤
I,xm

]⊤,
gxm

∼ N (0,Kxmxm
) where Kxmxm

is the MOGP covariance on xm for all
tasks and gi

xm
∼ N (0,Ki

xmxm
) where Ki

xmxm
is i-th diagonal block of Kxmxm

.
Given gi

xm
, we assume the function gi(x) is the posterior mean function

gi(x) = ki⊤
xmxK

i−1

xmxm
gi
xm

where ki
xmx is the kernel w.r.t. inducing points and

predictive points for i-th task. Therefore, {gri,n}
Ir
i=1, {gci,n}

Ic
i=1 and {gpi (x)}

Ip
i=1

can be written as

gr
i = Kr,i⊤

xmxn
Kr,i−1

xmxm
gr,i
xm
,gc

i = Kc,i⊤
xmxn

Kc,i−1

xmxm
gc,i
xm
, gpi (x) = kp,i⊤

xmxK
p,i−1

xmxm
gp,i
xm
,

(C12)
where gr

i = [gri,1, . . . , g
r
i,Nr

i
]⊤, gc

i = [gci,1, . . . , g
c
i,Nc

i
]⊤, gpi (x) is the function value

of gpi on x.
Substituting Eq. (C12) into Eq. (C11), we obtain the inducing points version

of Eq. (C11):

q2(gxm
) ∝

Ir∏
i=1

N (Kr,i⊤
xmxn

Kr,i−1

xmxm
gr,i
xm

| yr
i ,diag(σ

2
i ))

·
Ic∏
i=1

N (Kc,i⊤
xmxn

Kc,i−1

xmxm
gc,i
xm

| yc
i

2E[ωc
i ]
,diag(

1

E[ωc
i ]
))

·
Ip∏
i=1

exp

(∫
X
Bi(x)k

p,i⊤
xmxdxK

p,i−1

xmxm
gp,i
xm

−1

2
gp,i⊤
xm

Kp,i−1

xmxm

∫
X
Ai(x)k

p,i
xmxk

p,i⊤
xmxdxK

p,i−1

xmxm
gp,i
xm

)
· N (gxm

| 0,Kxmxm
).

(C13)

It is easy to see the third line of Eq. (C13) is a multivariate Gaussian
distribution of gp,i

xm
. The likelihoods of gr,i

xm
for regression, gc,i

xm
for classification

and gp,i
xm

for point process tasks are all Gaussian distributions, so they are
conjugate to the MOGP prior and we can obtain the closed-form variational
posterior for gxm :

q2(gxm
) = N (gxm

| mxm
,Σxm

), (C14)

where gxm
= [gr⊤

xm
,gc⊤

xm
,gp⊤

xm
]⊤, g·

xm
= [g·⊤

1,xm
, . . . ,g·⊤

I·,xm
]⊤ and

Σxm
=
[
diag

(
Hr

xm
,Hc

xm
,Hp

xm

)
+K−1

xmxm

]−1
,mxm

= Σxm
[vr⊤

xm
,vc⊤

xm
,vp⊤

xm
]⊤,
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where H·
xm

= diag(H·
1,xm

, . . . ,H·
I·,xm

), v·
xm

= [v·⊤
1,xm

, . . . ,v·⊤
I·,xm

]⊤ and

Hr
i,xm

= Kr,i−1

xmxm
Kr,i

xmxn
Dr

iK
r,i⊤
xmxn

Kr,i−1

xmxm
,vr

i,xm
= Kr,i−1

xmxm
Kr,i

xmxn

yr
i

σ2
i

,

Hc
i,xm

= Kc,i−1

xmxm
Kc,i

xmxn
Dc

iK
c,i⊤
xmxn

Kc,i−1

xmxm
,vc

i,xm
= Kc,i−1

xmxm
Kc,i

xmxn

yc
i

2
,

Hp
i,xm

= Kp,i−1

xmxm

∫
X
Ai(x)k

p,i
xmxk

p,i⊤
xmxdxK

p,i−1

xmxm
,

vp
i,xm

= Kp,i−1

xmxm

∫
X
Bi(x)k

p,i
xmxdx,

where Dr
i = diag(1/σ2

i ) and Dc
i = diag(E[ωc

i ]).

Appendix D Multi-class Classification

In the paper, we mainly focus on the binary classification problem because
each binary classification task corresponds to a single latent function. This
setting is consistent with the regression and point process tasks in which each
task only specifies a single latent function.

For Z-class classification problem, each task corresponds to Z latent
functions. The usual likelihood for multi-class classification is the softmax
function:

p(yci,n = k | f ci,n) =
e(f

c,k
i,n )∑Z

z=1 e
(fc,z

i,n )
, (D15)

where f c,ki,n = f c,ki (xn), f
c
i,n = [f c,1i,n , . . . , f

c,Z
i,n ]⊤, k ∈ {1, . . . , Z}. However, the

Pólya-Gamma augmentation technique for binary classification can not be
directly employed in the softmax function. Galy-Fajou et al (2020) and Snell
and Zemel (2021) proposed the logistic-softmax function and the one-vs-each
softmax approximation respectively that enable us to employ Pólya-Gamma
augmentation to obtain a conditionally conjugate model for multi-class classi-
fication tasks. Both methods mentioned above can be incorporated into our
framework in the multi-class classification scenario. We refer the readers to
Galy-Fajou et al (2020); Snell and Zemel (2021) for more details.

Appendix E Comparison with HetMOGP

One anonymous reviewer point out that an important baseline to compare
against is Moreno-Muñoz et al (2018) that can also handle regression, classifi-
cation and counting data, even if the discretized Poisson distribution likelihood
is used instead of the continuous point process likelihood considered in this
work. Moreno-Muñoz et al (2018) used the generic variational inference method
mentioned in the introduction for parameter posterior, so this comparison can
demonstrate the advantage of using data augmentation for conjugate operations.

We compare the performance of TLL and RT for HMGCP and heterogeneous
multi-output Gaussian process (HetMOGP) (Moreno-Muñoz et al, 2018) on
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Table E1: The performance of TLL and RT for HMGCP and HetMOGP on
three synthetic datasets in Section 5.1. Time in seconds.

Model TLL(reg) TLL(cla) TLL(Cox) RT (400 iterations)

1
HMGCP -33.17 -63.57 -89.05 1.6

HetMOGP -97.80 -66.22 -181.91 708.74

2
HMGCP -28.54 -55.23 -63.54 1.79

HetMOGP -98.8 -58.1 -196.71 812.88

3
HMGCP -42.43 -56.14 -72.75 1.54

HetMOGP -138.21 -65.01 -172.77 647.70

Table E2: The performance of TLL and RT for HMGCP and HetMOGP on
synthetic datasets in Section 5.2 over ten random configurations of missing
gaps with three different missing-gap widths (0 means complete data). The
mean and standard deviation (in brackets) are provided. TLL(Cox) is the sum
of TLLs of two Cox processes. Time in seconds.

Gap Width Model TLL(reg) TLL(cla) TLL(Cox) RT (2000 iterations)

0
HMGCP -50.61 -56.67 -120.55 12.9

HetMOGP -101.19 -64.18 -380.63 4029.75

5
HMGCP -50.76(0.92) -56.74(0.51) -122.94(2.27) 12.5

HetMOGP -105.19 (2.92) -73.99 (12.01) -391.38 (29.00) 3826.56

10
HMGCP -52.14(1.94) -56.82(0.69) -128.49(5.74) 11.7

HetMOGP -104.45 (10.49) -66.12 -414.58 (21.78) 3424.73

the synthetic data from Sections 5.1 and 5.2. Since HetMOGP can only handle
discrete count data, we discretize the original observation window [0, 100] into
100 bins and then calculate the number of points in each bin separately. We
use the default hyperparameter settings in the demo code provided by Moreno-
Muñoz et al (2018). The results are shown in Tables E1 and E2. From Tables E1
and E2, we can see that HMGCP has the better TLL than HetMOGP that
is trained on the discrete count data. For a fair comparison of efficiency, we
run both HMGCP and HetMOGP on all tasks, and our inference is much
faster than HetMOGP. This is because, for HetMOGP, it uses the generic
variational inference, so the numerical optimization has to be performed during
the variational iterations; while for our model HMGCP, the variational iterations
have completely analytical expressions due to data augmentation, so it leads
to the more efficient computation. It is worth noting that the running times
presented in Tables E1 and E2 encompass all tasks (regression, classification,
and Cox processes), resulting in longer duration compared to those reported in
Sections 5.1 and 5.2, which are solely based on the Cox process tasks.
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