
Vol.:(0123456789)

Machine Learning (2023) 112:4635–4662
https://doi.org/10.1007/s10994-023-06394-x

1 3

Are LSTMs good few‑shot learners?

Mike Huisman1  · Thomas M. Moerland1 · Aske Plaat1 · Jan N. van Rijn1

Received: 8 February 2023 / Revised: 4 July 2023 / Accepted: 16 August 2023 /
Published online: 7 September 2023
© The Author(s) 2023

Abstract
Deep learning requires large amounts of data to learn new tasks well, limiting its applica-
bility to domains where such data is available. Meta-learning overcomes this limitation by
learning how to learn. Hochreiter et al. (International conference on artificial neural net-
works, Springer, 2001) showed that an LSTM trained with backpropagation across differ-
ent tasks is capable of meta-learning. Despite promising results of this approach on small
problems, and more recently, also on reinforcement learning problems, the approach has
received little attention in the supervised few-shot learning setting. We revisit this approach
and test it on modern few-shot learning benchmarks. We find that LSTM, surprisingly,
outperform the popular meta-learning technique MAML on a simple few-shot sine wave
regression benchmark, but that LSTM, expectedly, fall short on more complex few-shot
image classification benchmarks. We identify two potential causes and propose a new
method called Outer Product LSTM (OP-LSTM) that resolves these issues and displays
substantial performance gains over the plain LSTM. Compared to popular meta-learning
baselines, OP-LSTM yields competitive performance on within-domain few-shot image
classification, and performs better in cross-domain settings by 0.5–1.9% in accuracy score.
While these results alone do not set a new state-of-the-art, the advances of OP-LSTM
are orthogonal to other advances in the field of meta-learning, yield new insights in how
LSTM work in image classification, allowing for a whole range of new research directions.
For reproducibility purposes, we publish all our research code publicly.

Keywords  Meta-learning · Few-shot learning · Deep learning · Transfer learning

Editors: Fabio Vitale, Tania Cerquitelli, Marcello Restelli, Charalampos Tsourakakis.

 *	 Mike Huisman
	 m.huisman@liacs.leidenuniv.nl

	 Thomas M. Moerland
	 t.m.moerland@liacs.leidenuniv.nl

	 Aske Plaat
	 a.plaat@liacs.leidenuniv.nl

	 Jan N. van Rijn
	 j.n.van.rijn@liacs.leidenuniv.nl

1	 Leiden Institute of Advanced Computer Science, Leiden University, Niels Bohrweg 1,
2333CA Leiden, The Netherlands

http://orcid.org/0000-0001-9215-2973
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06394-x&domain=pdf

4636	 Machine Learning (2023) 112:4635–4662

1 3

1  Introduction

Deep neural networks have demonstrated human or even super-human performance on
various tasks in different areas (Krizhevsky et al., 2012; He et al., 2015; Mnih et al.,
2015; Silver et al., 2016). However, they often fail to learn new tasks well from lim-
ited amounts of data (LeCun et al., 2015), limiting their applicability to domains where
abundant data is available. Meta-learning (Brazdil et al., 2022; Huisman et al., 2021;
Naik and Mammone, 1992; Schmidhuber, 1987; Thrun, 1998) is one approach to over-
come this limitation. The idea is to learn an efficient learning algorithm over a large
number of different tasks so that new tasks can be learned from a few data points. Meta-
learning involves learning at two different levels: the inner-level learning algorithm pro-
duces a predictor for the given task at hand, whereas the outer-level learning algorithm
is adjusted to improve the learning ability across tasks.

Hochreiter et al. (2001) and Younger et al. (2001) have shown that LSTMs trained
with gradient descent are capable of meta-learning. At the inner level—when presented
with a new task—the LSTM ingests training examples with corresponding ground-truth
outputs and conditions its predictions for new inputs on the resulting hidden state (the
general idea for using recurrent neural networks for meta-learning has been visualized
in Fig. 1). The idea is that the training examples that are fed into the LSTM can be
remembered or stored by the LSTM in its internal states, allowing predictions for new
unseen inputs to be based on the training examples. This way, the LSTM can imple-
ment a learning algorithm in the recurrent dynamics, whilst the weights of the LSTM
are kept frozen. During meta-training, the weights of the LSTM are only adjusted at the
outer level (across tasks) by backpropagation, which corresponds to updating the inner-
level learning program. By exposing the LSTM to different tasks which it cannot solve
without learning, the LSTM is stimulated to learn tasks by ingesting the training exam-
ples which it is fed. The initial experiments of Hochreiter et al. (2001) and Younger
et al. (2001) have shown promising results on simple and low-dimensional toy prob-
lems. Meta-learning with LSTMs has also been successfully extended to reinforcement

RNN RNNRNN RNNRNN...

Support set

RNNRNN RNNRNN ... RNNRNN

Query set

Fig. 1   The use of a recurrent neural network for few-shot learning. The support set Dtr
j
= {(x1, y1),… , (xM , yM)} is

fed as a sequence into the RNN. The predictions ŷj for new query points x̂j are conditioned on the resulting state.
We note that feeding the tuples (xi, yi) does not lead to the RNN directly outputting the presented labels (drastic
overfitting) as the goal is to make predictions for query inputs, for which the ground-truth outputs are unknown.
Alternatively, the support set could be fed into the RNN in a temporally offset manner (e.g., feed support tuples
(xi, yi−1) into the RNN) as in Santoro et al. (2016) or in different ways (for example feed the error instead of the
ground-truth target) (Hochreiter et al., 2001)

4637Machine Learning (2023) 112:4635–4662	

1 3

learning settings (Duan et al., 2016; Wang et al., 2016), and demonstrates promising
learning speed on new tasks.

To the best of our knowledge, the LSTM approach has, in contrast, not been studied
on more complex and modern supervised few-shot learning benchmarks by the research
community, which has already shifted its attention to more developing new and more
complex methods (Finn et al., 2017; Snell et al., 2017; Flennerhag et al., 2020; Park and
Oliva, 2019). In our work, we revisit the idea of meta-learning with LSTMs and study
the ability of the learning programs embedded in the weights of the LSTM to perform
few-shot learning on modern benchmarks. We find that an LSTM outperforms the popular
meta-learning technique MAML (Finn and Levine, 2017) on a simple few-shot sine wave
regression benchmark, but that it falls short on more complex few-shot image classification
benchmarks.

By studying the LSTM architecture in the context of meta-learning, we identify two
potential causes for this underperformance, namely (1) the fact that it is not invariant to
permutations of the training data and (2) that the input representation and learning pro-
cedures are intertwined. We propose a general solution to the first problem and propose a
new meta-learning technique, Outer Product LSTM (OP-LSTM), where we solve the sec-
ond issue by learning the weight update rule for a base-learner network using an LSTM,
in addition to good initialization parameters for the base-learner. This approach is similar
to that of Ravi and Larochelle (2017), but differs in how the weights are updated with the
LSTM and that in our approach, the LSTM does not use hand-crafted gradients as inputs
in order to produce weight updates. Our experiments demonstrate that OP-LSTM yields
substantial performance gains over the plain LSTM.

Our contributions are the following.

•	 We study the ability of a plain LSTM to perform few-shot learning on modern few-shot
learning benchmarks and show that it yields surprisingly good performance on simple
regression problems (outperforming MAML (Finn et al., 2017)), but is outperformed
on more complex classification problems.

•	 We identify two problems with the plain LSTM for meta-learning, namely (1) the fact
that it is not invariant to permutations of the training data and (2) that the input repre-
sentation and learning procedures are intertwined, and propose solutions to overcome
them by 1) an average pooling strategy and 2) decoupling the input representation from
the learning procedure.

•	 We propose a novel LSTM architecture called Outer Product LSTM (OP-LSTM) that
overcomes the limitations of the classical LSTM architecture and yields substantial
performance gains on few-shot learning benchmarks.

•	 We discuss that OP-LSTM can approximate MAML (Finn et al., 2017) as well as Pro-
totypical network (Snell et al., 2017) as it can learn to perform the same weight matrix
updates. Since OP-LSTM does not update the biases, it can only approximate these two
methods.

Compared to popular meta-learning baselines, including MAML (Finn et al., 2017), Proto-
typical network (Snell et al., 2017), and Warp-MAML (Flennerhag et al., 2020), OP-LSTM
yields competitive performance on within-domain few-shot image classification, and out-
performs them in cross-domain settings by 0.5–1.9% in raw accuracy score. While these
results alone do not set a new state-of-the-art, the advances of OP-LSTM are orthogonal
to other advances in the field of meta-learning, allowing for a whole range of new research
directions, such as using OP-LSTM to update the weights in gradient-based meta-learning

4638	 Machine Learning (2023) 112:4635–4662

1 3

techniques (Flennerhag et al., 2020; Park and Oliva, 2019; Lee and Choi, 2018) rather than
regular gradient descent. For reproducibility and verifyability purposes, we make all our
research code publicly available.1

2 � Related work

Earlier work with LSTMs Meta-learning with recurrent neural networks was originally
proposed by Hochreiter et al. (2001) and Younger et al. (2001). In their pioneering work,
Hochreiter et al. (2001) also investigated other recurrent neural network architectures for
the task of meta-learning, but it was observed that Elman networks and vanilla recurrent
neural networks failed to meta-learn simple Boolean functions. Only the LSTM was found
to be successful at learning simple functions. For this reason, we solely focus on LSTM in
our work.

The idea of meta-learning with an LSTM at the data level has also been investigated and
shown to achieve promising results in the context of reinforcement learning (Duan et al.,
2016; Wang et al., 2016; Alver and Precup, 2021). In the supervised meta-learning com-
munity, however, the idea of meta-learning with an LSTM at the data level (Hochreiter
et al., 2001; Younger et al., 2001) has not gained much attention. A possible explanation
for this is that Santoro et al. (2016) compared their proposed memory-augmented neural
network (MANN) to an LSTM and found that the latter was outperformed on few-shot
Omniglot (Lake et al., 2015) classification. However, it was not reported how the hyper-
parameters of the LSTM were tuned and whether it was a single-layer LSTM or a multi-
layer LSTM. In addition, the LSTM was fed the input data as a sequence which is not per-
mutation invariant, which can hinder its performance. We propose a permutation-invariant
method of feeding training examples into recurrent neural networks and perform a detailed
study of the performance of LSTM on few-shot learning benchmarks.

In concurrent work, Kirsch et al. (2022) investigates the ability of transformer archi-
tectures to implement learning algorithms, a baseline with a similar name as our proposed
method was proposed (“Outer product LSTM”). We emphasize, however, that their method
is different from ours (OP-LSTM) as it is a model-based approach that ingests the entire
training set and query input into a slightly modified LSTM architecture (with an outer
product update and inner product read-out) to make predictions, whereas in our OP-LSTM,
the LSTM acts on a meta-level to update the weights of a base-learner network.

In concurrent works done by Kirsch et al. (2022) and Chan et al. (2022), the ability of
the classical LSTM architecture to implement a learning algorithm was also investigated.
They observed that it was unable to embed a learning algorithm into its recurrent dynam-
ics on image classification tasks. However, the focus was not on few-shot learning, and
no potential explanation for this phenomenon was given. In our work, we investigate the
LSTM’s ability to learn a learning algorithm in settings where only one or five examples
are present per class, dive into the inner working mechanics to formulate two hypotheses as
to why the LSTM architecture is incapable of learning a good learning algorithm, and as a
result, propose OP-LSTM which overcomes the limitations and performs significantly bet-
ter than the classical LSTM architecture.

Different LSTM architectures for meta-learningSantoro et al. (2016) used an LSTM
as a read/writing mechanism to an external memory in their MANN technique. Kirsch and

1  See: https://​github.​com/​mikeh​uisman/​lstm-​fewsh​otlea​rning-​oplstm.

https://github.com/mikehuisman/lstm-fewshotlearning-oplstm

4639Machine Learning (2023) 112:4635–4662	

1 3

Schmidhuber (2021) proposed to replace every weight in a neural network with a recurrent
neural network that communicates through forward and backward messages. The system
was shown able to learn backpropagation and can be used to improve upon it. Our proposed
method OP-LSTM can also learn to implement backpropagation (see Sect. 6). Other works
(Ravi and Larochelle, 2017; Andrychowicz et al., 2016) have also used an LSTM for meta-
learning the weight update procedure. Instead of feeding the training examples into the LSTM,
as done by the plain LSTM (Hochreiter et al., 2001; Younger et al., 2001), the LSTM was fed
gradients so that it could propose weight updates for a separate base-learner network. Our pro-
posed method OP-LSTM is similar to these two approaches that meta-learn the weight update
rules as we use an LSTM to update the weights (2D hidden states) of a base-learner network.
Note that this strategy thus also deviates from the plain LSTM approach, which is fed raw
input data. In our approach, the LSTM acts on predictions and ground-truth targets or mes-
sages. In addition, we use a coordinate-wise architecture where the same LSTM is applied to
different nodes in the network. A difference with other learning-to-optimize works (Ravi and
Larochelle, 2017; Andrychowicz et al., 2016) is that we do not feed gradients into the LSTM
and that we update the weights (2D hidden states) through outer product update rules.

3 � Meta‑learning with LSTM

In this section, we briefly review the LSTM architecture (Hochreiter and Schmidhuber,
1997), explain the idea of meta-learning with an LSTM through backpropagation as pro-
posed by Hochreiter et al. (2001) and Younger et al. (2001), discuss two problems with this
approach in the context of meta-learning and propose solutions to solve them.

Additionally, we propose solutions to this problem. We prove that a single-layer RNN
followed by a linear layer is incapable of embedding a classification learning algorithm in
its recurrent dynamics and show by example that an LSTM adding a single linear layer is
sufficient to achieve this type of learning behavior in a simple setting.

3.1 � LSTM architecture

LSTM (Hochreiter and Schmidhuber, 1997) is a recurrent neural network architecture suit-
able for processing sequences of data. The architecture of an LSTM cell is displayed in
Fig. 2. It maintains an internal state and uses four gates to regulate the information flow
within the network

Here, � = {Wf ,Wc,Wi,Wo, bf , bc, bi, bo} are the parameters of the LSTM, [a, b] repre-
sents the concatenation of a and b , � is the sigmoid function (applied element-wise) and
ft, it, ot, c̄t ∈ ℝ

dh are the forget, input, output, and cell gates, respectively. These gates regu-
late the information flow within the network to produce the next cell and hidden states

(1)ft = �(Wf [ht−1, xt] + bf),

(2)it = �(Wi[ht−1, xt] + bi),

(3)ot = �(Wo[ht−1, xt] + bo),

(4)c̄t = tanh(Wc[ht−1, xt] + bc).

4640	 Machine Learning (2023) 112:4635–4662

1 3

The hidden state and cell state are obtained by applying LSTM g� to inputs
(xt, xt−1,… , x1) , i.e.,

3.2 � Meta‑learning with LSTM

Hochreiter et al. (2001) and Younger et al. (2001) show that the LSTM can perform learn-
ing purely through unrolling its hidden state over time with fixed weights. When presented
with a new task Tj—denoting the concatenation of an input and its target as x�

t
= (xt, yt)—

the support set Dtr
Tj
= {(x1, y1),… , (xM , yM)} = {x�

1
, x�

2
,… , x�

M
} , is fed as a sequence, e.g.,

(x1, null), (x2, y1),… , (xM , yM−1) , into the LSTM to produce a hidden state hM(Dtr
Tj
) . Pre-

dictions for unseen inputs (queries) x̂ are then conditioned on the hidden state hM(Dtr
Tj
) and

cell state cM(Dtr
Tj
) , where we have made it explicit that hM and cM are functions of the sup-

port data. More specifically, the hidden state of the query input x̂ = [x, yM] is computed as
[ĥ, ĉ] = m𝜃(x̂;hM(D

tr
Tj
), cM(D

tr
Tj
)) , and this hidden state is used either directly for prediction

or can be fed into a classifier function (which also uses fixed weights). Since the weights of
the LSTM are fixed when presented with a new task, the learning takes place in the recur-
rent dynamics, and the hidden state hM(Dtr

Tj
) is responsible for guiding predictions on

unseen inputs x̂ . Note that there are different ways to feed the support data into the LSTM,
as one can also use additional data such as the error on the previous input or feed the

(5)ct = ft ⊙ ct−1 + it ⊙ c̄t,

(6)ht = ot ⊙ tanh(ct).

(7)[ht, ct] = g�(xt, xt−1,… , x1)

(8)= m�(xt;ht−1, ct−1).

Fig. 2   The architecture of an
LSTM cell. The LSTM maintains
an inner cell state ct and hidden
state ht over time that are updated
with new incoming data xt . The
forget ft , input it , output ot , and
cell c̄t gates regulate how these
states are updated. Image adapted
from Olah (2015)

4641Machine Learning (2023) 112:4635–4662	

1 3

current input together with its target tuples (xt, yt) (as done in Fig. 1 and our implementa-
tion). We use the latter strategy in our experiments as we found it to be most effective.

This recurrent learning algorithm can be obtained by performing meta-training on var-
ious tasks which require the LSTM to perform learning through its recurrent dynamics.
Given a task, we feed the training data into the LSTM, and then feed in query inputs to
make predictions. The loss on these query predictions can be backpropagated through the
LSTM to update the weights across different tasks. Note, however, that during the unrolling
of the LSTM over the training data, the weights of the LSTM are held fixed. The weights
are thus only updated across different tasks (not during adaptation to individual tasks) to
improve the recurrent learning algorithm. By adjusting the weights of the LSTM using
backpropagation across different tasks, we are essentially changing the learning program of
the LSTM and hence performing meta-learning.

3.3 � Problems with the classical LSTM architecture

The classical LSTM architecture suffers from two issues that may limit its ability to imple-
ment recurrent learning algorithms.

Non-temporal training data LSTMs work with sequences of data. When using an LSTM in
the meta-learning context, the recurrent dynamics should implement a learning algorithm and
process the support dataset. This support dataset Dtr

j
= {(x1, y1),… , (xM , yM)} = {x′1, x

′
2,… , x′M}

 , how-
ever, is a set rather than a sequence. This means that we would want the hidden embedding after
processing the support data to be invariant with respect to the order in which the examples are
fed into the LSTM. Put more precisely, given any two permutations of the M training examples
� = (�1,�2,… ,�M) and �� = (��

1
,��

2
,… ,��

M
) , we want to enforce

where x′
�i

 is the i-th input (possibly containing target or error information) under permuta-
tion � and x′

�′
i

 the input under permutation �′.
Intertwinement of embedding and learning In the LSTM approach proposed by Hochre-

iter et al. (2001) and Younger et al. (2001), the recurrent dynamics implement a learning
algorithm. At the same time, however, the hidden state also serves as an input embedding.
Thus, in this approach, the input embedding and learning procedures are intertwined. This
may be problematic because a learning procedure may be highly complex and nonlinear,
whilst the optimal input embedding may be simple and linear. For example, suppose that
we feed convolutional features into a plain LSTM. Normally, we often compute predictions
using a linear output layer. Thus, a simple single-layer LSTM may be the best in terms
of input representation. However, the learning ability of a single-layer LSTM may be too
limited, leading to bad performance. In other words, stacking multiple LSTM layers may
be beneficial for finding a better learning algorithm, but the resulting input embedding may
be too complex, which can lead to overfitting. On the other hand, a good but simple input
embedding may overly restrict the search space of learning algorithms, resulting in a bad
learning algorithm.

An LSTM with sufficiently large hidden dimensionality may be able to separate
the learning from the input representation by using the first N dimensions of the hidden

(9)g�(x
�
�1
, x�

�2
,… , x�

�M
) = g�(x

�

��
1

, x�
��
2

,… , x�
��
M

),

4642	 Machine Learning (2023) 112:4635–4662

1 3

representations to perform learning and to preserve important information for the next
time step, and using the remaining dimensions to represent the input. However, this poses
a challenging optimization problem due to the risk of overfitting and the large number of
parameters that would be needed.

3.4 � Towards an improved architecture

These potential issues of the classical LSTM architecture inspire us to develop an architec-
ture that is better suited for meta-learning.

Non-temporal data → average pooling In order to enforce invariance of the hidden state
and cell state with respect to the order of the support data, we can pool the individual
embeddings. That is, given an initial state of the LSTM st = [ht, ct] , we update the state by
processing the support data as a batch and by average pooling, i.e.,

Note that one time step now corresponds to processing the entire support dataset once,
since st+1 is a function thereof. Our proposed batch processing for a single time step (dur-
ing which we ingest the support data) has been visualized in Fig. 3.

(10)st+1 =
[
ht+1, ct+1

]
=

1

M

M∑

i=1

m�(x
�
i
;ht, ct).

RNNRNN RNNRNN RNNRNN...

RNNRNN RNNRNN ... RNNRNN

Support set Query set

Fig. 3   Our proposed batch processing of the support data, resulting in a state that is permutation invariant.
Every support example (xi, yi) is processed in parallel, and the resulting hidden states are aggregated with
mean-pooling (denoted by the symbol ⋅̄ ). The predictions ŷj for new query points x̂j are conditioned on the
resulting permutation-invariant state. Note that the support data is only fed once into the RNN (a single
time step t), although it is possible to make multiple passes over the data, by feeding the mean-pooled state
into the RNN at the next time step

4643Machine Learning (2023) 112:4635–4662	

1 3

Intertwinement of embedding and learning The problems associated with the inter-
twinement of the embedding and learning procedures can be solved by decoupling them.
In this way, we create two separate procedures: (1) the embedding procedure, and (2) the
learning procedure. The embedding procedure can be implemented by a base-learner neu-
ral network, and the learning procedure by a meta-network that updates the weights of the
base-learner network.

In the plain LSTM approach, where the learning procedure is intertwined with the input
representation mechanism, predictions would be conditioned on the hidden state
h(x, h(Dtr

Tj
), c(Dtr

Tj
)) . Instead, we choose to use the inner product between the hidden state

(acting as weight vector) and the embedding of current input a(L)(x) , i.e.,

where a(L−1)(x) is the representation of input x in layer L − 1 of some base-learner network
(consisting of L layers), whose weights are updated by a meta-network. We use the inner
product to force interactions between the learning and embedding components, so that the
predictions can not rely on either of the two separately. Note that by computing predictions
in this way, we effectively decouple the learning algorithm implemented by hidden state
dynamics from the input representation. A problem with this approach is that the output is
a single scalar. In order to obtain an arbitrary output dimension dout > 1 , we should multi-
ply the input representation a(L−1)(x) with a matrix H ∈ ℝ

dout×din , i.e., ŷ(x) = H(L)a(L−1)(x) .
In order to obtain H(L) , one could use a separate LSTM with a hidden dimension of din per
output dimension, but the number of required LSTMs would grow linearly with the output
dimensionality. Instead, we use the outer product, which requires only one hidden vector of
size din that can be outer-multiplied with a vector of size dout . We detail the computation of
2D weight matrices H (hidden states) with the outer product rule in the next section.

Note that the 2D hidden state H can be seen as a weight matrix of a regular feed-forward
neural network, which allows us to generalize this approach to networks with an arbitrary
number of layers, where we have a 2D hidden state H(�) for every layer � ∈ {1, 2,… , L} in
a network with L layers. Our approach can then be seen as meta-learning an outer product
weight update rule for the base-learner network such that it can quickly adapt to new tasks.

4 � Outer product LSTM (OP‑LSTM)

Here, we propose a new technique, called Outer Product LSTM (OP-LSTM), based on the
problems of the classical LSTM architecture for meta-learning and our suggested solutions.
We begin by discussing the architecture, then cover the learning objective and algorithm,
and end by studying the relationship between OP-LSTM and other methods.

(11)
ŷ(x) = a(L)(x) = h(L)(Dtr

Tj
)T

�������

learning

a(L−1)(x)
�����

embedding

,

4644	 Machine Learning (2023) 112:4635–4662

1 3

4.1 � The architecture

Since we can view the 2D hidden states H(�) in OP-LSTM as weight matrices that act on
the input, the OP-LSTM can be interpreted as a regular fully-connected neural network.
The output of the OP-LSTM for a given input x is given by

where Dtr
Tj

 is the support dataset of the task, L the number of layers of the base-learner net-
work, and T the number of time steps that the network unrolls (trains) over the entire sup-
port set. Here, �(L) is the activation function used in layer L, b(L) the bias vector in the out-
put layer, and a(L−1)

T
(x) the input to layer L after making T passes over the support set and

having received the query input.
Put more precisely, the activation in layer � at time step t, as a function of an input x , is

denoted a(�)t (x) and defined as follows

Note that this defines the forward dynamics of the architecture. Here, the H�

t
∈ ℝ

d
(�)

out×d
(�)

in is
the 2D hidden state that is updated by pooling over the normalized 2D outer product hid-
den states h(�)

t+1
(x�

i
)a

(�−1)
t (x�

i
)T associated with individual training examples x�

i
= (xi, yi) , i.e.,

where � is the step size of the updates and ‖ ⋅ ‖F is the Frobenius norm. We perform this
normalization for numerical stability. Note that this update using average pooling ensures
that the resulting hidden states H(�)

t
 are invariant to permutations of the support data.

Moreover, we observe that this equation defines the backward dynamics of the architecture
(updating the 2D hidden states). However, this equation does not yet tell us how the hidden
states h(�)

t+1
(x�

i
) are computed.

We use a coordinate-wise LSTM so that the same LSTM can be used in layers of arbi-
trary dimensions, in similar fashion as Ravi and Larochelle (2017); Andrychowicz et al.
(2016). This means that we maintain a state s(�)

t,j
= [h

(�)

t,j
, c

(�)

t,j
] for every individual node j in

the state vector and every layer � ∈ {1, 2,… , L} over time steps t. In order to obtain the
hidden state vector for a given layer � and time step t, we simply concatenate the individual
hidden states computed by the coordinate-wise LSTM, i.e., h(�)

t
= [h

(�)

t,1
, h

(�)

t,2
,… , h

(�)

t,d(�)
]T ,

where d(�) is the number of neurons in layer � . The LSTM weights to update these states
are shared across all layers and nodes with the same activation function. For classification
experiments, we often have two LSTMs: one for the final layer which uses a softmax acti-
vation function, and one for the body of the network, which uses the ReLU activation. This
allows OP-LSTM to learn weight updates akin to gradient descent, where the backward
computation is tied to each nonlinearity in the base-learner network (as this can not be
done by a single LSTM, due to the different non-linearities of the softmax and the RELU

(12)f�(x,D
tr
Tj
, T) = �

(L)(H
(L)

T
a
(L−1)

T
(x) + b(L)),

(13)a
(�)

t (x) =

{
x if� = 0 (input layer),

�(�)(H(�)

t
a
(�−1)
t (x) + b(�)) otherwise.

(14)H
(�)

t+1
= H(�)

t
+

�

M

M�

i=1

h
(�)

t+1
(x�

i
)a

(�−1)
t (xi)

T

‖h(�)
t+1

(x�
i
)a

(�−1)
t (xi)

T‖F
,

4645Machine Learning (2023) 112:4635–4662	

1 3

activation). We use pooling over the support data in order to update the states using a coor-
dinate-wise approach, where every element of the hidden state h(�)

t
 of a given layer � is

updated independently by a single LSTM.
In order to compute the next state s(�)

t+1,j
 of node j in layer � , we need to have the previous

state consisting of the previous hidden state h(�)
t,j

 and cell state c(�)
t,j

 of that node. Moreover,
we need to feed the LSTM an input, which we define as z(�)

t,j
 . In OP-LSTM, we define this

input as

Note that for the output layer L, the input to the LSTM corresponds to the current pre-
diction and the ground-truth output, which share the same dimensionality. For the earlier
layers in the network, we do not have access to the ground-truth signals. Instead, we view
the hidden state of the output layer LSTM as errors and propagate them backward through
the 2D hidden states H(�+1)

t
 , hence the expression (H(�+1)

t
)Th(�+1)

t
(xi) for earlier layers. We

note that this is akin to backpropagation, where error messages �(�+1) are passed backward
through the weights of the network.

Given an input x′
i
 , the next state s(�)

t+1,j
 can then be computed by applying the LSTM m� to

the input z(�)
t,j
(x�

i
) , conditioned on the previous hidden state h(�)

t,j
 and cell state c(�)

t,j
.

where z(�)
t,j
(x�

i
) is the input to the LSTM used to update the state. These individual states are

averaged over all training inputs to obtain

Note that we can obtain a state vector, hidden vector, and cell state vector, by concatena-
tion, i.e., s(�)t+1,j(x

′
i) = [s(�)t+1,1(x

′
i), s

(�)
t+1,2(x

′
i),… , s(�)t+1,d(�) (x

′
i)] , h

(�)
t+1,j(x

′
i) = [h(�)t+1,1(x

′
i), h

(�)
t+1,2(x

′
i),… , h(�)t+1,d(�) (x

′
i)] , and

c(�)t+1,j(x
′
i) = [c(�)t+1,1(x

′
i), c

(�)
t+1,2(x

′
i),… , c(�)t+1,d(�) (x

′
i)].

4.2 � The algorithm

OP-LSTM is trained to minimize the expected loss on the query sets conditioned on the sup-
port sets, where the expectation is with respect to a distribution of tasks. Put more precisely,

we wish to minimize �
Tj∽p(T)

[
LDte

Tj

(Θ)

]
 , where Θ = {�,H

(1)

0
,H

(2)

0
,… ,H

(L)

0
, b(1), b(2),… , b(L)} .

This objective can be approximated by sampling batches of tasks, updating the weights using
the learned outer product rules, and evaluating the loss on the query sets. Across tasks, we
update Θ using gradient descent. In practice, we use the cross-entropy loss for classification
tasks and the MSE loss for regression tasks.

The pseudocode for OP-LSTM is displayed in Algorithm 1. First, we randomly initialize
the initial 2D hidden states H(�)

0
 and the LSTM parameters � . We group these parameters as

Θ = {�,H
(1)

0
,H

(2)

0
,… ,H

(L)

0
} , which will be meta-learned across different tasks. Given a task

(15)z
(�)

t,j
(x�

i
) =

{
[(a

(�)

t (xi))j, (yi)j] if� = L(output layer),

[(a
(�)

t (xi))j, ((H
(�+1)
t

)Th(�+1)
t

(xi))j] otherwise.

(16)s
(�)

t+1,j
(x�

i
) = [h

(�)

t+1,j
(x�

i
), c

(�)

t+1,j
(x�

i
)] = m�(z

(�)

t,j
(x�

i
);h

(�)

t,j
, c

(�)

t,j
),

(17)s
(�)

t+1,j
= [h

(�)

t+1,j
, c

(�)

t+1,j
] =

1

M

M∑

i=1

s
(�)

t+1,j
(x�

i
).

4646	 Machine Learning (2023) 112:4635–4662

1 3

Tj , we make T updates on the entire support set Dtr
Tj

 by processing the examples individually,
updating the 2D hidden states H(�)

t
 , and computing the new hidden states of the coordinate-

wise LSTM for every layer s(�)t  . After having made T updates on the support data, we compute
the loss of the model on the query set Dte

Tj
 . The gradient of this loss with respect to all parame-

ters Θ is added to the gradient buffer. Once a batch of tasks B has been processed in this way,
we perform a gradient update on Θ and repeat this process until convergence or a maximum
number of iterations has been reached.

5 � Experiments

In this section, we aim to answer the following research questions:

•	 How do the performance and training stability of a plain LSTM compare when process-
ing the support data as a sequence versus as a set with average pooling? (See Sect. 5.1).

•	 How well does the plain LSTM perform at few-shot sine wave regression and within-
and cross-domain image classification problems compared with popular meta-learning

4647Machine Learning (2023) 112:4635–4662	

1 3

methods such as MAML (Finn et al., 2017) and Prototypical network (Snell et al.,
2017)? (See Sects. 5.2 and 5.3).

•	 Does OP-LSTM yield a performance improvement over the simple LSTM and the
related approaches MAML and Prototypical network in few-shot sine wave regression
and within- and cross-domain image classification problems? (See Sects. 5.2 and 5.3).

•	 How does OP-LSTM adjust the weights of the base-learner network? (See Sect. 5.4).

For our experiments, we use few-shot sine wave regression (Finn et al., 2017) as an illustra-
tive task, and popular few-shot image classification benchmarks, namely Omniglot (Lake
et al., 2015), miniImageNet (Ravi and Larochelle, 2017; Vinyals et al., 2016), and CUB
(Wah et al., 2011). We use MAML (Finn et al., 2017), prototypical network (Snell et al.,
2017), SAP (Huisman et al., 2023) and Warp-MAML (Flennerhag et al., 2020) as base-
lines. The former two are popular meta-learning methods and can both be approximated by
the OP-LSTM (see Sect. 6), allowing us to investigate the benefit of OP-LSTM’s expres-
sive power. The last two baselines are used to investigate how OP-LSTM compares to state-
of-the-art gradient-based meta-learning methods in terms of performance, although it has
to be noted that that OP-LSTM is orthogonal to that method, in the sense that OP-LSTM
could be used on top of Warp-MAML. However, this is a nontrivial extension and we leave
this for future work. We run every technique on a single GPU (PNY GeForce RTX 2080TI)
with a computation budget of 2 days (for detailed running times, please see Sect. 1). Each
experiment is performed with 3 different random seeds, where the random seed affects the
random weight initialization of the neural networks as well as the used training tasks, vali-
dation tasks, and testing tasks. Below, we describe the different experimental settings that
we use. Note that we do not aim to achieve state-of-the-art performance, but rather inves-
tigate whether the plain LSTM is a competitive method for few-shot learning on modern
benchmarks and whether OP-LSTM yields improvements over the plain LSTM, MAML,
and Prototypical network.

Sine wave regression This toy problem was originally proposed by Finn et al. (2017)
to study meta-learning methods. In this setting, every task Tj corresponds to a sine wave
sj = Aj ⋅ sin(x − pj) , where Aj and pj are the amplitude and phase of the task, sampled uni-
formly at random from the intervals [0.1, 5.0] and [0, � ], respectively. The goal is to pre-
dict for a given task the correct output y given an input x after training on the support
set, consisting of k examples. The performance of learning is measured in the query set,
consisting of 50 input–output. For the plain LSTM approach, we use a multi-layer LSTM
trained with Backpropagation through Time (BPTT) using Adam (Kingma and Ba, 2015).
During meta-training, the LSTM is shown 70,000 training tasks. Every 2500 tasks, we per-
form meta-validation on 1000 tasks, and after having selected the best validated model, we
evaluate the performance on 2000 meta-test tasks.

Few-shot image classification In case of few-shot image classification, all methods are
trained for 80,000 episodes on training tasks and we perform meta-validation every 2500
episodes. The best learner is then evaluated on 600 hold-out test tasks, each task having a
number of examples per class in the support set as indicated by the experiment (ranging
from 1 to 10) as well as a query set of 15 examples per class. We repeat every experiment
3 times with different random seeds, meaning the that weight initializations and tasks are
different across runs, although the class splits for sampling training/validation/testing tasks
are kept fixed. For the Omniglot image classification dataset, we used a fully-connected
neural network as base-learner for MAML and OP-LSTM, following Santoro et al. (2016)
and Finn et al. (2017). The network consists of 4 fully-connected blocks with dimensions
256-128-64-64. Every block consists of a linear layer, followed by BatchNorm and ReLU

4648	 Machine Learning (2023) 112:4635–4662

1 3

activation. Every layer of the base-learner network is an OP-LSTM block. The plain LSTM
approach uses an LSTM as base-learner. For MAML, we use the best reported hyperpa-
rameters by Finn et al. (2017). We performed hyperparameter tuning for LSTM and OP-
LSTM using random search and grid search, respectively (details can be found in Appen-
dix B). Note that as such, the comparison against MAML and Prototypical networks is only
for illustrative purposes, as the hyperparameter optimization procedure on these methods
has, due to computational restrictions, not been executed under the same conditions.

For the miniImageNet and CUB image classification datasets, we use the Conv-4 base-
learner network for all methods, following Snell et al. (2017); Finn et al. (2017). This base-
learner consists of 4 blocks, where every block consists of 64 feature maps created with
3 × 3 kernels, BatchNorm, and ReLU nonlinearity. MAML uses a linear output layer to
compute predictions, the plain LSTM operates on the flattened features extracted by the
convolutional layers (as an LSTM taking image data as input does not scale well), whereas
OP-LSTM uses an OP-LSTM block (see Fig. 4) on these flattened features. Importantly,
OP-LSTM is only used in the final layer as it does currently not support propagating mes-
sages backward through max pooling layers.

We first study the within-domain performance of the meta-learning methods, where test
tasks are sampled from the same dataset as the one used for training (albeit with unseen
classes). Afterward, we also study the cross-domain performance, where the techniques
train on tasks from a given dataset and are evaluated on test tasks from another dataset.
More specifically, we use the scenarios miniImageNet → CUB (train on miniImageNet and
evaluate on CUB) and vice versa.

.

..

.

..

LSTM .
..

+

+

.

..

.

..

.

..

LSTM .
..

+

+

.

..

.

..

Fig. 4   The workflow of OP-LSTM. We have visualized two layers of the base-learner network. During the
forward pass, the 2D hidden states H(�)

t
 act as weight matrices of a feed-forward neural network that act

on the input of that layer a(�−1)t  . This linear combination H(�)

t
a
(�−1)

t (xi) is passed through a nonlinearity �
and added with a bias vector b(�) to produce the activation a(�)t (xi) . The entire forward pass is displayed by
the black arrows. The red arrows, on the other hand, indicate the backward pass using the coordinate-wise
LSTM. The outer product ( ⊗ ) of the resulting hidden state h(�+1)

t
 and the inputs from the previous layer

a
(�)

t are added to the 2D hidden state H(�+1)

t
 to produce H(�+1)

t+1
 (blue arrow), which can be interpreted as the

updated weight matrix

4649Machine Learning (2023) 112:4635–4662	

1 3

5.1 � Permutation invariance for the plain LSTM

First, we investigate the difference in performance of the plain LSTM approach when pro-
cessing the support data as a sequence (x1, y1),… , (xk, yk) or as a set {(x1, y1),… , (x

k
, y

k
)}

(see Sect. 3.4) on few-shot sine wave regression and few-shot Omniglot classification. For
the former, every task consists of 50 query examples, whereas for the latter, we have 10
query examples per class. We tuned the LSTM that processes the support data sequen-
tially with random search (details in appendix). We compare the performance of this tuned
sequential model to that of an LSTM with batching (with the same hyperparameter con-
figuration) to see whether the resulting permutation invariance is helpful for the perfor-
mance and training stability of the LSTM. To measure the stability of the training process,
we compute the confidence interval over the mean performances obtained over 3 different
runs rather than over all performances concatenated for the different runs, as done in later
experiments for consistency with the literature.

The results of this experiment are shown in Fig. 5. In the case of few-shot sine wave
regression (left subfigure), the performance of the LSTM with batching is on par or
better compared with the sequential LSTM as the MSE score of the former is smaller
or equal. We also note that the performance tends to improve with the amount of avail-
able training data. A similar, although more convincing, pattern can be seen in the case
of few-shot Omniglot classification (right subfigure), where the LSTM with batching
significantly outperforms the sequential LSTM across the different numbers of training
examples per class. Surprisingly, in this case the performance of the LSTM does not
improve as the number of examples per class increases. We found that this is due to
training stability issues of the plain LSTM (as shown by the confidence intervals): for
some runs, the LSTM does not learn and yields random performance, and in other runs
the learning starts only after a certain period of burn-in iterations and fails to reach
convergence within 80K meta-iterations (see appendix Sect. B.2 for detailed learning
curves for every run). For the LSTM with batching, we do not observe such training

(a) Sinewave - Average MSE loss (b) Omniglot - Average accuracy (%)

Fig. 5   The average accuracy score of a plain LSTM with sequential and batch support data processing on
few-shot sine wave regression (left) and Omniglot classfication (right) for different numbers of training
examples per task. Note that a lower MSE (left) or a higher accuracy (right) corresponds to better perfor-
mance. The results are averaged over 3 runs (each measured over 600 meta-test tasks) with different ran-
dom seeds and the 95% confidence intervals over the mean performances of the runs are shown as shaded
regions. Additionally, in the right plot, we have added scatter marks to indicate the average performances
per run (dots, unconnected, 3 per setting). Batch processing performs on par or outperforms sequential pro-
cessing and improves the training stability over different runs

4650	 Machine Learning (2023) 112:4635–4662

1 3

stability issues. This shows that batching not only helps improve the performance, but
also greatly increases the training stability. Note that the fact that the shaded confi-
dence interval of the sequential LSTM goes above the performance obtained by the
batching LSTM is an artifact of using symmetrical confidence intervals above and
below the mean trend: the sequential LSTM never outperforms the batching LSTM. As
we can see, the MSE loss for both approaches decreases as the size of the support set
increases, as more training data is available for learning. Furthermore, we see that the
performance of the LSTM with batching improves with the number of available train-
ing data, whereas this is not the case for the sequential LSTM, which struggles to yield
competitive performance. Overall, the results imply that the permutation invariance is
a helpful inductive bias to improve the few-shot learning performance. Consequently,
we will use the LSTM with batching henceforth.

5.2 � Performance comparison on few‑shot sine wave regression

Next, we compare the performance of the plain LSTM with batching, our proposed OP-
LSTM, as well as MAML (Finn et al., 2017). To ensure a fair comparison with MAML, we
tuned the hyperparameters in the same way as for the plain LSTM as done in the previous
subsection on 5-shot sine wave regression. For this tuning, we used the default base-learner
architecture consisting of two hidden layers with 40 ReLU nodes, followed by an output
layer of 1 node. Afterward, we searched over different architectures with different numbers
of parameters such that the expressivity in terms of the number of parameters does not
limit the performance of MAML. We used the same base-learner architecture for the OP-
LSTM as MAML without additional tuning.

The test performances on the sine wave regression taska are displayed in Table 1. We
note MAML, despite having a comparable number of parameters (models with more
parameters than LSTM and OP-LSTM performed worse), is outperformed by LSTM and
OP-LSTM, indicating that LSTM and OP-LSTM have discovered more efficient learning
algorithms for sine wave tasks. Comparing LSTM with OP-LSTM, we see that the former
yields the best performance in the 5-shot setting, whereas OP-LSTM outperforms LSTM in
the 10-shot and 20-shot settings.

5.3 � Performance comparison on few‑shot image classification

Within-domain Next, we investigate the within-domain performance of OP-LSTM and
LSTM on few-shot image classification problems, namely, Omniglot, miniImageNet, and

Table 1   Average test MSE on few-shot sine wave regression

The 95% confidence intervals are displayed as ±x , and calculated over all meta-test tasks. We used batch
processing for the LSTM and OP-LSTM. The best performances are displayed in bold font

Parameters 5-Shot 10-Shot 20-Shot

MAML 17,018 0.18 ± 0.009 0.033 ± 0.003 0.005 ± 0.001
LSTM 20,201 0.04 ± 0.002 0.010 ± 0.001 0.007 ± 0.000
OP-LSTM 18,107 0.11 ± 0.009 0.008 ± 0.001 0.003 ± 0.000

4651Machine Learning (2023) 112:4635–4662	

1 3

CUB. The results for the Omniglot dataset are displayed in Table 2. Note that the LSTM
has many more parameters than the other methods as it consists of multiple fully-connected
layers with large hidden dimensions, which were found to give the best validation perfor-
mance. As we can see, the plain LSTM (with batching) does not yield competitive perfor-
mance compared with the other methods, in spite of the fact that it has many more param-
eters and, in theory, could learn any learning algorithm. This shows that the LSTM is hard
to optimize and struggles to find a good solution in more complex few-shot learning set-
tings, i.e., image classification. OP-LSTM, on the other hand, which separates the learning
procedure from the input representation, yields competitive performance compared with
MAML and ProtoNet in both the 1-shot and 5-shot settings, whilst using fewer parameters
than the plain LSTM.

The results for miniImageNet and CUB are displayed in Table 3. Note that again, the
LSTM uses more parameters than other methods as it consists of multiple large fully-con-
nected layers which were found to yield the best validation performance. Nonetheless, it
is applied on top of representations computed with the Conv-4 backbone, which is also
used by all other methods. As we can see, the plain LSTM approach performs at chance
level, again suggesting that the optimization problem of finding a good learning algorithm
is too complex for this problem. The OP-LSTM, on the other hand, yields competitive or
superior performance compared with all tested baselines on both miniImageNet and CUB,

Table 2   The mean test accuracy
(%) on 5-way Omniglot
classification across 3 different
runs

The 95% confidence intervals are displayed as ±x , and calculated
over all runs and meta-test tasks (600 per run). The plain LSTM is
outperformed by MAML. All methods (except LSTM) used a fully-
connected feed-forward classifier. The best performances are displayed
in bold font

Technique Parameters 1-Shot 5-Shot

MAML 247, 621 84.1 ± 0.90 93.5 ± 0.30
ProtoNet 247, 621 83.6 ± 0.88 93.4 ± 0.29
LSTM 13, 30, 097 72.6 ± 0.90 84.8 ± 0.50
OP-LSTM (ours) 249, 167 84.3 ± 0.90 91.8 ± 0.30

Table 3   Meta-test accuracy scores on 5-way miniImageNet and CUB classification over 3 runs

The 95% confidence intervals are displayed as ± x, and calculated over all runs and meta-test tasks (600 per
run). All methods used a Conv-4 backbone as a feature extractor. The “–” indicates that the method did not
finish within 2 days of running time. The best performances are displayed in bold font

Technique Parameters MiniImageNet CUB

1-Shot 5-Shot 1-Shot 5-Shot

MAML 121, 093 48.6 ± 1.04 63.0 ± 0.54 57.5 ± 1.04 74.8 ± 0.51
Warp-MAML 231, 877 50.4 ± 1.04 65.6 ± 0.53 59.6 ± 1.00 74.2 ± 0.51
SAP 412, 852 53.0 ± 1.08 67.6 ± 0.51 63.5 ± 1.00 73.9 ± 0.51
ProtoNet 121, 093 50.1 ± 1.04 65.4 ± 0.53 50.9 ± 1.01 63.7 ± 0.55
LSTM 55, 879, 349 20.2 ± 0.20 19.4 ± 0.20 – –
OP-LSTM (ours) 141, 187 51.9 ± 1.04 67.9 ± 0.50 60.2 ± 1.04 73.1 ± 0.52

4652	 Machine Learning (2023) 112:4635–4662

1 3

regardless of the number of shots, which shows the advantage of decoupling the input rep-
resentation from the learning procedure.

Cross-domain Next, we investigate the cross-domain performance of the LSTM and
OP-LSTM, where the test tasks come from a different a different dataset than the training
tasks. We test this in two scenarios: train on miniImageNet and evaluate on CUB (MIN
→ CUB) and vice verse (CUB → MIN). The results of this experiment are displayed in
Table 4. Again, the plain LSTM does not outperform a random classifier, whilst the OP-
LSTM yields superior performance in every tested scenario, showing its versatility in this
challenging setting.

5.4 � Analysis of the learned weight updates

Lastly, we investigate how OP-LSTM updates the weights of the base-learner network.
More specifically, we measure the cosine similarity and Euclidean distance between
the OP-LSTM updates and updates made by gradient descent or Prototypical network.
Denoting the initial final classifier weight matrix as H(L)

0
 , the OP-LSTM update direc-

tion after T updates is Δ
OP

= H⃗

(L)

T
− H⃗

(L)

0
 , where H⃗ means that we vectorize the matrix

by flattening it. Similarly, we can measure the update compared with the initial weight
matrix and those obtained by employing nearest-prototype classification ( H(L)

Proto
 ) as done

in Prototypical network or gradient descent H(L)

GD
 , where the latter is obtained by per-

forming T gradient update steps (with a learning rate of 0.01). These updates are associ-
ated with the update direction vectors Δ

Proto
= H⃗

(L)

Proto
− H⃗

(L)

0
 and Δ

GD
= H⃗

(L)

GD
− H⃗

(L)

0
 . We

can then measure the distance between the update direction ΔOP of the OP-LSTM and
ΔProto and ΔGD . As a distance measure, we use the Euclidean distance. In addition, we
also measure the cosine similarity between the update directions as an inverse distance
measure that is invariant to the scale and magnitudes of the vectors. After every 2, 500
episodes, we measure these Euclidean distances and cosine similarity scores on the vali-
dation tasks, and average the results over 3 runs.

The results of this experiment are displayed in Fig. 6. As we can see, the cosine sim-
ilarity between the weight update directions of OP-LSTM and gradient descent and

Table 4   Average cross-domain meta-test accuracy scores over 5 runs using a Conv-4 backbone

Techniques trained on tasks from one data set and were evaluated on tasks from another data set. The 95%
confidence intervals are displayed as ± x, and calculated over all runs and meta-test tasks. The “–” indicates
that the method did not finish within 2 days of running time. The best performances are displayed in bold
font

MIN → CUB CUB → MIN

1-Shot 5-Shot 1-Shot 5-Shot

MAML 37.9 ± 0.40 53.6 ± 0.40 31.1 ± 0.36 45.8 ± 0.39
Warp-MAML 42.0 ± 0.43 56.9 ± 0.42 31.1 ± 0.35 41.3 ± 0.36
SAP 41.5 ± 0.44 58.0 ± 0.41 33.3 ± 0.39 47.1 ± 0.39
ProtoNet 39.7 ± 0.41 56.0 ± 0.41 31.7 ± 0.34 45.3 ± 0.38
LSTM 20.1 ± 0.28 20.0 ± 0.25 – –
OP-LSTM (ours) 42.3 ± 0.42 58.5 ± 0.41 35.8 ± 0.40 49.0 ± 0.40

4653Machine Learning (2023) 112:4635–4662	

1 3

prototype-based classifiers increases with training time. OP-LSTM very quickly learns to
update the weights in a similar direction as gradient descent, followed by a gradual decline
in similarity, which is later followed by a gradual increase. This gradual decline may be to
incorporate more prototype-based updates. Looking at the Euclidean distance, we observe
the same pattern for the similarity compared with the prototype-based classifier, as the dis-
tance between the updates decreases (indicating a higher similarity). The Euclidean dis-
tance between OP-LSTM updates and gradient updates slightly increase over time, which
may be a side effect of the sensitivity to scale and magnitude of this distance measure.
Thus, even if both would perform gradient descent, but with different learning rates, The
cosine similarity gives a better idea of directional similarity as it abstracts away from the
magnitude of the vectors.

6 � Relation to other methods

Here, we study the relationship of OP-LSTM to other existing meta-learning methods.
More specifically, we aim to show that OP-LSTM is a general meta-learning approach,
which can approximate the behaviour of different classes of meta-learning, such as opti-
mization-based meta-learners [e.g., MAML (Finn et al., 2017)] and metric-based methods
[e.g., Prototypical network (Snell et al., 2017)].

Model-agnostic meta-learning (MAML) MAML (Finn et al., 2017) aims to learn good ini-
tialization parameters for a base-learner network � = {W

(1)

0
,W

(2)

0
,… ,W

(L)

0
, b

(1)

0
, b

(2)

0
,… , b

(L)

0
}

such that new tasks can be learned efficiently using a few gradient update steps. Here, W(�)

0
 is

the initial weight matrix of layer � and b(�)
0

 the initial bias vector of layer � when presented with
a new task.

The initial 2D hidden states H(�)

0
 in OP-LSTM can be viewed as the initial weights W(�)

0

of the neural network in MAML. In MAML, the weights in layer � for a given input are
updated as W(�)

t+1
= W(�)

t
− ��(�)(p(�−1)(x))T , where a(i)(x) (with 1 ≤ i ≤ L ) is the vector of

(a) Cosine similarity (b) Euclidean distance

Fig. 6   The average cosine similarity (left) and Euclidean distance (right) between the weight update direc-
tions of the OP-LSTM and a prototype-based and gradient-based classifier as a function of time on 5-way
1-shot miniImageNet classification. Each point on the x-axis indicates a validation step, which is performed
after every 2, 500 episodes. The results are averaged over 3 runs with different random seeds and the 95%
confidence intervals are shown as shaded regions. The confidence intervals are within the size of the sym-
bols and imperceptible. As time progresses, the updates performed by OP-LSTM become more similar to
those of gradient descent and prototype-based classifiers (increasing cosine similarity)

4654	 Machine Learning (2023) 112:4635–4662

1 3

post-activation values in layer i as a result of the input x , and �(i) = ∇a(i)L(x) , where L(x, y)
is the loss on input x given the ground-truth target y , and � is the learning rate.

Instead of using this hand-crafted weight update rule, OP-LSTM learns the update rule
using the outer product of LSTM hidden states and the input activation. From Eq. (14)
it follows that OP-LSTM is capable of updating the weights H(�)

t
 with gradient descent

by setting h(�)
t+1

(x) = −��(�) = −�∇a(�)L(x, y) . [Note that in Eq. (14) the gradient is also
normalized by the Frobenius norm, which is formally not part of MAML.] We note that
the inputs to the coordinate-wise LSTM contain the necessary information to compute the
errors �(�) in every layer. That is, for the output layer, the LSTM receives the ground-truth
output and prediction in the output layer. For earlier layers, the LSTM receives the back-
propagated messages (the errors), as well as the activations. Consequently, OP-LSTM can
update the 2D hidden states H(�) with gradient descent, as MAML. OP-LSTM is thus an
approximate generalization of MAML as it could learn to perform the same weight matrix
updates, although OP-LSTM does not update the bias vectors given a task.

Prototypical network Prototypical network (Snell et al., 2017) aims to learn good initial
weights � = {W

(1)

0
,W

(2)

0
,… ,W

(L−1)

0
, b

(1)

0
, b

(2)

0
,… , b

(L−1)

0
} for all parameters except for the

final layer, such that a nearest-prototype classifier yields good performance. Let f�(xi) be the
embeddings produced by this (L − 1)-layered network for a given observation xi (from the
support set). Note that the network has (L − 1) layers as this is the feature embedding module
without the output layer. Prototypical network computes centroids cn =

1

�Xn�
∑

xi∈Xn
f�(xi) for

every class n, where Xn is the set of all support inputs with ground-truth class n, and f�(x) is
the embedding of input x . Then, the predicted score of a new input x̂ for class n is then given
by ŷn(x̂) =

exp(−d(f𝜃 (x̂),cn))∑
n� exp(−d(f𝜃 (x̂),cn�))

 , where d(xi, xj) = ‖xi − xj‖22 is the squared Euclidean distance,
and n′ is a variable iterating over all classes.

This nearest-prototype classifier can be seen as a regular linear output layer (Triantafillou
et al., 2020). To see this, note that the prediction score for class j is given by

where we ignored the first term ( f𝜃(x̂)T f𝜃(x̂) ) as it is constant across all classes n. The pre-
diction score for class j is thus obtained by taking the dot product between the input embed-
ding f𝜃(x̂) and −2cn and by adding a bias term bn = cT

n
cn . Thus, the prototype-based classi-

fier is equivalent to a linear output layer, i.e., x̂ = W(L)f𝜃(x̂) + b(L) where the n-th row of
W(L) corresponds to −2cn and the n-th element of b(L) is equal to cT

n
cn . OP-LSTM can

approximate the behavior of Prototypical network with T = 1 steps per task as follows.
First, assume that the underlying base-learner network is the same for Prototypical network
and OP-LSTM, i.e., the initialization of the hidden state is equivalent to the initial weights
of the base-learner used by Prototypical network H(�)

0
= W

(�)

0
 for � ∈ {1, 2,… , L − 1} , and

that the hidden state of the output layer in OP-LSTM is a matrix of zeros, i.e., H(L)

0
= 0 .

Second, let the hidden states of the LSTM in OP-LSTM be be a vector of zeros h(�) = 0 for
every layer � < L , and let the hidden state of the output layer given the example x�

i
= (xi, yi)

be the label identity function h(L)(x�
i
) = yi (which can be learned by an LSTM). Then,

(18)ŷj(x̂) = ‖f𝜃(x̂) − cn‖22 = (f𝜃(x̂) − cn)
T (f𝜃(x̂) − cn)

(19)= f𝜃(x̂)
T f𝜃(x̂) − 2f𝜃(x̂)

Tcn + cT
n
cn

(20)∝ −2f𝜃(x̂)
Tcn + cT

n
cn,

4655Machine Learning (2023) 112:4635–4662	

1 3

OP-LSTM will update the hidden states as follows using Eq. (14). The n-th row of H(L) will
equal � 1

M

∑
xi∈Xn

a(L−1)(xi)

‖a(L−1)(xi)‖F
 , where Xn = {xi ∈ Dtr

Tj
|yi = en} is the set of training inputs with

class n, and � and M are the learning rate of OP-LSTM and number of examples respec-
tively. Note that this expression corresponds to the scaled prototype (mean of the embed-
dings) of class n, that is, 𝛾 c̄n , where c̄n =

1

M

∑
xi∈Xn

a(L−1)(xi)

‖a(L−1)(xi)‖F
 . The prediction for the n-th

class for a given input x̂ is thus given by 𝛾 c̄T
n
a(L−1)(x) + b(L)

n
 , where we omitted the time step

for a(L−1) and bn is a fixed bias in the output layer. Note that for � = −2 , the first term
( −2c̄T

n
a(L−1)(x) ) resembles the first term in the prediction made by Prototypical network for

class n, which is given by −2cT
n
a(L−1)(x) , where a(L−1)(x) = f�(x) . Hence, OP-LSTM can

learn to approximate (up to the bias term) a normalized Prototypical network classifier.
We have thus shown that OP-LSTM can learn to implement a parametric learning algo-

rithm (gradient descent) as well as a non-parametric learning algorithm (prototype-based clas-
sifier), demonstrating the flexibility of the approach.

7 � Conclusions

Meta-learning is a strategy to enable deep neural networks to learn from small amounts of
data. The field has witnessed an increase in popularity in recent years, and many new tech-
niques are being developed. However, the potential of some of the earlier techniques have
not been studied thoroughly, despite promising initial results. In our work, we revisited the
plain LSTM approach proposed by Hochreiter et al. (2001) and Younger et al. (2001). This
approach simply ingests the training data for a given task, and conditions the predictions of
new query inputs on the resulting hidden state.

We analysed this approach from a few-shot learning perspective and uncovered two
potential issues for embedding a learning algorithm into the weights of the LSTM: (1) the
hidden embeddings of the support set are not permutation invariant, and (2) the learning
algorithm and the input embedding mechanism are intertwined, which leads to a challeng-
ing optimization problem and an increased risk of overfitting. In our work, we proposed to
overcome issue (1) by mean pooling the embeddings of individual training examples, ren-
dering the obtained embedding permutation invariant. We found that this method is highly
effective and increased the performance of the plain LSTM on both few-shot sine wave
regression and image classification. Moreover, with this first solution, the plain LSTM
approach already outperformed the popular meta-learning method MAML (Finn et al.,
2017) on the former problem. It struggled, however, to yield good performance on few-shot
image classification problems, highlighting the difficulty of optimizing this approach.

In order to resolve this difficulty, we proposed a new technique, Outer Product LSTM
(OP-LSTM), that uses an LSTM to update the weights of a base-learner network. By
doing this, we effectively decouple the learning algorithm (the weight updates) from the
input representation mechanism (the base-learner), solving issue (2), as done in previous
works (Ravi and Larochelle, 2017; Andrychowicz et al., 2016). Compared with previous
works, OP-LSTM does not receive gradients as inputs. Our theoretical analysis shows that
OP-LSTM is capable of performing an approximate form of gradient descent (as done in
MAML (Finn et al., 2017)) as well as a nearest prototype based approach (as done in Pro-
totypical network (Snell et al., 2017)), showing the flexibility and expressiveness of the

4656	 Machine Learning (2023) 112:4635–4662

1 3

method. Empirically, we found that OP-LSTM overcomes the optimization issues associ-
ated with the plain LSTM approach on few-shot image classification benchmarks, whilst
using fewer parameters. It yields competitive or superior performance compared with
MAML (Finn et al., 2017) and Prototypical network (Snell et al., 2017), both of which it
can approximate.

Future work When the base-learner is a convolutional neural network, we applied OP-
LSTM on top of the convolutional feature embeddings. A fruitful direction for future
research would be to propose a more general form of OP-LSTM that can update also the
convolutional layers. This would require new backward message passing protocols to go
through pooling layers often encountered in convolutional neural networks.

Moreover, we note that OP-LSTM is one way to overcome the two issues associated
with the plain LSTM approach, but other approaches could also be investigated. For exam-
ple, one could try to implement a convLSTM (Shi et al., 2015) such that the LSTM can be
applied directly to raw inputs, instead of only after the convolutional backbone in case of
image classification problems.

Another fruitful direction for future work would be to investigate different recurrent neural
architectures and their ability to perform meta-learning. In the pioneering work of Hochre-
iter et al. (2001) and Younger et al. (2001), it was shown that only LSTMs were successful
whereas vanilla recurrent neural networks and Elman networks failed to meta-learn simple
functions. It would be interesting to explore how architectural design choices influence the
ability of recurrent networks to perform meta-learning.

Lastly, OP-LSTM is a method to learn the weight update rule for a base-learner network,
and is thus orthogonal to many advances and new methods in the field of meta-learning, such
as Warp-MAML (Flennerhag et al., 2020) and SAP (Huisman et al., 2023). Since this is a
nontrivial extension of these methods, we leave this for future work. We think that combining
these methods could yield new state-of-the-art performance.

Appendix A Sine wave regression: additional results

We also performed an experiment to investigate the effect of the input representation on the
performance of the plain LSTM approach [proposed by Younger et al. (2001) and Hochreiter
et al. (2001)] on the 5-shot sine wave regression performance. The experimental setting fol-
lows the setup described in Sect. 5.1. For every input format, we performed hyperparameter
tuning with the same randomly sampled hyperparameter configurations using Table 6. The
performances of the best validated models per input format are displayed in Table 5. The best

Table 5   The influence of
different input information on
the performance of the LSTM on
5-shot sine wave regression

95% confidence intervals are displayed as ±x . The best performances
are displayed in bold font

Input xt Prev
target
yt−1

Prev pred ŷt−1 Prev error et−1 5-Shot MSE

✓ ✓ 0.04 ± 0.002
✓ ✓ ✓ 0.03 ± 0.002
✓ ✓ ✓ 0.05 ± 0.004
✓ ✓ ✓ ✓ 0.06 ± 0.011

4657Machine Learning (2023) 112:4635–4662	

1 3

performance is obtained by feeding the current input, previous target, and the previous predic-
tion into the LSTM, although the differences with other inputs are small.

Appendix B Hyperparameter tuning

B.1 Permutation invariance experiments

For the permutation invariance experiments on few-shot sine wave regression, we sampled
20 random configurations for the plain LSTM from the distributions displayed in Table 6
and validated their performance on 5-shot ( k = 5 ) sine-wave regression. We selected the
best configuration and evaluated it on the meta-test tasks,

For Omniglot, we performed random search with a function evaluation budget of 100,
with a fixed learning rate of 0.001. The architecture of the plain LSTM with sequential
data processing was sampled uniformly at random from {1024-512-256-128-64, 2048-
1024-512-128-64, 2048-1024-512-256-128, 1024-600-400-200-92, 1024-512-512-256-
128-64, 1024-512-512-256-256-128-64, 612-400-256-128-64, 1024-1024-1024-512-256-
128-64, 2048-1024-512-180-100, 1024-580-280-160-80, 256-128-64, 512-256-128-64,
128-64-64-64, 256-128-64, 512-256-64, 256-128-100, 128-64-64-64-64, 64-64-64-64,
50-50}, the number of passes over the support data T was sampled uniformly at random
from {1, 2,… , 10} , and the meta-batch size from {1, 2,… , 32} . We used the best hyperpa-
rameter configuration of the sequential plain LSTM for the plain LSTM with batching to
compare the differences in performance.

B.2 Omniglot

For the plain LSTM approach, we used the best hyperparameter configuration found for the
permutation invariance experiments.

For OP-LSTM, we performed a grid search, varying the meta-batch size within {1, 4, 8,
16, 32}, the architecture of the coordinate-wise LSTM within {20-1, 10-10-1, 40-5, 40-20-
1, 20-20-20-5} (note that the last element is always 1 because it operates per coordinate),
and the number of passes over the support set within {1, 3, 5, 10}.

Detailed learning curves for the plain LSTM on Omniglot Here, we show the validation
learning curves of the sequential LSTM and the LSTM which uses batching to complement
the results displayed in Sect. 5.1. Figure 7 displays the validation learning curves of the
LSTM with batch data ingestion (top row) and the LSTM with sequential data processing
(bottom row). As we can see, batching increases the stability of the training process and

Table 6   The used ranges and
distributions for tuning the
hyperparameters with random
search for sine wave regression

Hyperparameter Range

Number of layers Uniform ({1, 2, 3, 4})
Hidden dimensions Uniform ({1, 3, 8, 20, 40})
Meta-batch size Uniform ({1, 2, 3, 4})
Learning rate LogUniform (1e−5, 4e−2)
Unroll steps Uniform ({1, 2,… , 14})

4658	 Machine Learning (2023) 112:4635–4662

1 3

makes the LSTM less sensitive to the random initialization, as every run succeeds to reach
convergence in contrast to the sequential LSTM.

B.3 miniImageNet and CUB

For plain LSTM, we used random search with a budget of 130 function evaluations, the
meta-batch size was sampled uniformly between 1 and 48, the number of layers between
1 and 4, the hidden size log-uniformly between 32 and 3200, and the number of passes T
over the support dataset uniformly between 2 and 9.

Fig. 7   The mean validation accuracy of the LSTM over time on Omniglot for every of the three different
runs, for different numbers of examples per class k. Top row: LSTM with batching (mean-pooling). Bottom
row: LSTM with sequential data ingestion. As we can see, batching improves the stability of the training
process

Table 7   Mean running times on 5-way miniImageNet and CUB classification over 3 runs

All methods used a Conv-4 backbone as a feature extractor. “x h y min” means x h and y min. The “–” indi-
cates that the method did not finish within 2 days of running time

Technique Parameters miniImageNet CUB

1-Shot 5-Shot 1-Shot 5-Shot

MAML 121, 093 13 h 9 min 12 h 1 min 26 h 57 min 17 h 39 min
Warp-MAML 231, 877 12 h 25 min 12 h 30 min 13 h 6 min 12 h 48 min
SAP 412, 852 5 h 40 min 11 h 14 min 7 h 11 min 11 h 17 min
ProtoNet 121, 093 4 h 14 min 5 h 6 min 31 h 18 min 38 h 46 min
LSTM 55, 879, 349 40 h 14 min 46 h 47 min – –
OP-LSTM (ours) 141, 187 4 h 50 min 5 h 31 min 31 h 58 min 40 h 8 min

4659Machine Learning (2023) 112:4635–4662	

1 3

For OP-LSTM, we performed the same grid search as for Omniglot. We use the best
found hyperparameters for both methods on miniImageNet also on CUB.

We also measured the running times of the techniques on miniImageNet and CUB, as
shown in Table 7. We note that the running times may be affected by the server’s load
and thus can only give a rough estimation of the required amount of compute time. As we
can see, the plain LSTM is the slowest method, despite achieving random performance on
miniImageNet. OP-LSTM, in contrast, is more efficient.

B.4 Robustness to random seeds

Here, we investigate the robustness of the investigated methods to the random seed for the
few-shot image classification experiments performed in Sect. 5.3. We perform th Instead
of computing the confidence intervals over the performances of all test tasks for all seeds,
we now compute the confidence interval over the mean test performance per run. As we
perform three runs per method, we compute the confidence intervals over three observa-
tions per method. Note that the mean performance does not change as taking the mean
of the three means will be equivalent (as the means are based on an equal number of task
performances).

B.4.1 Within‑domain

Here, we present additional results for the conducted within-domain image classification
experiments.

Omniglot The mean test performance and confidence intervals over the random seeds
for Omniglot image classification are shown in Table 8. As we can see, the confidence
intervals are higher than in previous experiments because the intervals are computed over
3 observations instead of 1800 individual test task performances (600 per run). As we can
see, the LSTM is unstable, supporting the hypothesis that the optimization problem is dif-
ficult. OP-LSTM, on the other hand, is less sensitive to the chosen random seed and has a
stability that is comparable to that of MAML.

MiniImageNet and CUB The mean test performance and confidence intervals over the
random seeds for miniImageNet and CUB image classification are shown in Table 9. In
contrast to what we observed on Omniglot, the LSTM is now more stable. This is caused

Table 8   The mean test accuracy
(%) on 5-way Omniglot
classification across 3 different
runs

The 95% confidence intervals, computed over the mean performances
of the 3 different random seeds, are displayed as ±x . The plain LSTM
is outperformed by MAML. All methods (except LSTM) used a fully-
connected feed-forward classifier. The best performances are dislpayed
in bold font

Technique Parameters 1-Shot 5-Shot

MAML 247, 621 84.1 ± 3.10 93.5 ± 0.70
ProtoNet 247, 621 83.6 ± 0.52 93.4 ± 1.48
LSTM 13, 530, 097 72.6 ± 3.87 84.8 ± 6.12
OP-LSTM (ours) 249, 167 84.3 ± 3.18 91.8 ± 0.70

4660	 Machine Learning (2023) 112:4635–4662

1 3

by the fact that it consistently fails to learn a learning algorithm that performs better than
random guessing, and thus performs stably at chance level.

B.4.2 Cross‑domain

Lastly, we compute the confidence intervals in cross-domain settings and display the
results in Table 10. Again, the LSTM is a stable random guesser. The other algorithms
are less stable, but do yield a better performance. We cannot observe a general pattern
of stability in the sense that one algorithm is consistently more stable than others.

Acknowledgements  This work was performed using the compute resources from the Academic Leiden
Interdisciplinary Cluster Environment (ALICE) provided by Leiden University.

Author Contributions  MH has conducted the research presented in this manuscript. TM, AP, and JvR have
regularly provided feedback on the work, contributed towards the interpretation of results, and have criti-
cally revised the whole. All authors approve the current version to be published and agree to be accountable
for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the
work are appropriately investigated and resolved.

Table 9   Meta-test accuracy scores on 5-way miniImageNet and CUB classification over 3 runs

The 95% confidence intervals, computed over the mean performances of the 3 different random seeds, are
displayed as ± x. All methods used a Conv-4 backbone as a feature extractor. The “–” indicates that the
method did not finish within 2 days of running time. The best performances are displayed in bold font

Technique Parameters miniImageNet CUB

1-Shot 5-Shot 1-Shot 5-Shot

MAML 121, 093 48.6 ± 4.00 63.0 ± 0.33 57.5 ± 0.83 74.8 ± 2.10
Warp-MAML 231, 877 50.4 ± 2.58 65.6 ± 0.98 59.6 ± 2.15 74.2 ± 2.51
SAP 412, 852 53.0 ± 3.71 67.6 ± 0.47 63.5 ± 6.24 73.9 ± 1.57
ProtoNet 121, 093 50.1 ± 4.06 65.4 ± 2.84 50.9 ± 2.35 63.7 ± 0.47
LSTM 55, 879, 349 20.2 ± 0.60 19.4 ± 0.47 – –
OP-LSTM (ours) 141, 187 51.9 ± 2.52 67.9 ± 2.40 60.2 ± 1.58 73.1 ± 1.57

Table 10   Average cross-domain meta-test accuracy scores over 5 runs using a Conv-4 backbone

Techniques trained on tasks from one data set and were evaluated on tasks from another data set. The 95%
confidence intervals, computed over the mean performances of the 3 different random seeds, are displayed
as ± x. The “–” indicates that the method did not finish within 2 days of running time. The best perfor-
mances are displayed in bold font

MIN → CUB CUB → MIN

1-Shot 5-Shot 1-Shot 5-Shot

MAML 37.9 ± 2.22 53.6 ± 0.67 31.1 ± 1.19 45.8 ± 2.06
Warp-MAML 42.0 ± 0.85 56.9 ± 4.16 31.1 ± 1.59 41.3 ± 1.37
SAP 41.5 ± 3.72 58.0 ± 1.79 33.3 ± 2.33 47.1 ± 1.28
ProtoNet 39.7 ± 4.11 56.0 ± 4.89 31.7 ± 0.20 45.3 ± 1.84
LSTM 20.1 ± 0.77 20.0 ± 0.40 – –
OP-LSTM (ours) 42.3 ± 1.90 58.5 ± 1.49 35.8 ± 2.98 49.0 ± 0.80

4661Machine Learning (2023) 112:4635–4662	

1 3

Availability of data and materials  All data that was used in this research have been published as benchmarks
by Deng et al. (2009); Vinyals et al. (2016) (miniImageNet) and Wah et al. (2011) (CUB), and is publicly avail-
able. The data generator for sine wave regression experiments can be found in the provided code (see below).

Code availability  All code that was used for this research is made publicly available at https://​github.​com/​
mikeh​uisman/​lstm-​fewsh​otlea​rning-​oplstm.

Declarations 

Conflict of interest  All authors certify that they have no affiliations with or involvement in any organization
or entity with any financial interest or non-financial interest in the subject matter or materials discussed in
this manuscript.

Consent for publication  Not applicable: this research does not involve personal data, and publishing of this
manuscript will not result in the disruption of any individual’s privacy.

Employment  All authors declare that there is no recent, present, or anticipated employment by any organiza-
tion that may gain or lose financially through the publication of this manuscript.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Alver, S., & Precup, D. (2021). What is going on inside recurrent meta reinforcement learning agents?
arXiv preprint arXiv:​2104.​14644.

Andrychowicz, M., Denil, M., Colmenarejo, S. G., Hoffman, M. W., Pfau, D., Schaul, T., Shillingford,
B., & De Freitas, N. (2016). Learning to learn by gradient descent by gradient descent. In Advances
in neural information processing systems (Vol. 29, pp. 3988–3996). Curran Associates Inc.

Brazdil, P., van Rijn, J. N., Soares, C., & Vanschoren, J. (2022). Metalearning: Applications to auto-
mated machine learning and data mining (2nd ed.). Springer.

Chan, S., Santoro, A., Lampinen, A., Wang, J., Singh, A., Richemond, P., McClelland, J., & Hill, F.
(2022). Data distributional properties drive emergent in-context learning in transformers. In
Advances in neural information processing systems.

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchi-
cal image database. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition (pp. 248–255). IEEE.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever, I., & Abbeel, P. (2016). RL2 : Fast reinforce-
ment learning via slow reinforcement learning. arXiv preprint arXiv:​1611.​02779.

Finn, C., & Levine, S. (2017). Meta-learning and universality: Deep representations and gradient descent
can approximate any learning algorithm. arXiv preprint arXiv:​1710.​11622.

Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep net-
works. In Proceedings of the 34th international conference on machine learning (ICML’17) (pp.
1126–1135). PMLR.

Flennerhag, S., Rusu, A. A., Pascanu, R., Visin, F., Yin, H., & Hadsell, R. (2020). Meta-learning with
warped gradient descent. In International conference on learning representations (ICLR’20).

He, K., Zhang, X., Ren, S., & Sun, J., (2015). Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification. In Proceedings of the IEEE international conference on com-
puter vision (pp. 1026–1034).

Hochreiter, S., Younger, A. S., & Conwell, P. R. (2001). Learning to learn using gradient descent. In
International conference on artificial neural networks (pp. 87–94). Springer.

https://github.com/mikehuisman/lstm-fewshotlearning-oplstm
https://github.com/mikehuisman/lstm-fewshotlearning-oplstm
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2104.14644
http://arxiv.org/abs/1611.02779
http://arxiv.org/abs/1710.11622

4662	 Machine Learning (2023) 112:4635–4662

1 3

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8),
1735–1780.

Huisman, M., Plaat, A., & van Rijn, J. N. (2023). Subspace adaptation prior for few-shot learning
(forthcoming).

Huisman, M., Van Rijn, J. N., & Plaat, A. (2021). A survey of deep meta-learning. Artificial Intelligence
Review, 54(6), 4483–4541.

Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic gradient descent. In International confer-
ence on learning representations (ICLR’15).

Kirsch, L., Harrison, J., Sohl-Dickstein, J., & Metz, L. (2022). General-purpose in-context learning by
meta-learning transformers. arXiv preprint arXiv:​2212.​04458.

Kirsch, L., & Schmidhuber, J. (2021). Meta learning backpropagation and improving it. Advances in Neural
Information Processing Systems, 34, 14122–14134.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neu-
ral networks. Advances in Neural Information Processing Systems, 25, 1097–1105.

Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through proba-
bilistic program induction. Science, 350(6266), 1332–1338.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
Lee, Y., & Choi, S. (2018). Gradient-based meta-learning with learned layerwise metric and subspace. In Pro-

ceedings of the 35th international conference on machine learning (ICML’18) (pp. 2927–2936). PMLR.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller,

M., Fidjeland, A. K., Ostrovski, G., & Petersen, S. (2015). Human-level control through deep rein-
forcement learning. Nature, 518(7540), 529–533.

Naik, D. K., & Mammone, R. J. (1992). Meta-neural networks that learn by learning. In International joint
conference on neural networks (IJCNN’92) (pp. 437–442). IEEE.

Olah, C. (2015). Understanding LSTM networks. Retrieved January 23, 2023, from https://​colah.​github.​io/​
posts/​2015-​08-​Under​stand​ing-​LSTMs/

Park, E., & Oliva, J. B. (2019). Meta-curvature. Advances in Neural Information Processing Systems, 32,
3309–3319.

Ravi, S., & Larochelle, H. (2017). Optimization as a Model for Few-Shot Learning. In International confer-
ence on learning representations (ICLR’17).

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., & Lillicrap, T. (2016). Meta-learning with memory-
augmented neural networks. In Proceedings of the 33rd international conference on international con-
ference on machine learning (ICML’16) (pp. 1842–1850).

Schmidhuber, J. (1987). Evolutionary principles in self-referential learning, or on learning how to learn:
the meta-meta-... hook (Master’s thesis, Technische Universität München).

Shi, X., Chen, Z., Wang, H., Yeung, D. Y., Wong, W. K., & Woo, W. C. (2015). Convolutional lstm network:
A machine learning approach for precipitation nowcasting. In Advances in neural information process-
ing systems (Vol. 28).

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antono-
glou, I., Panneershelvam, V., Lanctot, M., & Dieleman, S. (2016). Mastering the game of go with deep
neural networks and tree search. Nature, 529(7587), 484–489.

Snell, J., Swersky, K., & Zemel, R. (2017). Prototypical networks for few-shot learning. In Advances in neu-
ral information processing systems (Vol. 30, pp. 4077–4087). Curran Associates Inc.

Thrun, S. (1998). Lifelong learning algorithms. In Learning to learn (pp. 181–209). Springer.
Triantafillou, E., Zhu, T., Dumoulin, V., Lamblin, P., Evci, U., Xu, K., Goroshin, R., Gelada, C., Swersky,

K., Manzagol, P. A., Larochelle, H. (2020). Meta-dataset: A dataset of datasets for learning to learn
from few examples. In International conference on learning representations (ICLR’20).

Vinyals, O., Blundell, C., Lillicrap, T., & Wierstra, D. (2016). Matching networks for one shot learning.
Advances in Neural Information Processing Systems, 29, 3637–3645.

Wah, C., Branson, S., Welinder, P., Perona, P., & Belongie, S. (2011). The Caltech-UCSD Birds-200-2011
dataset (Tech. Rep. CNS-TR-2011-001, California Institute of Technology).

Wang, J.X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R., Blundell, C., Kumaran, D.,
& Botvinick, M. (2016). Learning to reinforcement learn. arXiv preprint arXiv:​1611.​05763.

Younger, A. S., Hochreiter, S., & Conwell, P. R. (2001). Meta-learning with backpropagation. In Interna-
tional joint conference on neural networks (IJCNN’01). IEEE.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/2212.04458
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://arxiv.org/abs/1611.05763

	Are LSTMs good few-shot learners?
	Abstract
	1 Introduction
	2 Related work
	3 Meta-learning with LSTM
	3.1 LSTM architecture
	3.2 Meta-learning with LSTM
	3.3 Problems with the classical LSTM architecture
	3.4 Towards an improved architecture

	4 Outer product LSTM (OP-LSTM)
	4.1 The architecture
	4.2 The algorithm

	5 Experiments
	5.1 Permutation invariance for the plain LSTM
	5.2 Performance comparison on few-shot sine wave regression
	5.3 Performance comparison on few-shot image classification
	5.4 Analysis of the learned weight updates

	6 Relation to other methods
	7 Conclusions
	Appendix A Sine wave regression: additional results
	Appendix B Hyperparameter tuning
	B.1 Permutation invariance experiments
	B.2 Omniglot
	B.3 miniImageNet and CUB
	B.4 Robustness to random seeds
	B.4.1 Within-domain
	B.4.2 Cross-domain

	Acknowledgements
	References

