
Vol.:(0123456789)

Machine Learning (2023) 112:4763–4788
https://doi.org/10.1007/s10994-023-06395-w

1 3

WEASEL 2.0: a random dilated dictionary transform for fast,
accurate and memory constrained time series classification

Patrick Schäfer1  · Ulf Leser1

Received: 6 February 2023 / Revised: 26 June 2023 / Accepted: 16 August 2023 /
Published online: 19 September 2023
© The Author(s) 2023

Abstract
A time series is a sequence of sequentially ordered real values in time. Time series clas-
sification (TSC) is the task of assigning a time series to one of a set of predefined classes,
usually based on a model learned from examples. Dictionary-based methods for TSC rely
on counting the frequency of certain patterns in time series and are important components
of the currently most accurate TSC ensembles. One of the early dictionary-based methods
was WEASEL, which at its time achieved SotA results while also being very fast. How-
ever, it is outperformed both in terms of speed and accuracy by other methods. Further-
more, its design leads to an unpredictably large memory footprint, making it inapplica-
ble for many applications. In this paper, we present WEASEL 2.0, a complete overhaul of
WEASEL based on two recent advancements in TSC: Dilation and ensembling of rand-
omized hyper-parameter settings. These two techniques allow WEASEL 2.0 to work with
a fixed-size memory footprint while at the same time improving accuracy. Compared to 15
other SotA methods on the UCR benchmark set, WEASEL 2.0 is significantly more accu-
rate than other dictionary methods and not significantly worse than the currently best meth-
ods. Actually, it achieves the highest median accuracy over all data sets, and it performs
best in 5 out of 12 problem classes. We thus believe that WEASEL 2.0 is a viable alterna-
tive for current TSC and also a potentially interesting input for future ensembles.

Keywords  Classification · Time series · Dictionary · Dilation

Editors: Fabio Vitale, Tania Cerquitelli, Marcello Restelli, Charalampos Tsourakakis.

 *	 Patrick Schäfer
	 patrick.schaefer@hu-berlin.de

 *	 Ulf Leser
	 leser@informatik.hu-berlin.de

1	 Humboldt Universität zu Berlin, Berlin, Germany

http://orcid.org/0000-0003-2244-6065
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06395-w&domain=pdf

4764	 Machine Learning (2023) 112:4763–4788

1 3

1  Introduction

A time series (TS) is a collection of values sequentially ordered in time. TS emerge in
many scientific and commercial applications, like weather observations, wind energy fore-
casting, industry automation, mobility tracking, etc. Research in TS is diverse and covers
topics like storage, compression, clustering, etc.; see Esling and Agon (2012) for a survey.
In this work, we study the problem of time series classification (TSC): Given a concrete
TS, the task is to determine to which of a set of predefined classes this TS belongs to, the
classes typically being characterized by a set of training examples. TSC has applications in
many domains; for instance, it is applied to determine the species of a flying insect based
on the acoustic profile generated from its wing-beat (Potamitis & Schäfer, 2014), or for
identifying the most popular TV shows from smart meter data (Greveler et al., 2012).

To date, among the most accurate approaches are kernel-based methods (Dempster
et al., 2020, 2021; Tan et al., 2022), shapelets (Guillaume et al., 2022) and hybrids (Mid-
dlehurst et al., 2021b; Shifaz et al., 2020) (heterogeneous ensembles of base TSC). These
heterogeneous ensembles of core classifiers, encompassing kernel/convolution, shapelet,
dictionary, and interval classifiers, have emerged as leading performers in the field of time
series classification. This conclusion has been recently validated through a comprehensive
evaluation involving 33 state-of-the-art classifiers (Middlehurst et al., 2023). Particularly
noteworthy are two highly effective classifiers: (a) Hydra-MultiRocket (Dempster et al.,
2023), which combines the dictionary classifier Hydra with MultiRocket, and (b) HIVE-
COTE 2 (Middlehurst et al., 2021b), a heterogeneous ensemble incorporating a dictionary
classifier (TDE (Middlehurst et al., 2021a)), among others. Both highlight a crucial role of
dictionary classifiers in achieving high classification accuracy over a diverse set of tasks.

So, what makes dictionary-based classification so important? Previous research (Large
et al., 2019; Bagnall et al., 2016, 2017) has emphasized that when the task of distinguishing
between classes within a dataset relies on the frequency of subsequence repetitions rather
than solely their presence or absence, dictionary methods emerge as the optimal choice of
classifier. This becomes particularly relevant in the context of time series data exhibiting
periodicity, such as recordings of energy consumption in consumer devices or motion data.

Among various datasets, the PigAirwayPressure dataset1 highlights the significant
advantage of dictionary-based classification over other classifiers, including kernel-based
approaches. This dataset consists of airway pressure measurements collected from 52 pigs
before and after an induced injury, simulating internal bleeding. As time progresses, inter-
nal bleeding can lead to symptoms such as low blood pressure, increased heart rate, and
elevated breathing rate. The dataset captures the continuous rise in airway pressure from
the start of ventilation until it reaches its highest point, known as the peak inspiratory pres-
sure (PIP).

A distinguishing factor between healthy and injured pigs lies in the number of PIP
points observed within the recorded time frame, in this dataset ranging from 1 to 3. The
number of PIP points directly corresponds to the fluctuations in breathing rate after the
injury is induced. This pattern aligns perfectly with the characteristics that dictionary
classifiers, like WEASEL 2.0, are designed to capture and utilize. In comparison to other
classifiers, such as ROCKET (Dempster et al., 2020) with a test accuracy of only 8.7%
and MultiRocket with accuracy of 60.6% , our novel dictionary approach, WEASEL 2.0,

1  http://​www.​times​eries​class​ifica​tion.​com/​descr​iption.​php?​Datas​et=​PigAi​rwayP​ressu​re.

http://www.timeseriesclassification.com/description.php?Dataset=PigAirwayPressure

4765Machine Learning (2023) 112:4763–4788	

1 3

achieves the highest test accuracy among all competitors, with an impressive accurarcy of
93.8% on the default test split. For further details, please refer to the experimental Sect. 5.6.

Notably, classifiers like BOSS, WEASEL, TDE, and MUSE (Schäfer, 2015; Middle-
hurst et al., 2021a; Schäfer & Leser, 2017a, 2017b) have consistently demonstrated remark-
able accuracy and have made significant contributions to the field of time series classi-
fication (Bagnall et al., 2016; Ruiz et al., 2021). Yet recently, these dictionary methods
have fallen behind in accuracy, and their major drawback is their potentially huge memory-
footprint, due to a large variance in generated words. Conceptually, dictionary approaches
extract phase-independent subsequences by sliding a window over TS. Each window is
transformed into a word, and the frequency of repeating patterns is recorded. A classifier
can be learned on the resulting feature vector. WEASEL (Schäfer & Leser, 2017a), which
is the basis of this work, uses SFA (Schäfer & Högqvist, 2012) for word generation, and a
Ridge regression classifier. The symbolic transformation SFA (Schäfer & Högqvist, 2012)
is used in all SotA dictionary-based classifiers. It applies a Fourier transform to subse-
quences, and discretizes frequencies into symbols.

A recent theme in TSC is to build large, but size-controlled features space of several
thousand features, and use these as input to train a linear RIDGE regression classifier. The
large feature space is generated from a single high bias transform, by building an ensemble
on randomized sets of hyper-parameters (Dempster et al., 2020, 2021; Tan et al., 2022;
Guillaume et al., 2022). Both in combination generate a low bias and low variance trans-
formation usable by a linear classifier, for high accuracy and fast prediction. Another recent
discovery is the use of a dilation operation applied to a filter, such as the convolutional
filter [ROCKET (Dempster et al., 2020, 2021; Tan et al., 2022; Dempster et al., 2023)] or
a sliding window operation [R-DST (Guillaume et al., 2022)]. Dilation adds a gap between
values, effectively increasing the size of the receptive field of the filter, and also operating
similar to a down-sampling operation. Thus, dilation offers features at multiple scales.

In this work, we present a complete overhaul of the dictionary transform WEASEL,
using two state-of-the-art techniques: (a) randomized hyper-parameter ensemble and (b)
dilation. WEASEL 2.0 addresses many of the shortcomings of current dictionary-based
transforms, including the memory foot-print and it inferior accuracy.

Figure 1 shows the advances made by WEASEL 2.0 in comparison to SotA dictionary
transforms (Hydra (Dempster et al., 2023) is a hybrid between kernel-based and dictionary,
and MrSQM (Le Nguyen & Ifrim, 2022) is a hybrid between Shapelet and Dictionary). On
114 UCR datasets it is the best of its class, and significantly more accurate than its prede-
cessor WEASEL, and furthermore it has a predictable memory footprint (see Fig. 13). Its
dictionary is of only some tens of thousand of features, which makes it similar in size to
kernel-based methods.

Fig. 1   Critical difference plot on test accuracy for dictionary classifiers on 114 UCR datasets. WEASEL 2.0
is the most accurate dictionary classifier. See Fig. 7 for a comparison to all SotA classifiers

4766	 Machine Learning (2023) 112:4763–4788

1 3

In summary, our contributions are as follows:

1.	 We introduce a novel dilation mapping. This allows to turn any subsequence-based
method into a dilated algorithm, i.e. it is not limited to dictionary-based methods. This
mapping can be implemented using just two lines of python code, and can be applied
prior to the down-stream classification task.

2.	 We introduce changes to the symbolic transformation SFA (Schäfer & Högqvist, 2012),
used in word generation, to significantly reduce the feature space to just 256 words,
including a novel variance-based feature selection strategy. SFA is used in the SotA
classifiers and ensembles such as (Le Nguyen & Ifrim, 2022; Middlehurst et al., 2021a,
b; Shifaz et al., 2020), thus any improve in SFA potentially benefits these, too.

3.	 The refined word generation in combination with random ensembling over multiple
hyper-parameters produces a predictable size of the feature space. Thereby, we solve
the major shortcoming of dictionary methods.

4.	 Through extensive experiments on the UCR datasets, we show that WEASEL 2.0
is as fast and not significantly different in accuracy than the non-ensemble SotA,
namely ROCKET (Dempster et al., 2020), MiniRocket (Dempster et al., 2021), Multi-
Rocket (Tan et al., 2022), or R-DST (Guillaume et al., 2022). Furthermore, WEASEL
2.0 is the best dictionary-based method.

5.	 Finally, given the multitude of classifiers available and the absence of a universal supe-
rior option for all datasets, we aim to provide insights into the characteristics of datasets
in which WEASEL 2.0 excels in Sect. 5.6.

Therefore, we believe that WEASEL 2.0 presents itself as a promising alternative for the
current time series classification (TSC) landscape, and interesting input for future hetero-
geneous ensembles.

The rest of the paper is organized as follows: In Sect. 2 we present the background and
in Sect. 3 the related work on time series, classification, and dictionary approaches. Sec-
tion 4 presents the novel WEASEL 2.0. Section 5 shows our experimental evaluation and
Sect. 6 concludes the paper.

2 � Background

We will first formally define the basic concepts.

Definition 1  Time Series (TS): A time series T =
(
t1, t2,… , tn

)
 is an ordered sequence of n

real values. We denote the i-th value of T by ti.

Such a TS is also refereed to as univariate time series. If each point represents multiple
variables (e.g. humidity, temperature and pressure) we call it a multivariate data series.

Most SotA TSC algorithms make use of subsequences of the data.

Definition 2  Subsequence: A subsequence Ti,l of T = (t1,… , tn) , with 1 ≤ i ≤ n and
1 ≤ i + l ≤ n , is a subseries of length l, consisting of l contiguous points from T starting at
offset i: Ti,l = (ti, ti+1, ..., ti+l−1)

4767Machine Learning (2023) 112:4763–4788	

1 3

We may extract subsequences from a TS by the use of a sliding window.

Definition 3  Sliding Window: A time series T of length n has (n − l + 1) sliding windows
of length l, when increment is 1, given by:

Time series classification (TSC) is the task of predicting a class label for a TS whose
label is unknown. A TS classifier is a function that is learned from a training dataset of dis-
crete, labeled time series, takes an unlabeled time series as input and outputs a label.

Definition 4  Dataset: A dataset D =
(
T (i), y(i)

)
i∈[1…m]

 is a collection of m time series, each
assigned to one of a predefined set of classes Y. We denote the size of D by m, and the ith
instance by T (i) ∈ ℝ

n , and its label by y(i) ∈ Y .

A common operation to reduce the length of a very large TS, is to take every d-th value,
dropping all other values, and referred to as down-sampling.

Definition 5  Down-Sampling: A time series T of length n is down-sampled by factor d, by
taking every d-th value from T:

Definition 6  Dilated Subsequence: A dilated subsequence of T with dilation d and offset
i, with 1 ≤ i ≤ n and 1 ≤ i + l × d ≤ n , is a subseries of length l, obtained from down-sam-
pling the time series starting from offset i and then extracting the first l continuous points:

3 � Related work

In this section, we will first introduce the techniques used in time series classification
(Sect. 3.1). Next, we will put the focus on dictionary-based methods, the symbolic transfor-
mation SFA (Sect. 3.2), and WEASEL (Sect. 3.3).

3.1 � Time series classification (TSC)

The techniques used for TSC can be broadly categorized into the following catego-
ries (Bagnall et al., 2016). We present a brief overview of algorithms, based on first movers
and state-of-the-art in their field.

1.	 Distance based classifiers use a distance function, to measure the similarity, and a clas-
sification algorithm on the distances. Historically, distance functions have been mostly
used with nearest neighbor (NN) classifiers. Commonly, 1-NN Dynamic Time Warping
(DTW) (Rakthanmanon et al., 2012) was used as a baseline in comparisons (Lines &
Bagnall, 2014; Bagnall et al., 2016), but is now significantly worse than SotA (Bagnall

sliding_windows(T) = {T1,l,… , T(n−l+1),l}

down_sample(T , d) = T1∶∶d = (t1, t1+d, t1+2×d,…)

dilated_window(T , i, d) =
(
ti, ti+d×1, ti+d×2, ..., ti+d×(l−1)

)

4768	 Machine Learning (2023) 112:4763–4788

1 3

et al., 2016; Ruiz et al., 2021). Typically, these techniques work well for short but fail
for noisy or long TS (Schäfer, 2015). Furthermore, DTW has a computational complex-
ity of O(n2) for TS of length n. Recent advances include the Matrix Profile Distance
(MPDist) (Gharghabi et al., 2018), which defines two time series to be similar, if they
share many phase-independent subsequences.

2.	 Exploratory transformations are a popular recent theme. These extract descriptive sta-
tistics as features from time series (subsequences) to be used in classifiers. Several tool-
kits exist for extracting features, including hctsa (Christ et al., 2018), with over 7700
features. catch22 (Lubba et al., 2019) contains a subset of 22 dominant features from
hctsa. tsfresh (Christ et al., 2018) is a collection of roughly 800 features.

3.	 Shapelets are phase independent discriminatory subsequences, which presence or
absence can be an indicator of a class of a TS. The expression of a shapelet is found by
sliding the shapelet across the TS, and minimizing the Euclidean distance between each
subsequence in the TS and the shapelet. The currently most accurate Shapelet approach
is R-DST (Guillaume et al., 2022). It combines randomization on hyper-parameters with
dilation to increase its diversity. A total of 10k shapelets with three features each are
extracted, and are fed into a RIDGE regression model. MrSEQL (Agarwal et al., 2021)
is an ensemble classifiers that looks for the absence of presence of patterns. But other
than the previous method, which minimizes the distance between raw subsequences,
MrSEQL discretizes subsequences into words using SFA (Schäfer & Högqvist, 2012)
and searches for matches of words. A set of discriminative words is selected through
Sequence Learner (SEQL) (Ifrim & Wiuf, 2011).

4.	 Dictionary approaches use phase-independent subsequences by sliding a window
over time series, too. But rather than to measure the distance to a subsequence, as in
shapelets, each window is transformed into a word, and the frequency of occurrence of
repeating patterns is recorded. These methods discriminate based on the frequency of
patterns. BOSS (Schäfer, 2015) converts each sliding window into a word by the use of
the Symbolic Fourier transformation (SFA) (Schäfer & Högqvist, 2012). A classifier
can be built using a non-symmetric distance function in combination with a 1-NN clas-
sifier. Temporal Dictionary Ensemble (TDE) (Middlehurst et al., 2021a) is an ensemble
of 1-NN classifiers, each transforming the time series into a histogram of word counts
using SFA. Conceptually, TDE combines properties of different flavors of dictionary
classifiers, like WEASEL (Schäfer & Leser, 2017a), or SpatialBOSS (Large et al., 2019).

5.	 Kernel/Convolution classifiers extend on the idea of Shapelets. Shapelets can be real-
ised through a convolution operation, followed by a min-pooling operation on the array
of windowed Euclidean distances. This was first observed by Grabocka et al. (2014).
The main difference between convolutions and shapelets is that shapelets are searched
for from the candidate space of subsequences extracted from the training data. Yet,
convolution filters are found from the entire space of possible real-values. The most
well known approach is ROCKET (Dempster et al., 2020), with its successors Mini-
ROCKET (Dempster et al., 2021), MultiROCKET (Tan et al., 2022), and Hydra (Demp-
ster et al., 2023). ROCKET generates tens of thousands of randomly parameterized
convolutional kernels, and applies two pooling operations to the output: the maximum
and the proportion of positive values. These are used as features in RIDGE regression.
The first extension MiniROCKET is significantly faster with an equal accuracy, and
reduces the randomization of parameters of ROCKET, making it almost deterministic.
MultiROCKET builds on MiniROCKET adding new pooling operations and first order
differences. MultiROCKET is one of the most accurate classifiers to date (Tan et al.,
2022).

4769Machine Learning (2023) 112:4763–4788	

1 3

6.	 Hybrid: The most accurate current TSC algorithms are ensembles of multiple types
of classifiers. HIVE-COTE v1 (Lines et al., 2016) incorporates classifiers from five
domains. It was recently updated to version 2.0 (Middlehurst et al., 2021b) to address
scalability issues, and reflect recent innovations. It refined the ensemble to use more
accurate classifiers, such as ROCKET [Arsenal (Middlehurst et al., 2021b)] or TDE. To
date, this is the most accurate classifier. But it is one to two orders of magnitude slower
than kernel-based classifiers while not being significantly more accurate (Tan et al.,
2022).

7.	 Deep Learning: InceptionTime (Ismail Fawaz et al., 2020) is an ensemble of deep con-
volutional neural networks based on the Inception architecture. According to its authors,
it is currently the most accurate deep learning approach for TSC. LSTM-FCN (Karim
et al., 2017) combines a recurrent neural network with a fully connected neural network.
At the time of its publication, it was among the most accurate approaches.

The Rocket-family of approaches utilizes pooling operators to assess both the fre-
quency of subsequence occurrences (PPV) and the presence or absence of subsequences
(MAX). PPV bears a resemblance to dictionary-based methods, while MAX mirrors
shapelet-based approaches. In fact, the problem of shapelet discovery can be refor-
mulated as convolving the shapelet with the data, followed by a MAX-pooling opera-
tion (Guillaume et al., 2022; Grabocka et al., 2014). By integrating these techniques, the
Rocket-family approaches effectively harness the advantages of dictionary-based and
shapelet-based analyses, enhancing overall classification performance.

3.2 � Dictionary‑based approaches

Algorithms following the dictionary model build a classification function by:

1.	 Extracting subsequences, aka windows, from a TS;
2.	 Transforming each window of real values into a discrete-valued word (a sequence of

symbols over a fixed alphabet);
3.	 Building a sparse feature vector from word counts, and
4.	 Finally using a classification method from the machine learning repertoire on these

feature vectors.

Fig. 2 illustrates these steps from a raw time series to a dictionary model using overlap-
ping windows.

Dictionary-based methods differ in the concrete way of transforming a window of
real-valued measurements into discrete words (discretization). For example, the basis
of the BOSS model, TDE (Middlehurst et al., 2021a), or MrSQM (Le Nguyen & Ifrim,
2022), is a symbolic representation called SFA. SFA works as follows (Schäfer &
Högqvist, 2012):

1.	 Values in each window are normalized to have standard deviation of 1 to obtain ampli-
tude invariance.

2.	 Each normalized window of length w is subjected to dimensionality reduction by the use
of the truncated Fourier transform, keeping only the first l < w coefficients for further

4770	 Machine Learning (2023) 112:4763–4788

1 3

analysis. This step acts as a low pass filter, as higher order Fourier coefficients typically
represent rapid changes like dropouts or noise.

3.	 Each coefficient is discretized to a symbol of an alphabet of fixed size � to achieve
further robustness against noise.

Figure 3 exemplifies this process from a window of length 128 to its DFT representation,
and finally the word ABDDABBB.

3.3 � WEASEL 1.0

WEASEL, as published in (Schäfer & Leser, 2017a), refined the dictionary approaches to
add supervision using class labels. It is the basis of the WEASEL 2.0 model presented in
this paper. Thus, we will refer to WEASEL as WEASEL 1.0 in the following.

Fig. 2   Transformation of a TS into the dictionary-based model [from (Schäfer & Leser, 2017a)] using
overlapping windows (second to top), discretization of windows to words (second from bottom), and word
counts (bottom)

4771Machine Learning (2023) 112:4763–4788	

1 3

WEASEL 1.0 is composed of the building blocks depicted in Fig. 4: a supervised
SFA representation for discriminative word generation, and a large sparse dictionary of
word counts. First, WEASEL extracts normalized subsequences (windows) of varying
lengths from a TS. Next, each window is approximated using the Fourier transform,
and the real and imaginary Fourier values are kept that best separate TS from different
classes, determined using the ANOVA F-test. These selected Fourier values are then
discretized into a word based on information gain binning, using class labels to choose
those discretization boundaries to best separate the TS classes; This process is similar
to a decision tree split. Finally, a single, large sparse dictionary is built from the words
(unigrams), neighboring words (bigrams), over all chosen window lengths. To filter
irrelevant words, and reduce the size of the dictionary, a Chi-squared test is applied. A
RIDGE regression classifier is trained on the retained dictionaries.

WEASEL 1.0 is still among the fastest classifiers, see Sect. 5.3, but its accuracy is
significantly worse than the SotA, and its dictionary can result in excessive memory
consumption (Sect. 5.5).

4 � WEASEL 2.0 ‑ A random dilated dictionary classifier

We observed two design issues (DI) present in current dictionary classifiers, not just
limited to WEASEL 1.0 but also MrSQM, TDE, BOSS:

1.	 DI 1: Memory footprint: A major shortcoming of dictionary based approaches is that
the feature space is huge, but sparse. This allows for high accuracy classification using
linear classifiers, but results in large amounts of memory to be allocated even for small
datasets.

2.	 DI 2: Sensitivity: A negative effect of supervision in word generation is that a minor
change in two very similar subsequences can result in two distinct words, when it causes
a Fourier value close to a discretization boundary to change. This is typically compen-

Fig. 3   The Symbolic Fourier Approximation (SFA) [from (Schäfer & Leser, 2017a)]: A time series (left)
is approximated using the truncated Fourier transform (center) and discretized to the word ABD-
DABBB (right) with the four-letter alphabet (’a’ to ’d’). The inverse transform is depicted by an orange area
(right), representing the tolerance for all signals that will be mapped to the same word

4772	 Machine Learning (2023) 112:4763–4788

1 3

sated by increasing the number of words generated using different parameterizations of
SFA. If we however restrict the dictionary size, the increased sensitivity to small changes
can deteriorate accuracy.

Our main goals in the design of WEASEL 2.0 were thus to constrain the memory con-
sumption, and add robustness (improve the sensitivity) in word generation. WEASEL
2.0 differs from WEASEL 1.0 in multiple aspects highlighted in red in Fig. 4:

1.	 Dilation is applied to each time series using a dilation mapping (see Sect. 4.1). This adds
state of the art techniques to WEASEL;

2.	 A fixed-size dictionary of just 256 words is generated for each parameter-set to reduce
the impact of minor changes in extracted windows (see Sect. 4.2). This addresses DI 1;

3.	 A variance-based real and imaginary Fourier value selection strategy for SFA is
introduced (see Sect. 4.4). We add first order differences of the time series, just as in
MUSE (Schäfer & Leser, 2017b). This addresses DI 2;

4.	 We apply randomization to choose parameter configurations and thereby increase vari-
ance (see Sect. 4.5). This addresses DI 2;

5.	 The final fixed-size feature vector is small and used for classification through a fast
RIDGE regression classifier (see Sect. 4.6).

4.1 � Dilation mapping

Dilation is a technique that allows a filter, such as a convolution filter or sliding window,
to cover more of the time series data by inserting gaps between the entries in the filter.
These gaps allow the filter to increase the size of the receptive field, while keeping the
total number of values constant. For example, a dilation of d = 2 would insert a gap of
1 between every pair of values. This effectively doubles the size of the receptive field,
and allows the filter to process the data at different scales, similar to a down-sampling
operation.

Fig. 4   The WEASEL 1.0 [from (Schäfer & Leser, 2017a)] and WEASEL 2.0 pipelines. Differences are
highlighted in red. WEASEL 2.0 adds a dilation mapping prior to the sliding window operator, carefully
chooses parameters to control the size and memory consumption of the dictionary, and adds randomization
to increase variance

4773Machine Learning (2023) 112:4763–4788	

1 3

Dilation is one core mechanism related to the recent increase in scalable and accurate
classifiers. In TSC it was first proposed by the ROCKET-family of classifiers. Dilation pro-
vides analysis at different scales, while keeping the number of values of the filter constant.
In ROCKET filter sizes of 7, 9 or 11 are common. In prior methods, the window size was
increased up to hundredths of values, increasing computations and memory footprint, and
thereby reducing scalability.

Introducing dilation to an algorithm involves a (major) rewrite of its code-base.
Large TSC libraries such as sktime (Löning et al., 2019), contain dozens of classifier.
Touching every classifier, is not feasible. One of our main contributions is to show that
a simple transformation on the time series - which effectively reorders all values - will
result in a dilation operation to be applied by the down-stream classification model. This
transformation can be applied as a pre-processing step, and can be achieved using just
two lines of python code. Using this transformation, we do not have to modify the code
of any sliding window-based model (such as shapelets, dictionaries, interval) apart from
adapting its hyper-parameters.

Figure 5 illustrates the concept of dilation, when used in conjunction with sliding
windows. A dilation of d = 2 is added to the sliding window, effectively adding a gap of
1 between each value. The dilated sliding window then filters every dth value of the time
series, and finally the dilated window can be fed into the downstream processing task.

When coloring the windows extracted from a dilated sliding window with dilation
d = 2 , we find two sets of overlapping subsequences (Fig. 6). The first set of windows

Fig. 5   A dilated windowing operation applied to a time series with d = 2

Fig. 6   (Left): A dilated sliding window operation applied to an input time series. This yields two sets of
subsequences starting at uneven (orange) and even (green) offsets. (Right): Reordering the green and orange
values leads to a sliding window operation with equivalent results as when using dilation

4774	 Machine Learning (2023) 112:4763–4788

1 3

starts at every even offsets (orange). The second set starts at every even offset (green).
Within the even or uneven windows, each window overlaps with its successor by all
but the first and last value. This is conceptually equivalent to an ordinary sliding win-
dow on a re-ordered TS. In the case of d = 2 , we first need to take every uneven index
( 1, 3, 5,… ), and then concatenate this subsequence to every even index ( 2, 4, 5,… ). The
same concept applies to higher dilation factors d > 2 : we build groups for the first d
indices, take every d-th value in each, and concatenate the resulting d subsequences to
form a reordered new TS.

Theorem 1  The windows extracted by a dilated sliding window, with dilation d, are a sub-
set of those windows extracted from a reordered time series T ′ , where T ′ is constructed by a
d-rate down-sampling of indices i ∈ [0, .., d):

We apply this dilation mapping in the implementation of WEASEL 2.0.

The main advantage of this operation is that we do not have to alter any aspect of the
downstream algorithm. We simply reorder the input time series, and train the original
model. In principle this operation allows to turn any algorithm into a dilated algorithm.
The major disadvantage is that there are a few additional windows generated at the inter-
sections of the re-ordering (the two gray subsequences on the right in Fig. 6). The longer
the time series becomes, however, these hardly have any impact.

The dilation mapping is a linear time and space operation in the length of the time
series. The dilated time series can be discarded once the classifier has been trained.

To dispel any misunderstanding, the runtime of an algorithm is not significantly affected
by the addition of dilation, as the number of extracted subsequences remains relatively sta-
ble (see Fig. 6). For any time series with a length of n and a window size of w, we can
extract n − w + 1 sliding windows with a stride of 1. Similarly, when employing a dilation
factor of d, we can extract n − d ⋅ w + 1 dilated sliding windows. Consequently, the overall
reduction in the number of windows is only a small constant, specifically d ⋅ w.

However, the possibility of accelerating computations arises from the adjustment of
hyperparameters in combination with dilation. By expanding the receptive field using dila-
tion, we can utilize smaller window sizes and reduce the number of required window sizes
as hyperparameters. This adaptation directly influences the runtime, offering potential
improvements in efficiency. Specifically, for dictionary classifiers like BOSS, the maxi-
mum window size, denoted as wmax , is typically defined as wmax = n∕4 , where n repre-
sents the length of the time series. Each window within this range undergoes a Fourier

dilated_window(T , d) ⊂ sliding_window
(
T0∶∶d ∪ T1∶∶d ∪ T(d−1)∶∶d

)

4775Machine Learning (2023) 112:4763–4788	

1 3

transform. By utilizing a larger dilation factor, we can effectively cover the same receptive
field while reducing the number and size of windows tested in training.

4.2 � Dictionary construction

Several methods achieve SotA results (Dempster et al., 2020; Tan et al., 2022; Demp-
ster et al., 2021) using only some thousands of features for high accurate classification
though linear models. The feature space of WEASEL 1.0 can grow up to millions of fea-
tures for even small TS. While statistical feature selection (Chi-squared) has been applied
to counter-act this, the number of features above a p-value remains unpredictable. We
address this, and build predictable size dictionaries through two design decisions:

1.	 Dense Dictionary: We build a high bias, dense dictionary representation of the time
series containing just 256 words. Thus, all subsequences are mapped to one of these
words, increasing robustness. However, the low number of words limits the overall
classification accuracy.

2.	 Ensembling Parameters: We increase diversity (variance) and reduce bias, through
ensembling over multiple parameter configurations (50, 100 or 150) using randomiza-
tion. This results in a controlled fixed-size dense dictionary of size 256 ⋅ 50 ≈ 12.8k to
256 ⋅ 150 ≈ 38k,

4.3 � Dense dictionary

SFA generates its dictionary over an alphabet size � and a word length l. The upper bound
on the dictionary size is computed as �l . All subsequences are mapped to one of these
words. Using bigrams explodes this feature space to a theoretical upper bound of �2l.

For the default parameters in WEASEL 1.0 ( � = 4 , l = 6 , bigrams = True ) this feature
space can create 412 = 16M distinct words. However, as each subsequence can only gener-
ate one word and one bigram, the resulting feature space is sparse. While this diversity can
be favorable to identify single words to distinguish between time series, it required large
amounts of memory and increases time for training or prediction.

To build a dense dictionary with guaranteed memory consumption, we decided to
default � = 2 , l = 8 and disable bigrams. This reduces the size of the dictionary to just
28 = 256 . I.e. all subsequences are mapped to one of 256 different words. Technically, this
is implemented by using an array of 256 Integers. However, this tiny feature space makes
it hard for any linear classifier to find discriminating features, resulting in high bias. To
reduce bias and increase variance, we ensemble different hyper-parameter configurations
using randomization (Sect. 4.5). In the next section we introduce a variance-based of Fou-
rier values selection strategy to derive robust words using SFA.

4.4 � Robust word generation

The supervision introduced in SFA, such as information-gain binning, ANOVA F-test coef-
ficient selection, and CHI-squared word selection, provide high variance, but are sensitive

4776	 Machine Learning (2023) 112:4763–4788

1 3

to minor changes in values of the time series. This would make SFA very brittle when
combined with reducing the overall number of words generated to 256.

To compensate for this, we introduce a novel variance-based Fourier value selection
strategy. This strategy first computes the variance within each real and imaginary value
of the Fourier transform, and then chooses the top l real and imaginary values by highest
variance. The larger the variance, the larger the discretization interval (bins) may become.
Thus, we avoid minor value changes in similar subsequences leading to different words.

Other than in WEASEL 1.0, which uses information-gain to derive bins, in WEASEL
2.0 we restrict SFA to only use equi-width or equi-depth binning, as these showed to be the
most robust against overfitting.

4.5 � Ensemble generation

Our goal was to restrain the number of distinct features (words) to a fixed, predictable
number, with which a linear RIDGE classifier can still find distinctive features with high
accuracy. We achieve this through randomization on hyper-parameters, where the num-
ber of drawn parameter-configurations, aka ensemble size in the following, determines
the overall number of features generated per TS. WEASEL 2.0 has three key hyper-
parameters to set:

1.	 Minimal window length w_min : Typically defaulted to 4
2.	 Maximal window length w_max : Typically chosen from 24, 44 or 84 depending on the

time series length.
3.	 Ensemble size rmax : Typically chosen from 50, 100, 150, to derive a feature vector of

roughly 20k up to 70k features (distinct words).

Other than ROCKET or R-DST, which limit the size of its filter to {7, 9, 11} , our window
size is in a range of 4 up to 84. For a meaningful approximation via SFA, we require
large windows. SFA is applied to the windows, extracts Fourier values, and generates
words of length 8 and � = 2 . If we used the Rocket size of filters, the SFA transforma-
tion would eventually be a 1:1 mapping from values to symbols, providing no benefits
from the Fourier transform.

We use a simple rule of thumb as default for rmax based on the dataset size m and ts
length n:

The rationale is to use a larger ensemble, the more or the longer the time series in the data-
set become.

We then randomly initializes one parameter-set for each of the rmax-many configura-
tions using randomization:

1.	 Window length w: Randomly chosen from interval [w_min,… ,w_max].

2.	 Dilation d: Randomly chosen from interval [1,… , 2
log(n−1)

w−1] . The formula is inherited
from the ROCKET-family.

rmax =

⎧
⎪⎨⎪⎩

50, if m ≤ 250

100, if (m > 250) & (n ≤ 100)

150, else

4777Machine Learning (2023) 112:4763–4788	

1 3

3.	 Word length l: Randomly chosen from {7, 8}.
4.	 Binning strategy: Randomly chosen from {“equi-depth”,“equi-width”}.
5.	 First order differences: We extract words from both, the raw time series, and its first

order difference, effectively doubling the feature space.

For example, when using rmax = 50 configurations, the feature space has a size of
256 ⋅ 50 ≈ 10k , and is roughly in the range of the ROCKET-family. First order differ-
ences double the space requirements, effectively generating 20k to 70k features. By
increasing rmax we can increase the size of the feature space.

We will next introduce the pseudocode of WEASEL 2.0, illustrating the steps out-
lined before.

4.6 � Pseudocode

WEASEL 2.0 is based on the dilation mapping, and randomization over different hyper-
parameter configurations, where rmax controls the number of configurations and thus the
number of features generated.

Algorithm 2 shows the complete WEASEL 2.0 transform. Given rmax , wmax and wmin ,
we randomly choose the parameters for each configuration. Each configuration then
generates a dense vector (dictionary) for each of m time series (line 7), with a total size

4778	 Machine Learning (2023) 112:4763–4788

1 3

of m × 256 . Dilation is applied to each time series through the dilation mapping (line 9).
By default, we apply dilation to the first order differences, too, effectively doubling the
feature space. Next, windows are extracted from each time series (line 10), and the win-
dows are transformed to words of length l using an alphabet of size 2 (line 11). Other
than in the previous dictionary-base methods using SFA, the alphabet size is fixed to
2 and the mean-normalization is fixed to False to control the size of the feature space.
SFA then chooses the best Fourier coefficients based on maximal variance. I.e. those
real and imaginary Fourier values that have the largest spread are favorable to obtain
robust words. Next, word counts are increased for each time series (line 12). Finally, the
dictionaries of all configurations are concatenated into one dense vector (line 13).

At the end of transformation, the resulting feature vector is used as input to a
RIDGE regression classifier. Its parameters are learned through cross-validation from
alphas = np.logspace(−1, 5, 10) and normalize = False.

4.7 � Complexity

The major advantage of WEASEL 2.0 is its controlled size of the feature space. Depend-
ing on the value rmax , we generate up to 256 × rmax distinct words, which can be stored
in a dense vector. Using first order differences, we double the number of features to
2 × 256 × rmax . For input parameter rmax = 50 we thus generate 25k features. Given m time
series, the memory required by WEASEL 2.0 is thus equivalent to 256 × rmax × m × 2
using first order differences. E.g., given a dataset with m = 10k and n = 1024 , WEASEL
2.0 needs roughly 976MB of memory for rmax = 50 . This is comparable to the memory
needed by ROCKET et al. (see Sect. 5.4)

The runtime required for classification depends on the machine learner used. Yet,
RIDGE regression can be implemented in linear time, depending on the solver used, which
makes WEASEL 2.0 also very fast.

5 � Experimental evaluation

Datasets: We compare our WEASEL 2.0 classifier to the SotA using the UCR bench-
mark of 114 TSC problems (Dau et al., 2019). Each UCR dataset provides a train and test
split, which we use unchanged to make our results comparable to prior publications. We
visualize comparisons with critical difference diagrams, which compare mean ranks of
approaches. A horizontal bar indicates cliques, for which there is no statistical significant
difference between approaches in rankings. These cliques are computed using a Wilcoxon-
Holm post-hoc analysis and p value of 0.05.

Competitors: We compare WEASEL 2.0 to up to 15 state-of-the-art TSC methods. Dic-
tionary (D): BOSS, cBOSS, WEASEL, TDE; Hybrid (H): HiveCote 2.0, HiveCote 1.0,
TS_CHIEF, Deep-Learning (DL): InceptionTime; Shapelets (S): R-DST, MrSQM_SFA_
k5; Kernel (K): Arsenal, MiniRocket, MultiRocket, Rocket, Hydra. We used implemen-
tations available in sktime (Löning et al., 2019), or published by the authors (Dempster
et al., 2023; Le Nguyen & Ifrim, 2022; Guillaume et al., 2022). All reported numbers are
accuracy on the test split.

In all figures, we append the names of the methods with its type of approach: D: diction-
ary, S: Shapelets, K: Kernel, H: Hybrid, DL: Deep Learning.

4779Machine Learning (2023) 112:4763–4788	

1 3

We will compare methods on (a) accuracy, (b) runtimes, (c) memory-footprint, and (d)
the dependency on application domains.

Hardware: All experiments ran on a server running LINUX with four 10 core Intel(R)
Xeon(R) CPU E7-4870 at 2.40GHz, using sktime v1.4 and python 3.8.3. We also CPU
time as runtime of all implementations, to address parallel and single threaded codes.

To ensure reproducible results, we provide the WEASEL 2.0 source code and the raw
measurement sheets. (WEASEL, 2022). WEASEL 2.0 applies the rule of thumb presented
in Sect. 4.5 to set the two hyper-parameters rmax and wmax , and all other parameters are set
through randomization.

5.1 � Accuracy

Figure 7 shows a critical difference diagram on the average ranking of each competitor
method on the 114 datasets. Lower ranks indicate that a method is better, and a horizontal
bar indicates that two methods are not significantly different. WEASEL 2.0 is significantly
better than WEASEL, and the most accurate dictionary method (compare Fig. 1). WEA-
SEL 2.0 is further in the same group as other non-ensemble dilation-based approaches,
such as ROCKET, MiniRocket, R-DST. Among the most accurate methods are hybrids
such as HC2, HC1 and TS-CHIEF, which ensembles include variants of dictionary classi-
fiers. Thus, WEASEL 2.0 could be a promising candidate to further improve these.

The box plots in Fig. 8 show how close the accuracy of current SotA approaches has
become. Approaches in this figure are sorted by median accuracy. Top ranking approaches
have a low IQR (inter-quartile range), with few outliers, and the majority of datasets scores
above 90%.

Figure 9 shows a pairwise comparison of WEASEL 2.0 to selected competitors. Each
point represents the test accuracy of one dataset. A point below (above) the diagonal indi-
cates that WEASEL 2.0 scores higher (lower) than its competitor. Firstly, WEASEL 2.0
performs much better than WEASEL. Most points are below the diagonal. Secondly from
the other competitors most points are along or slightly above/below the diagonals. When
compared to the Rocket-family the PigAirwayPressure datasets stands out. On this dataset,
WEASEL 2.0 has a much higher test accuracy than its competitors. We will discuss the
properties of this dataset that make ROCKET fail in Sect. 5.6.

Fig. 7   Critical difference plot on average ranks on test accuracy on 114 UCR datasets. Smaller is better

4780	 Machine Learning (2023) 112:4763–4788

1 3

Fig. 8   Box-plot on test accuracy on 114 UCR datasets. Methods are sorted by median accuracy

Fig. 9   Pairwise comparison of approaches. Each dataset accounts for one point. A point below (above) the
diagonal indicates that WEASEL is more (less) accurate than its competitor on one dataset

4781Machine Learning (2023) 112:4763–4788	

1 3

5.2 � Accuracy by dataset and by domain

In this experiment, we thoroughly examine the performance of WEASEL 2.0 across
different application domains. To assess domain-specific strengths and weaknesses, we
categorized datasets based on their respective application types. This categorization
follows the predefined groupings outlined in the benchmark data types established by
Dau et al. (2019). In total, there are 12 predetermined groups, namely Device, ECG,
EOG, EPG, Hemodynamics, Image, Motion, Sensor, Simulated, Sound, Spectro, and
Traffic.

For this particular experiment, we focused on the top 5 non-ensemble competitors.
Figure 10 displays the accuracy comparison between WEASEL 2.0 (represented by the
black line) and the five leading core classifiers, namely R-DST, MultiRocket, MiniRocket,
Rocket, and Hydra. The orange area indicates the range of accuracies achieved by all 5
competitors. A red (or green) dot signifies where WEASEL 2.0 outperforms (or matches)
its competitors. Overall, WEASEL 2.0 delivers highly competitive performance across
nearly all datasets.

In total, WEASEL 2.0 achieves 18 victories (represented in red) and secures the top
score in 38 instances (combining red and green). Notably, WEASEL 2.0 exhibits the high-
est percentage of top scores in the following groups: Hemodynamics (3 out of 3), Image
Outlines (9 out of 31), Motion (5 out of 16), Sensor (10 out of 18), and Spectro (6 out of
12). However, it is outperformed in terms of wins and top scores by MultiRocket, which
boasts 25 victories and 46 top scores. For a detailed breakdown, refer to Table 1.

Fig. 10   Classification accuracies for WEASEL 2.0 vs the best five core classifiers (R-DST, MultiRocket,
MiniRocket, Rocket, and Hydra). The orange area represents the six core classifiers’ range of accuracies.
Red (green) dots indicate where WEASEL 2.0 wins (evens out) against the other classifiers

Table 1   Wins and ties by method
on 114 UCR datasets

WEASEL 2.0 MultiR MiniR Rocket Hydra R-DST

win/tie 18 / 38 25 / 46 2 / 22 10 / 31 5 / 29 18 / 38

4782	 Machine Learning (2023) 112:4763–4788

1 3

5.3 � Scalability

Figure 11 shows the runtimes for training and predictions of each competitor for non-
hybrid methods. Hybrid methods typically have a runtime that is at least 10 − 100 times
higher. The total fit times vary from 30 minutes (Hydra, MiniRocket) to 130 (for TDE)

Fig. 11   Runtime (Training, Prediction, Total) on the 114 UCR datasets by method in seconds

Fig. 12   Total runtime on 114 UCR datasets by approach in minutes against median accuracy

4783Machine Learning (2023) 112:4763–4788	

1 3

and 730 (for HC2) hours on the full 114 UCR datasets. WEASEL 1.0 requires a total of 1
hour, and WEASEL 2.0 requires 1.6 hours. Predict times are in a similar range of a total of
30 minutes (MiniRocket), 1.7 hours for WEASEL 2.0 and 66 (for TDE) or 110 (for HC2)
hours. Thus, while runtimes have not improved for WEASEL 2.0 over WEASEL 1.0, it has
the advantage of a constant sized dictionary, and the SotA accuracy. We will highlight the
differences in the memory-footprint in the following Fig. 13.

Figure 12 plots the trade-off between the median accuracy and total runtime
(train+predict). The most desirable method has a low runtime and a high accuracy (top
left corner). The best Pareto-optimal methods, closest to the upper left edge, are WEASEL
2.0, MultiRocket, MiniRocker and Hydra. Inferior methods are BOSS, TDE or HC 2.0 in at
least one dimension (accuracy or runtime).

5.4 � Size of the feature space

Figure 13 shows the size of the feature space per time series compared to the ROCKET
family. For WEASEL the size is defined by the size of the dictionary. WEASEL 1.0
showed excessive memory consumption, which made it unusable for many scenarios.
Meanwhile, WEASEL 2.0 has a controlled size of the dictionary, which depends on the

Fig. 13   Size of the feature vector on the UCR datasets. The size of WEASEL 2.0 depends on the param-
eterization of r

max
 , chosen from 3 values

Fig. 14   Critical difference plot on average ranks (left) and total runtime (right) for different dictionary sizes

4784	 Machine Learning (2023) 112:4763–4788

1 3

value of rmax and the rule of thumb used (Sect. 4.5). Depending of the parameterization of
rmax = 50(150) WEASEL 2.0 generates 25k(76k) features. The size of the feature space for
ROCKET and its variants, using default parameters, varies between approaches from 1k to
50k.

5.5 � Influence of dictionary size

For each parameter configuration, we decided to choose the word length from 7 and 8,
equivalent to a dictionary of 128 to 256 words (compare Sect. 4.5. Within this experiment,
we examined the influence of varying word lengths on overall accuracy and runtime.

We conducted tests using five different word lengths, ranging from l = 6 to l = 10 ,
resulting in the generation of 64 to 1024 words when considering an SFA alphabet of size
� = 2 . Figure 14 shows the critical difference plot (left) and a boxplot on runtimes (right)
for these configurations. Our experiment shows that the best accuracy (lowest rank) was
achieved with word lengths of 7 and 8. Deviating from these lengths, whether increasing
or decreasing, resulted in decreased accuracy. If the dictionary becomes excessively large,
similar subsequences are assigned different words. Conversely, if it becomes too small,
dissimilar subsequences are mapped to the same word. The optimal range appears to be
between 7 and 8.

Regarding runtimes (Fig. 14 right), increasing the word length, i.e. dictionary size, led
to a moderate increase in runtime as well. However, it is important to note that an expand-
ing dictionary also requires more memory for WEASEL 2.0 (see Sect. 4.5 for details).
Yet, one of our objectives was to construct a dense dictionary to minimize overall memory
requirements.

5.6 � Understanding when to use WEASEL 2.0

We aim to provide insights into the characteristics of datasets in which WEASEL 2.0
excels. According to previous studies (Large et al., 2019; Bagnall et al., 2016, 2017), dic-
tionary methods perform optimally when classes can be distinguished based on the fre-
quency of subsequence repetition rather than solely their presence or absence.

Figure 15 illustrates the datasets in which WEASEL 2.0 outperforms the top five core
classifiers, namely R-DST, MultiRocket, MiniRocket, Rocket, and Hydra. These datasets
encompass various domains (as depicted in Fig. 10). Most of them exhibit periodicity,
such as recordings of energy consumption in consumer devices (ACSF1, ElectricDevices),
motion data (ToeSegmentation 1 and 2, SonyAIBORobotSurface), engine sounds (FordA
and FordB), and health data (PigAirwayPressure, PigCVP).

PigAirwayPressure stands out as a dataset where WEASEL 2.0 exhibits a significant
performance advantage of 40 to 80 percentage points compared to MultiRocket and Rocket
(refer to Fig. 9). This dataset comprises airway pressure measurements collected from 52
pigs before and after an induced injury, specifically a controlled bleeding at a fixed rate of
20 mL/min, simulating internal bleeding.

As time progresses, internal bleeding can lead to symptoms such as low blood pressure,
increased heart rate, and elevated breathing rate. The dataset captures the continuous rise
in airway pressure from the start of ventilation until it reaches its highest point, known
as the peak inspiratory pressure (PIP). The first 10 classes of this dataset are displayed
in Fig. 15, and the complete set of classes can be found at (Dau et al., 2019). One of the

4785Machine Learning (2023) 112:4763–4788	

1 3

distinguishing factors between healthy and injured pigs is the number of peaks observed
within the recorded time frame, which can range from 1 to 3. These peaks are a result of
the fluctuations in blood pressure, heart rate, or breathing rate after inducing an injury. This
particular pattern lends itself to an ideal scenario for the application of dictionary classi-
fiers, such as WEASEL 2.0.

Yet, it is important to acknowledge that machine learning does not offer a universal
solution, as each classification algorithm possesses its own set of strengths and weak-
nesses. This observation has been recently reinforced by an extensive assessment involving
33 state-of-the-art classifiers (Middlehurst et al., 2023). Determining the most appropriate
algorithm for a specific problem remains an active area of research. Nevertheless, when
confronted with datasets characterized by repetitive, phase-invariant, and noisy patterns,
we highly recommend considering WEASEL 2.0 as a sensible initial choice.

Fig. 15   Datasets for which WEASEL 2.0 performs best when compared to the five top ranking core clas-
sifiers R-DST, MultiRocket, MiniRocket, Rocket, and Hydra. We show for each dataset one representative
time series per class

4786	 Machine Learning (2023) 112:4763–4788

1 3

6 � Conclusion

In this work, we have presented WEASEL 2.0, a novel TSC method following the dic-
tionary approach, which achieves highly competitive classification accuracy. It is fast, and
other than its predecessors (BOSS, WEASEL, TDE), has a predictable, constant memory
footprint. This makes it applicable in domains with high runtime and accuracy constraints.

The novelty of WEASEL 2.0 lies in combining dilation and randomization with the dic-
tionary model, along with a carefully refined symbolic representation for extracting words.
WEASEL 2.0 uses small, 256 word, dictionaries derived for each set of input features.
While this causes high bias in combination with linear classification, we reduce bias and
add variance (diversity) through ensembling random hyper-parameter configurations.

In our evaluation on the UCR datasets, WEASEL 2.0 is significantly more accurate than
its predecessors and the best in its dictionary-based class. It is in the group of the best
and fastest SotA methods, including the ROCKET-family, and has a predictable constant
memory footprint.

Given the multitude of classifiers available and the absence of a universally superior
option, we highly recommend considering WEASEL 2.0 as an excellent initial choice
when confronted with datasets containing repetitive, phase-invariant, and noisy patterns.
Its performance, along with its ability to handle such data characteristics, makes it a com-
pelling option for practical applications.

Author Contributions  PS conceived this research, implemented the presented algorithms, performed experi-
ments and analysis, and wrote the initial draft of the manuscript; UL provided supervision, participated
in the design and interpretation of the experiments, and participated in the revision of the manuscript. All
authors read and approved the final manuscript.

Funding  Open Access funding enabled and organized by Projekt DEAL. No funds, grants, or other support
was received.

Data availability  The UCR datasets are available at http://​times​eries​class​ifica​tion.​com.

Code Availability  The WEASEL v2.0 source code is available at https://​github.​com/​patri​ckzib/​dicti​onary.
Other classifiers are available at https://​www.​aeon-​toolk​it.​org.

Declarations 

Conflicts of interest  All the authors declared that they have no conflict of interest.

Ethical approval  Not applicable.

Consent to participate  Not applicable.

Consent for publication  Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

http://timeseriesclassification.com
https://github.com/patrickzib/dictionary
https://www.aeon-toolkit.org
http://creativecommons.org/licenses/by/4.0/

4787Machine Learning (2023) 112:4763–4788	

1 3

References

Agarwal, S., Nguyen, T.T., Nguyen, T.L., et al. (2021). Ranking by aggregating referees: Evaluating the
informativeness of explanation methods for time series classification. In International Workshop on
Advanced Analytics and Learning on Temporal Data, Springer, pp. 3–20.

Bagnall, A., Lines, J., Bostrom, A., et al. (2016). The great time series classification bake off: An experi-
mental evaluation of recently proposed algorithms. Extended Version. Data Mining and Knowledge
Discovery pp. 1–55

Bagnall, A., Bostrom, A., Large, J., et al. (2017). Simulated data experiments for time series classification
part 1: Accuracy comparison with default settings. arXiv preprint arXiv:​1703.​09480

Christ, M., Braun, N., Neuffer, J., et al. (2018). Time series feature extraction on basis of scalable hypothesis
tests (tsfresh-a python package). Neurocomputing, 307, 72–77.

Dau, H. A., Bagnall, A., Kamgar, K., et al. (2019). The ucr time series archive. IEEE/CAA Journal of Auto-
matica Sinica, 6(6), 1293–1305.

Dempster, A., Petitjean, F., & Webb, G. I. (2020). Rocket: Exceptionally fast and accurate time series
classification using random convolutional kernels. Data Mining and Knowledge Discovery, 34(5),
1454–1495.

Dempster, A., Schmidt, D.F., & Webb, G.I. (2021). Minirocket: A very fast (almost) deterministic transform
for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Dis-
covery & Data Mining, pp. 248–257.

Dempster, A., Schmidt, D.F., & Webb, G.I. (2023). Hydra: Competing convolutional kernels for fast and
accurate time series classification. Data Mining and Knowledge Discovery pp. 1–27.

Esling, P., & Agon, C. (2012). Time-series data mining. ACM Computing Surveys, 45(1), 12:1-12:34.
Gharghabi, S., Imani, S., Bagnall, A., et al. (2018). Matrix profile xii: Mpdist: a novel time series distance

measure to allow data mining in more challenging scenarios. In 2018 IEEE International Conference
on Data Mining (ICDM), IEEE, pp. 965–970.

Grabocka, J., Schilling, N., Wistuba, M., et al. (2014). Learning time-series shapelets. In Proceedings of the
2014 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, pp.
392–401.

Greveler, U., Glösekötterz, P., Justusy, B., et al. (2012). Multimedia content identification through smart
meter power usage profiles. In Proceedings of the International Conference on Information and
Knowledge Engineering (IKE), p. 1.

Guillaume, A., Vrain, C., & Elloumi, W. (2022). Random dilated shapelet transform: A new approach for
time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence,
Springer, pp. 653–664.

Ifrim, G., & Wiuf, C. (2011). Bounded coordinate-descent for biological sequence classification in high
dimensional predictor space. In Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 708–716.

Ismail Fawaz, H., Lucas, B., Forestier, G., et al. (2020). Inceptiontime: Finding alexnet for time series clas-
sification. Data Mining and Knowledge Discovery, 34(6), 1936–1962.

Karim, F., Majumdar, S., Darabi, H., et al. (2017). LSTM fully convolutional networks for time series clas-
sification. IEEE Access, 6, 1662–1669.

Large, J., Bagnall, A., Malinowski, S., et al. (2019). On time series classification with dictionary-based clas-
sifiers. Intelligent Data Analysis, 23(5), 1073–1089.

Le Nguyen, T., & Ifrim, G. (2022). Fast time series classification with random symbolic subsequences.
AALTD https://​proje​ct.​inria.​fr/​aaltd​22/​files/​2022/​08/​AALTD​22_​paper_​5778.​pdf

Lines, J., & Bagnall, A. (2014). Time series classification with ensembles of elastic distance measures. Data
Mining and Knowledge Discovery, 29(3), 565–592.

Lines, J., Taylor, S., & Bagnall, A. (2016). HIVE-COTE: The hierarchical vote collective of transformation-
based ensembles for time series classification. In IEEE ICDM 2016 Conference.

Löning, M., Bagnall, A., Ganesh, S., et al. (2019). sktime: A unified interface for machine learning with
time series. arXiv preprint arXiv:​1909.​07872

Lubba, C. H., Sethi, S. S., Knaute, P., et al. (2019). catch22: Canonical time-series characteristics. Data
Mining and Knowledge Discovery, 33(6), 1821–1852.

Middlehurst, M., Large, J., Cawley, G., et al. (2021a). The temporal dictionary ensemble (tde) classifier for
time series classification. In Joint European Conference on Machine Learning and Knowledge Discov-
ery in Databases, Springer, pp. 660–676.

Middlehurst, M., Large, J., Flynn, M., et al. (2021b). HIVE-COTE 2.0: A new meta ensemble for time series
classification. Machine Learning, 110(11), 3211–3243.

http://arxiv.org/abs/1703.09480
https://project.inria.fr/aaltd22/files/2022/08/AALTD22_paper_5778.pdf
http://arxiv.org/abs/1909.07872

4788	 Machine Learning (2023) 112:4763–4788

1 3

Middlehurst, M., Schäfer, P., & Bagnall, A. (2023). Bake off redux: A review and experimental evaluation
of recent time series classification algorithms. arXiv preprint arXiv:​2304.​13029

Potamitis, I., & Schäfer, P. (2014). On classifying insects from their wing-beat: New results. In Ecology and
acoustics: Emergent properties from community to landscape, Paris, France.

Rakthanmanon, T., Campana, B., Mueen, A., et al. (2012). Searching and mining trillions of time series
subsequences under dynamic time warping. In Proceedings of the 2012 ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM, pp. 262–270.

Ruiz, A. P., Flynn, M., Large, J., et al. (2021). The great multivariate time series classification bake off: A
review and experimental evaluation of recent algorithmic advances. Data Mining and Knowledge Dis-
covery, 35(2), 401–449.

Schäfer, P. (2015). The BOSS is concerned with time series classification in the presence of noise. Data
Mining and Knowledge Discovery, 29(6), 1505–1530.

Schäfer, P., & Högqvist, M. (2012). SFA: A symbolic fourier approximation and index for similarity search
in high dimensional datasets. In Proceedings of the 2012 International Conference on Extending Data-
base Technology, ACM, pp. 516–527.

Schäfer, P., & Leser, U. (2017a). Fast and accurate time series classification with weasel. In Proceedings of
the 2017 ACM on Conference on Information and Knowledge Management, pp. 637–646.

Schäfer, P., & Leser, U. (2017b). Multivariate time series classification with WEASEL+MUSE. arXiv pre-
print arXiv:​1711.​11343

Shifaz, A., Pelletier, C., Petitjean, F., et al. (2020). Ts-chief: A scalable and accurate forest algorithm for
time series classification. Data Mining and Knowledge Discovery, 34(3), 742–775.

Tan, C. W., Dempster, A., Bergmeir, C., et al. (2022). Multirocket: Multiple pooling operators and transfor-
mations for fast and effective time series classification. Data Mining and Knowledge Discovery, 36(5),
1623–1646.

WEASEL 2.0 - Classifier Source Code and Raw Results (2022). https://​github.​com/​patri​ckzib/​dicti​onary

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/2304.13029
http://arxiv.org/abs/1711.11343
https://github.com/patrickzib/dictionary

	WEASEL 2.0: a random dilated dictionary transform for fast, accurate and memory constrained time series classification
	Abstract
	1 Introduction
	2 Background
	3 Related work
	3.1 Time series classification (TSC)
	3.2 Dictionary-based approaches
	3.3 WEASEL 1.0

	4 WEASEL 2.0 - A random dilated dictionary classifier
	4.1 Dilation mapping
	4.2 Dictionary construction
	4.3 Dense dictionary
	4.4 Robust word generation
	4.5 Ensemble generation
	4.6 Pseudocode
	4.7 Complexity

	5 Experimental evaluation
	5.1 Accuracy
	5.2 Accuracy by dataset and by domain
	5.3 Scalability
	5.4 Size of the feature space
	5.5 Influence of dictionary size
	5.6 Understanding when to use WEASEL 2.0

	6 Conclusion
	References

