2206.00738v2 [csLG] 6 May 2023

arXiv

Machine Learning manuscript No.
(will be inserted by the editor)

Composition of Relational Features with an Application to
Explaining Black-Box Predictors

Ashwin Srinivasan® - A Baskar - Tirtharaj
Dash’ - Devanshu Shah

Received: date / Accepted: date

Abstract Three key strengths of relational machine learning programs like those
developed in Inductive Logic Programming (ILP) are: (1) The use of an expressive
subset of first-order logic that allows models that capture complex relationships
amongst data instances; (2) The use of domain-specific relations to guide the con-
struction of models; and (3) The models constructed are human-readable, which is
often one step closer to being human-understandable. The price for these advan-
tages is that ILP-like methods have not been able to capitalise fully on the rapid
hardware, software and algorithmic developments fuelling current developments in
deep neural networks. In this paper, we treat relational features as functions and
use the notion of generalised composition of functions to derive complex functions
from simpler ones. Motivated by the work of McCreath and Sharma (McCreath
and Sharma, 1998a; McCreath, 1999) we formulate the notion of a set of M-simple
features in a mode language M and identify two composition operators (p1 and
p2) from which all possible complex features can be derived. We use these re-
sults to implement a form of “explainable neural network’ called Compositional
Relational Machines, or CRMs. CRMs are labelled directed-acyclic graphs. The
vertex-label for any vertex j in the CRM contains a feature-function f; and an
continuous activation function g;. If j is a “non-input” vertex, then f; is the com-
position of features associated with vertices in the direct predecessors of j. Our
focus is on CRMs in which input vertices (those without any direct predeces-
sors) all have M-simple features in their vertex-labels. We provide a randomised
procedure for constructing the structure of such CRMs, and a procedure for esti-

A. Srinivasan - T Dash
APPCAIR, BITS Pilani, India

A. Srinivasan - A. Baskar - T Dash - D Shah

Department of CS & IS

BITS Pilani, K.K. Birla Goa Campus

Goa 403726, India

E-mail: {ashwin,abaskar,tirtharaj,20180240}@goa.bits-pilani.ac.in

*AS is currently visiting TCS Research. He is also a Visiting Professor at the Centre for Health
Informatics, Macquarie University, Sydney; and a Visiting Professorial Fellow at the School of
CSE, University of New South Wales, Sydney.

fTD is currently at the University of California, San Diego, CA, USA.

2 A. Srinivasan et al.

mating the parameters (the w;;’s) using back-propagation and stochastic gradient
descent. Using a notion of explanations based on the compositional structure of
features in a CRM, we provide empirical evidence on synthetic data of the ability
to identify appropriate explanations; and demonstrate the use of CRMs as ‘expla-
nation machines’ for black-box models that do not provide explanations for their
predictions.

Keywords Explainable Neural Networks, Relational Features, Inductive Logic
Programming, Neuro-Symbolic Learning

1 Introduction

It has long been understood that choice of representation can make a significant
difference to the efficacy of machine-based induction. A seminal paper by Quinlan
(1979) demonstrates the increasing complexity of models constructed for a series of
problems defined on a chess endgame, using a fixed representation consisting of 25
features (called properties in the paper). These features were identified manually
(by him), and captured relations between the pieces and their locations in the
endgame. Commenting on the increasing complexity of the models, he concludes:

“This immediately raises the question of whether these and other prop-
erties used in the study were appropriate. The answer is that they were
probably not; it seems likely that a chess expert could develop more perti-
nent attributes ... If the expert does his job well the induction problem is
simplified; if a non-expert undertakes the definition of properties (as was
the case here) the converse is true.”

Although Quinlan assumed the representation would be identified manually, the
possibility of automatic identification of an appropriate representation was already
apparent to Amarel (1968) a decade earlier: “An understanding of the relation-
ship between problem formulation and problem solving efficiency is a prerequisite
for the design of procedures that can automatically choose the most ‘appropri-
ate’ representation of a problem (they can find a ‘point of view’ of the problem
that maximally simplifies the process of finding a solution)”. In fact, by ‘choose’
what is probably meant is ‘construct’, if we are to avoid kicking Feigenbaum’s
famous knowledge-acquisition bottleneck down the road from extracting models
to extracting representations.

It has also been known that one way to construct representations automat-
ically is through the use of neural networks. But extraction and re-use of these
representations for multiple tasks have become substantially more common only
recently, with the routine availability of specialised hardware. This has allowed
the construction of networks in which adding layers of computation is assumed
to result in increasingly complex representations (10s of layers are now common,
but 100s are also within computational range). In principle, while a single addi-
tional layer is all that is needed (due to the Universal approximation theorems for
neural networks (Hornik et al., 1989; Cybenko, 1989; Pinkus, 1999)), it is thought
that the main benefit of the additional layers lies in constructing representations
that are multiple levels of abstractions, allowing more efficient modelling. There
are however 3 important issues that have surfaced: (1) Automatic construction of
abstractions in this way requires a lot of data, often 100s of 1000s of examples;

Composition of Relational Features 3

(2) The kinds of neural networks used for constructing abstractions depend on
the type of data. For example, certain kinds of networks are used for text, others
for images and so on: there is apparently no single approach for representation
learning that can automatically adjust to the data type; and (3) The internal rep-
resentations of data are opaque to human-readability, making it difficult to achieve
the kind of understanding identified by Amarel.

Recent results with neural-based learning suggest the possibility of viewing
representation learning as program synthesis. Of particular interest are methods
like Dreamcoder (Ellis et al., 2021) that automatically construct programs for
generating data, given some manually identified primitive functions represented
in a symbolic form (Dreamcoder uses A-expressions for the primitive functions).
A combination of generative and discriminative network models is used to di-
rect the hierarchical construction of higher-level functions by compositions of
lower-level ones. Compositions are generated and assessed for utility in inter-
leaved phases of generate-and-test (called “Dream” and “Wake” phases), until
the neural-machinery arrives at a small program, consisting the sequential com-
position of primitive- and invented functions. The final result is some approxima-
tion to the Bayesian MAP program for generating the data provided, assuming
a prior preference for small programs. There are good reasons to look at this
form of program-synthesis as a mechanism for automated representation learning;:
(a) Empirical results with programs like Dreamcoder show that it is possible to
identify programs with small numbers of examples (the need for large numbers
of examples is side-stepped by an internal mechanism for generating data in the
Dream phase); (b) In principle, the symbolic language adopted for primitive func-
tions (A-expressions) and the mechanism of function composition is sufficiently
expressive for constructing programs for data of any type; (c) The intermediate
representations have clearly defined interpretations, based on functional composi-
tion. There are however some shortcomings. First, the primitive functions have to
be manually identified. Secondly, the construction of new representations requires
a combinatorial discrete search that is usually less efficient than those based on
continuous-valued optimisation. Thirdly, the representation of A-expressions, al-
though mathematically powerful, can prove daunting as a language for encoding
domain-knowledge or for interpreting the results. Finally, the Dreamcoder-like ap-
proach for representation learning has only been demonstrated on very simple
generative tasks of a geometric nature.

In this paper, we partially address these shortcomings by drawing on, and
extending some results on representation developed in the area of Inductive Logic
Programming (ILP). The main contributions of this paper are as follows:

(a) Conceptual We develop the conceptual basis for a class of ‘simple’ relational
features using a well-known specification language in ILP (mode-declarations).
Additionally, we develop composition operators for deriving more complex re-
lational features, and prove some completeness properties that apply to the
use of the operators;

(b) Implementation We use the concepts developed to specify and implement a
form of neural network called Compositional Relational Machines, or CRMs.
An important feature of these networks is that each node is identified with a
clearly defined relational feature. This allows us to associate structured ‘expla-
nations’ with each node in the network;

4 A. Srinivasan et al.

(¢) Application We present empirical results on 2 synthetic data that demon-
strate the ability of CRMs to construct appropriate explanations; and results
on using CRMs to act as ‘explanation machines’ for a state-of-the-art black-box
predictor on 10 real-world datasets.

The rest of the paper is organised as follows: In Section 2 we provide a concep-
tual framework for relational features and their compositions. We use this frame-
work to implement CRMs in Section 3. We provide empirical evaluation of CRMs
as explanation machines in Section 4. Related work of immediate relevance to this
paper are presented in Section 5. Concluding remarks are in in Section 6. The
paper has several appendices that act as supporting material.

2 Relational Features and their Composition

In this paper, we are principally interested in specifying and combining relational
features. For us, a k-ary relational feature will be a function with k terms as
arguments. We will specify such a feature by f: A3 x Ay x --- x A, — B, where
A1, Aa, ..., A, B are some sets. For the most part in this paper, we will restrict
ourselves to k£ = 1 and B = {0, 1}, although the results here can be generalised.
We will denote this setting as f : A — {0, 1}, for some set .A. A relational feature
is defined in 2 steps. First, we represent the conditions under which the feature
takes the value 1 using a clause of the form:!

C: VX (p(X)« IYBody(X,Y))

or, simply:
C: (p(X) ¢ Body(X,Y))

to mean the quantification as shown earlier. Here, the fixed predicate symbol p(X)
is called the head of C, and Body(X,-)-the body of clause C—is a conjunction of
literals I2,l3...,l; containing some existentially quantified variables collectively
represented here as Y. We assume the body of C' does not contain a literal of
the form p(-) (that is, C' is not self-recursive) and call clauses like these feature-
clauses.? The clausal representation does not tell us how to obtain the value (0
or 1) of the feature itself for any X = a. For this we assume an additional set of
clausal formulae B (“background”) which does not contain any occurrence of the
predicate-symbol p/1 and define the feature-function associated with the clause C
as follows. Let 6, denote the substitution {X/a} for a € A. Then:

1 if BU(COa) = p(a)

0 otherwise

fe,p(a) = {

1 See Appendix A for a summary of logical syntax and concepts needed for this paper. We
assume a logic with equality (= /2).

2 This clause is equivalent to the disjunct {1 V—-la V- - -V —lg. It will sometimes also be written
as the set of literals {l1, —l2, ..., =lx}. The literals can contain predicate symbols representing
relations: hence the term “relational”. The requirement that all feature-clauses have the same
predicate symbol p/1 in the head is a convenience that will be helpful in what follows. It may
be helpful to read the symbol p/1 as a proposition defined on X.

Composition of Relational Features 5

In general, given feature-clauses C1,Ca,...,C; we will write fc, p(-) as fi(-) (1 <
i < j), when the context is obvious. If f;(z) = 1 for z = a, we will say “the feature
fi is true for z = a”.

Ezample 1 An early example of a problem requiring relational features was the
problem of discriminating amongst goods trains (Michalski, 1980), which has sub-
sequently served as a touchstone for the construction and use of relational features
(see for example, the “East-West Challenge” (Michie et al., 1994)). In its original
formulation, the task is to distinguish eastbound trains from westbound ones using
properties of the carriages and their loads (the engine’s properties are not used),
using pictorial descriptions like these (T1 is eastbound and T2 is westbound):

oA T
T2

Examples of feature-clauses are:

Cy : p(X) + (has_car(X,Y), short(Y))
Cy : p(X) + (has_car(X,Y), closed(Y))
C3 : p(X) « (has_car(X,Y), short(Y), closed(Y"))
Cy : p(X) + (has_car(X,Y), has_car(X, Z), short(Y), closed(Z))
Here, we will assume that predicates like has_car/2, short/1, closed/1, long/1,

has_load/3, etc., are defined as part of the background B, and capture the situation
shown diagrammatically. That is,

B = { has_car(tl,cl_1), has_car(t1,cl_2),...
long(cl-1), closed(cl-1), has_load(cl-1, square, 3), ...
has_car(t2,c2-1), has_car(t2,c¢2.2),... }.

Then the corresponding feature-function values are:

fo,,B(tl) = fi(tl) = 1; f1(t2) = 1;
foo,B(t1) = f2(t1) = 1; f2(t2) = 1;
fe,,B(t1) = f3(t1) = 1; f3(t2) = 0;
fe,B(tl) = fa(tl) = 1; fa(t2) =

Although not used in this paper, feature-clauses need not be restricted to
descriptions of single objects. An example of a feature-clause about train-pairs for
example is:

Cs : p((X1,X2)) <+ (haslength(X1,L1), has_length(X2,L2),L1 > L2).
(The corresponding feature-function will then also be defined over pairs of objects.)

We intend to describe a mechanism for automatically enumerating feature-
clauses like these, as well as mechanisms for combining simpler feature-clauses to
give more complex ones. We start with some preliminary definitions needed.

6 A. Srinivasan et al.

2.1 Preliminaries

It will be necessary for what follows to assume an ordering over literals in a feature-
clause.

Definition 1 (Ordered Clause) Let C be a feature-clause with 1 head literal and
k — 1 body literals. We assume an ordering over the literals that maps the set of
literals in the clause to a sequence (C') = (A1, A2, A3, ..., \r), where \; is the head
literal and the Ag, ...,)\, are literals in the body of the feature-clause.

Definition 2 (Ordered Subclause) Let (C) = (A1, A2, A3,...,\;) be an ordered
clause. Then an ordered subclause (C”) is any clause (X}, A3, , ..., \}) where A} = A\
and (X3,...,\}) is a sub-sequence of (Az,...,A).

From now on, we will use the term “ordered clause” to emphasise an ordering on
the literals is assumed. For simplicity, we will assume that the intended ordering
is reflected in a left-to-right reading of the clause. Given an ordered clause, it is
possible to recover trivially the set of literals constituting the feature-clause. We
use Set((C)) = Set((A1,..., k) = {A1,7A2,..., At }. Usually, we will further use
the set-notation interchangeably with A\; < Aa,..., Ag to denote the feature-clause
C.

2.2 Feature-Clauses in a Mode Language

The field of Inductive Logic Programming (ILP) has extensively used the idea of a
mode language to specify a set of acceptable clauses.> We use this approach here to
specify the set of feature-clauses. We provide details of mode-declarations and the
definition of a mode-language based on such declarations in Appendix B. We need
the following concepts from the Appendix: (a) type-names and their definitions;
(b) set of mode declarations and clauses in the mode-language; (c¢) input term of
type « in some literal; and (d) output term of type ~ in some literal. With these
notions in place, we will require the mode-language for specifying feature-clauses
to satisfy the following constraints:

MCI1. The set of modes M contains exactly one mode-declaration for every pred-
icate occurring in a feature-clause;

MC2. All modes in M for predicates which appear in the body of a feature-clause
contain at least 1 “input” argument; and

MC3. If u = modeh(p) € M, then p is an unary predicate and modeb(p) does not
occur in M.

These constraints extend to p/k if the features are defined over a product-space.
We note that the restriction MC1 is more strict than the mode language allowed by
ILP implementations like Progol (Muggleton, 1995) or Aleph (Srinivasan, 2001).
Effectively, it prevents a predicate being called in multiple ways, which is allowed

3 The notion of associating modes for predicates has its origins in typed logics and functional
programming. Even in ILP, modes are not the only way of specifying acceptable sets of clauses;
they are used here as they provide a straightforward way of specifying the notion of simple
features that follows in a later section.

Composition of Relational Features 7

in logic programming languages like Prolog. Here, to achieve the same effect, we
will need to use different predicate symbols for each mode of call. Now, variables
(and ground-terms) are constrained by the type-restrictions. Given a set of mode-
declarations, feature-clauses in the mode-language are therefore more constrained
than we have presented thus far.* Henceforth we will use M is a set of “constrained
mode-declarations” to mean that M satisfies MC1-MC3.

The categorisation of variables in a literal as being inputs or outputs allows a
natural association of an ordered clause with a graph.

Definition 3 (Clause Dependency-Graph) Let M be a set of constrained mode-
declarations and T be a set of type definitions for the type-names in M. Let (C) be
an ordered clause (A1 < A2, ..., ;) in the mode-language Ly, 1 (see Appendix B).
The clause dependency-graph Gy ((C)) associated with (C) is the labelled directed
graph (V, E,) defined as follows:

- V=Av,v2...,u};
— for each 4, ¥(v;) = \;;
— (vi,v5) € E iff:

—41=1,2 < j <k, and there exists a variable X such that \; has X as an
input variable of type v in M and A; has X as an input variable of type
in M; or

— 1 <i < j, A; has an output variable X of type v in M and X occurs in A;
as an input variable of type v in M.

Example 2 Let us assume the set of mode-declarations M contain at least the fol-
lowing: { modeh(p(+train)), modeb(has_car(+train, —car)), modeb(short(+car)),
modeb(closed(+car)) } where train and car are type-names, with definitions in T.
The ordered clause p(X) «+ (has_car(X,Y), has_car(X, Z), short(Y), closed(Z)) is
in the mode-language Ly, 1. The clause dependency-graph for this ordered clause
is given below and 1 is defined as follows: ¥(v1) = p(X), ¥(v2) = has_car(X,Y),
¥(v3) = has_car(X, Z), ¥(va) = short(Y), ¥ (vs) = closed(Z).

Remark 1 We note the following about the clause dependency-graph:

— The clause dependency-graph for an ordered clause is a directed acyclic graph.
This is evident from the definition: if (v;,v;) € E then i < j.
— The clause dependency-graph for an ordered clause is unique.

Given a set of modes M we introduce the notion M-simple clauses in a manner
similar to (McCreath, 1999).

4 That is, a feature-clause of the form VX (p(X) < IY Body(X,Y)) should be read as
VX € A [p(X) + 3IY € A Body(X,Y)] where A and A informally denote the sorts of X and
the Y’s. For simplicity, we will not refer to the type-restrictions on variables and terms when
we say that a feature-clause is in a mode-language. The restrictions are taken as understood,
and to be enforced during inference.

8 A. Srinivasan et al.

Definition 4 (Source- and Sink- Vertices and Literals) Given a set of con-
strained mode-declarations M, type-definitions T, and an ordered clause (C) in
Ly, T, let Gm((C)) = (V, E,¢) be the clause dependency-graph of (C). A vertex
v € V is said to be a sink vertex if there is no outgoing edge from v. The corre-
sponding literal, 1(v), is called a sink literal. A vertex v € V is said to be a source
vertex if there is no incoming edge to v. The corresponding literal, ¢ (v), is called
a source literal.

Example 3 The clause in Example 2 has one source vertex v; and two sink vertices:
v4 and vs. Correspondingly, there is one source literal p(X), and two sink literals:
short(Y), closed(Y').

Remark 2 Let M satisfy MC1-MC3. Then:

— The clause dependency-graph of any ordered clause in Lyt will have exactly
1 source-vertex v1 (and exactly 1 source-literal).

— For every vertex v in the clause dependency-graph, there exists at least one
path from vy to v. Also the union of all the paths from v; to v will be a directed
acyclic graph and this is unique. We will denote this directed acyclic graph by

— For every vertex v in the clause dependency-graph, either v will be a sink vertex
or it will be on a path from the source vertex (v1) to a sink vertex.

Of these the third observation is not obvious. Suppose a vertex v is not a sink
vertex. Then it will have at least one outgoing edge from it. By following outgoing
edges forward, we will end in a sink vertex. If v # v1, then there is at least one
incoming edge to v. By following incoming edges backward, we will end in a source
vertex. Since there is only one source vertex, this will be v1. So v will be a sink
vertex or it will be on a path from v; to a sink vertex.

Definition 5 (M-Simple Feature-Clause) Given a set of constrained mode-declarations
M, type-definitions T, an ordered feature-clause (C') in the mode-language Lyt

is said to be an M-simple feature-clause, or simply a M-simple clause iff the clause
dependency-graph Gy ((C)) has exactly one sink literal.

Ezample 4 We continue Example 2. The ordered clauses p(X) «+ has_car(X,Y),
short(Y) and p(X) <+ has_car(X,Y) are M-simple clauses as both have only one
sink literal short(Y) and has_car(X,Y’) respectively. The ordered clause p(X) <«
has_car(X,Y), short(Y), closed(Y') is not a M-simple clause as it has two sink lit-
erals short(Y) and closed(Y).

Definition 6 (Maximal M-simple subclause) Given a set of constrained mode-
declarations M, type-definitions T, an ordered clause (C’) in the mode-language
L, is said to be a maximal M-simple subclause of an ordered clause (C) in Ly,
iff: (a) (C’) is an ordered subclause of (C); and (b) there is an isomorphism from
the clause dependency-graph Gu((C')) to DAG ¢y(v) for some sink vertex v in
Gm((C)).

Ezample 5 Continuing Example 2, the ordered clause p(X) <+ has_car(X,Y), short(Y)
is a maximal M-simple subclause of p(X) <+ has_car(X,Y), short(Y),closed(Y).
The ordered clause p(X) + has_car(X,Y) is not a maximal M-simple subclause of
p(X) < has_car(X,Y), short(Y), closed(Y).

Composition of Relational Features 9

Definition 7 (Basis) Let M be a set of constrained mode-declarations, T be a
set of type-definitions, (C) be an ordered clause in the mode-language Ly, v. Then
Basis((C)) = { (C") | (C') is a maximal M-simple subclause of (C) }.

Ezample 6 The basis for p(X) + has_car(X,Y), has_car(X, Z), short(Y), closed(Z)
is {p(X) « has_car(X,Y), short(Y), p(X) + has_car(X, Z), closed(Z)}.

Remark 3 For given an ordered clause C in Ly, T, Basis((C)) is unique. Moreover,
if the number of sink vertices in the clause dependency-graph of (C) is k, then
|Basis({C))| = k.

Lemma 1 (Basis Lemma) Let M be a set of constrained mode-declarations, T be a
set of type-definitions. Let (C) be an ordered clause in the mode-language Lyt 1 with k

sink-literals. If Basis({C)) = {(S1), (S2),...,{(Sk)} then Ule S; =C.

Proof Let Gm({C)) = (V, E,v) be the clause dependency-graph for the ordered
clause (C) and Basis({C)) = { (S1),(S2),...,(Sk)}. We prove Ule S; € C and
C C Uf:k S;. We consider first Ule S; C C. Assume the contrary. That is, there
exists some | € Ule S; but I ¢ C. Since [is a literal in U;?:l S, then I € S; for
some j. Since every (S;) is an ordered subclause of (C), by definition every literal
in S; occurs in C. Therefore [€ C' which is a contradiction.

Next we consider C' C Ule S;. Let [be a literal in C. There exists a vertex v;
in the clause dependency-graph Gy ((C)) such that (v;) = I. Either v; is a sink
vertex or not a sink vertex in Gy ((C)). If it is a sink vertex, then there exists a
maximal M-simple subclause (S;) with v; as a sink vertex. Hence [is in S;. If v;
is not a sink vertex, then it will be on the path from v; to some sink vertex vm,
(see Remark 2). Then the directed acyclic sub-graph DAG ¢y (vm) will have this
vertex v;. Since vm is a sink vertex, there exists a maximal M-simple subclause
(Sm) with vp, as a sink vertex and there is an isomorphism between the clause
dependency-graph Gm((Sm)) and DAG ¢y (vm). Hence I € Sy, So in both cases

is in Ule S;. Hence C C Ule S |

Let M be a set of constrained mode-declarations, and T be a set of type def-
initions. Let M’ be M extended with an additional mode-declarations allowing
body-literals of the form ++ = +~ (that is, M allows equality between variables
of the same type v, if this is not already allowed in M); the definition of = /2 is
provided by axioms of the equality logic. For more details see Appendix A. We
note that if the ordered clause (C) is in Ly, T, then (C) is in Lyy .

We define operators p1, p2 as follows:

1. Let (C) be in Ly 1 s.t. (C) : p(X) < Body(X,Y). Then p1((C)) = { p(X) «
Body(X,Y),Y1 =Y2 | Yi1,Y> are output variables of the same type in Body };
2. Let (C1), (C2) be in Ly 1 s.t. (C1) : p(X) < Body;(X,Y1) and (C2) : (p(X)
Bodys(X,Y2). Then p2({(C1), (C2)) = { p(X) < Body;(X,Y1), Body,(X,Y2) }

These operators allows us to establish a link between the derivability of clauses in
Ly, using {p1, p2} and clauses in Ly, T.

Definition 8 (Derivation of Feature-Clauses) Let M be a set of mode-declarations,
and M’ be an extension of M as above. Let T be a set of type-definitions, and

10 A. Srinivasan et al.

2 C {p1,p2}. Let & be a set of feature-clauses in Ly, 7. A sequence of feature-
clauses (C1), (Ca2), ..., (Cy) is said to be a derivation sequence of (Cy) from & using
0 iff each clause (C;) in the sequence is either : (a) an instance of an element of ¢
such that no variables other than X occur earlier in this sequence; or (b) an ele-
ment of the set p1((C})) (j < 1), if p1 € £2; or (c) an element of the set p2((C;), (Ck))
(J, k < 14), if p2 € 2. We will say (Cp) is derivable from & using (2 if there exists a
derivation sequence of (Cy) from & using (2.

Ezample 7 Let us assume the set of mode-declarations M contain the following:

{ modeh(p(+train)), modeb(has_car(+train, —car)), modeb(short(+car)),
modeb(closed(+car)), modeb(smaller(+car, +car) },

where train and car are type-names, with definitions in T. Here is a derivation
sequence of

p(X) + has_car(X,U), has_car(X,V), smaller(U,V),U =V,
has_car(X,Y), short(Y), U =Y

from

{ p(X) + has_car(X,Y), short(Y),
p(X) < has_car(X,U), has_car(X,V), smaller(U,V) }

using {p1, p2}-

1 p(X) < has_car(X,U), has_car(X,V), smaller(U,V) Given
2 p(X) «+ has_car(X,U), has_car(X,V), smaller(U,V),U =V 1,p1,U,V
3 p(X) < has_car(X,Y), short(Y) Given
4 p(X) + has_car(X,U), has_car(X, V), smaller(U,V),U =V,
has_car(X,Y), short(Y) 2,3,p2
5 p(X) « has_car(X,U), has_car(X,V), smaller(U,V),U =V,
has_car(X,Y), short(Y),U =Y 4,p1,UY

It is useful to define the notion of a p-derivation graph from a set of feature-
clauses .

Definition 9 (p-derivation graph given @) Let v = (V, E, ¢) be a labelled DAG
with vertices V', edges E and vertex-labelling function ¢. Let Pred(v) denote the
set of immediate predecessors of any v € V. Let F be a set of feature-clauses
given modes M and I C Fyy. Let @ be a set of feature-clauses in Ly 1. Then v is
a p-derivation graph given @ iff:

— For each vertex v; € V, ¢(v;) = C;, where C; € Fu;
— 0 <|Pred(v)| <2 for allveV;
— For each v € V:

— If Pred(v) = 0 then ¢(v) € &;

— If Pred(v) = {u} then ¢(v) € p1(¢p(u));

— If Pred(v) = {u1,u2} then ¢(v) € p2(p(u1), p(uz))

Composition of Relational Features 11

Since we are only concerned with p1, p2 in this paper, we will usually call this the
derivation graph given @ or even just the derivation graph, when & is understood.

Remark 4 We note that p; and p2 preserve equivalence, in the following sense:

— If ¢’ = C then p1(C) = p1(C"); and
— If C{ = C1 and C) = Cy then p2(C1,C2) = p2(C1, Ch)

Here, equivalence across sets has the usual conjunctive meaning. That is, for sets

A,B,A=Biff Nz = A y. Two ordered clauses (C1) and (C2) are equivalent
T€A yeB
iff the Set((C1)) is equivalent to the Set({C2)).

Definition 10 (Closure) Let @ be a set of feature-clauses and 2 C {p1,p2}. We
define the closure of @ using 2 as the set of ordered clauses (C) which has a
derivation sequence from @ using 2. We use Closuregq(®) to denote the closure of
@ using (2.

We will say 6 is a type-consistent substitution if for every variable U, the
substitution U/t € 6 (that is, 8(U) = t), then U,¢ have the same type in M. It
follows that if 6 is a type-consistent substitution for variables in an ordered clause
(C) in Ly, and 0(u) = 6(v) for u,v in (C), then u,v have the same type in M.

Lemma 2 (Derivation Lemma) Given M, M’ and 2 = {p1, p2} as before. Let (C)
be an ordered clause in Ly, with head p(X). Let S be a set of ordered M-simple
clauses in Ly, 1, with heads p(X) and all other variables of clauses in S standardised
apart from each other and from C. If there exists a substitution 0 s.t. Basis((C)) C S
then there exists an ordered clause (C') in Loy v such that (C') is equivalent to (C)
and derivable from S using (2.

Proof See Appendix C. |

Remark 5 Let (C1),(C2),...,{(Cn) be a derivation from a set of ordered clauses S
using {p1, p2}. Also, for any clause (C;) in the derivation sequence, let f; denote the
corresponding feature-function as defined in Section 2 using background knowledge
B. Let a denote a data-instance. We note the following consequences for 1 < i <
j<n:

C; subsumes Cj;5

If fi(a) =0 then f;(a) = 0;

If fj(a) =1 then f;(a) =1; and

If (Ciy1) € p1({Ci)), fi(a) =1 and f;11(a) = 0 then there exists a clause Cj_
st. C; = Ci+1 \Y C7€+1 and ‘vaCz{Jrl (a) =1

L e .

(1) follows straightforwardly since for any (C;), subsequent clauses in the derivation
only result in the addition of literals (that is, C; C C; for i < j). For (2), we note
that since C; C C; and both C;, C; have the same head literal (p(X)) we can take
C; =V(p(X)VI1V---1) and C; = Vp(X)VI V- Vg1 Ve lm). If fi(a) = 0 then
BUC; [~ p(a). That is, there exists some interpretation I that is a model for BUC;

5 Here subsumption is used in the sense described by Plotkin (1972). That is, representing
clauses as sets of literals, clause C subsumes clause D iff there exists a substitution 0 s.t.
Co C D.

12 A. Srinivasan et al.

s.t. p(a) is false in I. If T is a model for B U C; then it is a model for C;. Further,
if I is a model for C; and p(a) is false in I then I is a model for V(I3 V ---I). But
then I is a model for C; =V(p(X)VI1 V...l Vigy1 V- -lm). Thus I is a model for
BUCj and not a model for p(a). That is, BUC} [~ p(a) and fj(a) = 0. (3) follows
from the fact that if C; subsumes C; then C; = C; (Gottlob, 1987). Therefore, if
BUCj = p(a) then BUC; |=p(a). That is, if fj(a) =1 then f;(a) = 1. For (4), let
C; : p(X) < Body;(X,Y). Then Ciy1 : p(X) < Body,;(X,Y),Y; =Y, fory; ; € Y.
Since fi(a) =1 and fj+1(a) = 0, it must be the case that ¥; =Y} does not hold for
x =a. Let Cj, : p(X) < Body;(X,Y),Y; #Y;. It is evident that, fpcr, (a) =1
and C; = Cit1V Cz{—i-l'

A specialised form of derivation results from the repeated use of p2 first, followed
by the repeated use of p;. We call this form of derivation a linear derivation. We
describe this next (relevant proofs are in Appendix D).

Definition 11 (Linear Derivation of Feature-Clauses) Let M be a set of mode-
declarations, and M’ be an extension M as earlier. Let T be a set of type-definitions.
Let @ be a set of feature-clauses in Ly 1 and p1, p2 be the operators defined earlier.
A sequence of feature-clauses (C1), (C2),...,(Cy) is said to be a linear derivation
sequence of (Cp) from & using {p1, p2} iff there exists j such that 1 < j <n and:
— Fori<j:
— Clause (C};) in the sequence is either an element of ¢ or an element of the
set p2((C;_1),(Ck)) where (Cy) € ® and k < i.
— For i > j:
— Clause (C;) is an element of the set p1({(C;—1)).
We will say (C}) is linearly derivable from & using {p2}; and C', is linearly derivable
from @ using {p1, p2}.

Ezample 8 We continue Example 7. Below is a linear derivation sequence of

p(X) « has_car(X,U), has_car(X,V), smaller(U,V),
has_car(X,Y), short(Y),U =V,U =Y

from

{ p(X) < has_car(X,Y), short(Y),
p(X) < has_car(X,U), has_car(X, V), smaller(U, V) }

using {p1,p2}-

1 p(X) « has_car(X,U), has_car(X,V), smaller(U,V) Given
2 p(X) < has_car(X,Y), short(Y) Given
3 p(X) « has_car(X,U), has_car(X, V), smaller(U, V)
has_car(X,Y), short(Y) 1, p2
4 p(X) <« has_car(X,U), has_car(X,V), smaller(U, V),
has_car(X,Y), short(Y),U =V 3,p1,U0,V

5 p(X) « has_car(X,U), has_car(X, V), smaller(U, V),
has_car(X,Y), short(Y),U =V,U =Y 4,01,U0,Y

Composition of Relational Features 13

There is no way to derive the clause p(X) < has_car(X,U), has_car(X,V),
smaller(U, V), U = V,has_car(X,Y), short(Y),U =Y using linear derivation from
the given set, but we can derive an equivalent clause p(X) <+ has_car(X,U), has_car(X,V),
smaller(U, V), has_car(X,Y), short(Y),U = V,U =Y using linear derivation. We
would like to point out that the positions of equality literal U = V in the first
clause and the second clause are different.

Lemma 3 (Linear Derivation Lemma) Given M, M’ and a set of ordered clauses
@. If an ordered clause (C) is derivable from @ wusing {p1,p2} then there exists an
equivalent ordered clause (C') and it is linearly derivable from ® using {p1,p2}.

Proof See Appendix D.]

Feature-clauses and their composition using the p-operators provide the tools
for the development of a particular kind of neural network that we describe next.

3 Compositional Relational Machines (CRMs)

Formally, a CRM is defined as follows:

Definition 12 (CRM) A CRM is a 7-tuple (V,I,0, E, ¢,v, h) where:

— V denotes a set of vertices;

— I CVis aset of “input” vertices;

— O CV is aset of “output” vertices;

— E C{(vi,v5) :vj,v5 € Vo € O,v5 € 1}

— A vertex-labelling function ¢ : V' — Fyr X G, where Fyr is the set of feature-
clauses given a set of modes M; and G denotes a set of activation functions.®
In this paper, we will further assume, if v € I then we restrict ¢(v) = (-, 1),
where 1(-) = 1;

— An edge labelling function ¢ : E — R, assigns some real-valued labels to edges
in the graph; and

— h:RIOT SR s a computation function, for some fixed n

such that (V, E,) is a derivation graph (Definition 9) given ¢ where ¢'(v) = C if
¢(v) = (C,-) and & = {¢/(v) | v € I}.

We note 2 important features of CRMs: (1) Each vertex has a feature-clause
associated with it; and (2) Edges between vertices in a CRM are required to
satisfy the constraints on edges imposed by a derivation graph. That is, the only
edges allowed are those that result from p; or p2 operations on the feature-clauses
associated with the vertices.

3.1 CRMs as Explainable Neural Networks

We describe a use of CRMs as a form of neural network capable of generating
logical explanations relevant to its prediction. The architecture of the neural net-
work is inspired by Turing’s idea of unorganised machines (Turing, 1948) (see

6 We assume activation functions in G are R — R.

14 A. Srinivasan et al.

Figure 1). Each “neuron” has 2 parts, implementing the vertex-label specification
of a CRM’s node: (i) An arithmetic part that is concerned with the g-function in
the CRM’s vertex-label; and (ii) A logical part that acts as a switch, depending
on the feature-clause associated with the CRM’s vertex-label. We call neurons in
such a network “arithmetic-logic neurons” or ALNs for short.

Fig. 1: A neural network implementation of a CRM inspired by Turing’s gated
neural networks (Turing, 1948). A neuron n; corresponds to a vertex v; in the
CRM, with vertex-label ¢ (v;) = (C;, g;). In the figure, n; is connected to neurons
nj and ny, implying (v;, v;) and (vg, v;) are in the edge-set of the CRM. f; (correctly
fc,,B) is the feature-function obtained from the feature-clause C; (see Section 2),
and acts as a gate. For a data instance a, g;(wj;h;(a) + wi;hi(a)) passes through
the gate if and only f;(a) = 1. In general, h;(a) is thus g;(3_4_ preq(n,) Whiltk(a)) or
0, where Pred(n;) is the set of immediate predecessors of n; in the neural network.

In the rest of the paper, we will use “CRM” synonymously with this form of
neural-network implementation. The 7-tuple defining a CRM (V, 1,0, E, ¢, h)
corresponds to the following aspects of the neural implementation: (a) The struc-
ture of the network is defined by V,I,0,FE, and ¢; (b) The parameters of the
network are defined by ; and (c¢) the computation of the network is defined by h.
We consider each of these in turn.

3.1.1 Structure Selection

Procedure 1 is an enumerative procedure for obtaining a 5-tuple (V,I,0,E, ¢),
given a set of feature-clauses @. For simplicity, the procedure assumes a single
activation function g.

Procedure 1 has an important practical difficulty:

— We are interested in a class of CRMs that can be constructed using a set of
M-simple feature-clauses {C1,...,Cr}. Now, it may be impractical to obtain
all possible M-simple feature-clauses in a mode-language. Even if this were not
the case, it may be impractical to derive all non-simple clauses in the manner
shown in Procedure 1.

Procedure 2 describes a randomised implementation to address this. The pro-
cedure also uses the result in the Linear Derivation Lemma (Lemma 3 in Section 2)
to construct a CRM structure that first uses the p2 operator, followed by the p;
operator.

Composition of Relational Features 15

Procedure 1: (ConstructCRM) Depth-bounded construction of a
CRM’s structure
Input: A set @ of feature-clauses {C1,Co,...,Cp} with heads p(X) and all other
variables are standardised apart from each other; an activation function g;
and a bound d on the depth of composition
Output: A CRM structure
I={v1,v2,...,0n};
V=1
E =10
for i =1 to n do
#(vi) = (Ci,1)
for j =1 to d do
ij’l = {(Clav) v eV, ¢(U) = (Ca ')7 C'= pl(C)};
Vj2 = {(C,v1,v2) s v1,v2 € V,¢(v1) = (C1,-), d(v2) = (C2,-),C" = p2(C1,C2)};
Let V1 be a set of new vertices v s.t. there exists (C’,v’) € V; 1 and ¢(v) = (C’, g);
Let V2 be a set of new vertices v s.t. there exists (C’,v1,v2) € V2 and
6(v) = (C', 9);
11 Let V/ = V3 U Vo
12 V=VuVv/
13 E=EU{(vi,v): (C,v1) € Vj1,9(v) =(C,9)} U
{(w1,0), (v2,0) : (C,v1,09) € Vi, 6(0) = (Co9)}:
14 O={v:veV, st. (v,v') € E};
15 return (V,I1,0, E, ¢)

© O N o AW N

-
[=]

In the rest of the paper, we will use the term Simple CRM to denote a CRM
constructed by either Procedure 1 or Procedure 2 in which the input clauses
C1,Ca,...,Cy are M-simple feature-clauses.

3.1.2 Parameter Estimation

Procedure 2 does not completely specify a CRM. Specifically, neither the edge-
labelling 1 nor h are defined. We now describe a procedure that obtains a 3 given
the partial-specification returned by Procedure 2 and a pre-specified h suitable
for the usual task of using the neural network for function approximation. That
is, given a partial specification of an unknown function § : A — Y in the form
of sample data D = {(a;,y;)}Y. We want the the neural network to construct
an approximation 4 : A —) that is reasonably consistent with D. In order to
estimate the goodness of the approximation, we need to define a loss function,
that computes the penalty of using 5. We will take § to be synonymous with h, the
computation function of the CRM. Recall h : RI°! — R” for some fixed n. In this
paper, we will therefore take)V = R™ and define h in the usual manner adopted by
neural networks, namely as a function of “local” computations performed at each
of the O vertices of the CRM.

Definition 13 (Local Computation ina CRM) Let (V, 1,0, E, ¢,1) be a partially-
specified CRM, where O = {o1,02,...,0}. For each vertex v; € V let ¢(v;) =
(Cs,9;) and for each edge (vs,v;) ¥((vi,vj)) = w;;. Let f; denote fc,. For any
a € A we define h; : A — R as follows:

hi(a) {fz(a) ifv;el
i(a) = .
fi(a)gi <Z(vj,vi)eE wjih; (a)) ifo; &1

16 A. Srinivasan et al.

Procedure 2: (RandomCRM) Randomised construction of a CRM
structure, with linear derivation of feature-clauses.

Input: A set @ of feature-clauses {C1,Ca,...,Cpr} with heads p(X) and all other
variables are standardised apart from each other; an activation function g; a
sample size s; bounds dy;,dp, on the depth of application of the p1 and p2
operators

Output: A CRM structure

1 I={v1,v2,...,0n};

2 Vo =1;

3 V=V

a2 E=10;

5 for i =1 ton do

6 #(vi) = (Ci, 1);

7 for j =1 to dy, +dp, do

8 V; =0;

9 E; =0;

10 if j <d,, then

11 op = p;

12 else

18 op = p1;

14 fori=1 to s do

15 if op = p2 then

16 Sample a vertex v; from I using a uniform distribution and sample a
vertex vz from V;_1 using the uniform distribution;

17 Create a vertex v’ such that ¢(v’) = (C’, g) where C’ = p2(C1,C2),
#(v1) = (C1,9) and ¢(v2) = (C2, 9);

18 Vi =V u{v'});

19 Ej = Ej U {(Ulv ”/)7 (v27 UI)};

20 else

21 Sample a vertex v from V;_1 using the uniform distribution;

22 Create a vertex v’ such that ¢(v') = (C’, g) where C’ = p1(C) and
d(v) = (C,g);

2a V=V U {v');

24 E; =E; U{(v,v)};

25 V=VuV;

26 E=FEUEj;

27 O={v:veV,} st (v,0') € E};
28 return (V, 1,0, E, ¢);

Then 8(a) = h(ho, (a),.. ., hoy (a)).

For a multi-class classification task, function h computes the probability distri-
bution over the classes, for example, a softmax function. Similarly, for a regression
task, h computes a real number, for example, a linear function.

Procedure 3 estimates the parameters of the neural network using a standard
weight-update procedure based on stochastic gradient descent (SGD) (Rumelhart
et al., 1986; Goodfellow et al., 2016), given the structure obtained from Proce-
dure 2, a pre-defined computation function h, and a loss function L.

8.1.8 Predictions and Explanations

We denote the prediction of a CRM vy = (V, 1,0, E, ¢, 1, h) by §(a) = h(he, (a), . .., hoy (a)),
where O = {o01,...,0} and the ho, are as defined in Definition 13.

Composition of Relational Features 17

Procedure 3: (TrainCRM) Parameter estimation of a CRM, given its
structure, using stochastic gradient descent (SGD). The training is done
until some stopping criterion is reached, which refers to the condition
when the number of training epochs reaches some pre-specified maximum
value.
Input: A CRM structure v = (V, 1,0, E, ¢), a dataset D = {(a;,y;)}¥, where a; € A
and y; € R™, a computation function h : RICl — R™ a loss function
L:R™ xR™ —-R.
Output: A CRM
Let O = {o1,...,01};
Initialise 1;
while stopping criterion is not met do
Randomly draw an instance (a;,y;) from D;
Let 4 = h(hoy(a), ..., ho,(a)) (see Definition 13);
Error = L(yi, ¥i);
Update ¥ using SGD to minimise Error;
return (V,1,0,E, ¢, h);

® N O o W N R

The association of feature-clauses with every vertex of the CRM allows us
to construct “explanations” for predictions. For this we introduce the notion of
ancestral graph of a vertex and explanation graph of an output vertex in a CRM.

Definition 14 (Ancestral Graph of a Vertex) Let v = (V,I,0,E, ¢,9,h) be a
CRM. The set of ancestors of a vertex v € V in ~, denoted by Ancestors(v,7), is
defined as follows:

Ancestors(v,) {v} ifoel
necestors(v,y) =
K Ucwvyer Ancestors(u,~y) U {v} otherwise

The ancestral graph of a vertex v in v is (V’', E’) where V' = Ancestors(v,~)
and B/ = {(v/,u") : v/ ;v € V', (W/,v") in E}.

Definition 15 (Explanation Graph) Let v = (V, 1,0, E, ¢,%,h) be a CRM, and
a € A be a data instance. Let O = {o1,..., 05} and let §(a) = h(ho, (a), ..., ho, (a))
be the prediction of the CRM for a. For o; € O, let C; be the feature-clause
associated with o; (that is, ¢(o;) = (Cj,-)). Let f; be the corresponding feature-
function (as defined in Section 2), and (V’, E’) be an ancestral graph of o; in 7.
Then the explanation graph of a from vertex o;, denoted by Ezplain, ,, (a), is as
follows:
! / AN
Ezplainy,o,(a) = {(V B9 i fila) B !
0 otherwise
where ¢/ : V! — Fy is a vertex-labelling function. ¢'(v) = C,, where 0, the
substitution {X/a} for the variable X in the head literal and ¢(v) = (C,).

Remark 6 Explain., , (a) consists of a (labelled) tree of feature-clauses extracted
from the derivation graph of feature-clauses. The root of the tree is the feature-
clause at o; and sub-trees contain simpler feature-clauses. If the CRM is a Simple
CRM, then the leaves of the explanation-tree are M-simple feature-clauses.

18 A. Srinivasan et al.

Ezample 9 In the Trains problem, suppose the data instance is the train shown
on the left below. The explanation graph, associated with an output vertex of the
CRM is shown on the right.

pX)
@ Jus_car(X, A), short(A),
has_car(X, B), closed(B),

A=B
l ﬁ— p(Xh (X, A), short(A’),
L] A as_car(X, A’), short(A”
L R B L / has_car(X, B’), closed(B’),
p(X) p(X) «
has_car(X, A”), has_car(X, A”),
short(A”) closed(A”")

. (additionally requires the substitution
(Train ¢1) {X/t1} to be applied)

By definition, we know that the feature-function value associated with p(¢1) «
has_car(tl, A), short(A), has_car(tl, B), closed(B) has the value 1. Also, we know
that feature-function values with all other clauses in the explanation will also be
1.

The notion of an explanation graph from a vertex extends naturally to the expla-
nation graph from a set of vertices which we do not describe here. It will be useful
in what follows to introduce the notion of a feature-clause being “contained in an
explanation graph”.

Definition 16 (Feature-clause Containment) Let v be a CRM, o be an output
vertex of v, Let a be a data instance, Let Explain, ,(a) = (V, E,a), and Fyo(a) =
{a(v) | v € V} be the set of feature-clauses in the explanation graph. We will say a
feature-clause C is contained in Ezplain., ,(a), or C T Explain., ,(a) iff there exists
C' € Fy(a) s.t. COq = C’ (where 0, = {X/a}, is a substitution for the variable X
in the head of C).

(This naturally extends to the containment of a set of clauses.)

Ezample 10 The feature-clause C' : p(X) < has_car(X,Y), short(X), closed(X) is
contained in the explanation graph shown for train ¢; in Figure 6 because:

— Fyo(t1) = {C1,C2,C3,C4} where:
C1 : p(t1) « (has_car(ti1, A), short(A), has_car(t1, B), closed(B), A = B);
Cs : p(t1) < (has_car(t1, A"), short(A’), has_car(t1, B'), closed(B"));
Cs : p(t1) < (has_car(t1, A”), short(A”)); and
Ca: p(t1) + (has_car(t1, A"), closed(A"))
— With 0, = {X/t1}, Cbs = (p(t1) < (has_car(t1, A), short(A), closed(A)); and
— Clo=C1

Composition of Relational Features 19

Explanatory Fidelity

Explanatory fidelity refers to how closely the CRM’s explanation matches the “true
explanation”. Of course, in practice, explanatory fidelity will be a purely notional
concept, since the true explanation will not be known beforehand. However it is
useful for us to calibrate the CRM’s explanatory performance when it is used for
problems where true explanations are known (the synthetic problems considered
in experiments below are in this category).

For a prediction §(ho, (a), ..., ho,(a)) by a CRM, suppose we have a relevance
ordering over the output vertices o1, ...,0x. Let 0* be the most relevant vertex in
this ordering. Then we will call the explanation graph from o* as the most-relevant
ezplanation graph for a given the CRM.”

For a classification task, we use clause containment and the most-relevant
explanation graph to arrive at a notion of explanatory fidelity of a CRM to a
set of feature-clauses 7 that are known to be ‘acceptable’ feature-clauses for class
¢ (if no such acceptable clauses exist for class ¢, then 7. = 0). Let v be a CRM
used to predict the class-labels for a set of data-instances. For any instance a, let
0" denote the most relevant output vertex of the CRM. We will say that a data
instance a is consistently explained iff: (i) the CRM predicts that a has the class-
label ¢; and (ii) there exists a C € T¢ s.t. C E Eaplain., ,-(a); and (iii) for ¢’ # c,
there does not exist C’ € T s.t. C' € Explain., . (a).

Given a set of data-instances E, let CE denote the set of instances in E ex-
plained consistently and TE denote the set of instances in E not explained consis-
tently. Then the explanatory fidelity of the CRM (correctly, this is only definable

w.r.t. the 7¢’s) is taken to be %, provided (|CE|+|IE|) # 0 (and undefined
otherwise).

3.2 CRMs as Explanation Machines

CRMs can be used as ‘explanation machines’ for black-box predictors that do not
intrinsically include an explanatory component. The approach, sometimes called
post hoc explanation generation, is shown in Figure 2.

To assess the utility of using the CRM in this manner, we will change the
usual assessment of predictive accuracy to one of ‘predictive fidelity’, which refers
to how closely the CRM matches the prediction of the target model.

4 Empirical Evaluation of CRMs as Explanation Machines
4.1 Aims

We consider two kinds of experiments with Simple CRMs:

7 In implementation terms, one way to obtain such a relevance ordering over output vertices
of the CRM is to use the h;(-) values for vertices in O to select a vertex o* that has the highest
magnitude (this is the same as selecting the best vertex after one iteration of the layer-wise
relevance propagation, or LRP (Binder et al., 2016), procedure).

20 A. Srinivasan et al.

Prediction

Data Instance
Source

Fig. 2: Using a CRM as an explanation machine. The target model is a “black
box” that does not have an explanatory output. The CRM model is trained using
training data labelled with the prediction from the black box (and not the ‘true
label’). The multiplexer (MUX) selects between the CRM’s explanation graph and
the “empty” explanation () depending on whether the CRM’s prediction does or
does not match the target model’s prediction. By using the setup as shown here,
we are able to get a prediction P and a corresponding explanation E.

Synthetic data. Using tasks for which both target-model predictions and accept-
able feature-clauses are available, we intend to investigate the hypothesis that:
(a) Simple CRMs can construct models with high predictive fidelity to the
target’s prediction; and (b) Simple CRMs have high explanatory fidelity to the
set of acceptable feature-clauses.

Real data. Using real-world datasets, for which we have predictions from a state-
of-the-art black-box target model, we investigate the hypothesis that Simple
CRMs can construct models with high predictive fidelity to the target’s pre-
diction. We also provide illustrative examples of using the CRM to provide
explanations for the predictions.

We clarify what is meant by ‘acceptable feature-clauses’ for the synthetic data in
Section 4.3. For real data, the target-model is the state-of-the-art (SOTA, which
in this case is a graph-based neural network). That is, the CRM is being used
here to match the SOTA’s predictions (and not the ‘true value’), and to provide
proxy explanations. No acceptable feature-clauses are known for classes in the real
data.®

4.2 Materials
4.2.1 Data and Background Knowledge

Synthetic Data. We use two well-known synthetic datasets. The first dataset is
the “Trains” problem of discriminating between eastbound (class = +) and
westbound trains (class = —) (Michalski, 1980). The original data consists
only of 10 instances (5 in each class). We generate a dataset of 1000 instances
with a class-disitribution of approximately 50% + and 50% —, using the data

8 The CRM can of course be used to predict the true value directly. We will comment on
this later, but that is not the primary goal of the experiment here.

Composition of Relational Features 21

generator (Michie et al., 1994). We use 700 instances as training data and 300
instances as test-data. The second dataset consists of the task of discriminat-
ing between illegal (class = +) and legal (class = —) chess positions in the
King-Rook-King endgame (Bain, 1994; Michie, 1976). The class-distribution is
approximately 33% + and 67% —. We use 10000 instances of board-positions
as training data and 10000 instances as test-data. Examples of + instances are
showed pictorially in Figure 3.

Trains

Fig. 3: Pictorial examples of positive instances in the synthetic data. The actual
data are logical encodings of examples like these. The instance on the left is an
example of a train classified as “eastbound” (+). The instance on the right is of
a board position classified as “illegal” (4), given that it is White’s turn to move.
For both problems, we have a target model that is complete and correct. We also
know a set of feature-clauses that are acceptable as explanations for instances that
are correctly predicted as +.

Real Data. Our real data consists of 10 datasets obtained from the NCI?. Each
dataset represents extensive drug evaluation with the concentration param-
eter GI50, which is the concentration that results in 50% growth inhibition
of cancer cells (Marx et al., 2003). A summary of the dataset is presented
in Figure 4. Each relational data-instance in a dataset describes a chemical
compound (molecule) with atom-bond representation: a set of bond facts. The
background knowledge consists of logic programs defining almost 100 relations
for various functional groups (such as amide, amine, ether, etc.) and various
ring structures (such as aromatic, non-aromatic etc.). There are also higher-
level domain-relations that determine presence of connected, fused structures.
Some more details on the background knowledge can be seen in these recent
studies: (Dash et al., 2021, 2022).

4.2.2 Algorithms and Machines

We use the ILP system Aleph (Srinivasan, 2001) for constructing the feature-
clauses. The CRMs are implemented using PyTorch (Paszke et al., 2019). The

9 The National Cancer Institute (https://www.cancer.gov/)

https://www.cancer.gov/

29 A. Srinivasan et al.

of Avg. # of Avg. # of Avg. # of % of
datasets instances atoms per instance | bonds per instance positives

10 3018 24 51 50-75
Avg.= 57

Fig. 4: Summary of the NCI-50 datasets (Total no. of instances is approx. 30,200).
The graph neural network predictor described in (Dash et al., 2021) is taken as
the target model. No acceptable feature-clauses are known for these tasks.

parameter learning of CRMs has been done with the autograd engine available
within PyTorch for the implementation of backpropagation. Our implementation
of Layerwise-Relevance Propagation (LRP) is based on (Bach et al., 2015; Binder
et al., 2016).

The CRM implementation and all our experiments are conducted on a work-
station running with Ubuntu (Linux) operating system, 64GB main-memory, and
a CPU running with 12 Intel Xeon processors.

4.3 Method

The experiments are in two parts: an investigation on synthetic data to examine
the predictive performance and explanatory fidelity of CRMs; and an investigation
on real data, to compare the predictive performance of CRMs against state-of-
the-art deep networks. Some examples of explanations are also provided for the
explanations generated by a CRM on real data. We describe the method used for
each part in turn.

4.3.1 Experiments with Synthetic Data

For both synthetic datasets, we have access to symbolic descriptions of the true
concepts involved. The ‘target model’ in each case is taken to be equivalent to
a classifier that labels instances consistent with the corresponding true concept.
This allows us to judge the fidelity of explanations generated. The method used
in each case is straightforward:

For each problem:

(a) Construct the dataset D of instances labelled by the target model;

(b) Generate a subset of M-simple feature-clauses in the mode-language for
the problem;

(¢) Randomly split D into training and test samples;

(d) Construct a CRM using Procedure 2 with the M-simple features. The
weights for the CRM are obtained using the training data and the SGD-
based weight-update steps described in Procedure 3 (see below for addi-
tional details);

(e) Obtain an estimate of the predictive and the explanatory fidelity of the
CRM using the test data (again, see below for details).

The following additional details are relevant to the method just described:

Composition of Relational Features 23

For both datasets, the composition depth of CRMs is at most 3. Also, the
mode-declarations for Chess allow the occurrence of equalities in M-simple
features (see Appendix F), additional compositions using p; are not used in
this problem;

We use the rectified linear (relu) activation function for the local computation
in the neurons of the internal (hidden) layers of the CRMs.

We use Adam optimiser (Kingma and Ba, 2015) to minimise the training cross-
entropy loss between the true classes and the predicted classes by the network;
We provide as input feature-clauses only a subset of all possible M-simple
feature-clauses. The subset is constrained by the following: (i) At most 2 body
literals; (ii) Minimum support of at least 10 instances'’; and (iii) Minimum
precision of at least 0.5. All subsequent feature-clauses obtained by composi-
tion are also required to satisfy the same support and precision constraints.
The learning rate for the Adam optimiser is set to 0.001 while keeping other
hyperparameters to their defaults within PyTorch;

The number of training epochs is set to 5 for the Trains dataset and 10 for the
Chess dataset;

Both synthetic problems are binary classification tasks. We call the classes +
and — for convenience. Predictive fidelity is estimated in the usual manner,
namely as the proportion of correctly predicted test-instances;

Explanatory fidelity is estimated as described in Section 3.1.3. For this, we
need to pre-define sets of feature-clauses that are acceptable in explanations.
For the synthetic datasets, we are able to identify sets of acceptable feature-
clauses from the literature: These feature-clauses are obtained from a target
model that is known to be complete and correct (see (Michie et al., 1994) for
the target model for Trains and (Bain, 1994) for Chess). The acceptable clauses
in 7+ are as follows:

Problem | Acceptable Feature Clause

Trains p(X) < has_car(X,Y), short(X), closed(X)
Chess p((A,B,C,D,C, E)) + true
(
(

p((A,B,C,D, E, D)) + true
p((4, B, A, B,C, D))
p((A,B,C,D,E,F))

<+ true
«— adj(A,E),adj(B, F)

In Trains, the feature clauses apply to descriptions of trains. For Chess these are
descriptions of the board in an endgame. The board is a 6-tuple that denotes
the file and rank of the position of the White King, White Rook and Black
King, respectively. In all cases 7 = @. Explanatory fidelity will be estimated
by checking clause-containment of the feature-clauses above in the explanation
graph for the most-relevant output vertex of the CRM (see Section 3.1.3);

The acceptable feature-clause for the Trains is a direct rewrite of the function
used to generate the labels. For Chess, the (set of) feature-clauses are direct

10

In principle, increasing the number of input clauses will increase the size (width and

breadth) of the CRM (measured by the number of layers and neurons in each layer of the
CRM). Furthermore, since complex features are more specific than the features represented by
simple clauses, the coverage of the complex features (that is, instances for which the features
have the value 1) will usually be lower than those of simple clauses. Thus, if we restrict complex
features to those having a positive coverage of at least p, simple features will have also have a
coverage of at least p. Thus, simple features with a lower positive coverage will not be part of
any connection in the CRM, and therefore need not appear in the inputs.

24 A. Srinivasan et al.

rewrites of an approximate symbolic description taken from (Srinivasan et al.,
1992). These approximate description isn’t identical to the correct description,
but is very closely related to it (the approximation differ from the correct
description only in about 40 of 10,000 cases). For our purposes therefore, high
explanatory fidelity, w.r.t. the set of feature-clauses shown, will taken to be
sufficient; and

— We provide a baseline comparison for predictive fidelity against a ‘majority
class’ predictor. A baseline comparison is also provided for explanatory fidelity
against random selection of a feature-clause from the set of feature-clauses
associated with the output vertices of the CRM that have a feature-function
value of 1 for the data instance being predicted.

4.3.2 Experiments with Real Data

For the real-world datasets, the current state-of-the-art predictions are from a
Graph Neural Network (GNN) constructed using the background knowledge de-
scribed earlier (Dash et al., 2022). However, the GNN model constitutes a black-
box model, since it does not produce any explanations for its predictions. We
investigate equipping this black-box model with CRM model for explanation. The
method is as follows:

For each problem:

(a) Construct the dataset D consisting of problem instances and their pre-
dictions of the target model;

(b) Generate a subset of M-simple feature-clauses in the mode-language for
the problem. The restrictions used for synthetic data are used to constrain
the subset;

(c) Construct a CRM using Procedure 2 with the M-simple features and the
dataset D. The weights for the CRM are obtained using the training data
used by the state-of-the-art methods and the SGD-based weight-update
procedure; and

(d) Obtain the predictive fidelity of the CRM model to the predictions of the
target model.

The following additional details are relevant:

— As with the synthetic data, the compositional depth for the CRMs is set to 3.
Again, we do not use p; operations, since the mode-declarations allow equal-
ities. The constraints on input feature-clauses is the same as those used for
synthetic data;!!

— The CRM implementation is the same as the one used for synthetic data.
We perform a grid-search of the learning rate for the Adam optimiser using
the parameter grid: {0.01,0.001,0.005,0.0001}. The total number of training
epochs is 10, with early-stopping mechanism (Prechelt, 1998) with a patience
period of 3;

11 Qur choice for the compositional depth of 3 is also loosely-based on our previous work
on Deep Relational Machines (DRMs: (Dash et al., 2018)). However, we note that a depth
higher than 3 will increase the complexity of a CRM (due to increase in number of layers and
neurons), which might result in better predictive performance of a CRM. We expect that in
practice the depth bound will be treated as a hyperparameter and subject to the usual forms
of hyperparameter optimisation.

Composition of Relational Features 25

— As with the synthetic data, we provide a baseline comparison against the ‘ma-
jority class’ predictor;

— Unlike the synthetic data, no pre-defined set of acceptable feature-clauses ex-
ists, and therefore no estimate of explanatory fidelity is possible. Correspond-
ingly, there is no baseline provided either.

4.4 Results

Figure 5 tabulates the results used to compute estimates of predictive and explana-
tory fidelity on synthetic and real data. The main details in these tabulations are
these: (a) For the synthetic data, Simple CRMs models able to match the target’s
prediction perfectly (predictive fidelity of 1.0); (b) The high explanatory fidelity
values show that for instances labelled +, the maximal explanation for the most-
relevant vertex contains at least 1 clause from the set of acceptable feature-clauses;
and for instances labelled —, the maximal explanation of the most relevant vertex
does not contain any clauses from the target theory; and (c) On the real datasets
predictive fidelity of CRMs is reasonably high: suggesting that about 81% of the
time, the CRM’s prediction will match that of the state-of-the-art model.

Dataset Pred. Fidelity
CRM Baseline
786-0 0.77 0.53
A498 0.79 0.59
Dataset Fidelity AB49_ATCC 0.85 0.63
CRM Baseline ACHN 0.73 0.58
Pred. | Expl. | Pred. | Expl. BT_549 0.78 0.51
Trains 1.0 1.0 0.5 0.4 CAKI-1 0.81 0.69
Chess 1.0 0.9 0.7 0.7 CCRF_CEM 0.82 0.68
COLO-205 0.77 0.53
(a) Synthetic data DLD_1 0.90 1.00
DMS_114 0.89 0.91
Avg. 0.81 (0.05) | 0.66 (0.17)

(b) Real data

Fig. 5: Estimates of fidelity for Simple CRMs on the synthetic datasets and real
datasets. Explanatory fidelity is assessable on synthetic data since we have access
to the “correct” explanation. Baseline for prediction is the majority class predictor.
For explanations, Baseline refers to random selection of a feature-clause from the
set of feature-clauses associated with the output vertices of the CRM with function
value 1 for the data instance being predicted by the majority class predictor.

We now turn to examine the results in greater detail.

26 A. Srinivasan et al.

4.4.1 Predictive Fidelity

Although we obtain perfect predictive fidelity to the target model on synthetic
data, fidelity on the real datasets clearly has room for improvement. Improvements
in fidelity are possible simply by considering ensembles of CRMSs, obtained simply
due to the sampling variation arising in Step (c) (refer Section 4.3.2). Below, we
tabulate changes in predictive fidelity on 1 of the real-world problems (786_0), using
a sample consisting of upto 3 CRMs. With multiple CRMs, for a data-instance to
be correctly predicted it is sufficient for any one of the CRMs to predict the same
class as the target-model. Recall the primary purpose of the CRM is to explain the
target-model’s prediction in terms of its feature-clauses. Any CRM that matches
the target-model’s prediction can be used to explain the prediction. More on this
under “Explanation” below.

No. of | Predictive
CRMs Fidelity

1 0.75
2 0.83
3 0.85

4.4.2 Explanatory Fidelity

For the synthetic datasets we show below in Figure 6 a representative + instance
(shown pictorially for ease of understanding), along with the predictions of both
target and the CRM. The last column shows an acceptable feature-clause along
with a stylised English translation. In both instances, an equivalent form of the
acceptable feature-clause is contained in the CRM’s explanation graph.

For the Chess data, the CRM’s explanatory fidelity is less than 1. This means
that there are instances for which the CRM’s explanation graph does not contain
an acceptable feature-clause. We discover 19 different kinds of ‘buggy’ explanations
are found by the CRM: a full listing is in Appendix F. Here we provide illustrative
instances of two kinds of errors: those that are close to the correct explanation;
and those that are an artifact of the specific data instance being explained (see
Figure 7). Besides these, in many cases, we find explanation errors arise from the
fact that definitions in background knowledge of file and rank adjacency hold when
ranks and files are the same (that is, if A and B are ranks (or files) and A = B,
then adj(A, B) is true).’? In many instances inconsistent explanations result from
feature-clauses contain literals that use equality instead of adjacency (that is,
the CRM’s explanation contains A = F, rather than adj(A4, E): see Section F.2
in Appendix F). However, even accounting for this, the CRM’s explanations can
be more specific than the correct explanation; and in some cases, incorrect (an
example of each is shown in Figure 7).

What about explanations on real data? At this point, we do not have any
independent source of acceptable feature-clauses for this data. We nevertheless
show a representative example of the explanation for a test-instance (see Figure 8).

12 M. Bain, the author of the background definitions, confirms that this is the intended
meaning of the adj/2 predicate for this problem (personal communication).

Composition of Relational Features 27

S
< (o)
= g <
3 g =
@« =) [=}
o 3 2 i
z S s 5
= > 2 :
o IS > £
() Q =)
5 g e <
g & § ! g
o >1 >~ — =
=
2 > 5) =
= o 'g
= 5 © 3 ==
£ g s : G2
13) « o Q V)
O 3 < - PR
< D v © 23
< ') =
1 . =
]
oo 27 < =9
< 32 < g
~— ~£ = I~
Sh = o Y Bw
o
g =
i3 ©
e E
r
&) s
)) :
) = :
7 A >
=) N [l'ﬁ/i ~
2 > = 5 a0 9
o <t — = R [~
o N B S-S N)
[& a 20
] . N N > oy 5 & <
2| /<& g 53 o I a =
b =5 S5 lgg = 9 s q =
=1 5 2 s 3 g=° §e L§/x 9 9
) 22 =8 7 5 2= il =
s 7 23 = 2| & £
Al <= < i a %] 4 Z
2 K% < z| = < E
IS 5§ >~ 17 < 13 0
S S M S 8§ &N < X
| (I SN < = I o
lgeg lgg S < o <
o==< Q§§ 145 s = =)
i<}
g g £3 5 o <
= = 8 = < =
= = 3 =
Z = Z
1 ©
J
8 » s
o < L
< p -
3 J -
g e ~ =
— . -~
g ke
.g =
o
= M

Fig. 6: Explanations from the CRMs for a + prediction by both target-model
and the CRM for two instances in the synthetic data. In both cases, the CRM’s
explanation graph contains an acceptable feature-clause (circled).

We close this examination by drawing the reader’s attention to an important
aspect of a CRM’s explanation. The feature-clauses are defined in terms of re-
lations provided as prior knowledge. This makes them potentially intelligible to
a person familiar with the meanings of these relations. This makes it easier—in

28 A. Srinivasan et al.

Instance Explanation Acceptable
Graph Feature-Clause

P((AB,C,D,E, F)) —
adj(A, E), I(C, E), adj(B, F)

AN

p((A,B,C,D,E, F)) «

IHC, E), adj(B, F)
(A B,C,D,E,F) — P(A,B,C,D,E,F) — P((A,B,C,D,E,F)) «
WA) 1HC, E) adj(B, F)
p((4,B,C,D,E, F)) «
adj(A, E), adj(B, F')
p((A,B,C,D,E,F)) —
1A, C),I(F, B),adj(B, F)
P(A,B,C,D,E,F)) —
I(F, B), adj(B, F)
p((A,B,C,D,E,F)) p((A,B,C,D,E,F)) « p((A,B,C,D,E,F)) «
14, C) I(F, B) adj(B, F)

White King’s file is ad-
jacent to Black King’s
file and White King’s
rank is adjacent to
Black King’s rank

Fig. 7: Examples where the target model and the CRM’s prediction are both +,
but the CRM’s explanation graph does not contain an acceptable feature-clause.
For simplicity, we do not show the substitutions for A...F.

Instance Explanation Graph
p(X) —
has_struc(X, A, B, hetero_aromatic),
Iteq(B,7),
has_struc(X, C, D, amine),
Iteq(D, 2),
has_struc(X, E, F, oxide),
Iteq(F,7)
p(X) =
has_struc(X, A, B, amine),
lteq(B,2),
has_struc(X, C, D, oxide),
Iteq(D,7)
PX) < PX) < PX) <
has_struc(X, A, B, hetero_aromatic), has_struc(X, A, B, amine), has_struc(X, A, B, oxide),
Iteq(B,7) Iteq(B, 2) Iteq(B,7)

Fig. 8: A CRM explanation for a prediction on the real data. The class-label
predicted by both CRM and the black-box model for this data instance is +.

principle at least—to perform a human-based assessment of the feature-clauses in
the explanation graph (this is apparent from the ‘debugging’ of explanations that
we have been to accomplish with the Chess data).

Composition of Relational Features 29

4.4.8 Additional Results: CRMs as Prediction Machines

The tabulations of fidelity and the subsequent assessments above provide a mea-
sure of confidence in the use of CRMs as explanation machines. But it is evident
that CRMs can be used as ‘white-box’ predictors in their own right. We provide
an indicative comparison of a CRM predictor against the state-of-the-art predic-
tors (for the real-data, the prediction is by majority-vote from an ensemble of 3
CRMs):

Dataset Predictive accuracy
CRM GNN DRM (500) CILP++ Baseline
786-0 0.66 (0.01) | 0.69 (0.01) | 0.69 (0.01) | 0.67 (0.01) | 0.55 (0.01)
A498 0.67 (0.01) | 0.72 (0.01) | 0.70 (0.01) | 0.66 (0.01) | 0.52 (0.01)
A549_ATCC | 0.64 (0.01) | 0.67 (0.01) | 0.70 (0.01) | 0.60 (0.01) | 0.51 (0.01)
ACHN 0.64 (0.01) | 0.70 (0.01) | 0.70 (0.01) | 0.64 (0.01) | 0.51 (0.01)
BT_549 0.66 (0.01) | 0.68 (0.01) | 0.70 (0.01) | 0.65 (0.01) | 0.53 (0.01)
CAKI1 0.63 (0.01) | 0.68 (0.01) | 0.66 (0.01) | 0.64 (0.01) | 0.54 (0.01)
CCRF_CEM | 0.65 (0.01) | 0.71 (0.01) | 0.71 (0.01) | 0.68 (0.01) | 0.63 (0.01)
COLO_205 0.60 (0.01) | 0.69 (0.01) | 0.67 (0.01) | 0.66 (0.01) | 0.56 (0.01)
DLD_1 0.69 (0.02) | 0.69 (0.02) | 0.70 (0.02) | 0.72 (0.02) | 0.69 (0.02)
DMS_114 0.68 (0.02) | 0.74 (0.02) | 0.75 (0.02) | 0.75 (0.02) | 0.76 (0.02)

Fig. 9: Predictive performance comparison of an ensemble of 3 Simple CRMs
against some leading black-box predictors. The numbers are estimates of predic-
tive accuracy obtained on test data. The number in parentheses is the estimated
standard deviation. The techniques being compared are: GNN, the graph-based
neural network approach described in (Dash et al., 2022); DRM (500), is a form of
MLP called a Deep Relational Machine that has, as input, Boolean feature-vectors
resulting from a stochastic selection of 500 relational features (Dash et al., 2019);
and CILP++4, an MLP that has input Boolean feature-vectors resulting from an
exhaustive feature construction technique called Bottom-Clause Propositionalisa-
tion (Franga et al., 2014). Baseline is the majority class predictor.

The results in Figure 9 indicate that Simple CRMs perform approximately as
well as CILP++ (Franga et al., 2014), but are worse than either the GNN (Dash
et al., 2022) or DRM (Dash et al., 2019). However, Figure 9 are best treated as
preliminary. Variations in CRMs arise in Procedure 2 purely due to sampling,
of course. However, the CRM obtained is also affected by the following: (1) The
subset constraints on support and precision all feature-clauses in the CRM; (2)
bounds on the depth of compositions pa followed by p1 operators; (3) The number
of feature-clauses drawn in each layer of the CRM. Additional variation can arise
from the initialisation of weights for the SGD-based estimation of parameters. This
suggests that substantially more experimentation is needed to see if the predictive
performance of Simple CRMs can be improved. We note also that the DRM uses
substantially more complex features than the Simple CRM, and that CILP++
constructs substantially more features than the Simple CRM (anywhere between
30,000 to 50,000 compared to about 330 M-simple features for the CRMs). Of

30 A. Srinivasan et al.

course none of GNN, DRM or CILP++ have any intrinsic mechanism of associating
explanations with their prediction.

5 Related Work

We note first that p1 and p2 are closely related to the notion of refinement operators
which have been studied extensively in ILP, in the context of the search through a
hypothesis space (see (Tamaddoni-Nezhad and Muggleton, 2009; Nienhuys-Cheng
et al., 1997)). Our motivation in this paper is, however, in the use of these operators
to derive relational features. Consequently, we describe connections to related work
in 3 categories: conceptual work on relational features; implementation and applied
work on propositionalisation in ILP; and work on explainable deep networks.

On the conceptual understanding of relational features, perhaps the most rel-
evant single summary is in (Saha et al., 2012). There the authors identify several
feature-classes, based on somewhat similar notions of source- and sink-literals. The
relationship between the different classes in that paper is shown in Figure 10(a).
The relationship to these sets of the class of M-simple feature-clauses, denoted
here as Fy, is shown in Figure 10(b) (see Appendix E for more details).

Fq Fq
F,' Fi

09)) (@@

N

(@) (b)

Fig. 10: The feature classes proposed in (Saha et al., 2012): (a) and the relationship
to the class of M-simple features (b).

Simple clauses in (McCreath, 1999) and the corresponding set of features in Fs
are restricted to determinate predicate-definitions.'® Results in (McCreath, 1999)
show that features from Fs can be used to derive the subset of feature-clauses in Fy
that only contain determinate predicate-definitions. There is no such restriction
imposed on Fyy and all clauses in Fy (and therefore all other classes shown) can
be derived using some composition of p; and p2. No corresponding operators or
completeness results are known for Fi..

Relational features have been shown to be an extremely effective form of learn-
ing with relational objects (Kramer et al., 2001; Lavraé et al., 2021). Methods that
construct and use relational features, guided by some form of mode-declarations
can be found in (Srinivasan and King, 1999; Lavrac et al., 2002; Ramakrishnan

13 Informally, a determinate predicate is one whose definition encodes a function. That is,
for a given set of values for input arguments, there is exactly one set of values for output
arguments.

Composition of Relational Features 31

et al., 2007; Joshi et al., 2008; Specia et al., 2009; Faruquie et al., 2012; Saha
et al., 2012; Franca et al., 2014; Vig et al., 2017; Dash et al., 2018). Of these, the
features in Lavrac et al. (2002) are from the feature class F,. There are no reports
on the class of features used in the other reports, although the procedures for ob-
taining the features suggest that they are not restricted to any specific sub-class
(that is, they are simply from Fj). Given our results on derivation of features in
F,; from features in Fy;, and the class-inclusions shown, we would expect at least
some features in a super-class would require additional composition operations
to those in a sub-class. In terms of a CRM structure, we would expect features
in F;, for example, would usually be associated with vertices at a greater depth
than those in F,. Empirical results tabulated for some statistical learners in (Saha
et al., 2012) suggest that relational features from the class F; were most useful for
statistical learners. If this empirical trend continues to hold, then we would expect
the performance of CRMs to improve as depth increases (and features in F; are
derived), and then to flatten or decrease (as features in Fy \ F; are derived).

The development and application of CRMs is most closely related to the area of
self-explainable deep neural networks (Alvarez Melis and Jaakkola, 2018; Angelov
and Soares, 2020; Ras et al., 2022). The structure of the CRM enforces a meaning to
each node in the network, and in turn, we have shown here how to extract one form
of explanation from these meanings. A different kind of neural network, also with
meanings associated nodes is described in (Sourek et al., 2018). Those networks
are also explainable, although not in the manner described here. In (Srinivasan
et al., 2019), a symbolic proxy-explainer is constructed using ILP for a form of
multi-layer perceptron (MLP) that uses as input values of relational features. The
features there drawn from the class Fy, and the explanations are logical rules
constructed by ILP using the feature-definitions provided to the MLP. There are
at least two important differences to the explanations constructed there and the
ones obtained with a CRM: (i) The rules constructed in (Srinivasan et al., 2019)
effectively only perform the ps operation on relational features. This can result in
a form of incompleteness: some features in F; cannot be represented by the rules,
unless they are already included as input to the MLP; and (ii) The structuring of
explanations in (Srinivasan et al., 2019) requires relevance information: here, the
structuring is from usual functional (de)composition.

6 Conclusion

It has been long-understood in machine learning that the choice of representation
can make a significant difference to the performance and efficiency of a machine
learning technique. Representation is also clearly of relevance when we are in-
terested in constructing human-understandable explanations for predictions made
by the machine learning technique. A form of machine learning that has paid
particular attention to issues of representation is the area of Inductive Logic Pro-
gramming (ILP). A form of representation that has been of special interest in
ILP is that of a relational feature. These are Boolean-valued functions defined over
objects, using definitions of relations provided as prior- or background knowl-
edge. The use of relational features forms the basis of an extremely effective form
of ILP called propositionalisation. This obtains a Boolean-vector description of ob-
jects in the data, using the definition of the relational features and the background

32 A. Srinivasan et al.

knowledge. Despite the obvious successes of propositionalisation, surprising little is
known, conceptually, about the space of relational features. In this paper, we have
sought to address this by examining relational features within a mode-language M,
introduced in ILP within the setting of mode-directed inverse entailment (Muggle-
ton, 1995). Within a mode-language, we identify the notion of M-simple relational
features, and two operations p; and ps that allows us to compose progressively
more complex relational feature in the mode-language. In the first half of the pa-
per, we show that p; and po are sufficient to derive all relational features within a
mode-language M. This generalises a previous result due to McCreath and Sharma
(1998b), which was restricted to determinate definitions for predicates in the back-
ground knowledge, albeit starting from a different definition of simple features to
that work.

In the second half of the paper, we use the notion of M-simple features and
the composition operators p; and p2 to construct a kind of deep neural network
called a Compositional Relational Machine, or CRM. A special aspect of CRMs is
that we are able to associate a relational feature with each node in the network.
The structure of the CRM allows us to identify further how the feature at the
node progressively decomposes into simpler features, until an underlying set of
M-simple features are reached. This corresponds well to the intuitive notion of
a structured explanation, that is composed of increasingly simpler components.
We show how this aspect of CRMs allows them to be used as “explanation ma-
chines” for black-box models. Our results on synthetic and real-data suggest that
CRMs can reproduce target-predictions with high fidelity; and the explanations
constructed on synthetic data suggest that CRM’s explanatory structure usually
also contains an acceptable explanation.

3

We have not explored the power of CRMs as “white-box” predictors in their
own right, but early results suggest that it may be possible to obtain CRMs with
good predictive accuracy. Although still significantly lower than the state-of-the-
art, we believe this can change. We have also not explored other forms of CRMs,
both simpler and more elaborate. For example, the identification of M-simple fea-
tures and their subsequent compositions using the p-operators suggests an even
simpler CRM structures than that used here. It is possible for example, simply to
obtain all possible compositions to some depth, and use a Winnow-like parameter
estimation (Littlestone, 1988) to obtain a self-explainable linear model. Equally,
more complex CRMs are possible by incorporating weights on the M-simple fea-
tures (this could be implemented simply by changing the activation function at
the input nodes of the network). Taking this one step further, it is possible to
associate weights with all the relational features, which will allow the use of the
inference machinery of probabilistic logic programs (De Raedt et al., 2019). We
think an investigation of these other kinds of compositional relational machines
would contribute positively to the growing body of work in human-intelligible
machine learning.

Acknowledgements AS is a Visiting Professor at Macquarie University, Sydney and a Vis-
iting Professorial Fellow at UNSW, Sydney. He is also the Class of 1981 Chair Professor at
BITS Pilani, Goa and a Research Associate at TCS Research. AS and TD would like to thank
Lovekesh Vig and Gautam Shroff at TCS Research for interesting discussions on explainable
neural networks; and Michael Bain at UNSW for discussions on the use of ILP for constructing
symbolic explanations.

Composition of Relational Features 33

Declaration

Funding Not applicable.

Conflicts of interest Not applicable.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Data and code availability All data and codes used in our research can be found
at: https://github.com/tirtharajdash/CRM.

Authors’ contributions AS and AB conceived and worked on the conceptual
parts related to simple features and their composition, and the specification
of CRMs. TD conceived and worked on the implementation of CRMs as gated
neural networks. AS and TD conceived and worked on the application of CRMs
to synthetic- and real-data. DS was involved in some parts of the implementa-
tion of CRMs.

https://github.com/tirtharajdash/CRM

34

Appendices

A Logic Terminology

In this section we cover only terminology used in the paper, and further confined
largely to logic programming. For additional background and further terminology
see (Lloyd, 2012; Chang and Lee, 2014; Nilsson, 1991; Muggleton and de Raedst,
1994). The summary below is adapted from (Srinivasan et al., 2019).

A language of first order logic programs has a vocabulary of constants, vari-
ables, function symbols, predicate symbols, logical implication ‘+-’, and punctua-
tion symbols. A function or predicate can have a number of arguments known as
terms. Terms are defined recursively. A constant symbol (or simply “constant”) is
a term. A variable symbol (or simply “variable”) is a term. If f is an m-ary func-
tion symbol, and t1,...,¢m are terms, then the function f(t1,...,tm) is a term. A
term is said to be ground if it contains no variables.

We use the convention used in logic programming when writing clauses. Thus,
predicate, function and constant symbols are written as a lower-case letter followed
by a string of lower- or upper-case letters, digits or underscores (‘_’). Variables are
written similarly, except that the first letter must be upper-case. This is different
to the usual logical notation, where predicate-symbols start with upper-case, and
variables start with lower-case: however the logic programming syntax is useful
for the implementation of CRMs. Usually, predicate symbols will be denoted by
symbols like p, q,r, etc., and symbols like X,Y, Z to denote variables. If p is an
n-ary predicate symbol, and t1,...,t, are terms, then the predicate p(t1,...,tn)
is an atom. Predicates with the same predicate symbol but different arities are
distinguished by the notation p/n where p is a predicate of arity n.

A literal is either an atom or the negation of an atom. If a literal is an atom
it is referred to as a positive literal, otherwise it is a negative literal. A clause
is a disjunction of the form A; V...V A; V —=A;11 V...V 2A, where each A; is
an atom. Alternatively, such a clause may be represented as an implication (or
“rule”) Ai,...,A; < Ait1,..., Ak. A definite clause A1 + Aa,..., A; has exactly
one positive literal, called the head of the clause, with the literals As, ..., A, known
as the body of the clause. A definite clause with a single literal is called a unit clause,
and a clause with at most one positive literal is called a Horn clause. A set of Horn
clauses is referred to as a logic program. It is often useful to represent a clause as
a set of literals.

A substitution 6 is a finite set {v1/t1,...,vn/tn} mapping a set of n distinct
variables v;, 1 < i < n, to terms ¢;, 1 < j < n such that no term is identical
to any of the variables. A substitution containing only ground terms is a ground
substitution. For substitution # and clause C' the expression C denotes the clause
where every occurrence C of a variable from 6 is replaced by the corresponding
term from 0. If 0 is a ground substitution then C#@ is called a ground clause. Since
a clause is a set, for two clauses C, D, the set inclusion C0 C D is a partial order
called subsumption, usually written C #-subsumes D and denoted by C < D. For
a set of clauses S and the subsumption ordering <, we have that for every pair of
clauses C, D € S, there is a least upper bound and greatest lower bound, called,
respectively, the least general generalisation (lgg) and most general unifier (mgu)

35

of C' and D, which are unique up to variable renaming. The subsumption partial
ordering on clauses enables the definition of a lattice, called the subsumption lattice.

We assume the logic contains axioms allowing for inference using the equality
predicate = /2. This includes axioms for reflexivity (Vz(xz = z)), and substitution

(Vz (6(x) A (2 = y) — 6(y)))-

B Mode Language

We borrow some of the following definitions from (Dash et al., 2022). The definition
of A\ sequence is simplified as we are dealing only with feature clauses here and
all other definitions are same as in (Dash et al., 2022).

Definition 17 (Term Place-Numbering) Let © = (i1,...,i;) be a sequence of
natural numbers. We say that a term 7 is in place-number 7 of a literal X iff: (1)
7 # (); and (2) 7 is the term at place-number (ig,...,i}) in the term at the i{®
argument of \. 7 is at a place-number 7 in term 7’: (1) if 7 = () then 7 = 7’; and
(2) if m = (i1,...,i1) then 7’ is a term of the form f(t1,...,tm), i1 < m and 7 is in
place-number (i2, ..., i) in ¢;,.

Definition 18 (Type-Names and Type-Definitions) Let I' be a set of types
and T be a set of ground-terms. For v € I we define a set of ground-terms T =
{m1,72,...}, where 1, € T. We will say a ground-term 7; is of type v if ; € T, and
denote by T the set {Ty : v € I'}. T will be called a set of type-definitions.

Definition 19 (Mode-Declaration)

(a) Let I' be a set of type names. A mode-term is defined recursively as one of:
(i) +v, —v or #v for some v € I'; or (ii) ¢(mt}, mts,...,mt}), where ¢ is a
function symbol of arity j, and the mit},s are mode-terms.

(b) A mode-declaration p is of the form modeh(\') or modeb()\'). Here)\ is a
ground-literal of the form p(mt1,mta,...,mtn) where p is a predicate name
with arity n, and the mt; are mode-terms. We will say u is a modeh-declaration
(resp. modeb-declaration) for the predicate-symbol p/n. In general there can be
several modeh or modeb-declarations for a predicate-symbol p/n. We will use
ModeLit(p) to denote X'.

(¢) p is said to be a mode-declaration for a literal X iff A and ModeLit(u) have the
same predicate symbol and arity.

(d) Let 7 be the term at place-number 7 in u, We define

(+,7) ifr=+~y
(_77) lf T=="
(#.7) i T =4y

unknown otherwise

ModeType(p,) =

(e) If pis a mode-declaration for literal A, ModeType(u,) = (+,~) for some place-
number 7, 7 is the term at place 7 in A, then we will say 7 is an input-term
of type v in A given p (or simply 7 is an input-term of type). Similarly we
define output-terms and constant-terms.

36

We will also say that mode p contains an input argument of type v if there
exists some term-place m of u s.t. ModeType(u,7) = (+,7). Similarly for output
arguments.

Definition 20 (Au-Sequence) Assume a set of type-definitions 7, modes M. Let
(C) = (l1,-l2,l3...,~l;) be an ordered clause. Then ((A1, u1), (A2, 12), -+ y (Mg, k)
is said to be a Au-sequence for (C) iff it satisfies the following constraints:

Match. (i) A; = l;; (i) For j = 1,...,k, u; is a mode-declaration for A; s.t.
pj = modeh(-) (j =1) and p; = modeb(-) (j > 1).

Terms. (i) If 7 is an input- or output-term in A; given p;, then 7 is a variable
in Aj; (ii) Otherwise if 7 is a constant-term in A; given p; then 7 is a ground
term.

Types. (i) If there is a variable v in both A;, A; then the type of v in A; given y;
is the same as the type of v in A; given p;; (ii) If 7 is a constant-term in X;
and the type of 7 in A; given p; is , then 7 € T,.

Ordering. (i) If 7 is an input-term in X; given pj; and j > 1 then there is an
input-term 7 in A1 given p1; or there is an output-term 7 in X\; (m < i < j)
given p;. (i) If 7 is an output-term in A; given w1, then 7 is an output-term
of some \; (1 <i<k) given p;.

Definition 21 (Mode-Language) Assume a set of type-definitions T and modes
M. The mode-language Ly, is {(C) : either C' = 0 or there exists a Au-sequence
for (C)}.

C Proof of the Derivation Lemma

Lemma 2 (Derivation Lemma) Given M, M’ and 2 = {p1,p2} as before. Let (C)
be an ordered clause in Ly, with head p(X). Let S be a set of ordered M-simple
clauses in Ly, 1, with heads p(X) and all other variables of clauses in S standardised
apart from each other and from C. If there exists a substitution 0 s.t. Basis({C)) C S0
then there exists an ordered clause (C') in Ly v such that (C') is equivalent to (C)
and derivable from S using (2.

Proof We prove this in 3 parts:

1. We first show: if Basis((C)) C S6, then 6 is a type-consistent substitution for
clauses in S.
Let Basis({C)) = {(C1),...,{Cx)} and S’ = {(S1),...,{(Sk)} C S. Without
loss of generality, let (S;)0 = (C;). Let 0 = {Y1/t1,Y2/t2,...,Yn/tn} where
the Y; are variables in S and the t; are terms in Basis({(C)). In general,
the ¢;’s are variables, constants, or functional terms. Let ¢; be a constant.
Suppose clause S; has the variable Y; in some location in S; and clause C;
has the constant ¢; in the corresponding location. Since both S; and C; are
in Ly, 1, this is only possible if there are multiple mode-declarations for the
corresponding literals in S; and C;. But constraint MC2 (in Section 2.2)
ensures that there is exactly one mode-declaration for any literal. Therefore
t; cannot be a constant. Reasoning similarly, ¢; cannot be a functional
term. Therefore ¢; has to be a variable in C;. Since Y; and t¢; are in the

37

same locations for some literal [in S; and C;, and there is only one mode-
declaration for I in M, it follows that the types of Y; and ¢; must be the
same.

2. If there exists a type-consistent substitution 6 for clauses in S, then there is

an ordered clause (C"') in Closureg,,1(S) s.t. C"0 = C.

Let us fix an ordering among the simple clauses in S: Si,...,Sk, where
S; = p(X) + Body;(X,Y;). Let us define a sequence of ordered clauses (C1),
(C2), ..., (Ck) where (C1) is (S1), and (C;) is in p2((Ci—1), (S;)) for i = 2 to
k. It is easy to see that the above sequence is a derivation sequence of (C})
from {(S1),(S2),...,(Sk)} using {p2}. That is, (Cy) is in Closureg,,(S).
(C4) is of the form p(X) < Body1(X,Y1), Body2(X,Y2), ..., Body,(X, Yx)-
That is C, = U%_, S;. Since 50 = Basis((C)), then C = J¥_, S;6. Let (C")
= (C},) That is, C"’0 = C. Hence C"'0 = C. Also, since @ is a type-consistent
substitution for clauses S; € S, and C” = J,; S;, 0 is a type-consistent
substitution for C”.

3. From above (C”') and 6, we construct an ordered clause (C’) in Ly T s.t. (C)

is in Closurey, y({(C")}) and C"'0 = C".

Let (C") = (p(X) + Body(X,Y)), and 6 = {Y1/Y{,...,Y;/Y/}. It is easy
to see that 6 induces an equivalence relation on the variables in C”. Vari-
ables Y; and Y; are in the same equivalence class if both variables map
to the same variable Y;,. For each equivalence class [U], we earmark one
element in the class as representative of the class. This element is denoted
by rep([U]). Let C” be p(X) < Body(X,Y). Let us fix an order among
the variables occurring in (C”): Y1,Ya,...,Y;. Consider the following se-
quence of ordered clauses (Cp), (C1), ..., (C;) where (Co) = (C”), and (C;) =
p(X) < Body(X,Y),Y1 = rep([Y1]), Y2 = rep([Y2]),...,Y; = rep([V;]). The
above sequence is a derivation of (C;) from (C”) using only p;. That is
(Cy) is in Closureg, 1 ({(C")}). Let (C') be (C;) and it is of the form
p(X) « Body(X,Y),Y1 = rep([Y1]),...,Y; = rep([Y]]). It is easy to see
that (C') € Ly r. We now show C"0 = C’. Let 0 = 0" 0 ¢, where 0" =
i /rep(Va]),..., Yi/rep((]} and 8 = {rep([i])/Y{,. .., rep((])/¥{}.1
The variables rep([Y;]) are in S and the variables Y; are in C. Since the
variables in S are standardised apart from the variables in C, 6 is a re-
naming substitution. Therefore C"’¢' = C”. Therefore C"’0 = C"¢". By the
substitution axiom in the equality logic C"'8” = C’. Therefore C"0 = C’.

From (1)—(3) above, the result follows. []

D Properties of Derivations using p1, p2

Lemma 4 (Reordering Lemma) Given M, M’ and a set of ordered clauses ®. If
an ordered clause (C) is deriwable from ® using {p1, p2} then: (a) there is a derivation

14 Correctly, 6’ and 6" have to be functions. It is evident that 6" is a function, since each
variable maps to the representative of its equivalence class. We argue informally that 6’ is a
function as follows. If Y; and Yj are in the same equivalence class, then rep([Y;]) and rep([Y;])

are the same variables. But according to our €', they are mapped to Yi/ and Yj’. One might

think 6’ is not a function. But the variables in the same equivalence class are mapped to same

variable. So Y/ is the same as Yj’ and hence 6’ is a function.

38

for (C;) from @ using {p2}; (b) there is a derivation for (Cy) from {(C;)} using {p1};
and (c) (C) is equivalent to (Cy).

Proof Let us assume there is a derivation 7 for (C') from & using {p1, p2}. There ex-
ists an ordered clause (C) equivalent to (C) = p(X) < l1,l2,.. ., i, g1, b2, .-, Uk
such that

— the sequence of literals I1, .. .,[; can be split into Body(X,Y1),..., Body(X,Ym)
such that p(X) < Body(X,Y;) € ® for each i =1,...,m, and

— ljt1,..., I} are equality predicates introduced using p1 operator in the deriva-
tion 7. Let (C;) be p(X) + Body(X,Y1),...,Body(X,Ym).

It is easy to see that there is derivation 71 for (C;) from & using p2 operator. Now
we can apply p1 operator on (C;) repeatedly to derive (Cy). |

Lemma 5 Given M, M’ and a set of ordered clauses ®. If an ordered clause (C) is
derivable from @ using {p2} then it is linearly derivable from & using {p2}.

Proof Let us assume that (C) is derivable from ¢ using {p2}. Hence there exists a
derivation sequence £ of ordered clauses (C1), (C2),...,(Cn) from @ using {p2} and
(Cn) = (C). Now we use mathematical induction to prove that for each 1 <i < n,
there exists a linear derivation of (C;) from & using {p2}.

Base step: Case n =1 is easy as (C1) should be in ¢ and hence there is a linear
derivation for (C1) from & using {p2}.

Induction step: We assume there exists a linear derivation for (C;) from & using
{p2} for each i < j (induction hypothesis) and prove that there exists a linear
derivation for (C;). The clause (C;) occurs in the derivation sequence §. There
are two cases to be considered: it is in @ or it is in p2((C}), (Cm)) where [, m < j.
If (C}) is in @, there exists a linear derivation sequence for (C;) from & (just the
one step derivation containing itself). Now we prove the claim for the second
case. Since I,m < j, by induction hypothesis, there exist linear derivation
sequences & for (C;) and &y, for (Cp,) from & using {p2}. Let (C1), (C5), ..., {(C})
be the clauses in ¢ and occurring in &m,. Now consider the following sequence &;
containing &, (C1), (C1), (C3), (C3),. .., (C},),(C) where (CT) € p2((C1), (C1))
and (Cy) € p2((Cy_1),(Cq)) for a = 2 to k. It is easy to see that ¢; is a
linear derivation sequence for (C;) from & using p2. Hence there exists a linear
derivation sequence for (Cy) from & using {p2}.

|

Now the linear derivation lemma (re-stated below) can be easily proved by
combining the above two lemmas.

Lemma 3 (Linear Derivation Lemma) Given M, M’ and a set of ordered clauses
&. If an ordered clause (C) is derivable from & using {p1,p2} then there exists an
equivalent ordered clause (C') and it is linearly derivable from ® using {p1, p2}.

E Relationship of M-Simple Feature-Clauses to Known Feature Classes

We note the following about the sets of feature-clauses in Figure 10(b) and the set
P\ of M-simple feature clauses:

39

The set F;. This is identical to the set of ordered feature-clauses in the mode-
language M;

The set F;. This set is defined based on a given mode language M (but without
constraints MC-MC3). An ordered feature clause (C) is in F; iff the number
of connected components after removing the source vertex (corresponding to
the head literal) from the clause dependency graph of (C) is exactly one. Since
the clause dependency graph of a clause in F\; has exactly one sink literal
and any vertex in that graph has a path to that sink vertex (Remark 2). So
the number of connected components after removing the source vertex is one.
Hence Fy; C F;. It is easy to see that F; € Fy (see the counterexample given
for Fs C Fyvp).

The set Fs. This set is defined based on the class of simple clauses identified by
McCreath (1999) who proposed simple clauses. We note:

1. Feature-clause definitions in Fs do not refer to a mode-language. The clause
dependency-graph is constructed using a procedure described in (McCreath,
1999), and is based on the re-occurrence of variables (without any reference
to input or output variables or types). M-simple feature-clauses require a
mode-language, with the constraints MC1-MC3;

2. Fy € Fs. For example assume a mode language p(+int), ¢(+int, —int), r(+int)
and the feature-clause p(X) < ¢(X, X),r(X). The clause dependency-graph
of this clause has only one sink vertex and so it is in F;. But this is not in
F since the directed graph associated with this clause has two sink literals.

3. Fs € Fu. For example assume a mode language p(+int), q(+int, —int),
r(+int, —int) and the feature-clause p(X) <+ ¢(X,Y),r(X,Y). This is in
Fs, but is not in Fj;. The cause dependency-graph described in this paper
doesn’t have an edge between the vertices for ¢ and r resulting in two sink
vertices. But the dependency graph constructed in (McCreath, 1999) will
have an edge between the vertices for g and r because of the shared variable
Y.

The set F,. The set F; consist of feature-clauses designed for subgroup discovery
in relational data (Lavrac et al., 2002). Then:

1. Feature-clauses in Fj do require a mode-language, and we can construct a
clause dependency-graph as described here. The clause dependency-graph
for feature-clauses in F have exactly one component, and all new existential
variables introduced by a source literal appear in source or sink literals.

2. Fu € Fy. For example assume a mode language p(+int), ¢(+int, —int) and
the clause p(X) + ¢(X,Y). This is a M-simple clause but not in F; as the
existential variable introduced at the source literal ¢ but it is not appearing
later.

3. Fr ¢ Fu. For example assume a mode language p(+train), has_car(+train, —car),
short(+car), closed(+car) and the clause p(X) + has_car(X,Y), short(Y), closed(Y).
This is not M-simple clause there are two sink literals in it but it is in F;.

40

F Additional Details Relevant to the Experiments
F.1 Examples of Mode Declarations and Simple Feature-Clauses
Figure 11-Figure 13 show examples of mode declarations used for the experiments.

Also shown are examples of M-simple feature-clauses constructed automatically
from the mode-declarations.

Modes M-simple feature clauses

modeh (p(+tr)) p(A) < has_car(A, B)

modeb (short (+car)) p(A) < has_car(A, B), short(B)

modeb (closed(+car)) p(A) < has_car(A, B), closed(B)

modeb (long(+car)) p(A) < has_car(A, B),long(B)

modeb (open_car (+car)) p(A) < has_car(A, B), open_car(B)

modeb (double (+car)) p(A) < has_car(A, B), double(B)

modeb (jagged (+car)) p(A) < has_car(A, B), jagged(B)

modeb (shape (+car, #shape)) p(A) < has_car(A, B), shape(B, u_shaped)

modeb(load (+car,#shape,#int)) p(A) < has_car(A, B), shape(B, rectangle)

modeb (wheels (+car,#int)) p(A) < has_car(A, B), shape(B, hexagon)

modeb (has_car (+tr,-car)) p(A) < has_car(A, B), wheels(B, 3)
p(A) « has_car(A, B), wheels(B, 2)
p(A) + has_car(A, B),load(B, circle, 3)
p(A) « has_car(A, B),load(B, rectangle, 3)
p(A) « has_car(A, B),load(B, hexagon, 3)

), load(

p(A) « has_car(A, B),load(B, circle, 2)

Fig. 11: Examples of mode-definitions and simple feature-clauses for the Trains
problem.

F.2 Debugging Inconsistent Explanations from the CRM

For the Chess problem, 1044 instances (out of 10,000) are inconsistently explained.
That is, the explanation graph from the most relevant output vertex does not con-
tain an acceptable feature-clause. Further examination reveals: (a) for all 1044 in-
stances, the predictions made by the CRM are correct; (b) a majority (1033/1044)
of the inconsistently instances are + examples for which the White King and Black
King are on adjacent files and ranks (the corresponding acceptable feature-clause is
p((A,B,C,D,E,F)) + adj(A, E), adj(B, F)). We find there are 19 distinct ‘buggy
explanations’ produced by the CRM for the inconsistently explained data. The
corresponding feature-clauses at the ‘root’ in the explanation graph are listed in
Figure 14 (for simplicity, we do not show the simpler features and the full graph
structure):

41

Modes M-simple feature clauses
modeh(p((+wkfile,+wkrank,+wrfile, p((4,B,C,D,E,F))«+ C=FE
+wrrank,+bkfile,+bkrank))) p((A,B,C,D,E,F)) <~ B=D

(

()
modeb (1t (+wkrank,+wrrank)) p((A,B,C,D,E,F))« B=F
modeb (1t (+wkrank,+bkrank)) p((A,B,C,D,E,F))«~ D=F
modeb (1t (+wrrank,+wkrank)) p((A,B,C,D,E,F)) + adj(A,C)
modeb (1t (+wrrank,+bkrank)) p((A,B,C,D,E,F)) < adj(A, E)
modeb (1t (+bkrank,+wkrank)) p((A,B,C,D,E,F)) + adj(C, E)
modeb (1t (+bkrank,+wrrank)) p((A,B,C,D,E,F)) < adj(B, D)
modeb (1t (+wkfile,+wrfile)) p((A,B,C,D,E,F)) < adj(B, F)
modeb (1t (+wkfile,+bkfile)) p((A,B,C,D,E,F)) « ad](D F)
modeb (1t (+wrfile,+wkfile)) p((A,B,C,D,E,F)) + lt(A,C)
modeb (1t (+wrfile,+bkfile)) p((A,B,C,D,E,F)) + lt(C, A)
modeb (1t (+bkfile,+ukfile)) p((A,B,C,D,E, F)) « It(A, E)
modeb (1t (+bkfile,+wrfile)) p((A,B,C,D,E,F)) < It(E, A)
modeb (adj (+wkrank,+wrrank)) p((A,B,C,D,E,F)) «< lt(C, E)
modeb (adj (+wkrank,+bkrank)) p((A,B,C,D,E,F)) «< It(E,C)
modeb(adj (+wrrank,+bkrank)) p((A,B,C,D,E,F)) < lt(B, D)
modeb(adj (+wkfile,+wrfile)) p((A,B,C,D,E,F)) < lt(D, B)
modeb(adj (+wkfile,+bkfile)) p((A,B,C, D, E, F)) « It(B, F)
modeb(adj(+wrfile,+bkfile)) p((A,B,C,D,E,F)) < lt(F, B)
modeb ((+wkrank = +wrrank)) p((A,B,C,D,E,F)) < lt(D, F)
modeb ((+wkrank = +bkrank)) p((A,B,C,D,E,F)) < lt(F, D)
modeb((+wrrank = +bkrank)) p((A,B,C,D,E,F))«+ A=F
modeb((+wkfile = +wrfile)) p((A,B,C,D,E,F))«+ C=FE
modeb((+wkfile = +bkfile)) p((A,B,C,D,E,F)) < B=D
modeb((+wrfile = +bkfile)) p((A,B,C,D,E,F)) < B=F

p((A,B,C,D,E,F)) ¢ D=F

()

()

()

Fig. 12: Examples of mode-definitions and simple feature-clauses for the Chess
problem.

42

(€D)
(g ‘D)ba3b ‘(upo~u2359-0%y22P) ‘g ‘Y)onays~svy — (V)d
(1 ‘D)ba3b ‘(upo~u2359-0%y22P D) ‘g ‘Y)onags~svy — (V)d

bagb ‘(umo~uags9-01Y11p ‘D ‘g ‘Y)onuags—svy — (V)d

(

(

(
(g ‘D)ba1b ‘(dnoub-ozvip ‘D ‘g ‘v)onuis~svy — (y)d
(1D)ba3b ‘(dnoub-ozvip ‘D ‘g ‘v)onuays~svy — (y)d
(¢ ‘D)bagb ‘ (upo~2sDq~bNLU0D ‘) ‘g ‘Y)onuis~svy — (y)d
(g ‘D)ba3b ‘(upo-2sDq=bNLU0D ‘) ‘g ‘Y)onuis~svy — (y)d
(v)d
(9D)bagb ‘ (buru-auszuaq ‘D ‘g ‘v)ontis~svy — (y)d
(g‘D)bagb ‘(buru-auazuaq ‘D ‘g ‘v)ontis~svy — (y)d
((ao) (
(o) (
(o) (
(1 ‘D)bagb ‘(buru-auazuaq ‘D ‘g ‘v)onais~svy — (y)d
(
(

ba3b ‘(bura-auazuaq ‘) ‘g ‘v)onags-soy — (y)d
ba3b ‘(bura-auazuaq ‘D ‘g ‘y)onugs-soy — (y)d

NN NN

)
)
)
)
)
)
)
(1 ‘D)ba3b ‘(upo~258Dq~b6NLUOD) ‘g ‘V/)oNUIS~SDY —>
)
)
)
)
ba3b ‘(bura-auazuaq ‘D ‘g ‘v)onags-soy — (y)d
)
)

(1 ‘D)ba3b ‘(uor-wnruowwun ‘) ‘g ‘Y)onigs-soy — (y)d
(1D)bagb ‘(purwv ‘D ‘g ‘v)onags~svy — (y)d

((qadSueT+ = yaBusaT+))qepou
((SpTpTWoOle+ = SPIPTWOIR+))apouW
((PTWO3R+ = PIWOIR+))Qopou
((u3rBueT#‘yaSusT+)bea1)qepou
((ya3ueT#‘yaBus1+)beal)qepou
((SpTwoje+‘ SPTWOGR+‘ TOU+) POSTE) qopou
((SPTWOje+ SpTWOIe+‘ TOU+) PO1D9UUOD) qapou
((edLaonaysg ‘ya3ueT- ¢ SpTWOlR- ¢ TOU4+) ONIIS™SRY)qapou
((1usWeTo# ‘ pTWOZE- ¢ TOU4+) WOJR) QPO
((ed£Lapuoqy ¢ odLqmoqes ‘edLqmoqey
‘Z"PTwoje-‘ [TpTwWoje- ‘ TOU+)PUoq)qepou
((2d£3puoq# ‘ pTWOle+ pTWOIR+‘ TOU+) pUOqUAS) qopou

((SSeTd+ ¢ Tou+)sseTd)yspou

sosnerd anjes] ardurs-T

SOpOIN

Fig. 13: Examples of mode-definitions and simple feature-clauses for the NCI prob-

lem.

43

1. p((A,B,C,D,E,F)) « adj(
2. p((A,B,C,D,E,F)) + adj(
3. p((4,B,C,D,E,F

4. p((A,B,C,D,E,F

5. p((4,B,C,D,E,F

6. p((4,B,C,D,E,F

7. p((A,B,C,D,E,F

8. p((4,B,C,D,E,F

9. p((4,B,C,D,E,F

10.

11. p((A,B,C,D,E,F

12. p((A,B,C,D,E,F

13. p((A,B,C,D,E,F

14. p((A,B,C,D,E,F

15. p((A,B,C,D,E,F

16. p((A,B,C,D,E,F

17. p((A,B,C,D,E,F

18. p((A,B,C,D,E,F

19. p((A,B,C,D,E,F

B, F)),lt(D, B), adj(C, E)
D,F)),B = D,lt(A, E)
« adj(A, E),1t(A, C), It(F, D)
« It(E,C), A = C,It(B, F))

« It(E, A), A = C,adj(A,C)

« It(E, A),1t(D, B), adj(A, E)
< B=D,A=C,adj(A,E)

« B=F,A=E,ltE,C)

« It(A,C),1t(B, D), adj(A, C)

« A= E,adj(D, F)),adj(B, F))
« It(B, F)),It(E,C), adj(D, F))
« adj(B, D), 1t(E, A), adj(A, C)
« adj(A, E),1t(C, E), adj(B, F))
« A=E,A=C,adj(B,F))

« It(A,C),1t(F, B),adj(B, F))
« It(D, B),1t(A, E), adj(A, E)
« It(E, A), A = C,adj(B, D)

()
()
()
()
()
()
()
()
()
p((A, B,C, D, E, F)) + It(D,F)), A= E,lt(E,C)
()
()
()
()
()
()
()
()
()) < adj(A, E), B = F,lt(A, E)

Fig. 14: Buggy explanations produced by the CRM for the inconsistently explained

data instances from the Chess problem.

44

References

Alvarez Melis D, Jaakkola T (2018) Towards robust interpretability with self-
explaining neural networks. Advances in neural information processing systems
31

Amarel S (1968) On representations of problems of reasoning about actions. In:
Michie D (ed) Machine Intelligence 3, American Elsevier Publisher, pp 131-171

Angelov P, Soares E (2020) Towards explainable deep neural networks (xdnn).
Neural Networks 130:185-194

Bach S, Binder A, Montavon G, Klauschen F, Miiller KR, Samek W (2015) On
pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. PloS one 10(7):e0130140

Bain M (1994) Learning logical exceptions in chess. PhD thesis, University of
Strathclyde

Binder A, Bach S, Montavon G, Miiller KR, Samek W (2016) Layer-wise relevance
propagation for deep neural network architectures. In: Information science and
applications (ICISA) 2016, Springer, pp 913-922

Chang CL, Lee RCT (2014) Symbolic logic and mechanical theorem proving. Aca-
demic press

Cybenko G (1989) Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems 2(4):303-314, DOI 10.1007/
BF02551274, URL https://doi.org/10.1007/BF02551274

Dash T, Srinivasan A, Vig L, Orhobor OI, King RD (2018) Large-scale assessment
of deep relational machines. In: International Conference on Inductive Logic
Programming, Springer, pp 22-37

Dash T, Srinivasan A, Joshi RS, Baskar A (2019) Discrete stochastic search and its
application to feature-selection for deep relational machines. In: International
Conference on Artificial Neural Networks, Springer, pp 29-45

Dash T, Srinivasan A, Vig L (2021) Incorporating symbolic domain knowledge
into graph neural networks. Machine Learning 110(7):1609-1636

Dash T, Srinivasan A, Baskar A (2022) Inclusion of domain-knowledge into gnns
using mode-directed inverse entailment. Machine Learning 111(2):575-623

De Raedt L, Manhaeve R, Dumancic S, Demeester T, Kimmig A (2019) Neuro-
symbolic= neural+ logical+ probabilistic. In: NeSy’19@ IJCAI, the 14th Inter-
national Workshop on Neural-Symbolic Learning and Reasoning, pp 1-4

Ellis K, Wong C, Nye M, Sablé-Meyer M, Morales L, Hewitt L, Cary L, Solar-
Lezama A, Tenenbaum JB (2021) Dreamcoder: Bootstrapping inductive pro-
gram synthesis with wake-sleep library learning. In: Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design
and Implementation, pp 835-850

Faruquie TA, Srinivasan A, King RD (2012) Topic models with relational features
for drug design. In: International conference on inductive logic programming,
Springer, pp 45-57

Franga MV, Zaverucha G, Garcez ASd (2014) Fast relational learning using bot-
tom clause propositionalization with artificial neural networks. Machine learning
94(1):81-104

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press

Gottlob G (1987) Subsumption and implication. Inf Process Lett 24(2):109-111,
DOI 10.1016,/0020-0190(87)90103-7, URL https://doi.org/10.1016/

https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/0020-0190(87)90103-7

45

0020-0190(87)90103-7

Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks
are universal approximators. Neural Networks 2(5):359-366, DOI https://
doi.org/10.1016,/0893-6080(89)90020-8, URL https://www.sciencedirect.com/
science/article/pii/0893608089900208

Joshi S, Ramakrishnan G, Srinivasan A (2008) Feature construction using theory-
guided sampling and randomised search. In: International Conference on Induc-
tive Logic Programming, Springer, pp 140-157

Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: ICLR
(Poster), URL http://arxiv.org/abs/1412.6980

Kramer S, Lavra¢ N, Flach P (2001) Propositionalization Approaches to Re-
lational Data Mining, Springer Berlin Heidelberg, Berlin, Heidelberg, pp
262—291. DOI 10.1007/978-3-662-04599-2_11, URL https://doi.org/10.1007/
978-3-662-04599-2_11

Lavrac¢ N, Zelezny F, Flach PA (2002) Rsd: Relational subgroup discovery through
first-order feature construction. In: International Conference on Inductive Logic
Programming, Springer, pp 149-165

Lavra¢ N, Podpe¢an V, Robnik-Sikonja M (2021) Propositionalization of relational
data. In: Representation Learning, Springer, pp 83—-105

Littlestone N (1988) Learning quickly when irrelevant attributes abound: A new
linear-threshold algorithm. Machine learning 2(4):285-318

Lloyd JW (2012) Foundations of logic programming. Springer Science & Business
Media

Marx KA, O’Neil P, Hoffman P, Ujwal M (2003) Data mining the nci cancer
cell line compound gi50 values: identifying quinone subtypes effective against
melanoma and leukemia cell classes. Journal of chemical information and com-
puter sciences 43(5):1652-1667

McCreath E (1999) Induction in first order logic from noisy training examples and
fixed example set size. PhD thesis, The University of New South Wales

McCreath E, Sharma A (1998a) L ime: a system for learning relations. In: Inter-
national Conference on Algorithmic Learning Theory, Springer, pp 336-374

McCreath E, Sharma A (1998b) Lime: A system for learning relations. In: Richter
MM, Smith CH, Wiehagen R, Zeugmann T (eds) Algorithmic Learning Theory,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp 336-374

Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-2(4):349-361

Michie D (1976) King and Rook Against King. 1. Historical Background and a
Problem on the Infinite Board. University of Edinburgh. Machine Intelligence
Research Unit

Michie D, Muggleton S, Page D, Srinivasan A (1994) To the international comput-
ing community: A new east-west challenge. Distributed email document avail-
able from https://wwwdocicacuk/~shm/Papers/ml-challpdf

Muggleton S (1995) Inverse entailment and progol. New generation computing
13(3-4):245-286

Muggleton S, de Raedt L (1994) Inductive logic programming: Theory and
methods. The Journal of Logic Programming 19-20:629-679, DOI https://
doi.org/10.1016/0743-1066(94)90035-3, URL https://www.sciencedirect.com/
science/article/pii/0743106694900353, special Issue: Ten Years of Logic Pro-
gramming

https://doi.org/10.1016/0020-0190(87)90103-7
https://doi.org/10.1016/0020-0190(87)90103-7
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-662-04599-2_11
https://doi.org/10.1007/978-3-662-04599-2_11
https://wwwdocicacuk/~shm/Papers/ml-challpdf
https://www.sciencedirect.com/science/article/pii/0743106694900353
https://www.sciencedirect.com/science/article/pii/0743106694900353

46

Nienhuys-Cheng SH, De Wolf R, et al. (1997) Foundations of inductive logic pro-
gramming, vol 1228. Springer Science & Business Media

Nilsson NJ (1991) Logic and artificial intelligence. Artificial intelligence 47(1-3):31—-
56

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin
Z, Gimelshein N, Antiga L, et al. (2019) Pytorch: An imperative style, high-
performance deep learning library. In: Advances in Neural Information Process-
ing Systems, pp 8024-8035

Pinkus A (1999) Approximation theory of the mlp model in neural networks. Acta
Numerica 8:143-195, DOI 10.1017/50962492900002919

Plotkin G (1972) Automatic methods of inductive inference. PhD Thesis, The
University of Edinburgh

Prechelt L (1998) Early stopping-but when? In: Neural Networks: Tricks of the
trade, Springer, pp 55-69

Quinlan JR (1979) Discovering rules by induction from large collections of exam-
ples. Expert systems in the micro electronics age

Ramakrishnan G, Joshi S, Balakrishnan S, Srinivasan A (2007) Using ilp to con-
struct features for information extraction from semi-structured text. In: Inter-
national Conference on Inductive Logic Programming, Springer, pp 211-224

Ras G, Xie N, van Gerven M, Doran D (2022) Explainable deep learning: A field
guide for the uninitiated. Journal of Artificial Intelligence Research 73:329-397

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-
propagating errors. nature 323(6088):533-536

Saha A, Srinivasan A, Ramakrishnan G (2012) What kinds of relational features
are useful for statistical learning? In: International Conference on Inductive
Logic Programming, Springer, pp 209-224

Sourek G, Aschenbrenner V, Zelezny F, Schockaert S, Kuzelka O (2018) Lifted rela-
tional neural networks: Efficient learning of latent relational structures. Journal
of Artificial Intelligence Research 62:69—-100

Specia L, Srinivasan A, Joshi S, Ramakrishnan G, Nunes MdGV (2009) An inves-
tigation into feature construction to assist word sense disambiguation. Machine
Learning 76(1):109-136

Srinivasan A (2001) The aleph manual. https://www.cs.ox.ac.uk/activities/
programinduction/Aleph/aleph.html

Srinivasan A, King RD (1999) Feature construction with inductive logic program-
ming: A study of quantitative predictions of biological activity aided by struc-
tural attributes. Data Mining and Knowledge Discovery 3(1):37-57

Srinivasan A, Muggleton S, Bain M (1992) Distinguishing exceptions from noise
in non-monotonic learning. In: Proceedings of the 2nd International Workshop
on Inductive Logic Programming, Citeseer, pp 97-107

Srinivasan A, Vig L, Bain M (2019) Logical explanations for deep relational
machines using relevance information. Journal of Machine Learning Research
20(130):1-47

Tamaddoni-Nezhad A, Muggleton S (2009) The lattice structure and refinement
operators for the hypothesis space bounded by a bottom clause. Machine learn-
ing 76:37-72

Turing A (1948) Intelligent machinery. In: The Essential Turing, Oxford University
Press

https://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html
https://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html

47

Vig L, Srinivasan A, Bain M, Verma A (2017) An investigation into the role of
domain-knowledge on the use of embeddings. In: Lachiche N, Vrain C (eds) In-
ductive Logic Programming - 27th International Conference, ILP 2017, Orléans,
France, September 4-6, 2017, Revised Selected Papers, Springer, Lecture Notes
in Computer Science, vol 10759, pp 169-183, DOI 10.1007/978-3-319-78090-0_
12, URL https://doi.org/10.1007/978-3-319-78090-0_12

https://doi.org/10.1007/978-3-319-78090-0_12

	1 Introduction
	2 Relational Features and their Composition
	3 Compositional Relational Machines (CRMs)
	4 Empirical Evaluation of CRMs as Explanation Machines
	5 Related Work
	6 Conclusion
	A Logic Terminology
	B Mode Language
	C Proof of the Derivation Lemma
	D Properties of Derivations using rho
	E Relationship of M-Simple Feature-Clauses to Known Feature Classes
	F Additional Details Relevant to the Experiments

