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Abstract

Ratings are frequently used to evaluate and compare subjects in various applications, from education
to healthcare, because ratings provide succinct yet credible measures for comparing subjects. However,
when multiple rating lists are combined or considered together, subjects often have missing ratings,
because most rating lists do not rate every subject in the combined list. In this study, we propose
analyses on missing value patterns using six real-world data sets in various applications, as well as
the conditions for applicability of imputation algorithms. Based on the special structures and properties
derived from the analyses, we propose optimization models and algorithms that minimize the total rating
discordance across rating providers to impute missing ratings in the combined rating lists, using only the
known rating information. The total rating discordance is defined as the sum of the pairwise discordance
metric, which can be written as a quadratic function. Computational experiments based on real-world
and synthetic rating data sets show that the proposed methods outperform the state-of-the-art general
imputation methods in the literature in terms of imputation accuracy.

Keywords: Missing rating imputation, discordance minimization, quadratic programming, rating data,
data imputation

1 Introduction

Ratings are ubiquitous: university and school ratings for students; credit ratings and environmental, so-
cial, and governance ratings for investors; hospital ratings for patients; journal ratings for researchers and
research institutions; and so on. Despite the criticism that a single number or grade cannot characterize
the performance of the subjects evaluated, ratings are used in everyday individual and managerial decision-
making processes because they usually provide succinct yet credible performance measures and references.
Due to their importance, a substantial body of research has been conducted on the impacts of ratings (or
rankings) in various contexts, such as the impact of sovereign credit ratings on markets (Cantor and Packer,
1996), the impact of product rankings on consumer behavior (Ghose et al., 2014), the effects of online hotel
ratings on customers’ booking intentions and behavior toward a hotel (Casalo et al., 2015), the impact of
college rankings and their visibility on students’ application decisions (Luca and Smith, 2013), the effect of
school ratings on neighborhood choice and home values (Lerner, 2015), the impact of ranking systems on the
decision-making of higher education institutions (Hazelkorn, 2007), and the effects of hospital performance
ratings on the public (Hibbard et al., 2005).

Although ratings have a significant impact, a single rating system does not evaluate or rate all assessable
subjects. Many rating systems rate a limited number of subjects because of capacity limitations in collecting
data or performing analysis, insufficient data for evaluations, and the lack of interest in specific groups of
subjects. To compare the known ratings of all subjects, a combined list can be created by concatenating the
ratings of multiple rating systems. However, in the tabular form of the combined list, missing entries are
frequently observed because a subject rated by one rating system is not rated by another. The missingness
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of the combined list can be problematic, considering the impact of ratings on decision-making. For example,
journal rating lists are frequently used as credible measures for evaluating the quality of faculty scholarship
(Kim et al., 2021). However, a combined journal rating list includes a significant number of missing entries
for many reasons, such as quality control at rating agencies and scope of the rating. The missingness often
creates challenges in faculty scholarship evaluation processes, particularly when the academic institution
adopts a single rating list that does not rate some of the institutions’ target journals.

To remedy this issue, traditional research has primarily focused on reverse-engineering the underlying
rating formula or identifying significant explanatory factors that constitute the rating system (Chang et al.,
2012; Adelman, 2020). However, the applicability of the traditional approaches is limited for imputing missing
values on a combined list of multiple rating systems, because the explanatory factors may vary across rating
systems, thus requiring customized treatment for each rating system. To overcome this limitation, Kim et al.
(2021) recently proposed imputing missing entries in a combined rating list, based solely on data imputation
approaches.

The goal of this research is to integrate multiple rating systems from various sources, create combined
rating lists, and impute the missing values of the combined matrix using only the known ratings. The resulting
imputed rating matrix will enable users to access all ratings by all rating providers in their interests. We
study the missing value imputation problem for a matrix of combined rating lists with a structure similar to
the one in Figure 1, which essentially shares the same objective with matrix completion and collaborative
filtering. We assume that the ratings must be ordinal. To quantify our model, any character-coded ordinal
ratings are converted to numerical ordinal ratings whose categories are natural numbers. For example, the
character-coded ordinal ratings in Figure 1(a) are converted into numerical ordinal ratings in Figure 1(b).
Without loss of generality, we assume the higher rating values reflect superior quality. In the example data
matrices Figure 1, six rating providers (RPs) rate subsets of the subjects: RP1 rates six subjects, RP2 rates
six subjects, etc.

subjeira| RPL | RP2 | RP3 | RP4 | RPs | RPs subeire| RPL | RP2 | RP3 | RP4 | RPs | RPs

S1 A A A A A S1 4 3 3 3 3
S2 B A A A B S2 2 4 3 3 2
S3 A B A A B S3 3 3 3 2
S4 B B B S4 3 2 2

S5 B B B A S5 2 2 2 3

S6 C C C B C S6 1 2 1 2 1
S7 C C B S7 1 1 1 2

S8 C c C C S8 1 1 1 1

(a) Character-coded ordinal rating matrix (b) Numerical ordinal rating matrix

Figure 1: Example rating matrices

Data imputation has been widely studied and has a rich literature. The problem we consider belongs
to the general data imputation problem, but it requires ordinal data values and prefers coherent columns.
Hence, we next provide a brief overview of frequently used data imputation techniques discussed in the
literature. The data imputation methods can be classified into two categories (Garcia-Laencina et al., 2010;
Lin and Tsai, 2020): statistical methods and machine learning-based methods. In particular, Lin and Tsai
(2020) list a few of the most widely used techniques in the literature in each of these categories. In the next
two paragraphs, we briefly review the methods in statistical and machine learning categories.

In the statistical method category, expectation-maximization (EM), regression-based methods, and mean/mode
imputation are the most commonly used subcategories. EM is widely used in various applications and is an
iterative method in which each iteration consists of two steps: (1) E-step updates the conditional expectation
of the log likelihood given the observed data and the current parameters, and (2) M-step finds the new pa-
rameter set by maximizing the conditional expectation of the log likelihood. See Chapter 5 of Schafer (1997)
for more detail. In R, multiple packages offer EM-based imputation methods including norm, imputeR, and
TestDatalmputation. A regression-based method sets a variable that includes missing entries as a response



variable, while setting other variables as predictor variables to build a linear or logistic multiple regression
model as a predictive model. There are several variants of regression-based imputation models implemented
in R. For example, the VIM (Kowarik and Templ, 2016) package includes a regression-based imputation
function regressionImp. In practice, a simple mean/mode imputation method is popular because of its sim-
plicity and computational efficiency. A mean (resp. mode) imputation replaces each missing entry with the
mean (resp. mode) of the row (or column) that includes the missing entry. In addition, multiple imputation
methods have recently received greater attention from researchers. Multiple imputation methods generate
multiple imputed data sets, where each imputed data set can be used for the same analysis, and all results
can be used to conclude. When a single imputed data set is needed, we can aggregate from the multiple
imputed data sets. Multiple imputation by chained equation (MICE) (Buuren and Groothuis-Oudshoorn,
2011) is a representative multiple imputation algorithm in the R package mice.

In the machine learning methods category, the four most widely used imputation methods are sub-
categorized into clustering-based methods, decision tree-based methods, k-Nearest Neighbors methods, and
random forest-based methods. Clustering-based methods first place the observations into several clusters,
where the number of clusters is user-defined, and the distances between observations are measured directly
from the incomplete data. Then, the missing entries in the same cluster are imputed based only on infor-
mation within the cluster. For example, nearest neighborhood methods (Patil et al., 2010) can be used to
determine the nearest instance within the cluster, which then determines the imputation. Some clustering-
based imputation methods are implemented in the R package ClustImpute. Decision tree-based methods
impute the missing entries in a variable, using a decision tree as a predictive model. The decision tree
is constructed based on the remaining variables (other than the imputed one). Classification and Regres-
sion Trees (CART) (Breiman et al., 2017) is a widely used decision tree-based method implemented in the
mice package in R. Random forest-based methods are based on multiple decision trees constructed using
bootstrapping. The imputation is performed by aggregating the predictions from the decision trees. A fast
random forest-based imputation method is implemented in the well-known R package missForest (Stekhoven
and Bithlmann, 2012).

In addition to statistical and machine learning methods, optimization-based methods have also been
studied for data imputation. In the seminal work by Candés and Recht (2009), the authors propose a
convex optimization formulation for matrix completion, which finds the imputed matrix that minimizes the
nuclear norm. Motivated by this convex formulation, an alternative convex formulation has been proposed by
Mazumder et al. (2010), by which the method softImpute was first implemented. The softimpute algorithm
is an iterative method that, in each iteration, uses a soft-thresholded singular value decomposition to impute
the missing values of the filled-in matrix from the previous iteration. Hastie et al. (2015) improved the
previous version of softImpute based on the enhanced matrix factorization algorithm. Several variants of
these methods and other computational algorithms have been proposed over the past decade. For example,
see Ramlatchan et al. (2018) for a review of these methods. More recently, Kim et al. (2021) have proposed a
mixed-integer linear programming formulation for data with multiple ordinal variables, which can be solved
using commercial optimization solvers.

Our contributions are threefold.

1. We introduce various real-world rating data sets and study the properties of the input rating data
matrix and missing value patterns. First, Mann—Whitney U test is used to test if the missing value
implies inferiority or superiority. Second, the Kendall rank correlation is used to measure the consensus
levels among the rating providers. These two analyses are performed for multiple real-world rating
data from various applications. We also provide synthetic data and a data-generation procedure (based
on the properties we observed from the real data) for systematic performance comparison.

2. Based on the properties and structure of the rating data analyzed, we propose a quadratic programming
(QP) formulation, which minimizes the total discordance between RPs in the combined rating lists. In
contrast to the existing studies, our algorithms weight each pair of RPs based on their consensus levels,
where the weights emphasize highly correlated RP pairs. To improve the scalability of the proposed QP
model, we propose a decomposable version of the QP in which the imputation of each cell is independent
of the other. We derive closed-form solutions to both the QP and its decomposable variant. This
enables us to implement scalable imputation algorithms that do not depend on commercial solvers
but only require solving systems of linear equations. Finally, we propose a mathematical procedure
and definitions, which test if the proposed algorithms are well-defined and applicable. The derived



conditions are referred to as estimatability and level-1 estimatability.

3. The computational experiment, based on real-world and synthetic data sets, shows that the analytical
solution approaches significantly reduce the time and space complexities of the proposed QP model
(solved using a commercial solver); they also outperform the state-of-the-art benchmark algorithms
reported in the literature for imputing missing ratings.

The paper is structured as follows. In Section 2, we present real-world data sets and conduct analyses
on the properties of the input rating data matrix and missing value patterns. In Section 3, mathematical
models and algorithms are proposed and sufficient conditions for the algorithms are derived. In Section 4, we
compare the proposed algorithms’ performance with popular imputation algorithms in the literature using
real-world and synthetic data.

2 Rating Data: Analysis and Imputed Data Usage

In this section, we present and analyze multiple real-world data sets from various applications. First, in
Section 2.1, we briefly describe the real-world data sets we compiled. Next, we focus on checking whether
the missing values imply inferiority or superiority in Section 2.2. We propose a procedure to measure the
consensus level between a pair of RPs in Section 2.3. The consensus levels we define are used to penalize
the effects of discordant pairs of rating providers on the overall discordance. Finally, in Section 2.4, we
exemplify how users can use the resulting imputed rating data. In the rest of the paper, we use the notations
summarized below.

X: m x n rating matrix with missing entries

I={1,---,m}: index set of rows (subjects) of matrix X

J={1,---,n}: index set of columns (rating providers) of matrix X

x;j: entry at row ¢ € I and column j € J of matrix X

uj = max;cr{x;; }: maximum rating value for rating provider j € J

l; = min;er{z;;}: minimum rating value for rating provider j € J

¢j = u; — l; + 1: number of observable ratings categories for rating provider j € J
S ={(4,5) € I x J}: index set of matrix entries (Cartesian product of I and J)
Sk ={(i,7) € (I\ {k}) x (J\ {I})}: index set of matrix entries excluding row k and column [
Q@ C S: index set of missing entries

O = {xx|(k,1) € Q}: missing values to impute (set of decision variables)

X: an imputed matrix, where Z;; is the entry at row 7 € I and column j € J

wy;: weight imposed for rating provider pairs [ € J and j € J

2.1 Real-World Rating Data

Before we present the in-depth analysis in the later sections, we introduce six real-world rating data sets we
complied. The data sets used in our analyses and experiments are from various applications: hospital rating,
journal rating, environmental, social, and governance (ESG) rating, elementary and high school rating, and
movie rating. The rating values in these applications offer credible measures to evaluate organizations, indi-
viduals, and subjects. However, when multiple RPs are considered together, many missing values exist. This
hurts the usefulness of the rating systems, and accurate imputation of the missing ratings becomes important
(Kim et al., 2021). The detailed background and data collection procedures, conversion procedures!, and
missing rate distributions are described in Appendix A1-A5, A6, and A7, respectively.

In Table 1, the summary statistics of the six data sets are presented. The second and third columns
present the numbers of subjects rated and the numbers of RPs, respectively. The next four columns include
the average, median, minimum, and maximum missing rates of the RPs (columns). The last two columns
show the percentages of the rows with only one rating and all ratings, respectively. The column summary
statistics indicate that some RPs rate nearly all subjects (e.g., an RP in the Journal data set has missing
values for 3.8% of the journals), while some RPs rate very few subjects (e.g., an RP for the US Hospital
data set has missing values for 94.5% hospitals). The row summary statistics indicate that some data sets

1Some RPs use continuous scores, and we convert them into ordinal ratings.



have near-zero rows that have only one rating available (e.g., the journal data set has 0.4% of the rows with
one rating). In comparison, some data sets have more than half of rows with only one rating (e.g., the High
School data set has 55.3% of the rows with one rating). See Appendix A7 for more detailed statistics and
distributions of the missing rates.

Column Missing Rates % Rows Rated
Data 7 Rows | ## Cols | ) 00 Med Min  Max | Ono RP  All RPs

US Hospital 4217 4 30.2% 26.9% 11.6% 55.2% 21.0% 41.3%
Journal 944 11 36.0% 37.7% 52%  65.8% 1.2% 13.5%

ESG 1356 4 47.5%  53.9% 3.8% 78.4% 44.0% 14.0%
Elementary School 301 5 38.9% 33.9% 25.9% 66.8% | 29.9% 24.3%
High School 132 5 55.6% 53.8% 28.8% 81.8% 55.3% 11.4%

Movielens 1102 12 62.7% 64.8% 53.0% 67.3% 23.1% 3.0%

Table 1: Summary statistics of data sets

2.2 Missingness and Inferiority

Most multiple imputation algorithms assume a missing data mechanism, called missing at random (MAR)
(Rubin, 1976), although this assumption is frequently violated. In particular, we focus primarily on rating
data in which the missing at random condition is easily violated because the probability that a rating is
missing does depend on the value of that rating (Marlin and Zemel, 2009). As partial evidence of this
statement, we check if the missingness has some associations with inferiority. More specifically, for each RP
pair (4,1), we use the Mann—Whitney U test! to compare the medians between two groups of RP I’s ratings:
(i) group G}l includes RP I’s ratings for the subjects whose ratings of RP j are missing and (ii) group G?l
includes RP I’s ratings for the subjects whose ratings of RP j are available. For RP pair (j,1), we test the
following hypotheses.

Ho: Pla’ > a"|2" € Gy, 2" € G3] = 0.5
Hy: Pl > 2"|2' € Gjl-l,a:” € G?l] #0.5
If the U test concludes that the two groups are different, then missing ratings in RP [ may imply the
inferiority or superiority of the subjects. In Figure 2, each matrix reports the p-values of the U test of RP
pairs. For each row j and column [ of each matrix, the matrix entry represents the p-value of the test for
RP pair (4,1) that compares the average RP [ ratings of two subject groups, where the first group consists of
subjects unrated by RP j and the second group consists of subjects rated by RP j. For example, in Figure
2(a), in Row 1 and Column 2, 0.6715 is the p-value of the test that compares the ratings of LeapFrog with
and without the missing values of HCAHPS. The NA cells in Figure 2(b) and 2(e) indicate that the test is
not available for the corresponding pair. The test result indicates that there is no significant difference in
LeapFrog ratings between the two groups, with or without the missing values of HCAHPS. In all matrices,
the cells are highlighted with light gray color and black font if the p-value is less than 0.05 and the missing
ratings in RP j mean worse ratings in RP [. If the p-value is less than 0.05 and the missing ratings in RP j
mean better ratings in RP [, then the number is colored in red in darker gray cells. The color-coded matrices
show that missing values generally indicate inferiority for Journal and Movielens data sets. In contrast, it is
not sufficiently clear to conclude similar results for the Hospital, ESG, Elementary School, and High School
data sets. For the Elementary and High School data sets, missing values generally mean better ratings for
Niche.

2.3 Analysis for Consensus Level

Our imputation methods incorporate the discordance levels for all pairs of RPs and aim to minimize their
sum. Then, each discordance level is penalized based on the consensus level obtained from the observed

IMann-Whitney U test is a nonparametric test that, for two groups G1 and G2, checks if the probability of G1 being greater
than G2 is equal to the probability of G2 being greater than G1. It only requires that you are able to rank order the individual
scores or values; there is no need to compute means or variances.
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Figure 2: p-value matrices from Mann—Whitney U test

entries. To measure the consensus level for each pair of RPs, we use the Kendall rank correlation coefficient
Tg, which is one of the most widely used distance measures between two ranked lists in the rank aggregation
literature. For example, see Lin (2010), Dwork et al. (2001), and Fagin et al. (2003) for your reference.
Unlike the typical Pearson correlation, the Kendall rank correlation focuses on the order between the two
pairs, which aligns with our approach of minimizing the discordance.

Figure 3 presents the correlation matrices of the six data sets. The darker and lighter cells have higher
and lower correlations, respectively. For all of the RP pairs in the data sets, the correlation coefficients are
positive, indicating that the ratings are positively correlated. However, the magnitudes of the correlations
vary for different RP pairs and data sets. The correlations for the Journal data range from 0.19 to 0.90,
with a mean of 0.56; correlations for the Hospital data range from 0.13 to 0.52 with a mean of 0.29. The
average correlation coefficients for the Elementary School, High School, and ESG data sets are 0.64, 0.79, and
0.47, respectively. Hence, we can see that school ratings are more consistent across different RPs, while the
hospital rating data set has low consensus levels among different RPs. This observation suggests that highly
correlated RP pairs can refer to each other for imputing their missing values. Further, highly correlated
pairs should affect each other more, and lowly correlated pairs should affect each other less. In Section 3,
we propose using these Kendall rank correlation matrices to weight the RP pairs.

2.4 Imputed Rating Data Usage

Data imputation serves as a pre-analysis tool in many imputation tasks to prepare a complete data matrix
for the main analysis, such as regression analysis, by filling in missing values. On the other hand, the direct
utilization of data imputation is becoming increasingly important, as illustrated in Section 2.1. If an end-user
prefers specific RPs and the subjects of interest are not rated by the preferred RPs, an accurate estimation
of the missing values can assist stakeholders in making fair and reasonable decisions. For instance, numerous
academic institutions use a journal quality list for evaluating scholarships, relying on the ratings provided
by this list as a quality score for a published journal (Kim et al., 2021). However, high-quality journals are
often excluded from such trusted journal quality lists. In such cases, imputed ratings can provide quality
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Figure 3: Kendall rank correlations

scores for the missing journals in the designated journal quality list. Similarly, imputed ratings for hospitals,
companies, and schools can provide valuable information and insight to users.

An analyst interested in estimating the missing ratings of a preferred rating list can use the proposed
algorithm as follows. First, generate the Kendall rank correlation matrix using all available data. Second,
select a subset of RPs (columns) relevant or highly correlated to the designated RP. Third, use the rating
data of the selected RPs to run the proposed algorithm. Finally, the imputed ratings can be used to evaluate
subjects with missing ratings. For example, consider the elementary school data in Table 1. Suppose
the analyst is interested in imputing the ratings for GreatSchools. With a threshold of 0.6, the Kendall
correlation matrix in Figure 3(d) indicates GreatSchool, SchoolDigger, and Texas Guide should be used for
the algorithm. Using the selected RPs and their ratings, the proposed algorithm imputes the missing ratings
in the three selected RPs. The analyst can now use the imputed ratings for GreatSchool.

3 Quadratic Programming-based Imputation Models and Algo-
rithms

Missing rating imputation problems have multiple characteristics that make them difficult to solve. First,
there are inconsistencies among the ratings, as illustrated in Section 2.3. Ideally, when experts have the
same opinions on subjects, each subject would get the same rating by all RPs. However, for various reasons,
ratings by the RPs for the same subject may differ. For example, in Figure 1(b), RP1 rates S3 higher than
S2, whereas RP2 rates S2 higher than S3. This is referred to as an upset (Kim et al., 2021). Second, rating
distributions are not consistent across the RPs. For example, in the Journal rating data set, both Ejis2007
and ABDC2019 use four-category rating scales. However, the proportions of the ratings in the four categories
are 14%, 31%, 34%, and 21% in Ejis2017, while they are 20%, 48%, 26%, and 6% in ABDC2019. This can be
problematic if a simple approach, such as imputation by averaging the available ratings, is used. Third, the
MAR mechanism, which several imputation algorithms assume, can be violated. For example, missingness



might be significantly affected by the inferiority of subjects, as discussed in Section 2.2. In this section, we
first derive sufficient conditions for our algorithms and then propose quadratic programming-based models
and algorithms to overcome these challenges.

3.1 Sufficient Conditions for Proposed Imputation Algorithms

In this section, we discuss the estimatability of the data and the sufficient conditions for the proposed
algorithms to work properly. In other words, we derive sufficient conditions for the data matrix for our
algorithms to be well-defined. First, we make the following assumption in the remainder of the paper.

Assumption 1. Every subject (row) is rated by at least one rating provider (column).

Any imputation algorithm will fail (or return meaningless random output) if Assumption 1 does not
hold. For this reason, if the data set does not satisfy Assumption 1, empty rows must be deleted before
running the algorithms. Our algorithm, proposed in Section 3, requires a stronger assumption in order to
be well-defined and work properly. In this section, we define a condition called estimatability that the input
data must satisfy for our algorithm.

We first illustrate the meaning of this notion of estimatability. In this paper, we consistently use the
index ¢ (and its variations such as 4’,4”,i1,42, etc.) to denote rated subjects, and similarly, the index j
(and its variations such as j’, j”, j1, j2, etc.) to represent rating providers, in accordance with the notations
introduced in Section 2. Consider imputing one missing entry associated with subject ¢ and rating provider
j. Our imputation models explore every entry (i, j') with i’ # ¢ and j # j and the associated corner entries
(i,7") and (¢, 7); they check discrepancy between ratings for ¢ and ¢’ by j and j'. Notice that the entries
(i,7),(',5"),(,7), and (i,5’) form a 2 X 2 submatrix of X. In order for (i, ) to be “estimatable,” we require
the existence of (i/,j’) such that the entries (¢/,5'), (¢,5'), and (¢',j) are observed or estimatable. In other
words, two rating providers, 7 and j’, can directly share their rating information to estimate unobserved
ratings if there is at least one subject that is rated by both rating providers. Even when there is no such
subject, they can indirectly share their rating information if there is another rating provider j” that mediates
them. That is, there exist subjects 7 and ¢’ such that i rated by both j and j” and ¢’ is rated by both ;" and
4’. If all rating providers are connected in this manner, we say that the data is estimatable. Therefore, we
define the estimatability of a data entry inductively, where initial estimatability is defined by the existence
of (i',7') such that the three corner entries are all “observed.”

We next formalize the notion of the level-v estimatability with the following definitions.

Definition 1. An unobserved data entry (i, ) is called level-1 estimatable if there exists (i’,j') such that
i' # i, 77 # j, and all three entries (¢, j), (i,7'), and (i’,5’) are observed. An unobserved entry (i,j) is
called level-v estimatable if both of the following two conditions hold: (i) It is not level-u estimatable for all
uw € {1,...,v — 1}; (ii) There exists (i’,j’) such that i’ # i, j' # j, and that each of the three entries with
indices (¢, ), (¢,7"), and (¢, ') is either observed or level-u estimatable for some u € {1,...,v — 1}.

Definition 2. An entry of the input data X is called estimatable if it is level-v estimatable for some positive
integer v.

We next define a data set X being estimatable. To this end, we introduce some notations. Let Fy be the
set of all the observed entries of the input data set X. We denote by E, the set of all level-v estimatable
entries of X.

Definition 3. 1. A data set is level-v estimatable if v is the minimum number such that |J,_, E, equals
the set of all the data entries.

2. If X is level-v estimatable for some v, we simply say that X is estimatable. If no such v exists, the
data set is said to be unestimatable.

We next show the relationship between E, and FE,;1, where the proof is available in Appendix B.

Lemma 1. If E, = (), then F,;; = ( for any natural number v.



Checking the estimatability of a data set is straightforward because of Lemma 1. More specifically, by
Lemma 1, a data set X is level-v estimatable if and only if v is the last index such that E, # 0.

In Section 3, we present two data imputation algorithms, which rely on different data assumptions. One
of the algorithms assumes that the data set is estimatable, while the other algorithm requires a stronger
assumption that the data set is level-1 estimatable.

Example. Let us consider the example data sets in Figures 4 and 5, which present unestimatable and
estimatable data sets, respectively. In Figure 4, the observed entries are marked with circled 0s. Then, the
entry (i4,71) is level-1 estimatable because (i3, j1), (i3, j2), and (i4,j2) are observed. Similarly, the entries
(i1,j2) and (ig,jo) are level-1 estimatable, and we mark them with circled 1s. It can be easily verified
that the remaining entries (empty cells in Figure 4(b)) are unestimatable, indicating that the data set is
unestimatable. Notice that the data set does not violate Assumption 1 but violates the estimatability. Let
us next consider the data set in Figure 5. Out of the ten missing entries in Figure 5(a), seven are level-1
estimatable. Then, the three remaining entries are level-2 estimatable because they can be estimated based
on observed or level-1 estimatable entries. Because all data entries belong to Ey U E; U Es, the data set is

(level-2) estimatable. U
st RPl RP1 | RP2 | RP3 st RP| Rp1 | RP2 | RP3
S1 © S1 © 0}
S2 © S2 © 0}
S3 © © S3 © ©
Sa4 © S4 0] ©
S5 © Ss ©
S6 © S6 ©
(a) Observed entries (Eop) (b) Eo U Ex

Figure 4: Example of unestimatable data
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Ss © S5 ©) © S5 © ©) ©
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(a) Observed entries (Ep) (b) Eo U FE4 (¢) Eo UFE1UE>

Figure 5: Example of estimatable data

We next present a graph characterization of estimatability. To this end, we introduce several defini-
tions and notations. Consider an undirected graph whose nodes represent RPs and whose edges represent
connectivity between nodes.

Definition 4. 1. Two RPs are called connected if there exists a subject that is rated by both RPs.

2. Two RPs are called path-connected if there exists a path that connects two RPs in the graph.



3. The graph is called connected if every pair of RPs is path-connected.

For an arbitrary set of rating providers C' C J, we denote the set of subjects observed by at least one
rating provider in C' by O(C'). We also denote the set of all the estimatable subjects of the rating providers
in C by £(C). For a set of single rating provider {j}, we use shorthand notations O(j) and £(j) for O({j})
and £({j}), respectively. The graph representations of data sets in Figures 4(a) and 5(a) are illustrated
in Figure 6. The following results show that the estimatability of a data set can be characterized by the
connectivity of the graph representation of the data set.

(Fe) (e

(a) Graph for Figure 4(a) (b) Graph for Figure 5(a)

Figure 6: Graph representations for the example data sets

Theorem 1. Given incomplete data X and its graph representation, let C' be a connected component and
let O(C) be the set of subjects rated by at least one rating provider in C. Then, all of the entries of the
submatrix associated with O(C') and C are estimatable.

Theorem 2. The input data set is estimatable if and only if its graph representation is connected.

The Proofs are available in Appendix B. Estimatability of the input data set will affect the property of
the objective function. We discuss this in greater detail in Section 3. By Theorem 2, the estimatability check
of the input data is equivalent to the connectivity problem for its graph counterpart. The connectivity can be
checked efficiently using various algorithms. For example, for every distinct pair (u,v) of rating providers,
its local connectivity x(u,v) is defined as the maximum number of internally disjoint © — v paths in the
graph; it can be efficiently determined using the max-flow min-cut algorithm (Dantzig and Fulkerson, 2003;
Even and Tarjan, 1975). Thus, the graph is connected if and only if min,, x(u, v) # 0.

One of the algorithms we propose in Section 3 requires a stronger assumption, level-1 estimatability. We
next present a necessary and sufficient condition for an input data set to be level-1 estimatable, where the
proof is available in Appendix B.

Theorem 3. Given input data X, let I; be the set of subjects that are rated by j € J. For an arbitrary
jieJ,let Ny ={jeJ| ;NI # 0} be the set of RPs, including j’ itself, which have at least one commonly
rated subject with j'. Then, X is level-1 estimatable if and only if I = J,cy, I; for all j" € J.

The key idea of Theorem 3 is to check, for each missing entry (i, '), level-1 estimatability can be
established if we can find another row and column (¢ and ;") such that (¢, "), (i",7'), and (i",j") are
known. The set N;/ represents the set of RPs that have a direct connection to j’, where the connection is

defined by the existence of a commonly rated subject. Next, | ieN., I; represents the set of subjects rated by
J
at least one neighboring rating provider including j' itself, ensuring the level-1 estimability of the associated
missing entries in column j’. In other words, | J e, I represents the set of subjects whose entries on column
J
4’ are either observed or level-1 estimatable. Therefore, if the union is not equal to the entire subject set I,
the data set is not level-1 estimatable. If the condition holds for all RPs in J, then the data set is level-1
estimatable. We confirm that all the data sets we used in Section 4 have been tested using Theorem 3 and
that all are level-1 estimatable.

3.2 Quadratic Programming Model and Algorithm

Consider rating matrix X with missing values. To impute its missing values, Kim et al. (2021) propose an
optimization model that minimizes the number of upsets. This can be written as

nglhelcb Z Z 1(wkz—wu)(wu—wkj)<0' (1)

(k,1)€S (i,j)eSkt
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To solve (1) exactly, the authors reformulate it as a mixed-integer program (MIP) by introducing several
auxiliary binary variables. However, the MIP model is not suitable for large-scale data because the problem
size increases quadratically in data size: it has O(m?n) binary variables, O(m?n?) continuous variables,
and O(m?n?) constraints. To overcome computational difficulties and improve scalabilities, the authors use
several techniques, including a linear programming relaxation. However, their fastest approach, based on an
LP relaxation, is still not sufficiently scalable.

In this paper, we propose a quadratic program (QP) with correlation-based weights to overcome the

scalability issue and account for the consensus levels among the RPs.

: Tl — Til | Tij — Thyj )2
min E E wlj< iy Tij .7) (2)
Vo €P Cl Cj

(k,1)ES (i,5)€SH

Several characteristics of (2) are notable. First, instead of using the total number of upsets as the objective
function, an alternate objective function is used. For row pair (i,k) and column pair (j,1), we adopt the
squared value of ZEL=%iL 4 M instead of the indicator 1(,,, —z;)(2;—ax,)<0- Lhe term (xx; —x;;) captures
the difference between the ratmgs of rows ¢ and k by RP;, while the (zx; — x;;) term captures the difference
between the ratings of rows ¢ and k& by RP;. Then, each term is normalized by dividing by the number of
categories ¢; and c;. Thus, the entire expression & l“"“ + M calculates the rescaled rating discrepancies
between RPs [ and j for subjects ¢ and k. This enables us to av01d a considerable number of binary variables
and to keep the problem as an unconstrained continuous optimization, which is easier to solve than MIP.
Second, we impose weight w;; between RPs [ and j. As illustrated in Section 2, some RPs show strong
concordance, while some RPs create major discordance. We emphasize the ratings from the similar lists
for imputing the missing values in the current list by giving higher weights w;; for the comparison between
ratings by RPs j and I. Note that w;; < 0 implies zero or negative influences on the objective function, which
contradicts our modeling idea. To ensure that the weights positively affect the imputation procedure and to
prevent numerical errors due to near zero weights, we truncate weights as w = max{w, e} where € > 0 is a
small constant. Finally, note that the first summation in the objective function considers each missing entry
in the matrix, while the second summation considers each entry (regardless of missingness) of the matrix.
Hence, each term x’“c_lx“ + x”c_jx"j has at least one missing entry (i.e., x;), but all four could possibly be
missing.

The objective function has a desirable convexity property, as we present in the next theorem with the
proof available in Appendix B.

Theorem 4. Problem (2) is convex. In particular, if the input data X includes at least one level-1 estimat-
able missing entry, then (2) is strongly convex.

Because strong convexity implies strict convexity, we obtain the following corollary.

Corollary 1. If the input data X includes at least one level-1 estimatable missing entry, (2) has a unique
optimal solution.

We note here that, if the input data X is estimatable, then X includes at least one level-1 estimatable
missing entry. Therefore, the estimatability of X implies the strong convexity and the existence of a unique
solution of (2). Because (2) is strictly convex, multiple solution approaches are available. We can use a
general-purpose quadratic programming solver, or we can develop an analytical solution approach based on
the first-order optimality condition. Both approaches theoretically guarantee optimality. In the remainder
of this section, we develop an analytical solution approach. By setting the partial derivative for all z,, € ®
and equating them to zero, we obtain |Q| equations with |@| unknowns (variables). Because (2) is convex,
the solution to this equation system is the global optimal solution for (2). We denote this algorithm by
QP-AS and denote the general-purpose solver optimizing (2) by QP-Solver throughout the remainder of this
paper.

As in the proof of Theorem 4, without loss of generality, assume that each column of the data is normalized
by dividing it by the number of rating categories. Thus, we can conveniently drop the denominators ¢;’s
from the objective function without affecting the analysis. Let p(= |Q|) be the number of missing entries.
For notational simplicity, we define an index set of missing values Q' using a one-dimensional index system,
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whereas @ is based on a two-dimensional index system, so that there is a one-to-one correspondence between
Q and Q'. Now, we denote the missing entries by z, for ¢ € Q'. We also denote the row and column indices
of z4 in the original matrix by i, and j,. We summarize these new notations as follows.

Q' ={1,---,|Q|}: index set of missing values
iq € I: row index of 24, ¢ € Q', in the original matrix
Jq € J: column index of z,, ¢ € Q" in the original matrix

For each ¢ € Q!, where z, = x;,j,, we consider all terms in the objective function that include z,. Such a
square term corresponds to an entry whose row index is different from 4., while the column index is different
from jg. Then, the sum of all such terms is

F = Z Z quj (‘riqjq - ‘riqj - xijq + le)Q
JjeI\{dq} i€\ {iq}

oF
6qujq

Therefore, the partial derivative of the entire objective function in z, is equal to gTF (or ), which can
q

be rewritten as follows.

oF oF
g = or: = 2 Z Z quj(xiqjq — Ligj — Tijg + x"])
! fala jeI\{ja} i€\ {iq}

2 > wj |(m =D, —(m =Dz — > @y, + Y wy

je€I\{jq} i€\ {iq} i€\ {iq}
= 2(m-1) S wig v, — | D wiwy
J€IN\{dq} J€I\{jq}
+2 |- Z Wy, j Z Tij, | + Z Z W, Tij
j€I\{dq} iel\{iq} i€l\{iq} j€J\{dq}

Then, the equation 9F/0z; = 0 can be written as » o1 Ags@i.j. = by (equivalently, >° o1 Agszs = bg)
where Ay, and by are defined as

20m = 1) (Sjen sy W) i iq = is and jy = j,

- —2(m — w;,;. if ig = 45 and jq # s
Ay = “ (3)
9 (zjeJ\{jq} quj) if iy # iy and j, = js
2qujs if Zq 7é is and jq 7& js
by=2(m—1) Y wiyii+2| Y wi doowi | =2l D0 D wigvs|. ()
i€\ o} j€I\ia} iel\{ig} i1\ {ig} i€\ (i)

where y;; for i € I,j € J is defined as

| x; if x5 is observed
Yij { 0 otherwise
The first-order conditions yield a system of equations Az = b, where A is a |@Q| X |Q] square matrix. By
the strict convexity of the objective function, A is positive definite and hence invertible, implying that the
solution to the system is uniquely determined by z = A~'b.

Note that zx; € @ in (2) is a continuous decision variable, while data matrix X may have integer ratings
only. When the ratings of X are integers, for both of the proposed algorithms QP-AS and QP-solver, the
solution X is transformed by &z = min{u;, max{l;, round(#x)}} at the end. This procedure is used for any
benchmark algorithm returning continuous values.

Our final remark concerns the computational tricks solving (2) and preparing (3) and (4) more efficiently.
Because the ratings are ordinal (and integers), multiple rows (subjects) can be identical, particularly when

12



the number of columns is small. Hence, we can remove the duplicated rows and reformulate (2) to reduce
the problem size while keeping the solutions identical. Let X’ be the reduced matrix of X after deleting
duplicated rows. @', ®’, and S’ are defined similarly to @, ®, and S, respectively. Let d; be the number of
duplicated rows identical to row 7 of X’.

x;cj )2

~ Ty — Ty | T~

min Z Z wy;d; dk< +

v, €D Ci Cj
(k,1)eQ’ (i,5)€S’

Given the normalized matrix X’ (obtained by dividing by the number of categories), we can define A’ and

b’ similarly.

Z(Ziel\{iq} didiq) (Zje]\{jq} quj) if iq = is and jq =7Js

W =2 en i,y didiy )W, if ig = is and jg # Js
qs e - . . .
—2d;,d;, Zje]\{jq} quj) if ig # s and jg = Js
Qdiq di, Wiqjs if ig #is and jg # Js
Yoo didi) > w2 Y wiy Yo odidigyiy, |2 D) D wididiyl
i€I\{iq} J€I\{Jq} J€IN\{dq} i€I\{iq} i€\ {iq} j€I\{jq}

We single out the results in this section as a theorem.

Theorem 5. The solutions 2 = A~'b and z = (A’)~1¥ to the system of equations Az = b and A’z = ¥/,
respectively, are the optimal solution to (2).

3.3 Decomposable Quadratic Programming Model and Algorithm

Note that (2) minimizes the total rating discordance using all of the existing and to-be-imputed ratings.
In this section, we propose a variant of (2) to improve the scalability while maintaining a similar solution
quality. We simplify the problem by considering the rating discordance for each missing value as follows:

. — Tig | Tij — Tpj\>

zlilen Z Z wqj( q + Cj ) ’ (5)
(p,9)€Q (i,5)ERPY

where RPY = {(i,5) € S\ Q|(4,9) ¢ Q,(p,j) ¢ Q}. Thus, R,, includes (7, 7) only if all of x;;, z;q, and x,;

have available ratings. To assure that the optimization problem (5) is well-defined, we assume that the input

data X is level-1 estimatable.

Notice that the level-1 estimatability of the input data is equivalent to R, # 0 for each (p,q) € Q. The
objective function of (5) is also strongly convex due to the existence of a level-1 estimatable entry. We omit
its proof because it is almost identical to that of Theorem 4. Therefore, the solution resulting from the
first-order condition is the unique global optimal solution.

Notice that the objective function of (5) includes no bilinear term. Therefore, each partial derivative in
Zpq does not include any other decision variables, implying that the z,, component of the optimal solution
can be obtained directly by finding the zero of its partial derivative in z,,. More precisely, for fixed p and
¢, (5) includes only one decision variable, i.e., x,, and existing ratings. Therefore, (5) can be decomposed
into |@| sub-problems, where each sub-problem tries to impute one missing value in ®. In detail, for each
ZTpg € @, we define the following optimization problem.

o e N2
. x Z; Tii — T
min g wqj( Pq 44 Y m) (6)
Cq c

Tpq . ! j
(i,)ERpq J

We can solve (6) based on the same derivative-based approach calculating the imputed value from the

following equation.
Tpg — Tig | Tij — Tpj\ _
D el
q

(i,4)€Rpq I
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The closed form formula is

Zig Tpj —Tij
£ E(W)GRPQ qj( Cq + Cj )
pg Wqj

Z(Lj)Equ ( cq )

Theorem 6. The solution z* in (7) is the optimal solution to (5).

T

(7)

We denote (5) by dQP and denote the single value analytical solution approach solves (6) for each z,,
by dQP-SVAS. Finally, Table 2 summarizes all proposed models and algorithms in this section. To deal
with the drawbacks of the MIP model of Kim et al. (2021), we do not impose integrality constraints, but
instead approximately minimize upsets in the imputed data by solving QP (2), where positive Kendall rank
correlation matrices in Figure 3 led us to weight the upsets. The QP (2) can be solved by a general-purpose
solver (QP-Solver) or analytical solution approach (QP-AS). By imputing each missing value iteratively
(dQP-SVAS), the solution time is improved.

Algorithm | Model reference Solver or formula Sufficient condition Relevant theorems

QP-Solver (2) General purpose solver | Level-1 estimatability | Theorem 4, Corollary 1
QP-AS (2) (3), (4) Level-1 estimatability | Theorem 5

dQP-SVAS (5), (6) (7) Level-1 estimatability | Theorem 6

Table 2: Summary of Proposed Models and Algorithms

4 Computational Experiment

In this section, we compare the performance of the proposed algorithms (QP-solver, QP-AS, and dQP-SVAS)
with multiple benchmarks: cart, LP relaxation of Kim et al. (2021), and softImpute. We select the
three benchmarks after testing various methods in the literature whose R packages are available, including
VIM.hotdeck, ClustImpute.Clustimpute, ECLRMC.ECLRMC, mice.polr, mice.pmm, and mic.sample, where
the package and function names are separated by the dot. LP and QP-solver are implemented in C# and
solved by CPLEX 20.1. QP-AS and dQP-SVAS are implemented and tested with R 4.0.4. The codes for
QP-AS and dQP-SVAS are available in the online supplement. For the benchmarks, cart from the R package
mice (Buuren and Groothuis-Oudshoorn, 2011) and softImpute from the R package softImpute (Hastie and
Mazumder, 2015; Hastie et al., 2015; Mazumder et al., 2010) are tested with R 4.0.4. We adopted € = 0.01
as the truncating bound for the weights w;;. For all experiments, a personal computer with 32 GB RAM
and Intel Core i7-10700 CPU @ 2.90 GHz was used.

4.1 Experimental Data

In this section, we describe the data sets used in the experiment. Starting from the input data (with some
missing values for real data and without missing values for synthetic data), we delete some of the known
ratings so that we can check the imputation quality based on the deleted ratings. All real data sets used in
the experiment are available in the online supplement.

4.1.1 Real Data

We generate six families of experimental data sets based on the six original real-world data sets summarized
in Table 3. All of the test data sets were generated based on the procedure used by Kim et al. (2021).
We briefly describe the procedure as follows. For each of the data sets listed in Table 3, after randomly
partitioning the known ratings into ten groups, we create each instance by deleting the known ratings in
exactly one group. Hence, each 10-fold instance has additional missing values compared to the raw matrix
in Table 3, while the true values of the deleted missing cells are known so that we can assess the model
performance.
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Data set Shorthand Size Number of Master
name name (m,n) instances matrix
Hospital 10-fold Hospital10F (4217,4) 10 Hospital in Table 1
Journal 10-fold JournallOF (914,13) 10 Journal in Table 1
ESG 10-fold ESG10F (1356,4) 10 ESG in Table 1
Elementary School 10-fold | Elementaryl0F (301,5) 10 Elementary School in Table 1
High School 10-fold Highschool1l0F (132,5) 10 High School in Table 1
Movielens 10-fold Movielens10F | (1102,12) 10 Movielens in Table 1

Table 3: Experimental data sets

4.1.2 Synthetic Data

We generate synthetic data using Algorithm 1. In Step 1, a random correlation matrix is generated in which
all correlations are between s — 0.2 and s + 0.2, while s is the input correlation parameter. In Steps 2 and 3,
a multivariate normal data set is created using the correlation matrix in Step 1. The generated continuous
values are converted into 1 — 5 scale ratings using the procedure described in Section 5. The generated
rating matrix X at the end of Step 3 is saved as the true matrix. Note that X;,,. in Step 4 does not have
missing values. Hence, in Steps 5-11, we selectively delete rating values to create the final synthetic data
X with missing ratings. In Step 6, given column j, we first define selection weights 2 for each entry, where
poorly rated entries have smaller weights to be selected. For example, if z1; = 5 (good) and z5; = 1 (bad),
the weights to be sampled are 1 and 5, respectively, which indicates the latter has a higher probability to
be deleted in the next step. In Step 7, round(rm) entries are randomly selected and deleted based on the
selection weights . This procedure in Steps 6 and 7 is based on the observation in Section 2.2. Finally, in
Steps 8-10, we make sure that each row has at least one rating available, satisfying Assumption 1.

Algorithm 1 Synthetic data generation

Require: m,n,s,r (number of rows, number of columns, input correlation, missing rates)

1: 3 < Generate a random n X n correlation matrix with correlations between s — 0.2 and s + 0.2

2: X < Generate an m X n multivariate normal data with zero means and correlation matrix X

3: X « Convert the continuous values of X into ratings with five categories

4: Xippge — X

5: for each column j € J

6:  Define Q = {w; € R"|i € I}, where w; = 6 — z;; represents the weight of entry i for random selection
7:  Randomly select and delete round(rm) entries of the column j € J based on selection weights

8: end for

9: for each row i € T

10:  if all values in row ¢ are missing then randomly select a column from row ¢ of Xy, and add it to X
11: end for

We generate 10 instances for each tuple (m,n,s,r), where m € {1000, 2000,3000}, n € {6,8,10}, s €
{0.3,0.5,0.7}, and r € {0.2,0.3,0.4}. Hence, there are 810 (= 3% x 10) synthetic instances, which are used for
the experiment in Section 4.2. We make a few remarks regarding the generated data sets. First, the choice
of s, which generates positive correlation matrices, is supported by the analysis in Section 2.3, where we
show that all RPs are positively correlated in all real data sets. Furthermore, the set of s covers a reasonable
range for correlations. Second, the correlation parameter s mostly leads to lower Kendall rank correlations
in the final data, as we convert the continuous values into integers and delete ratings. The final Kendall
rank correlation matrices show less positively correlated columns. Finally, because the missing rates of all
RPs are strictly less than 0.5, any pair of RPs has at least one subject rated by both of the PRs, and the
corresponding nodes in the graph representation are connected. Therefore, by Theorem 2, the generated
data set is estimatable. In Appendix C, we present an analysis on the probability that the data set generated
by Algorithm 1 is estimatable for a more general missing rate greater than 0.5. The analysis shows that
Algorithm 1 generates estimatable data sets with a high probability for reasonable values of m, n, and r. This
implies that a few repetitions of Algorithm 1 can return an estimatable data set successfully if estimatability
is required.
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4.2 Performance Measures and Result

Recall that, for any original data set X, @ is the index set of the missing entries of X. Because we delete
some of the known ratings in X to generate the test data sets, there are more missing values in the test data
sets. For a 10-fold test data set, let @* be the index set of missing ratings that are deleted and let ry; be
the deleted true known ratings for xy;, (k,l) € Q*. Then, for each 10-fold data set, we have missing values
in Q* U Q, whereas @* N Q = ). In other words, because we delete the values in Q* from the original data
set X, each 10-fold data set will have missing values that are deleted (from Q*), as well as missing values
that were originally missing (from Q).
To measure the performance, we use the following four metrics.

1. Time, running time in seconds.
2. Accuracy, defined as ( (b DeQ- 1y =ry )/|Q*|, measures the proportion of the correctly imputed values
among the missing values with known ratings.

3. Root Mean Square Error (RMSE), defined as \/( >k nyeq (Tr — r11)?)/|Q*], measures the square
root of the average squared errors of the imputed values among the missing values with known ratings.

4. Mean Absolute Deviation (MAD), defined as (Z(k’l)eQ* z—7|) /|Q*|, measures the average absolute
errors of the imputed values among the missing values with known ratings.

For the real data sets, we additionally check how the Kendall rank correlation matrices are changed before
and after the imputation. Let T8 and T'B be the Kendall rank correlation matrices of original and imputed
data matrices for all RP pairs, where Tj]sz and Tsz represent the element for RP j; and j;. Recall that
Figure 3 presents 72. Because all elements of the Tz and T have very small p-values for all algorithms,
we use the following three metrics to measure the deviations.

1. RMSE.: \/Z(jl,jQ)eJ(be - Tj1j2)2/(g)
2. MAD,: Z(jl,jz)eJ |1jj]?jz - Tj1j2|/(g)
3. AvgD.: Z(jl,jz)eJ(Tﬁjz - le]é)/(g)

Note that, by comparing MAD, and AvgD., we can observe if the imputed matrices have mostly positive
or negative changes.

4.2.1 Result for Real Data

In Table 4, the result for the real data sets is presented. For each data set, the average performances out of
10 instances are reported. For Accuracy, RMSE, and MAD, the gray cells indicate that the corresponding
algorithm’s output is the best out of all algorithms compared; the boldface fonts indicate that the relative
gap of the corresponding algorithm’s output is within 5% from the best value. For the JournallOF data
set, LP did not solve the problems due to the memory issue, and QP-solver used over 20GB of memory on
average. For the Movielens10F data set, both LP and QP-solver had the same memory issue.

From Table 4, we observe that the imputation qualities (measured by accuracy, RMSE, and MAD) of
missForest, LP, QP-solver, QP-AS, and dQP-SVAS are in the best group, while cart and softImpute are
in the second group. Generally, the proposed methods (QP-solver, QP-AS, and dQP-SVAS) provide the best
or near-best solutions, except for JournallOF. The missForest method performs exceptionally well for the
Journall0F data set, although it occasionally fails to provide a best or near-best solution for the other data
sets. In terms of running time, softImpute is the fastest method, followed by sQP-SVAS and cart. However,
softImpute has the worst overall performance regarding other performance measures. For most data sets,
LP performs well in terms of imputation qualities (accuracy, RMSE, and MAD), although the computation
time is poor. Overall, the running time differences among the algorithms are negligible (except for LP) for
the real data sets.

We next focus on comparing the solution quality. In Figure 7, we present scatter plots of accuracy and
RMSE for each family of the test data sets. QP-solver is excluded here because QP-AS provides almost
identical results with a much faster running time. In each plot, the horizontal and vertical axes represent
the accuracy and RMSE. We indicate the Pareto optimal algorithms, which are not dominated by the other
algorithms, with black colored circles. The areas dominated by the Pareto optimal points are indicated by
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Data set Measure cart softImpute missForest LP QP-solver QP-AS dQP-SVAS
Hospitall0F Time 3.7 0.0 3.1 54.9 4.8 0.8 0.8
Accuracy 0.3460 0.3498 0.4054 0.4333 0.4240 0.4240 0.4248
RMSE 1.1969 1.3556 0.9588 0.9780 0.9559 0.9559 0.9560
MAD 0.8891 0.9695 0.6996 0.6896 0.6841 0.6841 0.6833
JournallOF Time 3.8 0.1 5.1 NA 615.8 13.8 1.8
Accuracy | 0.6967 0.6950 0.7663 NA 0.6801 0.6801 0.6898
RMSE 0.6218 0.6021 0.5131 NA 0.5970 0.5970 0.5886
MAD 0.3298 0.3235 0.2438 NA 0.3318 0.3318 0.3220
ESG10F Time 1.1 0.0 0.9 10.3 1.5 0.1 0.1
Accuracy 0.4600 0.4858 0.4480 0.4773 0.4711 0.4711 0.4564
RMSE 1.1895 1.1977 1.0918 1.1725 0.9637 0.9637 1.0337
MAD 0.7840 0.7649 0.7316 0.7609 0.6498 0.6498 0.6978
Elementary10F Time 0.6 0.0 0.3 4.9 1.3 0.1 0.0
Accuracy | 0.5386 0.5193 0.6145 0.6349 0.6386 0.6373 0.6361
RMSE 0.8336 1.0382 0.6996 0.6610 0.6443 0.6453 0.6441
MAD 0.5337 0.6398 0.4193 0.3892 0.3807 0.3819 0.3819
Highschooll0F Time 0.5 0.0 0.1 0.3 0.2 0.0 0.0
Accuracy 0.5682 0.4045 0.6818 0.6818 0.6591 0.6591 0.6500
RMSE 0.8799 1.0658 0.6749 0.6546 0.6467 0.6467 0.6743
MAD 0.5409 0.7500 0.3682 0.3591 0.3682 0.3682 0.3864
Movielens10F Time 5.0 0.1 5.5 NA NA 46.4 2.4
Accuracy | 0.3565 0.4202 0.4486 NA NA 0.4678 0.4668
RMSE 1.2033 1.0654 0.9431 NA NA 0.8993 0.8968
MAD 0.8782 0.7418 0.6570 NA NA 0.6204 0.6196

Table 4: Real data result (boldface = within 5% relative gap, graycell = best)

gray color (excludes the boundary); we indicate the algorithms in the dominated area using gray-colored
circles. The result shown in Figure 7 indicates that the proposed algorithms QP-AS and dQP-SVAS are on or
near the Pareto optimal boundaries, except for the JournallQ data set. missForest is also on or near the
Pareto optimal boundaries, except for the ESG10F data set. cart and softImpute are frequently far away
from the boundaries. Overall, we conclude that QP-AS, dQP-SVAS, and missForest outperform cart and
softImpute in the real-world data sets.

In Table 5, the result of Kendall rank correlation matrix comparison is presented. Note that the original
six data set in Table 1 are used instead of the 10-fold data sets in Table 3. Hence, each algorithm solves
each data set exactly once. The second column presents the number of RP pairs, calculated by (g) For all
performance measures, the gray cells indicate that the corresponding algorithm’s output is the best out of
all algorithms compared, where the minimum is the best for RMSE, and MAD, and the close-to-zero is the
best for AvgD,. The boldface fonts indicate that the relative gap of the corresponding algorithm’s output is
within 5% from the best value. The result indicates that cart is the best in general, which is different from
the result in Table 4. missForest performs best or near best for the Journal and Highschool data sets, and
QP-AS and dQP-SVAS outperforms for the Journal data set. Comparisons of MAD. and AvgD, brings an
interesting observation. Because QP-AS and dQP-SVAS minimize upsets, which is indirectly maximizing the
Kendall rank correlation, MAD, and AvgD, are almost identical for QP-AS and dQP-SVAS. In other words,
the Kendall rank correlations increase after the imputation by QP-AS and dQP-SVAS. All other benchmark
algorithms that are not based on upset minimization have mixed signs for AvgD...

Considering all results in this section, we conclude that prediction quality is not closely related to the
Kendall rank correlation matrix similarity. QP-AS, dQP-SVAS, and missForest outperform in terms of pre-
diction, whereas cart outperforms in keeping the Kendall rank correlation matrix similar. When the missing
values occur randomly, and the Kendall rank correlation matrix is believed to be true, we recommend us-
ing cart to retain a similar correlation matrix after the imputation. However, when the missing values do
not occur randomly, and there is doubt in the Kendall rank correlation matrix, we recommend using our
proposed algorithms for obtaining more accurate imputed values.

We finally remark that the proposed algorithms, QP-AS and dQP-SVAS, are deterministic. Hence, given a
fixed data set, they always return the same set of imputed values and do not address the uncertainty issues
of missing value imputation. To check the robustness of the proposed algorithms over varying subsets of
the samples, we present multiple imputation versions of the proposed algorithms in Appendix D. Multiple
imputation generates multiple plausible values for each missing value to create multiple complete data sets
(Rubin, 1996). With iterative random samplings of the rows, the multiple imputation versions of the proposed
algorithms can return multiple imputed values for each missing value. The results in Appendix D indicate
QP-AS and dQP-SVAS return consistent imputed values. Also, the prediction performances are slightly better

17



034 036 038 04 042 044 067 069 071 073 075 077 044 045 046 047 048 049
14 0.64 1.25

Accuracy Accuracy Accuracy
1.35 @ softimpute OEaRT o
13 0.62 1.2 ©CART SO I.mpute.
125 06 Q.P-AS. softimpute 115 LP
D) .
12 | ®CART dQP-SVAS missForest
0.58 11 ®
115
11 0.56 1.05 o
P-SVA!
105 0.54 1 Lopsias
1 dQP-SVAS g
missForest
095 W @ ‘ %LP 052 |, . ® 095 |, QP-AS
’ g QP-AS g missForest g
09 ' 05 ' 09 '&
(a) HospitallOF (b) JournallOF (¢) ESG10F
0.5 0.55 0.6 0.65 0.35 0.45 0.55 0.65 0.38 0.4 0.42 0.44 0.46
11 A 11 A 1.09 A
ccuracy ccuracy @ CART ccuracy
105 il 105 @ softimpute
1 1 1.04
0.95 0.95
0.9 0.9 0.99
@ CART softlzlpute
0.85 © CART 0.85
0.8 0.8 0.94
0.75 X 0.75 . missForest
missForest missForest ®
0.7 (<) 0.7 ‘ 0.89 dQP-
LP dQP-SVAS @ SVAS
w w L ] w
12 dQP-SVAS 0% 1o ~Le 2 »
06 ' QP-AS 06 ' QP-AS 084 ' QP-AS
(d) Elementaryl0F (e) Highschooll0F (f) Synthetic

Figure 7: Relative comparison with accuracy and RMSE

than the corresponding multiple imputation versions, while the solution times of QP-AS and dQP-SVAS are
much faster.

4.2.2 Result for Synthetic Data

In this section, we present the results for the synthetic data sets in Tables 6 - 9. Note that LP and QP-solver
are excluded in the comparison due to the scalability issue. Furthermore, because there are 810 instances in
total, the aggregated results by m (number of subjects), n (number of RPs), correlation parameter s, and
missing rate are presented in Tables 6, 7, 8, and 9, respectively. Similar to the format in Table 4, the best
algorithm and the algorithms within 5% of the best are indicated by gray cells and boldfaces, respectively.
In all tables, we observe that dQP-SVAS outperforms the other methods in most cases. The running time
of dQP-SVAS is the second-best after softImpute, while the solution quality of dQP-SVAS is decisively the
best. The solution quality of QP-AS is frequently within 5% of the best, while softImpute and missForest
occasionally provide good solutions. Overall, dQP-SVAS and QP-AS provide lower RMSEs and MADs.

Table 6 shows that, when the results are aggregated by m, softImpute, missForest, QP-AS, and
dQP-SVAS provide similar accuracy. The solution quality changes very little as m changes for all algorithms.
The solution time of softImpute is constantly the best, followed by dQP-SVAS. However, as m increases, the
running time of dQP-SVAS increases more rapidly than cart and missForest. Hence, we expect that the
running time of dQP-SVAS will be slower than that of cart and missForest when m is large.

In Table 7, when the results are aggregated by n, QP-AS and dQP-SVAS consistently perform well, while
softImpute and missForest provide competitive accuracy when n = 8 and 10. We observe that the
accuracies of QP-AS and dQP-SVAS decrease as n increases, while the benchmark algorithms’ accuracies remain
relatively constant as n changes. In terms of the running time, we observe the same trend. softImpute
is the fastest, while the running time of dQP-SVAS increases much quickly than cart and missForest as n
increases.

The result in Table 8 shows that the solution quality of QP-AS and dQP-SVAS improves drastically as
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Data set #pairs | measure cart softImpute | missForest LP QP-solver QP-AS dQP-SVAS
Hospital 6 RMSE - 0.0119 0.3713 0.1100 0.2652 0.2425 0.2425 0.2427
MAD, 0.0085 0.3444 0.0878 0.2490 0.2275 0.2275 0.2277
AvgD, 0.0072 -0.1099 0.0878 0.2490 0.2275 0.2275 0.2277
Journal 55 RMSE, 0.1436 0.1857 0.0872 NA 0.0854 0.0854 0.0829
MAD, 0.1218 0.1304 0.0690 NA 0.0709 0.0709 0.0694
AvgD, -0.1211 -0.1001 -0.0558 NA 0.0254 0.0254 0.0236
ESG 6 RMSE, 0.0706 0.0928 0.0889 0.2704 0.2248 0.2248 0.2364
MAD, 0.0533 0.0820 0.0731 0.2476 0.2002 0.2002 0.2194
AvgD, -0.0421 0.0677 -0.0377 0.2476 0.2002 0.2002 0.2194
Elementary 10 RMSE - 0.0562 0.3867 0.0941 0.1337 0.1374 0.1374 0.1361
MAD, 0.0402 0.3350 0.0847 0.1109 0.1179 0.1179 0.1161
AvgD, -0.0390 -0.2479 0.0809 0.1069 0.1179 0.1179 0.1161
Highschool 10 RMSE - 0.4344 0.5396 0.0666 0.1284 0.1218 0.1233 0.1200
MAD, 0.3773 0.4235 0.0584 0.1090 0.1066 0.1080 0.1037
AvgD, -0.3773 -0.3905 0.0156 -0.0002 0.0827 0.0844 0.0847
Movielens 66 RMSE, 0.0486 0.2755 0.2279 NA NA 0.5332 0.5229
MAD, 0.0387 0.2388 0.2159 NA NA 0.5256 0.5150
AvgD, -0.0198 0.1861 0.2159 NA NA 0.5256 0.5150

Table 5: Real data Kendall rank correlation result (boldface = within 5% relative gap, graycell = best)

m Measure cart softImpute | missForest QP-AS dQP-SVAS
1000 Time 5.68 0.04 19.04 6.16 1.15
Accuracy | 0.3934 0.4405 0.4424 0.4575 0.4577
RMSE 1.0739 0.9762 0.8985 0.8540 0.8538
MAD 0.7797 0.6839 0.6397 0.6047 0.6044
2000 Time 5.91 0.04 19.91 32.94 3.98
Accuracy 0.3931 0.4414 0.4431 0.4586 0.4589
RMSE 1.0755 0.9707 0.8973 0.8514 0.8511
MAD 0.7808 0.6800 0.6385 0.6025 0.6021
3000 Time 6.18 0.04 21.24 93.96 8.55
Accuracy | 0.3924 0.4413 0.4427 0.4579 0.4583
RMSE 1.0777 0.9681 0.8979 0.8527 0.8524
MAD 0.7827 0.6787 0.6390 0.6037 0.6032

Table 6: Synthetic data

results (averaged by m, number of subjects)

n Measure cart softImpute | missForest QP-AS dQP-SVAS
6 Time 5.90 0.04 19.87 7.26 1.60
Accuracy | 0.3932 0.4414 0.4428 0.4682 0.4684
RMSE 1.0754 0.9707 0.8978 0.8415 0.8413
MAD 0.7807 0.6801 0.6389 0.5910 0.5907
8 Time 6.25 0.04 21.63 38.01 4.43
Accuracy 0.3932 0.4410 0.4426 0.4578 0.4581
RMSE 1.0754 0.9720 0.8983 0.8517 0.8517
MAD 0.7807 0.6811 0.6394 0.6032 0.6030
10 Time 5.61 0.04 18.68 87.80 7.66
Accuracy | 0.3925 0.4408 0.4428 0.4480 0.4484
RMSE 1.0764 0.9724 0.8976 0.8649 0.8643
MAD 0.7818 0.6814 0.6389 0.6167 0.6161

Table 7: Synthetic data results (averaged by n, number of RPs)
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the correlation parameter s increases. The other methods provide relatively constant solution quality in
increasing s. Therefore, we conclude that the proposed algorithms perform well when the ratings are highly

correlated.
corr Measure cart softImpute missForest QP-AS dQP-SVAS
0.3 Time 5.93 0.04 20.09 44.80 1.62
Accuracy | 0.3905 0.4367 0.4393 0.4186 0.4188
RMSE 1.0784 0.9770 0.9009 0.8843 0.8842
MAD 0.7845 0.6871 0.6431 0.6478 0.6475
0.5 Time 5.92 0.04 20.10 44.89 2.60
Accuracy | 0.3920 0.4402 0.4418 0.4505 0.4509
RMSE 1.0776 0.9732 0.8994 0.8634 0.8631
MAD 0.7829 0.6823 0.6405 0.6142 0.6138
0.7 Time 5.90 0.04 19.99 4337 4.46
Accuracy | 0.3964 0.4463 0.4471 0.5049 0.5051
RMSE 1.0710 0.9648 0.8935 0.8104 0.8100
MAD 0.7756 0.6732 0.6335 0.5488 0.5484
Table 8: Synthetic data results (averaged by correlation parameter s)

The result in Table 9 shows that the solution quality of QP-AS and dQP-SVAS decreases as the missing
rate increases, while other methods provide relatively constant solution quality. However, the effect of the

missing rate on the solution quality is less significant than the effect of s.

missrate Measure cart softImpute missForest QP-AS dQP-SVAS
0.2 Time 5.94 0.04 20.23 15.61 3.94
Accuracy 0.3943 0.4424 0.4437 0.4623 0.4623
RMSE 1.0731 0.9671 0.8950 0.8366 0.8368
MAD 0.7785 0.6774 0.6368 0.5918 0.5919
0.3 Time 5.92 0.04 20.09 39.85 4.66
Accuracy 0.3930 0.4411 0.4427 0.4582 0.4588
RMSE 1.0755 0.9718 0.8979 0.8511 0.8507
MAD 0.7809 0.6809 0.6391 0.6025 0.6019
0.4 Time 5.90 0.04 19.87 77.61 5.09
Accuracy 0.3916 0.4397 0.4417 0.4535 0.4538
RMSE 1.0785 0.9761 0.9008 0.8705 0.8699
MAD 0.7837 0.6844 0.6414 0.6166 0.6160

Table 9: Synthetic data results (averaged by missing rate)

To investigate the effect of n, s, and the missing rate in greater detail, we compare in Figure 8 the
performance of dQP-SVAS against the three benchmark algorithms in the literature (cart, softImpute, and
missForest). In each plot, the horizontal axis represents a data characteristic such as n, correlation, and
missing rates, while the vertical axis represents the improvement by dQP-SVAS from the best outcome out of
the three benchmarks, which is defined as

ObdeP—SVAS - maX{Objcart7Objsoftlmpute>ObjmissForest}a fOI' Ob.] = accuracy,
min{Objcart7ObjsoftImputeaObjmissForest} - ObdeP—SVASa fOI ObJ = RMSE, MAD

If the improvement is positive, this implies that dQP-SVAS outperforms. Otherwise, it implies that one of
the three algorithms defeats dQP-SVAS.

The plots in Figure 8 summarize the relative performance of dQP-SVAS in increasing n, correlation, and
the missing rate. As n increases, the solution quality improvement by dQP-SVAS from the three algorithms
decreases. Thus, we expect a worse performance for dQP-SVAS when n is large, which explains the poor
performance of dQP-SVAS (and other proposed algorithms) for the JournallOF data set in Table 4. As the
missing rate increases, dQP-SVAS becomes less attractive, although it outperforms the three benchmarks in
all performance measures for missing rates 0.2, 0.3, and 0.4. The effect of correlation parameter s is shown in
Figure 8(b). As correlations among RPs increase, the improvement by dQP-SVAS from the three algorithms
rapidly increases. Therefore, we conclude that dQP-SVAS performs particularly well for the input data with
a few highly correlated PRs and a relatively small number of missing values.
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Figure 8: Improvement by dQP-SVAS

5 Conclusion

Ratings provide succinct and credible measures for comparing subjects and are used throughout individual
and corporate decision-making processes. However, missing entries are frequently observed in a combined
list. Hence, accurate estimation or imputation of the missing entries in the combined rating data sets can
address this problem and significantly impact users’ decision-making processes.

In this paper, we propose three algorithms and examine the properties of missing values in the combined
rating list. In detail, we present quadratic programming models and algorithms tailored for missing rating
imputation. The proposed algorithms outperform the state-of-the-art general imputation methods such as
cart, missForest, and softImpute in terms of imputation accuracy, while showing outstanding scalability
compared with the MIP-based rating imputation model reported in the literature. The proposed algorithms
tend to increase the Kendall rank correlation coefficients after the imputation, but we observe that preserving
the original data’s Kendall rank correlation coefficients does not necessarily guarantee imputation quality.
The proposed algorithms can also be used for imputing continuous values, with a slight modification on
normalization. Our algorithms perform particularly well when the columns are highly correlated. We also
provide a procedure and definitions for defining when the imputation algorithms are applicable. These
analyses show that the consensus level between the RPs varies across contexts, that MAR assumptions are
frequently violated, and that missingness may indicate superiority or inferiority of the subject. The synthetic
data sets mimic the properties of the real-world data sets and can serve as benchmark data sets.

Despite the outstanding performance of the proposed algorithms, several future research directions are
available. Although the dQP-SVAS algorithm is the fastest among the proposed algorithms and provides a
competitive solution time for the data sets used in the experiment, it cannot handle a very large data set
with millions of subjects. This demands even more scalable algorithms with similar prediction performances.
Furthermore, although our study assumes that the subjects are evaluated at the same time, some ratings
are from different time periods. Hence, extensions on time series ratings are promising.
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Appendix A. Data Preparation and Description

Missing rating data frequently appear in practice. In the current research, we are particularly interested
in data such that decision-makers or stakeholders might take advantage of imputing the missing entries.
For example, customers can use the imputed values to find a service provider that would likely offer better
customer service. Institutions can use them to evaluate unrated subjects. Some companies use it to make
intelligent recommendation systems. We compiled multiple real-world data sets in various applications:
hospital rating, journal rating, environmental, social, and governance (ESG) rating, elementary and high
school rating, and movie rating. In Sections Al - A5, we describe the detailed background and our data
collection/compiling procedures for each data set. Section A6 presents the conversion procedure of the
continuous rating scores. Finally, in Section A7, we present the detailed statistics and distribution of the
missing values in the collected data sets.

Al. Journal Data

The quality of journal publications has been adopted as one of the most significant criteria for faculty
scholarship evaluation. The baseline indices are frequently defined based on several important factors,
such as the publication volume, citation metrics, acceptance rates, Journal Impact Factor (JIF), H-index,
SCImago Journal Rank (SJR) indicator, CiteScores, Source Normalized Impact per Paper (SNIP), and the
Eigenfactor, among others. Despite the existence of such indices, these quality measures are too fragmentary
to be adopted as sole quality quantifiers for a journal. Alternatively, some organizations have developed
journal rating systems that determine journal ratings by considering various quality indices along with
inputs of expert panels. Such journal rating lists in the business research domain include the Australian
Business Deans Council (ABDC), the Association of Business Schools (ABS), the Erasmus Research Institute
of Management (EJL), the European Journal of Information Systems (EJIS), and the High Council for
Evaluation of Research and Higher Education (HCERES).

Many academic institutions adopt a journal quality list and use the referred ratings as a quality score for
a journal publication. Nevertheless, it is commonly observed that some quality journals are not included in
the journal list. This necessitates estimating the ratings of the journals within the quality principles of the
designated journal list.

In this study, we use the recent journal rating data from Harzing.com (Harzing, 2020), which provides
ratings for a collection of RPs. All raw ratings, such as {A*, A, B,C}, are converted to numerical values
{4,3,2,1} such that higher rating values indicate better quality. Note that Kim et al. (2021) also use an
earlier version of the data from Harzing.com, although the data set differs slightly in terms of the rating
values and the number of RPs and subjects. Hence, the results are not directly comparable to the results of
the current paper.

A2. Hospital Rating Data

Hospital administrators, healthcare consumers, and journalists are all captivated by the release of general
hospital ratings and their implications for healthcare quality improvement and data analytics. In the United
States, these ratings may come from a variety of sources, such as U.S. News and Consumer Reports (Ozcan
et al., 2008). Recently, hospital ratings have been publicly released by U.S. government agencies such as the
Centers for Medicaid and Medical Services (CMS) and other associated entities under the U.S. Department of
Health and Human Services (HHS), sourced from the Agency for Healthcare Research and Quality (AHRQ).
Close to 4,000 hospitals in the U.S. are assigned ratings of 1-5 stars (The Centers for Medicare & Medicaid
Services, 2019). The Leapfrog Group, a U.S. nonprofit watchdog organization, also compiles data for informed
purchasing in the healthcare industry to foster hospital transparency and value-based purchasing in the U.S.
healthcare system. The evaluations are typically based on hundreds of different measures assessing the
hospital facility, services, and equipment quality; a summarized rating is then composed according to the
different weights assigned to different categories (Venkatesh et al., 2017).

To create a combined hospital quality list, we collect ratings from four publicly available rating systems:
HCAHPS (Hospital Consumer Assessment of Healthcare Providers and Systems) Star Ratings (The Centers
for Medicare & Medicaid Services, 2019), LeapFrog’s Hospital Safety Grade (LeapFrog Group, 2019), the
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Centers for Medicare & Medicaid Services (The Centers for Medicare & Medicaid Services, 2019), and
U.S. News’s Best Hospital (News & World Report, 2019). For notational convenience, we denote them as
HCAHPS, LeapFrog, Medicare, and U.S. News, respectively. U.S. News provides ratings of hospitals for
16 specialties and nine procedures and conditions. Among these, we focus on 12 specialties that are not
exclusively based on reputation survey and that have numerical scores, following Austin et al. (2015). The
specialty scores are then standardized and averaged. The procedures for the other three sources of rating
data (LeapFrog, Medicare, and HCAHPS) are relatively straightforward: A, B, C, D, and F are converted
into 5, 4, 3, 2, and 1 for LeapFrog, while the 5-to-1 star rating systems of Medicare (Hospital overall rating)
and HCAHPS (Overall hospital rating - star rating) are directly used without modifications. With these
ratings from the four rating providers, we create a combined rating list by merging based on the available
hospital name, address, city, state, and zip code. The combined rating data include 4,217 hospitals rated by
four RPs.

A3. Environmental, Social, and Governance Data

Environmental, social, and governance (ESG) assessments have become the standards used to measure a
firm’s degree of involvement in socially responsible activities (Huang, 2021). ESG ratings have been widely
used in various domains, including socially responsible investing, risk identification & management, and
supplier selection & evaluation. Given the popularity of ESG measures in both academia and industry, there
are several proprietary databases on the market that specialize in ESG ratings for firms. Firms are evaluated
by a score derived from their performance in multiple indicators for each category: this varies across ESG
databases. The overall performances can also be evaluated with composite scores.

Among the multiple databases available, we include four databases in our data set: (1) Kinder, Lydenberg,
Domini, and Company (KLD), which is now known as MSCI ESG, (2) Bloomberg ESG, (3) Sustainalytics,
and (4) CSRHub. KLD (MSCI, 2014) measures ESG scores based on binary indicators (Halbritter and
Dorfleitner, 2015) across three categories (environmental, social, and governance). However, only the binary
indicators are reported, while category or composite scores are not reported. To obtain a single score for each
category, we follow the common approach that computes the difference between the strengths and concerns
(Waddock and Graves, 1997). The overall ESG score is then obtained by aggregating the scores of the three
categories. The ratings in the Bloomberg ESG data (Bloomberg, 2014) primarily indicate the extent to which
a firm discloses information regarding ESG. The Bloomberg ESG includes a firm’s overall ESG score and
ratings in each of the three categories. The score is updated annually and is tailored based on the industry,
with the scale for the scores ranging from 0.1 to 100 (McBrayer, 2018). Sustainalytics (Sustainalytics, 2014)
includes a firm’s ratings in the environmental, social, and governance categories based on multiple indicators.
Sustainalytics reports a weighted overall ESG score, where the weights are determined by the firm’s industry.
The scale of this overall ESG score is from 0 to 100 (Surroca et al., 2010). A firm’s overall ESG score in
CSRHub (CSRHub, 2014) is based on the weighted combinations of the four categories (i.e., community,
employees, environment, and governance), with a scale from 0 to 100. CSRHub also reports the overall score
every month. We use the simple average of the 12 months as the annual score.

In this study, we focus on manufacturing firms (NAICS 31-33) in North America in 2014 from COMPU-
STAT. Because KLD had stopped reporting the total numbers of strengths and concerns for each category
after 2014, which are used to calculate the overall KLD score, the combined rating data use the year 2014.
These ESG databases were merged based on the ticker symbol. It should be noted that missing values appear
randomly due to the lack of information on the construction of the ESG score.

A4. Elementary and High School Rating Data

School rating systems have become widespread for various purposes. School administrators have adopted
school ratings in school accountability reports as a baseline school performance measure to inspect their
administrative strategies. This, in turn, provides guidelines for teachers to take action to improve their
instructions and testing strategies. Highly rated schools also use school ratings for advertisements to attract
good students. School quality, typically and simply represented by school ratings, is known to be a significant
factor for house prices (Lerner, 2015). Students and parents often use school ratings to choose schools or
school districts or provide incentives for school administrators to improve their pedagogical tactics.
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Multiple organizations publish school ratings. For example, the Department of Education and its equiv-
alents in state governments in the United States issue school ratings to compare school quality in the state.
Some private organizations also issue school ratings for schools across the country. See Dalton (2017) for a
taxonomy of school rating issuers.

Missingness in school rating systems occurs frequently. In a state school rating system, the missingness
results from its geographical constraint. For consumer-oriented rating systems, despite their wide span of
subjects, there are missing subjects in the list because each rating issuer maintains its own exclusion rules.
For example, Niche.com measures the completeness of data for individual schools, and if a school does not
provide a sufficient amount of data, the school is disqualified from the Niche rating.

We prepare two data sets for elementary and high school rating data for Dallas, Texas. To create a
combined school rating list, we collect ratings from five publicly available rating systems: GreatSchools
(GreatSchools, 2020), Niche (Niche, 2020), SchoolDigger (SchoolDigger, 2020), TexasSchoolGuide (Chil-
dren At Risk, 2020), and TexasSchoolRating (Txschools.gov, 2020). The original ratings of GreatSchool and
SchoolDigger in 10-to-1 and 5-to-0 scales, respectively, are converted into 5-to-1 and 6-to-1 scale ratings.
The other RPs provide letter grades ({A+,...,D-} and {A+,... ,D-F}), which are converted into 4-to-1 and
5-to-1 scale ratings, respectively, based on the letter grade and ignoring the plus or minus. After creating a
combined rating matrix by merging based on name and address, we keep the schools that have at least one
rating available.

A5. Movie Rating Data

The movie rating data sets have been studied extensively in the collaborative filtering and matrix completion
literature and share a similar structure with other data sets presented in this study. In other words, the
users and movies are rating providers and subjects, respectively, in the context of our research. A movie
recommendation system could use the imputed values to build recommended movie lists customized for
individual users.

We remark that there are a few differences between movie rating data and other test data. Perhaps, the
most striking distinction of the movie rating data from the other experimental data in this paper is its high
missing rate. For example, the Movielens data sets (Harper and Konstan, 2015; GroupLens) have missing
rates ranging from 94.1% to 99.7% while the other data sets in Table 1 have missing rates from 30.2% to
55.6%. Another critical difference is the size of the data. Even the smallest MovieLens data set includes
thousands of movies and hundreds of users. Most imputation algorithms cannot handle this data. Lastly, the
movie rating data has smaller user correlations than the other data sets we consider. Hence, the proposed
imputation methods are unlikely to yield satisfactory imputations with the original form of movie rating
data. For these reasons, we customize movie rating data to have similar sizes, missing rates, and inter-rater
correlations with the other experimental data.

We use the MovieLens 100k data set (Harper and Konstan, 2015; GroupLens) to create a reduced data
set with highly correlated rating providers. The original data includes 100,000 ratings from 943 users on
1682 movies, where 1-5 rating system is used for the ratings. To create coherent ratings without too many
missing values, we first select the users who rate at least 20% of the movies. Next, we check the Kendall
rank correlations to further reduce the user set by selecting the users whose average correlation is greater
than 0.25. Finally, we keep the movies rated at least once by the final user set. The reduced data set with
highly correlated users include 12 users and 1102 movies.

A6. Conversion of Continuous Scores

Our study considers ordinal rating data. When an RP provides continuous scores instead of explicit rating
categories, the scores can be converted. Given an RP and scores for all subjects rated by the RP, we partition
the subjects into five groups based on their scores and assign 1-5 scale ratings, where 5 is the best and 1 is
the worse. Let di,ds,ds, and d4 be the cutoffs defining five ranges, which are defined below. Given rating
provider j for subject ¢ with a continuous score of s;;, the converted rating r;; is determined by the following

27



rule:

if dy < Si5 < 00
if ds Si5 < dy
if do Sij < ds
if dy Sij < da

1 if700<8ij<d1

|
[CRIURINGY S
A

<
<

Observe that the values of d; —dy significantly affect the distribution of the converted ratings. To resemble the
distribution of the original scores, we use (dy,ds,ds,ds) = (0.1,0.35,0.65,0.9) for US News of the hospital
data, which is similar to Normal distribution. For the ESG data, we divide the full range of the scores
into equal-length ranges, in order to preserve the distribution of the original scores. For rating provider
J, we define s7** and s to be the 99%tile and 1%tile of s;;. With s7**° = 5% — 5" we define

range

dy = s+ 25 for j e {1,2,3,4}.

A7. Missing Rates by Row and Column

In this section, we present the detailed statistics of missing rates of the data sets. Figures A1l and A2 present
the missing rates by column and row, respectively, while Table 1 in Section 2.1 only focuses on the summary
statistics at the data set level. Hence, this section can help understand the distribution of missing rates over
columns and rows.
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Figure Al: Missing rates by rating providers

Figure A1 visualizes missing rates for individual rating providers for all data sets, where the horizontal
and vertical axes of each plot represent rating providers and missing rates in percentages. Each bar indicates
the missing rate of the corresponding RP. For example, 16.1% for HCAHPS in Figure 1(a) indicates that
16.1% of the 4,217 hospitals have missing ratings by HCAHPS. The missing rates vary across RPs and data
sets, from 3.8% to 81.8%. Within the same data set, the ESG data set has RPs with missing rate 3.8% to
78.4%.
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Figure A2: Available ratings by row

Figure A2 visualizes the proportions of subjects in percentages by the number of observed ratings. Each
bar represents the percentage of subjects for the corresponding number of ratings available. For example, in
Figure 2(a), 21.0% and 41.3% of the 4,217 hospitals are rated by only one RP and all four RPs, respectively.
The percentages of fully rated subjects also vary across data sets, from 41.3% to 11.4%. Among the data
sets, the Hospital and Journal data sets have the increasing number of ratings in the increasing number
of available ratings. The other data sets generally have the decreasing number of ratings in the increasing
number of available ratings.

Appendix B. Proofs of Lemmas and Theorems

Proof of Lemma 1

Suppose E, = (). This means that there is no 2 x 2 submatrix such that one entry is not level-u estimatable for
all u < v—1, and each of the three remaining entries is either observed or level-u for some u < v—1. Because
E, = 0, the construction of level-(v+1) estimatable entries must be based on only level-u estimatable entries
for u < v —1. Because no desirable 2 x 2 submatrix exists, thus £, = 0. Therefore, if £, = () then £, = )
for all u > v + 1. O

Proof of Theorem 1

Denote the distinct rating providers in C' by ji,...,js. Then, after relabeling, we can assume that j; — jo —
-+ — js forms a connected path. For any j = 1,...,s — 1, because RPs j and j 4+ 1 are connected, there
exists a subject S rated by both j and j + 1. Therefore, for an arbitrary S’ € £(j), by the existence of a
commonly observed subject S € O(j) N O(j + 1) and the definition of estimatability, we have S’ € £(j + 1),
showing that £(j) C £(j + 1). Similarly, the opposite inclusion also holds, showing that £(1) = --- = £(s).
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Then, for each [ € {1,...,s},

Cm

o) =Jou) c
j=1

j=
where the first equality holds by the definition of O(C), the inclusion holds because O(j) C £(j) for all
j=1,...,s, and the second equality holds because £(1) = &(s). Finally, consider an arbitrary entry
(e, ”) € (’)(C’) x C. Then, j” =1 for some [ € {1,...,s}. herefore S" e O(C) C &) =E(F"), showing
that S is estimatable. O

—

Proof of Theorem 2

Because the “if” part directly follows from Theorem 1, it suffices to show the “only if” part. Suppose the
graph is disconnected. Let C1,...,C, be all the connected components of the graph, where r > 2. Consider
the r submatrices of the input data, where each submatrix X; corresponds to the rating providers in C; and
the subjects in O(C;) for i = 1,...,r. By Theorem 1, all the entries in D := |J;_, X; are either observed or
estimatable. Moreover, because {C }T_, are mutually excluswe so are {X;}I_; and {O(C;)}i_,, respectively.
Moreover, by Assumptlon 1, it holds that O(C4),---,O(C,) partition the set of all subjects. This, in turn,
shows that O(C;) C E(C;) for all ¢ = 1,...,r. Consider data entries outside D. We claim that none of
these entries are estimatable. To prove this by contradiction, consider entry e ¢ D, which is included in the
first estimatable batch outside D in the sequential construction of estimatable entries. In other words, the
estimatability of e is derived by three corner entries in D. Suppose this entry e is associated with subject ¢
and rating provider j. Let C be the connected component that includes j. Then, there exists a subject ¢’ # ¢
and a rating provider j' # j such that (i,5’), (¢, 7), and (¢/,j’) entries are estimatable and included in D.
We first show that j and j are not in the same connected component. Assume j' € C. Because (i,5’) € D
and j' € C, it holds that i € O(C), implying that (i, ) € D, creating a contradiction. Therefore, we assume
that j* € C’ for some connected component C’ other than C. Let X’ be the submatrix associated with C”
and O(C"). Because (7/,5’) € D and j' € C’, it holds that ' € O(C"). Similarly, we can show that i’ € O(C)
because (i',7) € D and j € C. This contradicts the fact that O(C) and O(C") are disjoint. Therefore, e
is estimatable. This means that the sequential construction of estimatable entries is discontinued after the
construction of D. Therefore, the input data set is unestimatable. O

Proof of Theorem 3

To prove the “if” part, assume I = I; for all j/ € J and consider an arbitrary missing entry (i',j).

jEN
Then, there exists j € N, such that i’ € I; and j # j'. Because j € Nj/, there exists ¢ € I such that ¢ 75 )
and ¢ € I; N I;;. Hence, for the missing entry (i’,j’), we have ratings available at (', ), (¢,7), and (,5).
This unphee that (7', 4') is level-1 estimatable. Applying this procedure for all missing entries in X, we can
show that X is level-1 estimatable.

We next prove the “only if” part. Assume that X is level-1 estimatable and consider an arbitrary rating
provider j'. Then, for each missing entry (¢’,j'), there exists i and j” such that the ratings are available
for entries at (i”, j), (i',j"), and (i", j”) because of the definition of level—l estimatability. This implies that
j” € Ny and i’ € I;n. By comblnmg the result for all missing entries in j’, we can show that I = J I;

jE]VJ'/ J
holds for j/. Applying this procedure for all RPs in J completes the proof. (]
Proof of Theorem 4
Consider each term )

wy; (mkl Tl + Lij l'k]) (8)
C] Cj

of the objective function. Its square part is convex because it is a composition of a convex function (f(z) = 2?)
and an affine function. Then, (8) is also convex because it is a scalar multiple of a convex function. Next,
assume that the data set is estimatable. Because input data X includes at least one level-1 estimatable
missing entry, there exists a term of the form (8) such that three ratings are known and one rating is
unknown. Because this term is a univariate quadratic function that is concave upward, it is strongly convex.
Finally, because the sum of a strongly convex function and a convex function is strongly convex, the objective
function of (4) is strongly convex. O
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Appendix C. Analysis on Probability of Estimatability

In this section, we present an analysis on the estimatability of the data sets generated by Algorithm 1.
Based on the graph representation in Section 3.1, we calculate the probability that a generated data set is
estimatable. To achieve this goal, we must check whether or not the corresponding graph is connected. The
graph connectivity calculation is based on edge connectivities.

Edge connection probability depends on the missing rate r and the number of subjects (rows) m. Fol-
lowing Algorithm 1, let us assume all RPs (columns) have the same missing rates and that the number of
missing values in each RP is [rm]. Then, the edge connection probability, denoted as Peg4qe, can be derived

as follows:
1 if |rm]
Lrm]

P <%
edge = 1— M if erJ > %

(1)

The edge connection probabilities Pq4e are calculated over various r and m in Table C1. Note that the edge
connection probabilities are reasonably high even if the missing rate r is as high as 0.8.

r\m 50 100 500 1000 5000

0.60 | 1.0000 1.0000 1.0000 1.0000 1.0000
0.70 | 0.9986 1.0000 1.0000 1.0000 1.0000
0.80 | 0.9175 0.9934 1.0000 1.0000 1.0000
0.90 | 0.4234 0.6695 0.9962 1.0000 1.0000
0.95 | 0.1727 0.2304 0.7315 0.9280 1.0000

Table C1: Edge connection probabilities for various r and m

The graph connectivity depends on the edge connection probability (Peqge) and the number of RPs (n).
However, it is difficult to calculate the probability mathematically given P44, and n. On the other hand, it
is easy to check if a generated graph is connected or not. Therefore, to approximate the graph connection
probability, denoted as P.opnect, we generate 10,000 random graphs for each (Peqge, n) pair and estimate the
probability. For this task, we use the networkz.is_connected function in Python. The simulation result is
presented in Table C2.

Pegge\n 4 8 12 16 20 50
0.1 0.0744 0.1147 0.2680 0.4947 0.6911 0.9988
0.2 0.3278 0.6800 0.9143 0.9803 0.9955 1.0000
0.3 0.6139 0.9454 0.9956 0.9993 1.0000 1.0000
0.4 0.8202 0.9932 0.9999 1.0000 1.0000 1.0000
0.5 0.9353 0.9996 1.0000 1.0000 1.0000 1.0000

Table C2: Graph connection probability for various Pegqqe and n

As expected, Peopnect Tapidly increases as P.qqc Or n increases. Even for a small edge probability of 0.2,
the graph connectivity is over 0.9, which demonstrates that Algorithm 1 successfully generates an estimatable
data set nine out of ten times. Combining the results in Tables C1 and C2, we conclude that Algorithm 1
generates an estimatable data set with high probabilities for most of the realistic parameters for r, m, and n.
For example, if r = 0.9, m = 50, and n = 4, then P.onpect = 0.8619. This implies that Algorithm 1 generates
an estimatable data set with a probability greater than 0.8619 if » < 0.9, m > 50, and n > 4. With this high
success rate, one can repeat Algorithm 1 until an estimatable data set is generated.

Appendix D. Tests for Robustness of Algorithm
The proposed algorithms, QP-AS and dQP-SVAS, are deterministic. Hence, given a fixed data set, they always
return the same set of imputed values and do not address the uncertainty issues of missing value imputation.

To check the robustness of the proposed algorithms over varying subsets of the samples, in this section, we
present multiple imputation versions of QP-AS and dQP-SVAS. For each imputation trial, we randomly sample
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80% of the rows (subjects) in the data and run QP-AS (or dQP-SVAS). The iterations end when each of the
rows is sampled at least 10 times. We refer to these algorithms as QP-ASMI and dQP-SVASMI.

We remark that each sampled data set should be estimatable. Even when the full data set is estimatable,
it is possible to have a sampled data set that is not estimatable. Hence, we need to ensure that all sampled
data sets are estimatable before calling QP-AS and dQP-SVAS. For each algorithm and data set, we use the
following two performance metrics.

1. %ZeroSD: the percentage of missing entries that have the same imputed value over all samples
2. AvgSD: the average standard deviation of the imputed value.

By checking the two metrics, we can measure how consistent the imputed values are (%ZeroSD) and the
variances, if not consistent (AvgSD).

In Table D1, we check the variations of the imputed values over multiple samples using the real ex-
perimental data sets in Table 3. For each algorithm, #Samples is the number of samples drawn until the
termination criteria are met. The two performance metrics and #Samples are reported for each data set for
the two algorithms QP-ASMI and dQP-SVASMI. Observe that at least 77% and 73% of the imputed values are
identical for QP-ASMI and dQP-SVASMI, respectively. This implies that the proposed algorithms return the
same imputed values for over-70% of the missing entries. Further, The imputed values’ average standard
deviations are mostly less than 0.1. The results show that both algorithms return consistent imputed values
even if the samples differ.

QP-ASMI dQP-SVASMI

Data set #Samples  %ZeroSD  AvgSD | #Samples %ZeroSD  AvgSD
Hospital10F 21.9 97% 0.0125 21.3 96% 0.0125
JournallOF 19.7 95% 0.0178 20.1 95% 0.0204
ESG10F 20.5 % 0.0978 20.4 82% 0.0719
Elementary10F 19 83% 0.0620 19.9 79% 0.0776
Highschooll10F 18.7 80% 0.0835 18.6 73% 0.1029
Movielens10F 21.2 91% 0.0331 19.9 8% 0.0453

Table D1: Variations over samples

The two algorithms, QP-ASMI and dQP-SVASMI, are also compared against their deterministic versions
QP-AS and dQP-SVAS in Table D2. Similar to the results in the main section, the gray cells and boldfaces are
used to indicate the best and within-5%-gaps, respectively, among all algorithms in Table 4. For example, no
algorithms in Table D2 have boldfaces or gray cells for the Journall0F data set, because all four algorithms
are not close to the best result (missForest) in Table 4. The result shows that QP-AS and dQP-SVAS are
slightly better than QP-ASMI and dQP-SVASMI, while the multiple imputation versions return similar quality
solutions in terms of the relative gap from the best. There exists only once case (MAD of Movielens10F
data set) where either dQP-ASMI or dQP-SVASMI beats the best solution among all benchmarks including
QP-AS and dQP-SVAS. On the other hand, the computation times of QP-ASMI and dQP-SVASMI are much
worse. Hence, considering the prediction performances and computation time, we conclude the deterministic
versions outperform.
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Data set Measure QP-AS dQP-SVAS QP-ASMI dQP-SVASMI
Hospitall0F Time 0.8 0.8 19.8 10.9
Accuracy 0.4240 0.4248 0.4234 0.4238
RMSE 0.9559 0.9560 0.9564 0.9561
MAD 0.6841 0.6833 0.6848 0.6839
JournallOF Time 13.8 1.8 504.5 23.7
Accuracy 0.6801 0.6898 0.6801 0.6898
RMSE 0.5970 0.5886 0.5970 0.5882
MAD 0.3318 0.3220 0.3318 0.3218
ESGI10F Time 0.1 0.1 4.0 1.1
Accuracy 0.4711 0.4564 0.4702 0.4600
RMSE 0.9637 1.0337 0.9642 1.0161
MAD 0.6498 0.6978 0.6507 0.6853
Elementaryl0F Time 0.1 0.0 3.1 0.7
Accuracy 0.6373 0.6361 0.6265 0.6265
RMSE 0.6453 0.6441 0.6507 0.6517
MAD 0.3819 0.3819 0.3916 0.3916
Highschooll0F Time 0.0 0.0 0.7 0.2
Accuracy 0.6591 0.6500 0.6636 0.6364
RMSE 0.6467 0.6743 0.6512 0.6938
MAD 0.3682 0.3864 0.3682 0.4045
Movielens10F Time 46.4 2.4 595.2 31.1
Accuracy | 0.4678 0.4668 0.4670 0.4676
RMSE 0.8993 0.8968 0.9002 0.8963
MAD 0.6204 0.6196 0.6215 0.6187

Table D2: Performance of QP-ASMI and dQP-SVASMI (boldface = within 5% relative gap, graycell = best)
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