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Abstract
Tensor co-clustering algorithms have been proven useful in many application scenarios, such
as recommender systems, biological data analysis and the analysis of complex and evolving
networks. However, they are significantly affected by wrong parameter configurations, since,
at the very least, they require the cluster number to be set for each mode of the matrix/tensor,
although they typically have other algorithm-specific hyper-parameters that need to be fine-
tuned. Among the few known objective functions that can be optimized without setting these
parameters, the Goodman–Kruskal τ—a statistical association measure that estimates the
strength of the link between two or more discrete random variables—has proven its effec-
tiveness in complex matrix and tensor co-clustering applications. However, its optimization
in a co-clustering setting is tricky and, so far, has leaded to very slow and, at least in some
specific but not unfrequent cases, inaccurate algorithms, due to its normalization term. In
this paper, we investigate some interesting mathematical properties of τ , and propose a new
simplified objective function with the ability of discovering an arbitrary and a priori unspec-
ified number of good-quality co-clusters. Additionally, the new objective function definition
allows for a novel prototype-based optimization strategy that enables the fast execution of
matrix and higher-order tensor co-clustering.We show experimentally that the new algorithm
preserves or even improves the quality of the discovered co-clusters by outperforming state-
of-the-art competing approaches, while reducing the execution time by at least two orders of
magnitude.

Keywords Parameter free clustering · Matrix methods · Tensor methods

1 Introduction

Clustering is by far one of the most popular machine learning tasks for its ability of extracting
useful summaries of the data in the preliminary phases of a knowledge discovery process.
When dealing with high-dimensional matrices or tensors, also called N -way data, clustering
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is often superseded by co-clustering (Dhillon, 2001), which consists in processing the modes
(the row and the columns for matrices, i.e., 2-way tensors) of the input tensor simultaneously.
This roughly corresponds to clustering one mode while performing dimensionality reduction
on the other mode, for each mode alternately, and it helps discover more meaningful clusters
(called co-clusters) as each cluster on one mode benefits from the clustering on the other
modes. Intrinsically, column clusters also improve the interpretability of row clusters by
providing useful summary information that might help explain each row grouping in a com-
pact way. Unfortunately, clustering and, in particular, co-clustering, is often misused, since
all existing methods produce meaningless clusters if their parameters are not set properly.
In fact, most objective functions optimized by state-of-the-art co-clustering algorithms are
strongly affected by the number of clusters, which is, typically, an input parameter. This is
because two values of the same objective function computed on two different solutions with
two different numbers of clusters can not be compared directly. In other words, they belong
to two different search spaces. For instance, the loss of mutual information, optimized by
Dhillon et al. (2003), is minimum for the discrete partition, i.e., when each cluster contains
exactly one data instance. Typically, when the modes of a tensor are N , one has to set N dif-
ferent cluster numbers, plus any other algorithm-specific parameter to make a co-clustering
method produce accurate results. As an example, a recent co-clustering method based on
deep neural networks (Xu et al., 2019) requires at least four additional user-specified param-
eters, without considering the number of clusters for each mode and (many) other optional
hyperparameters needed to setup and fine-tune the underlying neural network architecture.

To the best of our knowledge, the only co-clustering objective function least dependent
on the number of clusters is the Goodman–Kruskal’s τ association measure (Goodman and
Kruskal, 1954). This measure has been originally designed to estimate the strength of the link
between two discrete random variables, but it has shown its potential in several co-clustering
algorithms (Robardet and Feschet, 2001; Ienco et al., 2013) as well, even for higher-order
tensors (Battaglia and Pensa, 2023). Those algorithms do not require the specification of
the correct number of clusters to find (sub)optimal solutions and, in general, are able to
identify a meaningful number of clusters during the iterative optimization process. Despite
this nice theoretical property, in some occasions, such algorithms find solutions that are
deemed optimal according to τ , but provide poor descriptions of the data, as they include one
or two very large clusters containing the majority of the input data instances plus some small
or singleton clusters. Furthermore their iterative process turns out to be very long, since, to
achieve the convergence, many iterations are needed, each one being computationally very
expensive. The slow convergence of τ , especially in the very first iterations, counterbalances
the advantages of being parameterless and limits its real applicability to small tensors with
few modes.

To address these issues, we deeply investigate the mathematical properties and the conver-
gence behavior of the Goodman–Kruskal’s τ objective function. By analyzing the behavior in
a controlled experimental setting, we show that the normalization term of the original associa-
tionmeasuremay lead the co-clustering algorithm towardsmeaningless solutionswith almost
all the rows grouped together in a unique cluster. We then propose a new objective function,
derived from τ—thus preserving its good theoretical properties—that, contrary to the original
Goodman–Kruskal’s τ definition, allows us to define a similarity measure between a single
item and a cluster prototype. This choice enables us to design a new optimization schema that
reduces the number of necessary iterations and execution time significantly (by two orders
of magnitude, on average), leading to time performances that are similar to those of state-of-
the-art matrix co-clustering methods that require the numbers of clusters as input parameters.
When applied to higher-order tensors, our algorithm is the fastest among all the competitors
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considered in our study. Furthermore, the new definition mitigates the problem exhibited by
the original τ formulation, which leads to co-clustering results that, although optimal from
the point of view of the objective function, provide poor and thus useless descriptions of
the data. The experiments, conducted on both synthetic and real-world matrices, also show
that the improved time performances are not at the cost of the overall quality of the co-
clusters. The remainder of the paper is organized as follows: a brief related literature review
is reported in Sects. 2 and 3 presents some background notion on co-clustering. The fast
co-clustering algorithm is introduced in Sect. 4, while its extension to tensors is presented in
Sect. 5; the results of our experimental validation are discussed in Sect. 6; finally, we draw
some conclusions in Sect. 7.

2 Related works

There exist several co-clustering techniques, tailored for different data types and applica-
tion scenarios (Madeira and Oliveira, 2004; Govaert and Nadif, 2013; Qiu, 2004). Among
the others, co-clustering has proven its effectiveness when applied to contingency tables,
i.e. matrices reporting the co-occurrences between two sets of categorical values, such as
documents/words, customers/products or users/movies data objects. In fact, these matrices
are typically high-dimensional and extremely sparse and, thus, they cannot be handled by
classical clustering methods. Furthermore, the columns of these matrices represent instances
of the same categorical feature (words, products or movies, in the examples above), thus
grouping them in clusters makes sense and provides additional useful information.

The main methods for contingency tables co-clustering can be roughly divided into three
groups: spectral methods (Dhillon, 2001; Kluger et al., 2003), which transform the co-
clustering problem into a partitioning problem on a bipartite graph;matrix factorization based
methods, such as Block Value Decomposition (Long et al., 2005) and Non-Negative Matrix
Tri-Factorization (Ding et al., 2006; Yoo and Choi, 2010); probabilistic approaches (Govaert
and Nadif, 2010; Ailem et al., 2017), which assume the data to be generated by a probabilis-
tic model and try to recover the underlying model parameters; methods that formulate the
co-clustering problem as an optimization problem for some measure of the quality of the co-
clustering solution. Example of such measures are the loss of Mutual Information (Dhillon
et al., 2003), any Bregman divergence (Banerjee et al., 2007), the Goodman and Kruskal’s
τ measure (Robardet and Feschet, 2001; Ienco et al., 2013), the graph modularity (Ailem
et al., 2016). Instead, Xu et al. (2019) propose a deep learning model for co-clustering,
that uses deep autoencoders for dimensionality reduction and Gaussian Mixture Models to
infer the clustering assignments. Many extensions of the traditional co-clustering problem
have been studied: as few examples, there exist algorithms to perform co-clustering in a
distributed-scenario (Papadimitriou and Sun, 2008), algorithms for co-clustering heteroge-
neous data (Gao et al., 2005; Ienco et al., 2013), or hierarchical methods (Pensa et al., 2014;
Wei et al., 2021).

In the last 3years, the interests of scientists has significantly shifted towards multi-view
approaches, with several proposal aimed at solving this type of problem (Du et al., 2021; Hus-
sain et al., 2022). Other recent approaches have focused on improving or speeding up matrix
factorization algorithms for co-clustering (Chen et al., 2023b;WangandMa, 2021), or to adapt
the objective functions to more complex problems (Deng et al., 2021; Tang and Wan, 2021).
Wang et al. (2021), instead, address the problem of multiple alternative clustering, by intro-
ducing the first algorithm that generates multiple alternative co-clusterings at the same time.
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Further recent contributions are aimed at improvingmodel-based text co-clustering (Affeldt et
al., 2021b, a), or enhancing bipartite graph partition-based co-clustering (Chen et al., 2023a).
Finally, the problem of correctly evaluating co-clusters has also been addressed recently by
Robert et al. (2021).

With the exception of the methods based on the Goodman–Kruskal’s τ or its deriva-
tions (Robardet and Feschet, 2001; Pensa et al., 2014; Ienco et al., 2013), all other approaches
requires the specification of the number of desired or expected clusters in each mode.
Interestingly, generalizations of some of these methods work on higher-order tensors as
well (Papalexakis et al., 2013; Boutalbi et al., 2019a; Battaglia and Pensa, 2023).

In the last decades, in fact, tensors have attracted a lot of attention due to their intrin-
sic complexity and richness. Several ad hoc extensions of 2-way matrix methods have
been proposed and, among them, also co-clustering has been naturally extended to han-
dle tensors. The main tensor co-clustering methods are often based on tensor decomposition
models (Zhou et al., 2009; Peng and Li, 2010; Papalexakis et al., 2013; Zhang et al., 2013),
such as PARAFAC/CANDECOMP or Non-Negative Tucker decomposition. Instead, Wu et
al. (2016) introduce a spectral co-clustering method based on a new random walk model
for nonnegative square tensors; in Chi et al. (2020) the tensors are represented as weighted
hypergraphs, which are cut by an algorithm based on random sampling. Other more recent
approaches (Boutalbi et al., 2019a, b) rely on an extension of the latent block model. In these
works, co-clustering for sparse tensor data is viewed as a multi-way clustering model where
each slice of the third mode of the tensor represents a relation between two sets. Wang and
Zeng (2019) present a co-clustering approach for tensors that uses a least-square estima-
tion procedure for identifying a N -way block structure that applies to binary, continuous,
and hybrid data instances. Boutalbi et al. (2022) introduce the Tensor Latent Block Model
(TLBM) for the co-clustering of tensor data, that exploits the latent block model and is
able to consider continuous, binary and count data. According to the authors, the derived
algorithms can be also used for the clustering of multiple graphs or multi-view clustering.
Finally, Battaglia and Pensa (2023) propose a tensor extension of the 2-way co-clustering
algorithm based on the optimization of the Goodman and Kruskal’s τ association measure,
which is, to the best of our knowledge, the only tensor co-clustering approach not requiring
the number of clusters as input parameter. Unfortunately, it is also very slow and, as we will
show in the next sections, sometimes leads to degenerate solutions. These are exactly the two
issues that we address in this paper, by proposing a novel more effective derivation of the
Goodman–Kruskal’s τ objective and a more efficient prototype-based algorithm for its fast
optimization.

3 Background and problem formulation

Before introducing the tensor co-clustering problem, we briefly describe the notation used in
this paper. As a general rule, non indexed (e.g., k) lowercase letters represent scalars, while
indexed (e.g, pic) lowercase letters represent the single entries of a vector/matrix/tensor
(with some exceptions, e.g., k0). Instead, uppercase Latin or Greek symbols (e.g., A, �)
represent some quantities computed on matrices or tensors, with the exception of X , Y
and Z that denote some categorical random variables. Tensor are represented according to
two different notations: script uppercase letters (for input data) or bold uppercase letters (for
tensors computed during the execution of the algorithms). Matrices are represented similarly.
Script uppercase letters are also used to represent sets, in our case, partitions (sets of clusters)
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Table 1 Symbols and notation used in the paper

Notation Description

A An input data tensor (or matrix)

(P(1), . . . ,P(m)) A co-clustering of a m-mode tensorA
(X ,Y,Z) A co-clustering of a 3-mode tensorA
(R,C) A co-clustering of a matrix A
Rr The r th cluster of a row partition R
Cc The cth cluster of a column partition C
T The contingency tensor/matrix associated to the input data A and to a

co-clustering (P(1), . . . ,P(m)) (resp. (R,C))

R(t) The row partition at iteration t

C(t) The column partition at iteration t

P i(t) The i-mode partition at iteration t

P (matrices) The probability matrix associated toA given the column clustering C
Q (matrices) The probability matrix associated to the co-clustering (R,C) of a

matrixA
P (tensors) The probability tensor associated to one mode of aA given the

clustering on all other modes

Q (tensors) The probability tensor associated to the co-clustering
(P(1), . . . ,P(m)) of a tensor A

and clusters (subsets of points). For a complete detailed distinction, we let the reader refer to
Table 1. In the following, we formulate the tensor co-clustering problem as the maximization
of an association measure between categorical random variables.

Given a tensor A with m modes, a co-clustering of A is a tuple (P(1), . . . ,P(m)) where
P(i) is a partition of the elements of the i th mode of A, for each i = 1, . . . ,m. As a special
case, if A is a matrix (i.e. a 2-way tensor), a co-clustering of A is a pair (R, C), where R
is a partition of the rows and C a partition of the columns of the matrix. In this paper we
present a new (tensor) co-clustering algorithm based on the optimization of the Kruskal and
Goodman’s τ measure, such as τCC (Ienco et al., 2013) and τTCC (Battaglia and Pensa,
2023), but using a different optimization strategy that makes the algorithm noticeably faster.

The objective function of τCC is Kruskal and Goodman’s τ (Goodman and Kruskal,
1954), an association measure that estimates the strength of the link between two discrete
variables X and Y according to the proportional reduction of the error in predicting one of
them knowing the other:

τX |Y = eX − E[eX |Y ]
eX

(1)

where eX is the error in predicting X , i.e., the probability that two independent realizations
of the random variable differ, and E[eX |Y ] is the expected value of the error in predicting X
when Y is known. The values of τX |Y stay between 0 (when there is no association between
X and Y ) and 1 (when X is function of Y ). Function τ can be used to evaluate a co-clustering
solution: given a matrix A = (ai j ) with non-negative values and a co-clustering (R, C) of
A, the association of the row clusteringR with the column clustering C can be expressed as
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τR|C (R, C) =
∑|R|

r=1

∑|C|
c=1

t2rc
t••t•c

− ∑|R|
r=1

t2r •

t2••

1 − ∑|R|
r=1

t2r •

t2••

(2)

where T = (trc) is the contingency table associated to the co-clustering, i.e. trc =
∑

i∈Rr

∑
j∈Cc ai j , t•• = ∑|R|

r=1

∑|C|
c=1 trc, t•c = ∑|R|

r=1 trc, and tr • = ∑|C|
c=1 trc. Analogously,

the association of the column clustering C to the row clustering R can be evaluated through
the function τC |R(R, C). Notice that τ is not symmetric, thus τR|C (R, C) �= τC |R(R, C)

in general. The best co-clustering solutions are those that simultaneously maximize τR|C
and τC |R . An intuitive explanation of the meaning of τR|C (R, C) and τC |R(R, C) and its
implication for a co-clustering solution, is given in the example below.

Example 1 Suppose that A is a sparse matrix over a set of 10 customers (the rows of A) and
a set of 8 products (the columns of A). Assume that A is as follows

A =

c1 c2 c3 c4 c5 c6 c7 c8
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

3 0 0 1 0 0 0 0 r1
2 0 0 0 0 0 0 0 r2
0 0 1 0 0 0 0 0 r3
0 1 0 0 0 0 0 0 r4
0 0 0 6 0 0 0 0 r5
0 0 0 4 0 0 0 1 r6
0 0 0 0 5 0 1 0 r7
0 0 0 0 0 5 0 1 r8
0 0 0 0 0 0 7 0 r9
0 0 0 1 0 0 0 3 r10

,

where each entry (ri , c j ) is the count of products c j purchased by customer ri . A possible
co-clustering over A is (R, C), where R = {{r1, r2, r3}, {r4, r5, r6}, {r7, r8}, {r9, r10}}, is
the partition of customers and C = {{c1, c2}, {c3, c4}, {c5, c6}, {c7, c8}} is the partition of
products.We can associate, to the triple (A,R, C), the following contingency tableT obtained
by summing all the rows (and columns) belonging to the same cluster together:

T =

⎛

⎜
⎜
⎝

5 2 0 0
1 10 0 1
0 0 10 2
0 1 0 10

⎞

⎟
⎟
⎠ .

The contingency matrix T shows that (R, C) is a meaningful co-clustering solution, with
well defined block co-clusters. The values of the two association measures for this co-
clustering are τR|C (R, C) = 0.630 and τC |R(R, C) = 0.625. Now, consider a different
co-clustering solution (R′, C′), with R′ = {{r1, r5, r10}, {r2, r6, r9}, {r3, r8}, {r4, r7}} and
C′ = {{c1, c8}, {c3, c7}, {c2, c6}, {c4, c5}}

T′ =

⎛

⎜
⎜
⎝

6 0 0 8
3 7 0 4
1 1 5 0
0 1 1 5

⎞

⎟
⎟
⎠ .

In this case, the contingency matrix T′ exhibits a meaningless co-clustering structure, with
less crisp block co-clusters. This is confirmed by the values of the two association measures:
in fact, τR|C (R′, C′) = 0.300 and τC |R(R′, C′) = 0.270.
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The algorithm τCC belongs to the family of co-clustering algorithms that iteratively
maximize a measure of the quality of the co-clustering (the most famous example of is the
Information Theoretic Co-Clustering or ITCC (Dhillon et al., 2003). However, τCC has three
peculiarities that distinguish it from the other methods.

1. Instead of maximizing a unique objective function, τCC’s goal is to maximize two objec-
tive functions at the same time, τR|C and τC |R . Thus, co-clustering is formulated as a
multi-objective optimization problem.

2. A stochastic local search approach is used to solve the maximization problem: at each
iteration, a row is randomly selected and is moved from its original cluster to the row
cluster that maximizes τR|C . Then, a column is randomly selected and moved to the
column cluster that maximizes τC |R . Instead, the other methods use a “k-means like”
optimization strategy that constructs prototypes for each cluster and, at each iteration,
assigns each object to the closest prototype, using some ad hoc function to measure the
closeness, opportunely designed to increase the objective function.

3. Unlike other objective functions, τ exhibits no monotonicity w.r.t. the number of clusters.
This fact enables the algorithm τCC to compare co-clustering solutions with a different
number of clusters and choose the best one: as a consequence, τCC is one of the few co-
clustering algorithms able to identify the final number of clusters on its own. Instead, the
magnitude of other objective functions, such as the Loss of Mutual Information adopted
by ITCC, depends on the number of clusters and thus the other methods only consider
co-clustering solutions with a specified number of clusters on each mode.

Despite the desirable property (3) and the proven effectiveness of the algorithm, the applica-
bility of τCC is limited by the fact that its current optimization strategy requires an elevated
number of iterations, resulting in execution times that are sensibly higher than those of the
other co-clustering methods. Furthermore, in some cases, the algorithm fails in identifying
a meaningful number of co-clusters, ending in a solution with a very small number of very
large co-clusters unable to faithfully describe the data. In the next sections, we will present a
slightly different objective function and a new optimization strategy for the algorithm τCC
which, similarly to that of ITCC, is based on the assignment of the rows and columns to the
most similar prototype.

In a recent work (Battaglia and Pensa, 2023), we have extended the association measure
τ to handle a generic number m of categorical random variables. For instance, it is possible
to measure the association among three random variables X , Y and Z as the proportional
reduction of the error in predicting one of them knowing the joint distribution of the other
two, obtaining three different associationmeasures τX |(Y ,Z), τY |(X ,Z) and τZ |(X ,Y ). If X , Y , Z
denote the random variables representing to the co-clustering problem and (X ,Y,Z) is a
co-clustering of a 3-way tensor A, the association measure can be written as

τX |(Y ,Z)(X ,Y,Z) =
∑|X |

i=1

∑|Y|
j=1

∑|Z|
k=1

t2i jk
t•••t• jk

− ∑|X |
i=1

t2i ••

t2•••

1 − ∑|X |
i=1

t2i ••

t2•••

(3)

where T = (ti jk) is the contingency tensor associated to the co-clustering. The tensor co-
clustering problem is then formulated as a multi-objective optimization problem of the
functions τX |(Y ,Z), τY |(X ,Z) and τZ |(X ,Y ). Analogously to τCC, the tensor co-clustering
algorithm, called τTCC, uses a stochastic local search approach to solve the maximization
problem. Notice that, when m = 2, i.e., the contingency tensor is a matrix, τTCC corre-
sponds to τCC. The advantages and disadvantages of the 2-way version of the algorithms
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hold for the tensor version as well, but their effect becomes more pronounced as the number
of modes of the tensors increases. The algorithm does not require the specification of any
parameter, while all existing tensor co-clustering methods require at least the specification
of the number of clusters on each mode of the tensor and, very often, other parameters such
as the rank of the decomposition. On the other hand, the number of iterations performed by
the algorithm and its computational complexity increase with the number of modes, limiting
the practical application of the algorithm τTCC to relatively small tensors with few modes.

4 Fast parameterless co-clustering

In this section, we present a new objective function that leads to an arbitrary number of
more meaningful co-clusters and allows for a more efficient and faster optimization strategy
leveraging a prototype-based iterative algorithmwhose theoretical convergence can be proved
formally.

4.1 An alternative to Goodman and Kruskal’s �

Let X and Y be two categorical random variables. The function τX |Y (Eq. 1) depends on two
quantities: the error in predicting X , denoted by eX , and the expected error in predicting X
when Y is known, denoted by E[eX |Y ], both laying in [0, 1]. The association between X and
Y is strong if the knowledge of Y drastically reduces the error eX . Notice that eX does not
depend on Y and its presence in the definition of τ serves as a starting point from which to
calculate the improvement in the prediction due to the knowledge of Y . Thus, intuitively, the
most important component in τX |Y should be E[eX |Y ]. However, since τX |Y measures the
proportional reduction of the error, eX contributes to both the numerator and denominator
of (1). Consequently, it has a great impact on the value of τX |Y . As an example, imagine that
X is a random variable with a very small eX . Since, by definition, E[eX |Y ] < eX , then the
expected error, when Y is known, will be very small as well, i.e., E[eX |Y ] ≈ eX . However,
although the knowledge about the distribution of Y hardly improves the prediction of X ,
the value of the association measure is high, due to the small denominator of τX |Y . Such a
situation happens also when τ , formulated as in Eq. 2, is employed to measure the quality
of a co-clustering (R, C): in particular, eR is small when the partition R is composed by a
unique cluster, or by a huge cluster and few very small extra-clusters. In fact, the function
eR(R) = 1 − ∑|R|

r=1 t
2
r · has a maximum when |R| = 1. This fact may lead the algorithm

τCC towards a meaningless clustering solution with (almost) all the rows grouped together
into a unique cluster. A simple solution to this problem is to leave out the denominator of τ

and only consider, as objective function of the co-clustering algorithm, the numerator. From
now on, we will call this simplified objective function τ̂R|C , defined as

τ̂R|C =
|R|∑

r=1

|C|∑

c=1

t2rc
t••t•c

−
|R|∑

r=1

t2r •

t2••

. (4)

To better investigate the differences in the behavior of τR|C and τ̂R|C , the two measures
are plotted in Fig. 1 as functions of the two variables eR and E[eR|C ]. For the moment, R and
C are just two families of generic categorical random variables. As expected, τR|C is very
high for almost all values of eR , when combined to low values of E[eR|C ]. In the lower left
corner of the two heatmaps are instances of the family R with low prediction error eR . Hence,
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Fig. 1 Comparison between τR|C and τ̂R|C . The two measures are considered as functions of variables eR
and E[eR|C ]

when R is the family of random variables associated to each possible clustering solution, in
the lower left corner there are the clustering solutions with very few clusters: according to
association measure τ , these clustering solutions are optimal and the algorithm τCC could
end in one of these solutions. Instead, τ̂X |Y rewards more the pair of solutions (R,C)with eR

much bigger than E[eR|C ]. Since E[eR|C ] = 1− ∑
rc

t2rc
t·c is minimum when the contingency

matrix of the co-clustering is diagonal, the newly proposed objective function τ̂X |Y is more
suitable whenwewant to obtain co-clustering solutions with approximately the same number
of clusters on rows and columns and block diagonal co-clusters. The following example will
show the differences between the two functions when used to evaluate co-clustering.

Example 2 Let us consider the customers× products matrixA, first introduced in Example 1,
together with the first related co-clustering solution represented by the contingency matrix
T. The values of the two association measures for this co-clustering are τR|C (R, C) = 0.630
and τ̂R|C (R, C) = 0.466. Consider now a different co-clustering solution (R′′, C) on A,
where R′′ = {{r1, r2, r4}, {r3, r5, r6, r7, r8, r9, r10}} (notice that the partition on columns is
the same as in the previous solution), with contingency matrix

T′′ =
(
6 1 0 0
0 12 10 13

)

.

Here we have τR|C (R′′, C) = 0.842 and τ̂R|C (R′′, C) = 0.234. Therefore, according to
measure τ the second partition is better than the first one,while τ̂ assigns an higher score to the
first solution. Clearly, without any other knowledge about the dataset, it is not possible to say
whether a solution is better than the other. However, it is evident that the first solution provides
a more detailed summary of the data and it can also be used to interpret the column clustering
more accurately. Instead, the second solution contains a large row cluster of customers that
purchase many different products, described by many different column clusters.

The new association measure τ̂R|C has another advantage: the simplification of the original
objective function allows us to use a more efficient optimization schema in the co-clustering
algorithm, as we will show in the next section.
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4.2 Prototype-based �CC

Let A = (ai j ) ∈ R
n×m+ be a non-negative data matrix, with n rows and m columns, and

T the contingency matrix associated to the co-clustering (R, C), where R = (R1, . . . ,Rk)

and C = (C1, . . . , Cl), with 1 < k ≤ n and 1 < l ≤ m. The generic element of matrix T is
trc = ∑

i∈Rr

∑
j∈Cc ai j , for r = 1, . . . , k and c = 1, . . . , l. We will denote the sum of all

the elements ofAwith A and the sum of all the elements of Twith T . It follows that A = T .
Let us define the following quantities:

pi j = ai j
A

pi · =
m∑

j=1

ai j
A

p· j =
n∑

i=1

ai j
A

(5)

qrc = trc
T

= trc
A

=
∑

i∈Rr

∑

j∈Cc

ai j
A

=
∑

i∈Rr

∑

j∈Cc
pi j (6)

qr · =
l∑

c=1

trc
T

=
l∑

c=1

trc
A

=
l∑

c=1

∑

i∈Rr

∑

j∈Cc

ai j
A

=
∑

i∈Rr

pi · (7)

q·c =
k∑

r=1

trc
T

=
k∑

r=1

trc
A

=
k∑

r=1

∑

i∈Rr

∑

j∈Cc

ai j
A

=
∑

j∈Cc
p· j (8)

where i = 1, . . . , n, j = 1, . . . ,m, r = 1, . . . , k and l = 1, . . . , l. Intuitively, pi j can be
interpreted as the probability of observing ai j , while qrc is the probability of observing a
generic co-cluster (Rr , Cc). Consequently, pi · and p· j are, respectively, the marginal proba-
bilities of the object represented by the i th row and of the item represented by the j th column
of A. Finally, qr · and q·c are, respectively, the probability that a generic row is in cluster Rr

and the probability that a generic column falls in cluster Cc.
Hence, both p = (pi j ) and q = (qrc) are probability distributions and (p· j ), (pi ·), (q·c),

(qr ·) are their marginal distributions. However, while p only depends on the original data
matrixA, q also depends on the partitionsR and C on the rows and columns ofA, respectively.
Let us consider the partition C fixed and suppose we want to identify the partition R that
maximizes τ̂R|C (·, C). We will use the following notation:

pic =
∑

j∈Cc
pi j p·c =

∑

j∈Cc
p· j = q·c (9)

for each i = 1, . . . , n and c = 1, . . . , l. The objective function can be written as follows:

τ̂R|C (R, C) =
k∑

r=1

l∑

c=1

q2rc
q·c

−
k∑

r=1

q2r ·

=
k∑

r=1

l∑

c=1

⎛

⎝
∑

i∈Rr

pic
p·c

⎞

⎠ qrc −
k∑

r=1

⎛

⎝
∑

i∈Rr

pi ·

⎞

⎠ qr ·

=
l∑

c=1

n∑

i=1

pic
p·c

qR(i)c −
n∑

i=1

pi ·qR(i)· (10)

where R(i) denotes the cluster assignment of the i th row in the partition R.
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Here we propose an iterative strategy to find the best partition R, when C is fixed. Let us
suppose that, at iteration t , a partition R(t) has been selected and let q(t) be its associated
distribution. The objective function τ̂R|C (·, C) computed for this particular partition takes
value

τ̂R|C (R(t), C) =
n∑

i=1

(
l∑

c=1

pic
p·c

q(t)
R(t)(i)c

− pi ·q(t)
R(t)(i)·

)

(11)

We can interpret each q(t)
r as a prototype of the r th cluster and define a function

sim(pi , q
(t)
r ) =

l∑

c=1

pic
p·c

q(t)
rc − pi ·q(t)

r · (12)

that measures the similarity between each “point” pi and each cluster prototype q(t)
r .

The objective function can now be written as

τ̂R|C (R(t), C) =
n∑

i=1

sim
(
pi , q

(t)
R(t)(i)

)
(13)

For a fixed row i , if there is a cluster r �= R(t)(i) such that sim(pi , q
(t)
r ) >

sim(pi , q
(t)
R(t)(i)

), this means that the i th object is more similar to the prototype of clus-
ter r than to the prototype of the cluster it currently belongs to, and then it should be moved
from its original cluster R(t)(i) to cluster r . Thus, we can adopt the following iterative pro-
cedure, to identify the best partition R: at each iteration, we compute the cluster prototypes
q(t) related to the current partition R(t) and then assign each object i to the cluster r that
maximizes sim(pi , q

(t)
r ), obtaining a new partitionR(t+1). In case of tie, the object is moved

to the cluster r with maximum q(t)
r · , among those that maximize sim(pi , q

(t)
r ). In order to

decide to which cluster object i should be moved, the objective function sim(pi , q
(t)
r ) is

computed for each cluster r ∈ R(t). At each iteration, the algorithm is able to reduce the
number of clusters: if all the objects of a cluster r are assigned to other pre-existing clusters,
then the number of clusters will decrease by one. Otherwise, if all the objects are moved
from one cluster to another but no cluster remains empty, the number of clusters remains the
same. It is obvious that the final number of clusters will be lower or equal to the number of
clusters contained in the initial partition. Algorithm 1 provides a sketch of the optimization
strategy just described.

The same procedure can be applied to find the partition C of the columnswhenR is known,
by optimizing the objective function τ̂C |R(R, ·). We will call the analogous algorithm for
column clustering τCC-columns (A,R, C(0))

Theorem 1 The algorithm τCC-rows (respectively, the algorithm τCC-columns) increases
the objective function τ̂R|C (·, C) (respectively, τ̂C |R(R, ·)) at each iteration and terminates
in a finite number of iterations.

The proof of the theorem is given in “Appendix A”. It exploits the fact that sim is a positive
semi-definite bilinear form to demonstrate that τ̂R|C monotonically increases.

The following toy example illustrates how a single iteration of the algorithm τCC-rows
works.
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Algorithm 1 τCC-rows(A, C,R(0))

Input: A matrixA with shape n × m, the column clustering C, the initial row clustering R(0)

Result: R(t)

Compute pic, pi · and p·c for i = 1, . . . , n, c = 1, . . . , |C|
Initialize R(0)

t ← 0
while R(t) �= R(t−1) do

k ← |R(t)|
Assign, to each cluster inR(t), a different integer r , with 1 ≤ r ≤ k;

Compute q(t)
rc and q(t)

r · , for r = 1, . . . , k, c = 1, . . . , |C| using Equations (6), (7)
for i = 1, . . . , n do

MaxSim ← max1≤r≤k

(∑|C|
c=1

pic
p·c q

(t)
rc

)
− pi ·q(t)

r ·
I ←

{
r |

(∑|C|
c=1

pic
p·c q

(t)
rc

)
− pi ·q(t)

r · = MaxSim
}

R(t+1)(i) ← argmax
r∈I

(q(t)
r · )

end
for r = 1, . . . , k do

if R(t+1)
r = ∅ then

R(t+1) ← R(t+1) \ R(t+1)
r

end
end
t ← t + 1

end

Example 3 We want to use Algorithm 1 to cluster the customers of a shop according to their
purchase habits. Let

A =

⎛

⎜
⎜
⎝

2 3 1 0 0 0
2 2 0 0 0 1
0 0 0 2 2 3
0 0 1 0 5 2

⎞

⎟
⎟
⎠

be the input matrix, whose rows represent the customers andwhose columns are the products.
Each entry ai j ofA is the number of items of product j bought by customer i . Imagine that the
column clustering C = {{0, 1, 2}, {3, 4, 5}} is known (for instance, the first three products are
foodstuffs, while the remaining three are clothing). Suppose that the row clustering resulting
from the last iteration of the algorithm isR(t) = {{0}, {1}, {2, 3}}. The probability distribution
P associated to the data matrix given the column clustering, and the probability distribution
Q(t) of the co-clustering (R(t), C) are respectively

P =

⎛

⎜
⎜
⎝

0.23 0.00
0.15 0.04
0.00 0.27
0.04 0.27

⎞

⎟
⎟
⎠ Q(t) =

⎛

⎝
0.23 0.00
0.15 0.04
0.04 0.54

⎞

⎠

Algorithm 1 assigns each row of P to the cluster represented by the most similar row ofQ(t),
according to the similarity measure sim. Since the similarity between each row and each
prototype is
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q0 q1 q2
p0 0.07 0.04 –0.11
p1 0.04 0.02 –0.06
p2 –0.06 –0.03 0.09
p3 –0.05 –0.03 0.08

all the rows remain in their original cluster, except p1 that is moved in the first cluster. Thus,
the resulting row clusteringwill beR(t+1) = {{0, 1}, {2, 3}}, corresponding to the probability
distribution

Q(t+1) =
(
0.38 0.04
0.04 0.54

)

.

Matrix Q(t+1) is useful to interpret the results of the co-clustering: the customers in the first
cluster are those that mainly buy foodstuffs, while the second cluster contains customers that
usually buy clothes.

So far, two different algorithms to optimize the row partitionR, given the column partition
C and, viceversa, the column partition C, given the row partition R, have been presented.
Theorem 1 proves that each one of the two algorithms converges to a local optimum of its
respective objective function (τ̂R|C or τ̂C |R). A co-clustering algorithm that finds the best
partitions R and C simultaneously, can be obtained by the iterative repetition of the two
algorithms.

Algorithm 2 PB-τCC(A, tmax )

Input: A matrixA with shape n × m, the maximum number of iterations tmax
Result: R,C
Initialize R(0) and C(0)

t ← 0
while (R(t),C(t)) �= (R(t−1),C(t−1)) and t < tmax do

R(t+1) ← τCC-rows(A,C(t),R(t))
C(t+1) ← τCC-columns(A,R(t+1),C(t))
t ← t + 1

end

The overall algorithm, named Prototype-Based τCC or PB-τCC, is summarized in Algo-
rithm 2. The row and column clusteringR(0) and C(0) can be initialized in any possible way.
However, since Algorithm 2 can only decrease the number of clusters, an initial co-clustering
with a number of clusters that are safely higher than the expected/desired number of clusters
is preferable.

The initialization strategywe use consists in the creation of k0 initial row cluster prototypes
and k0 column cluster prototypes. These initial synthetic prototypes are created as follows.
The columns are randomly split in k0 equal-width clusters. The initial row prototypes are
the rows of the identity matrix I ∈ R

k0×k0 . Then each row is assigned to the most similar
prototype using the usual similarity measure (Eq.12). If sim(pi , q) < 0 for any cluster
prototype q , then the row pi is assigned to a new empty cluster, because the prototype of
the empty cluster is 0 and sim(pi , 0) = 0 > sim(pi , q), for any cluster prototype q . This
method, however, requires the specification of the initial number of clusters on the twomodes
of the matrix. Although this may seem contrary to the spirit of the algorithm, whose strong
point is to be parameterless, it turns out that the choice of parameter k0 does not affect the
result to a great extent. This is due to the fact that the initialization method can modify the
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number of clusters and add a new cluster when the prototypes of the already existing clusters
are not able to describe an object of the data matrix. For a more detailed analysis of this topic,
the reader is referred to Sect. 6.3.

4.3 Computational complexity of PB-�CC

Here we compute the computational complexity of the new algorithm PB-τCC and compare
it with that of τCC, its direct competitor.

Let (R(t), C(t)) be the current co-clustering returned by PB-τCC at iteration t . Consider a
row i ofA. In order to decide whether i should be moved to another cluster or not, and which
cluster it should be moved to, PB-τCC computes sim(pi , q

(t)
r ) = ∑lt

c=1
pic
p•c

q(t)
rc − pi •q(t)

r • in
O(lt ), for all clusters r ∈ R. Then the re-assignment of i is done in O(kt lt ), where kt is the
current number of clusters on the rows and lt is the current number of clusters on the columns.
Similarly, the re-assignment of a column j is done in O(kt lt ). Since the number of clusters
does not increase from an iteration to the following one, kt ≤ k0 and lt ≤ l0, for each t ≥ 0.
In each iteration of the rows the re-assignment step is repeated n times (once per row), while
the columns assignment step is repeated m times (once per column). Therefore, if IR is the
total number of iterations on rows and IC is the total number of iterations on columns, the
overall complexity of PB-τCC is inO(IRnk0l0 + ICmk0l0) = O (I max(n,m)k0l0), where
I = IR + IC is the total number of iterations. The initialization of the row clusters takes
O(nmk0)while the initialization of the column clusters takesO(nml0). Thus the initialization
phase has complexity in O(nmmax(k0, l0)).

Instead, the direct competitor, τCC, as reported by Battaglia and Pensa (2023), has com-
plexity inO(Inm), where I is the total number of iterations (here an iteration is the move of a
single object, a row or a column). To allow for a fair comparison between the two algorithms,
we should consider that the number I in PB-τCC is in general significantly lower than the
number of iterations I in τCC, because in τCC I is the total number of moves of a single
object (row or column) that have been done by the algorithm, while the number of moves
of a single object in PB-τCC is M = IR · n + IC · m, with IR + IC = I. For instance,
suppose that the two algorithms make the same number M of total moves of single objects.
Then PB-τCC has complexity in O(IRnk0l0 + ICmk0l0) 	 O(Mk0l0), while τCC has
complexity in O(Mnm).

In principle, if PB-τCC is initialized with the discrete partitions (where each object forms
a singleton cluster), i.e. k0 = n and l0 = m, the two algorithms have the same complexity
O(Mnm). However, in practice, function sim (Eq.12) is much faster to compute than the
objective function �τ used by τCC to decide in which a cluster qr a row pi currently
belonging to cluster qb should be relocated:

�τ(pi , qb, qr ) =
� · (pi •(pi • + qr • − qb•)) − �

(∑l
c=1

pic
q•c

(pic + qrc − qbc)
)

�2 − � · (2pi •(pi • + qr • − qb•))

where � = 1 − ∑
i j

p2i j
p• j

and � = 1 − ∑
i p

2
i •. This simplification in the objective func-

tion makes our algorithm remarkably more efficient than the other one (as we will show
experimentally in Sect. 6).
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5 Extension to tensor co-clustering

In this section, we present a higher-order version of algorithm PB-τCC. For sake of clarity,
here we introduce a co-clustering algorithm for 3-way tensors, but the same procedure leads
to the creation of a co-clustering for tensors with a generic number m of modes.

5.1 Prototype-based tensor co-clustering

LetA be a tensor with three modes and dimensions (nX , nY , nZ ). Suppose that the partition
Y and Z on the second and third modes are fixed and we want to find the best partition X
for the first mode. The objective function can be written as

τ̂X |(Y ,Z)(X ,Y,Z) =
nX∑

i=1

⎛

⎝
|Y|∑

u=1

|Z|∑

v=1

piuv

p•uv

qX (i)uv − pi ••qX (i)••

⎞

⎠

where p and q are the probability distributions associated, respectively, to the original data
A and to the co-clustering (X ,Y,Z). They can be computed using the 3-way analogous of
Eqs. (5)–(9). We can consider each slice qw on the first mode of q as a cluster prototype and
define a similarity measure analogous to (12) to quantify the similarity between a data point
pi and a cluster prototype qw:

sim(pi , qw) =
|Y|∑

u=1

|Z|∑

v=1

piuv

p•uv

qwuv − pi ••qw•• (14)

Finally, we use this similarity measure to evaluate, at each iteration, the cluster to which
each object should be moved. As for the 2-way case (Theorem 1), the iterative repetition of
this assignment step monotonically increases the objective function τ̂X |(Y ,Z). Once the best
partition on the first mode has been selected and no further moves are possible, we can move
to the next mode and repeat the entire process. The procedure just described, which we will
call Prototype-Based τTCC or PB-τTCC, is the tensor generalization of Algorithm 2.

Algorithm 3 gives a sketch of PB-τTCC for generic m-way tensors. Here, P1, . . . ,Pm

are the m partitions (one for each node). Hence, in the 3-way case, (X ,Y,Z) corresponds to
(P1,P2,P3). AlgorithmPB-τTCConly looks at the objective function related to themode on
which the re-assignment is performed: for instance, in a 3-way tensor, whenmoving rows only
the objective function τ̂X |(Y ,Z) is optimized, while τ̂Y |(X ,Z) and τ̂Z |(X ,Y ) are not considered.
As for the 2-way case, the partitions on all the modes of the tensor can be initialized in any
possible way. However, since the algorithm can only decrease the number of clusters, initial
co-clustering configurations with a number of clusters that are safely higher than the number
of expected/desired clusters are preferable.

Although the initialization strategyproposed formatrix co-clustering canbeused for tensor
co-clustering too, the probability of selecting poor initial prototypes would increase with the
number of modes (and with the sparsity) of the tensor. Hence, for tensor co-clustering, we
adopt a strategy inspired by the classical initialization of k-means clustering and consisting
in the random extraction of k0, l0 and h0 elements from each of the three modes of A (in
the case of 3-way tensors). These randomly selected elements are considered as prototypes
of k0, l0, h0 clusters in each mode, and each elements of tensor A is assigned to the most
similar prototype using the usual similarity measure (12). If sim(pi , q) < 0 for any cluster
prototype q , then the row (column) pi is assigned to a new empty cluster, since the prototype
of the empty cluster is 0 and sim(pi , 0) = 0 > sim(pi , q), for any cluster prototype q .
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Algorithm 3 PB-τTCC(A, tmax )

Input: A m-way tensor A with shape n1 × · · · × nm , the maximum number of iterations tmax
Result: (P1, . . . ,Pm )

Initialize P(0) = (P1(0)
, . . . ,Pm (0))

t ← 0
while P(t) �= P(t+1) and t < tmax do

Compute tensor P using the n-way equivalent of pic (Equation 9)
for i = 1, . . . ,m do

X 0 ← P i (t)

h ← 0
while X (h) �= X (h+1) do

Compute tensor Q using the equivalent of qrc (Equation 6)
X (h+1) ← τ̂CC-one_mode(P,Q, i)
h ← h + 1

end
end
t ← t + 1

end
Function τ̂CC-one_mode(P,Q, i):

P ← transpose(P,i); // rotate the tensor to move mode i on the first
position

Q ← transpose(Q,i); // analogous rotation
k ← # of rows in Q
for j = 1, . . . , ni do

MaxSim ← max1≤r≤k sim(p j , qr )
I ← {r |sim(p j , qr ) = MaxSim}
P i ( j) ← argmax

r∈I
(qr )

end
Remove eventual empty clusters
return P i

Notice that, in the initialization phase the case sim(pi , q) < 0 for all q is possible: although,
the proof of Theorem 1 (see “Appendix A”) is based on the assumption that the sum of all
the prototypes coincides with the sum of all the rows in the matrix, this is assumption does
not hold in this case.

5.2 Computational complexity of PB-�TCC

For the tensor co-clustering algorithm PB-τTCC, the computational complexity can be
derived reasoning as in the 2-way case (see Sect. 4.3). For the sake of simplicity, here we
report the overall complexity for a 3-way input tensor, but the computation can be easily
extended to the generic n-way case. We recall that PB-τTCC (see Algorithm 3) works simi-
larly as PB-τCC, i.e., it moves one item in one partition while keeping the other two partitions
fixed. Hence, by generalizing the reasoning done in Sect. 4.3 to the 3-way case, we can easily
conclude that the overall complexity of PB-τTCC is inO((IXnX +IY nY +IZnZ )·k0l0h0) 	
O(I max(nX , nY , nZ )k0l0h0), where I = IX + IY + IZ is the total number of iterations of
the algorithm and k0, l0 and h0 are the number of clusters of the initial partition on, respec-
tively, the first, second and third mode of the tensor. According to Battaglia and Pensa (2023),
τTCC (the direct competitor of our algorithm) has complexity in O(InXnY nZ ). As for the
2-way case, it is worth noting that the number of iterations I in PB-τTCC has a different
meaning than in τTCC, as in τTCC at each iteration only one object on one mode of the
tensor is re-assigned, while in PB-τTCC all the objects on the same mode are re-assigned at
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each iteration. Thus, the total number of re-assignments of a single object is I in τTCC and is
IXnX + IY nY + IZnZ in PB-τTCC. Now, assuming that the two algorithms make the same
numberM of total moves of single objects, then PB-τTCC has complexity inO(Mk0l0h0),
while τCC has complexity in O(MnXnY nZ ). Again, if PB-τTCC is initialized with the
discrete partitions, the two algorithms have the same complexityO(MnXnY nZ ): in fact, the
computational complexity of a single re-assignment step is, for both algorithms, O(kt lt ht ),
where kt , lt and ht are the number of clusters on the three modes at iteration t . However,
in practice, the function sim (Eq.12) is much faster to compute than the objective function
�τ used by τTCC to decide in which a cluster qr a row pi currently belonging to cluster qb
should be relocated. In fact, Battaglia and Pensa (2023) define �τ as:

�τ(pi , qb, qr ) =
� · (pi ••(pi •• + qr •• − qb••)) − �

(∑|Y|
u=1

∑|Z|
v=1

piuv

q•uv
(piuv + qruv − qbuv)

)

�2 − � · (2pi ••(pi •• + qr •• − qb••))

where � = 1 − ∑
i jk

p2i jk
p• jk

and � = 1 − ∑
i p

2
i ••. In Sect. 6, we will show the practical gain,

in terms of computational time, introduced by our new algorithm.

6 Experiments

In this section, we present and discuss some experimental results that show the effectiveness
of the proposed method, PB-τTCC, compared to other state-of the-art algorithms for matrix
and tensor co-clustering.

We choose the competitors by considering some fundamental co-clustering algorithms as
well as some of the most recent and effective approaches of the state of the art in matrix and
tensor co-clustering. The state-of-the-art 2-way co-clustering methods considered here are:
ITCC (Dhillon et al., 2003), ModCC (Ailem et al., 2016), PLBM (Govaert and Nadif, 2010),
SpectralCC (Dhillon, 2001), SpectralBiC (Kluger et al., 2003), DeepCC (Xu et al., 2019),
NMTF (Non-Negative Matrix Tri-Factorization followed by k-means), TLBM (Boutalbi et
al., 2022), and τCC (Ienco et al., 2013). For the first three algorithms, we use the python
implementation included in package CoClust.1 For the two spectral methods we use their
Scikit-learn implementations.2 For TLBM we use the python library included in package
TensorClus3 using the Poisson distribution. For DeepCC and τCC, we use the code publicly
provided by the authors.4,5 Finally, for NMTF we use our own python implementation.

For tensor co-clustering, the baseline methods are: nnCP (non-negative CP decompo-
sition), nnT (non-negative Tucker decomposition), SparseCP (Papalexakis et al., 2013),
TBM (Wang and Zeng, 2019), TLBM (Boutalbi et al., 2022), and τTCC (Battaglia and
Pensa, 2023). We use the TensorLy implementations for nnT and nnCP.6 For TLBM we use
the python implementation provided in package TensorClus7 using the Bernoulli distribution,

1 https://coclust.readthedocs.io/en/v0.2.1/.
2 https://scikit-learn.org/stable/.
3 https://pypi.org/project/TensorClus/.
4 https://github.com/DerronXu/Deep-Co-Clustering.
5 https://github.com/elenabattaglia/tensor_cc.
6 http://tensorly.org/stable/index.html.
7 https://pypi.org/project/TensorClus/.
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Table 2 Dataset characteristics

Dataset # Modes # Rows # Columns # Tubes # Classes

classic3 2 3891 4303 – 3

cstr 2 475 1000 – 4

tr11 2 414 6429 – 9

tr41 2 878 7454 – 10

hitech 2 2301 10,080 – 6

k1b 2 2340 10,431 – 6

reviews 2 4069 18,483 – 5

sports 2 8280 14,870 – 7

DBLP 3 6044 4057 20 4

MovieLens1 3 181 215 142 3

MovieLens2 3 145 74 115 3

YelpTOR 3 178 628 458 3

YelpPGH 3 95 237 544 3

while for the remaining three methods we use the code provided by the authors, in Matlab,8

R,9 and Python,10 respectively.
In PB-τTCC, the number k0 of initial prototypes is always set equal to 30 (a reasonable

overestimation of the true number of clusters). All other methods, with the exception of τCC
and τTCC, require as input the number of clusters on each mode: we set these values equal to
the correct number of clusters (on themode of the tensor for which class labels are given), and
set the same number of clusters on the other modes of the tensor as well. In the matrix/tensor
factorization-based methods, we tried different ranks and retain the value that gives the best
clustering result. Additional parameters, when needed, are set as indicated in the original
papers.11

The evaluation of the performances, in terms of quality of the partitioning, is done
by applying the co-clustering methods on real world datasets: we run the algorithms on
8 document-words co-occurrences matrices from the CLUTO project.12 For tensor co-
clustering, instead, the datasets are the same 3-way tensors used in (Battaglia and Pensa,
2023) to assess the quality of τTCC: DBLP,13 two tensors extracted from MovieLens14 and
two extracted from Yelp dataset.15 Table 2 summarizes the main characteristics of these
datasets. We assess the quality of the clustering solution through the Normalized Mutual
Information, a measure commonly used in the clustering literature. Each algorithm is applied
30 times and the average results in terms of NMI are reported in Table 3. All experiments are
executed on a server with 32 Intel Xeon Skylake cores running at 2.1GHz, 256GB RAM,
and one Tesla T4 GPU.

8 https://www.cs.ucr.edu/~epapalex/code.html.
9 https://cran.r-project.org/web/packages/tensorsparse/.
10 https://github.com/elenabattaglia/tensor_cc.
11 The code and datasets used for the experiments are available at https://github.com/elenabattaglia/Fast-
TauCC.
12 http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview.
13 http://web.cs.ucla.edu/~yzsun/data/DBLP_four_area.zip.
14 https://grouplens.org/datasets/hetrec-2011/.
15 https://www.yelp.com/dataset.
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Table 4 Results of tensor co-clustering algorithms on real-world data, in terms of NMI computed for the
labeled mode (rows)

Method DBLP MovieLens1 MovieLens2 YelpTOR YelpPGH

nnCP 0.78 ± 0.00 0.38 ± 0.00 0.11 ± 0.00 0.42 ± 0.00 0.10 ± 0.00

nnT 0.78 ± 0.00 0.42 ± 0.00 0.24 ± 0.00 0.43 ± 0.00 0.27 ± 0.00

SparseCP 0.00 ± 0.00 0.05 ± 0.00 0.10 ± 0.00 0.20 ± 0.00 0.11 ± 0.00

TBM - 0.30 ± 0.00 0.10 ± 0.00 0.02 ± 0.00 0.11 ± 0.00

LBM 0.49 ± 0.08 0.18 ± 0.10 0.10 ± 0.06 0.12 ± 0.04 0.05 ± 0.04

τTCC 0.71 ± 0.00 0.58 ± 0.12 0.26 ± 0.09 0.36 ± 0.04 0.35 ± 0.02

PB-τTCC 0.79 ± 0.03 0.51 ± 0.03 0.28 ± 0.03 0.33 ± 0.01 0.31 ± 0.01

The best results are given in bold

6.1 Results of PB-�CC on real-worldmatrices and tensors

On matrices, our algorithm outperforms all the competing approaches for most datasets (see
Table 3). When its NMI is not the highest one, it still ranks among the best algorithms. More
in detail, PB-τCC outperforms its direct parameterless competitor τCC for all datasets but
classic3 and tr41, on which the two algorithms achieve similar results. Interestingly, the
number of clusters identified by PB-τCC is usually more accurate than that of τCC (see
Table 5, where we report the average number of clusters founds and its variation for the main
mode, as it is the only one whose we dispose of the ground truth and/or some background
knowledge). As expected, the latter tends to aggregate the rows excessively. Instead, PB-
τCC finds a more reasonable number of clusters, although, sometimes, the final number of
detected clusters can be slightly smaller than the number of the given classes. Despite this
fact, as observed in Table 3, the quality of the clustering remains high. Table 5 also reports
the execution time of the two parameterless approaches and clearly shows that our method is
sensibly faster than τCC, by two orders of magnitude, on average. Additionally, in Fig. 2 we
report the visualization of the co-clustering (with rows and columns rearranged according to
their cluster assignment) computed by PB-τCC on all datasets.

On tensors, the performances of PB-τTCC are almost always better than those of the
methods requiring the number of clusters as input parameters. However, the accuracy in terms
of NMI is slightly lower than that of τTCC (see Table 4). This is probably a consequence
of the fact that PB-τTCC, in some cases, tends to identify an higher number of smaller
clusters. However, the marked difference in the execution times between PB-τTCC and
τTCC, reported in Table 5, makes the new algorithm much more suitable to handle tensors
of high-dimensionality. An example of visualization of the co-clustering computed on DBLP
is given in Fig. 3, where we report three representative slices whose rows and columns are
rearranged according to the clustering results.
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Fig. 2 Visualization of the results of PB-τCC on matrices. Rows and columns are rearranged according to
their cluster membership. The dark points represent nonzeros in the original matrix

Fig. 3 Visualization of the results of PB-τTCC on DBLP for three slices. Rows and columns are rearranged
according to their cluster membership. The dark points represent nonzeros in the original matrix

Table 5 Execution time (in seconds) of τCC and PB-τCC and median number of identified clusters ± IQR
(interquartile range)

Execution time # clusters

Dataset τTCC PB-τTCC τTCC PB-τTCC # classes

classic3 1708.97 9.22 3 ± 0 3 ± 0 3

cstr 104.92 1.54 4 ± 0 4 ± 1 4

tr11 689.58 16.08 2 ± 0 5 ± 1 10

tr41 1490.72 12.54 5 ± 0 5 ± 2 9

hitech 3736.17 46.83 2 ± 1 5 ± 1 6

k1b 3473.53 37.76 2 ± 0 6 ± 1 6

reviews 13238.48 81.18 3 ± 1 4 ± 2 5

sports 22703.07 202.82 2 ± 0 5 ± 1 7

DBLP >100,000 937.73 5 ± 1 4 ± 0 4

MovieLens1 459.76 8.55 5 ± 1 9 ± 3 3

MovieLens2 297.83 1.77 3 ± 3 7 ± 1 3

YelpTOR 15678.78 41.20 5 ± 1 9 ± 2 3

YelpPGH 397.03 7.55 13± 2 15± 2 3
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(a) Average execution times on matrices (b) Average execution times on 3-way tensors

Fig. 4 Average execution times on matrices (a) and 3-way tensors (b), varying the shape of the dataset

(a) (b)

Fig. 5 Average execution times on n-way tensors, stating with a 100× 100× 10 tensor and adding a mode of
dimension 10 (a) or 100 (b) each time

6.2 Execution time on synthetic data

To better investigate the difference in the execution times of the various methods, we run the
different algorithms on synthetic datasets of controlled size. We construct binary matrices
with three embedded block co-clusters. For matrix co-clustering, we let the shape of the
matrix vary from 100× 100 to 1000× 1000 by increasing the number of rows and columns.
Figure4a shows the performances expressed in seconds for this experiment. Instead, Fig. 4b
shows the results of a similar experiment conducted on 3-way tensors: here the shape of the
tensors varies from 100 × 100 × 10 to 1000 × 1000 × 10. In all these datasets, 20% of the
matrix/tensor entries are randomly selected and their binary value is swapped (from 0 to 1,
and viceversa).

The results on matrices show that, as expected, PB-τCC is significantly faster than τCC,
but slower than other competitors that requires the number of clusters as input parameter
(ITCC, CCMod and SpecCC). Not surprisingly, algorithm DeepCC is the slowest algorithm
among the ones selected for our experiments. Instead, when 3-way tensor co-clustering is
considered (Fig. 4b), PB-τTCC outperforms by far all the other competing approaches in
terms of execution time.
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Fig. 6 Impact of the choice of k on algorithm PB-τCC. The figure shows the variation in the number of initial
row prototypes, of the number of final row clusters, and of the number of iterations w.r.t k. The synthetic data
matrix has shape 1000 × 1000 and 5 row clusters

Finally, we also investigate the impact of the number of modes on the execution times. We
start with a 3-way tensor with shape 100×100×10 and we add a newmode of dimension 10
(Fig. 5a) or of dimension 100 (Fig. 5b) at each time. In these experiments, we do not include
algorithms SparseCP, TBM and TLBM, because the available implementations only handle
3-way tensors. The two plots show that PB-τTCC is the fastest algorithm, among the ones
considered in this study; however, the difference in the execution times between our approach
and the competing methods (nnT in particular), slightly decreases as the number of modes
grows.

6.3 Choice of the initial number of prototypes

The initialization strategy we propose creates k synthetic row prototypes and l synthetic
columns prototypes, where k and l can be considered as input parameters. Here we show
that, in practice, they do not have any sensible impact on the results, provided that they are
sufficiently high. Let K be the true number of row clusters embedded in the data. Intuitively,
if k < K there will be many rows that are not sufficiently similar to any extracted prototype
and they will be put in singleton clusters. On the other hand, when k is very high, there will
be a high number of singleton clusters as well. A good choice for parameter k is a number
that is higher than the number of expected clusters embedded in the data but also significantly
smaller than the number of rows of thematrix. For instance, if matrixA has 1000 rows andwe
would like to obtain a partition of the data in few clusters, a good choice for the initial number
of clusters could be 10 ≤ k ≤ 50. Notice that, once we have decided the magnitude of the
parameter, the exact value of k is not very important, as shown in Fig. 6, which provides the
impact of the choice of the initial parameter k on the number of final clusters and execution
times on a synthetic 1000 × 1000 matrix with 5 embedded co-clusters.

As we said at the beginning of this section, in all the experiments, the number of clusters
is always set equal to 30, but, as a rule of thumb, k = max{10, n/20}, where n is the number
of rows. The same rule can be applied for the initial number of column clusters as well.
The rationale behind this rule is that, in typical data analysis tasks, when the number of
elements in one mode (e.g, the rows in matrix) is less then 200, one does not expect the final
number of clusters to be much more than five. For larger datasets, instead, the rule suggests
setting the number of initial prototypes in such a way that, on average, each cluster initially
contains 20 elements, which we consider a rather conservative choice. In practice, all these
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parameters can be automatically determined from the dimensionality of the input data, with
little or no impact on the final results. Of course, it could happen that, by applying the rule,
the initial number of prototypes is underestimated. In this case, PB-τCC may end up with
an underclustered solution. This is a limitation of our algorithm, which, by construction,
can only decrease the number of clusters during the optimization process. As future work,
we plan to explore the possibility of dynamically adjusting the number of clusters during
the execution of the iterative steps of the algorithm, although we suspect that this could be
detrimental to the good convergence properties shown by PB-τCC.

As a final remark, to be fair, wemust say that, for some of the competitors, the authors also
provide some criterion to identify the “best” number of clusters [this is done, for instance,
by Ailem et al. (2016)]. However, the related methods always involve the repeated execution
of the original algorithm, which can be unfeasible on very high-dimensional data, especially
if the number of input parameters is also high.

7 Conclusion

Wehave introduced a prototype-based co-clustering approach optimizing a simplified version
of the Goodman–Kruskal’s τ association measure, an objective function that is minimally
affected by the choice of the number of clusters, a typical input parameter of any (co-
)clustering algorithm.Differently from the previous attempts of using thismeasure to perform
parameterless co-clustering on matrices and tensors, our algorithm is much faster, while at
least preserving, if not improving, the quality of the extracted clusters. When compared to
state-of-the-art co-clustering algorithms that require the number of clusters as input parame-
ter, our algorithm also shows its effectiveness and feasibility. On tensor data, it is even faster
than any other competitor considered in this study.

A limitation of our approach (as well as of all other algorithms optimizing the same
family of objective functions) is that it is not well suited for dense numeric matrices (e.g.,
gene expression data), because, in this case, the association captured by the τ measure could
be meaningless. As future work, we will investigate ways to exploit the good properties of
the new version of τ in such more challenging contexts. Furthermore, we will investigate
more in detail the suspected intrinsic ability of identifying outliers in data, which could make
the overall approach even more robust.

Author Contributions EB: Conceptualization, Methodology, Software, Investigation, Validation, Writing-
Original draft. FP: Software, Investigation, Validation, Writing-Review & Editing. RGP: Supervision,
Conceptualization, Methodology, Writing-Original draft, Writing-Review & Editing, Funding acquisition.

Funding Open access funding provided by Università degli Studi di Torino within the CRUI-CARE Agree-
ment. This work was partially supported by Fondazione CRT (Grant No. 2019-0450) and by the HPC4AI
Project, funded by the Region Piedmont POR-FESR 2014-20 (INFRA-P).

Availability of data andmaterial All data are available online and accessible to everyone.

Code availability Source code and scripts used in our experiments are available at https://github.com/
elenabattaglia/Fast-TauCC.

Declarations

123

https://github.com/elenabattaglia/Fast-TauCC
https://github.com/elenabattaglia/Fast-TauCC


Machine Learning (2024) 113:2153–2181 2177

Conflict of interest RuggeroG. Pensa ismember of the Editorial Board. The authors have no further competing
interests to declare that are relevant to the content of this article.

Ethics approval and Consent to participate The authors declare that this research did not require Ethics
approval or Consent to participate since it does not concern human participants or human or animal datasets.

Consent for publication The authors of this manuscript consent to its publication.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A Proof of Theorem 1

Before proving the theorem, we need to introduce some important lemmas. The first one
states that sim (Eq.12) is a positive semi-definite symmetric bilinear form.

Lemma 1 Let x = (x j )nj=1 ∈ R
n be a vector such that x j > 0 for each j and

∑n
j=1 x j = 1.

The function

simx : (u, v) 
−→
n∑

j=1

u j · v j

x j
− u· · v· (A1)

is a positive semi-definite symmetric bilinear form.

Proof The symmetry and the linearity of simx in both the variables follow straightforwardly
from its definition. It still remains to prove that sim(u, u) ≥ 0 for each u ∈ R

n . Consider
vectors a, b ∈ R

n defined as a j = u j√
x j

and b j = √
x j . Then

0 ≤
⎛

⎝
n∑

j=1

a2j

⎞

⎠

⎛

⎝
n∑

j=1

b2j

⎞

⎠ −
⎛

⎝
n∑

j=1

a jb j

⎞

⎠

2

=

=
⎛

⎝
n∑

j=1

u2j
x j

⎞

⎠

⎛

⎝
n∑

j=1

x j

⎞

⎠ −
⎛

⎝
n∑

j=1

u j√
x j

√
x j

⎞

⎠

2

=

=
n∑

j=1

u2j
x j

−
⎛

⎝
n∑

j=1

u j

⎞

⎠

2

=

=
n∑

j=1

u2j
x j

− u2· = simx (u, u)

where the first inequality is the Cauchy-Schwarz inequality and the second equality follows
from

∑
j x j = 1. 
�

The function sim through which the algorithm τCC-rows evaluates the similarity between
each row of the matrix and each cluster prototype is a special case of the function family
simx , with x = (p·c)lc=1, because

∑l
c=1 p·c = 1.
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Lemma 2 Let C be the fixed partition of the columns of a matrix A. Let R(t) be the parti-
tion found by the algorithm τCC-rows at the tth iteration and let q(t) be its corresponding
distribution. Then, the function τ̂R|C can be written as

τ̂R|C (R(t), C) =
|R(t)|∑

r=1

sim(q(t)
r , q(t)

r ).

Lemma 3 Partition R(t+1) selected by the algorithm τCC-rows at the following iteration is
the partition that maximizes

fC(R(t),R(t+1)) =
|R(t)|∑

r=1

sim(q(t)
r , q(t+1)

r )

where q(t+1) is the distribution associated to R(t+1).

For the sake of brevity, we omit the simple proofs of the two lemmas, that exploit the linearity
and symmetry of sim to rearrange the sums in the definition of τ̂R|C . We can finally prove a
major result of our paper.

Proof of Theorem 1 To increase readability, we use the following simplified notation: τ̂ (t) =
τ̂R|C (R(t), C) and f (t) = fC(R(t), R(t+1)). We want to prove that the algorithm τCC-
rows monotonically increases the function τ̂ (t) and that τ̂ (t) = τ̂ (t + 1) implies either
R(t) = R(t+1) or B(R(t)) < B(R(t+1)), where B(R(t)) = ∑n

i=1 pi ·q
(t)
R(t)(i)·. This proves the

Theorem, since τ̂ always goes through different co-clustering solutions, and the number of
distinct co-clustering solutions is finite. We will show that, for each t ,

τ̂ (t) ≤ f (t) ≤ τ̂ (t + 1)

The first inequality directly follows from Lemmas 2 and 3, because

τ̂ (t) =
∑

r

sim
(
q(t)
r , q(t)

r

)
≤

∑

r

sim
(
q(t)
r , q(t+1)

r

)
= f (t).

Furthermore, moving from partition R(t) to partition R(t+1), for each cluster there will be
some rows that remain in the same cluster, some rows that leave the original cluster to another
and some rows that enter in the cluster from another one, i.e. for each r

q(t+1)
r = q(t)

r − qoutr + q inr (A2)

where qoutr is the sum of all the points pi such thatR(t)(i) = r and R(t+1)(i) �= r and q inr is
the sum of the points pi such that R(t)(i) �= r and R(t+1)(i) = r . Thus,

τ̂ (t) ≤ f (t) =
∑

r

sim
(
q(t)
r , q(t) − qoutr + q inr

)
=

=
∑

r

sim
(
q(t)
r , q(t)

r

)
+

∑

r

sim
(
q(t)
r , q inr − qoutr

)
=

= τ̂ (t) +
∑

r

sim
(
q(t)
r , q inr − qoutr

)

which implies
∑

r

sim
(
q(t)
r , q inr − qoutr

)
≥ 0. (A3)
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Now, if we assume ad absurdum that τ̂ (t + 1) < f (t), it would be

τ̂ (t + 1) < f (t) =
∑

r

sim
(
q(t)
r + qoutr − q inr , q(t+1)

r

)
=

= τ̂ (t + 1) +
∑

r

sim
(
qoutr − q inr , q(t+1)

r

)

where the first equality follows from (A2). Then
∑

r

sim
(
qoutr − q inr , q(t+1)

r

)
> 0. (A4)

By putting together (A3) and (A4) and exploiting the symmetry and linearity of sim, we have
that

0 <
∑

r

sim
(
q(t)
r , q inr − qoutr

)
+

∑

r

sim
(
qoutr − q inr , q(t+1)

r

)

= −
∑

r

sim
(
q inr − qoutr , q inr − qoutr

)

which is impossible because sim(v, v) ≥ 0 for all v ∈ R
l .

For the second part of the theorem, consider R(t) �= R(t+1) with τ̂ (t) = τ̂ (t + 1). Then,
it must be

n∑

i=1

sim
(
pi , q

(t)
R(t)(i)

)
= τ̂ (t) = f (t) =

n∑

i=1

sim
(
pi , q

(t)
R(t+1)(i)

)

Moreover, sim
(
pi , q

(t)
R(t)(i)

)
≤ sim

(
pi , q

(t)
R(t+1)(i)

)
for all i , by definition of R(t+1). It fol-

lows that sim
(
pi , q

(t)
R(t)(i)

)
= sim

(
pi , q

(t)
R(t+1)(i)

)
for all i and, since the re-assignment step

resolves ties in favor of the cluster with the higher qr ·, it must be q(t)
R(t)(i)· ≤ q(t)

R(t+1)(i)·, with
at least one strict inequality. Then

B(t) = B(R(t)) =
n∑

i=1

pi ·q(t)
R(t)(i)· <

n∑

i=1

pi ·q(t)
R(t+1)(i)· = g(t)

To conclude the proof, it is enough to show that g(t) ≤ B(t + 1). Once noticed that B(t)
can be written as B(t) = ∑

r q
(t)
r · q(t)

r and that the function g(t) can be written as g(t) =
∑

r q
(t)
r ·q(t+1)

r , the proof is analogous to the proof that f (t) < τ̂ (t), considering the function
B(t) instead of the function τ̂ (t), the function g(t) instead of f (t) and the scalar product
u · v = u· · v· instead of the bilinear form sim(u, v). 
�
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