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Abstract
Gradient Boosting is a widely-used machine learning technique that has proven highly 
effective in batch learning. However, its effectiveness in stream learning contexts lags 
behind bagging-based ensemble methods, which currently dominate the field. One reason 
for this discrepancy is the challenge of adapting the booster to new concept following a 
concept drift. Resetting the entire booster can lead to significant performance degradation 
as it struggles to learn the new concept. Resetting only some parts of the booster can be 
more effective, but identifying which parts to reset is difficult, given that each boosting step 
builds on the previous prediction. To overcome these difficulties, we propose Streaming 
Gradient Boosted Trees (Sgbt), which is trained using weighted squared loss elicited in 
XGBoost. Sgbt exploits trees with a replacement strategy to detect and recover from drifts, 
thus enabling the ensemble to adapt without sacrificing the predictive performance. Our 
empirical evaluation of Sgbt on a range of streaming datasets with challenging drift sce-
narios demonstrates that it outperforms current state-of-the-art methods for evolving data 
streams.
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1  Introduction

Boosting methods have become increasingly successful in machine learning over the 
past decade. While early weighed boosting algorithms such as AdaBoost (Freund & 
Schapire, 1997) showed promise, they were later surpassed by gradient boosting meth-
ods (Friedman, 2001, 2002; Friedman et al., 2000). Gradient Boosting leverages the pre-
vious base learner’s gradient information (i.e., the slope of the loss function) to boost 
the performance of the next learner in an ensemble. The eXtreme Gradient Boosting 
(XGBoost) (Chen & Guestrin, 2016) takes this approach to another level, achieving 
high efficiency and superior performance on various time-critical real-world problems. 
However, in many real-world scenarios, traditional batch learning with the Independent 
and Identically Distributed (iid) assumption cannot keep pace with the evolving nature 
of the underlying data stream (Gomes et al., 2017; Bifet et al., 2018).

On the other hand, Stream Learning (SL) accounts for the possibility of change in 
the underlying data distribution (concept drift) (Bifet et  al., 2018). A model should 
respond efficiently in real-time when learning from an evolving data stream (Bifet et al., 
2018). While methods such as Adaptive eXtreme Gradient Boosting (Axgb) (Montiel 
et al., 2020) and Adaptive Iterations (AdIter) (Wang et al., 2022) were proposed by the 
research community to enable gradient boosting for evolving data streams, they failed 
to outperform state-of-the-art ensemble learners like Adaptive Random Forest (Arf) 
(Gomes et al., 2017) and Streaming Random Patches (Srp) (Gomes et al., 2019).

The proposed work utilizes streaming regression trees with inbuilt drift detectors in a 
gradient-boosted setting. The paper makes the following contributions: 

1.	 To our knowledge, Sgbt is the first instance where the weighted squared loss elicited 
in Friedman et al. (2000); Chen and Guestrin (2016) with hessian as the weight and 
gradient over hessian as the target considering the previous boosting step’s loss, is used 
to develop a streaming gradient-boosted method for evolving data streams. This allows 
Sgbt to leverage any streaming regression tree as its base learner.

2.	 Sgbt utilizes trees with an internal Tree Replacement (TR) mechanism instead of exter-
nally monitoring each item in the boosting ensemble for drifts and adjusting each item 
like Axgb (Montiel et al., 2020) or resetting some parts as in AdIter (Wang et al., 2022). 
This Tree Replacement mechanism in Sgbt allows the trees in the booster to adapt 
dynamically to concept drifts. Unlike binary-class gradient-boosted streaming imple-
mentations: Axgb and AdIter, Sgbt can solve multi class problems using a committee 
of trees at each boosting step or a committee of Sgbts.

3.	 We present an extensive empirical evaluation of Sgbt against current state-of-the-art 
streaming bagging with random subspaces (Srp), random forest (Arf), boosting (OSB), 
and gradient boosting (AdIter) methods on 14 datasets with different drift types.

Overall, Sgbt outperforms existing techniques for evolving data streams. The paper is 
structured as follows. The next section reviews the current state-of-the-art stream learn-
ing methods and recent gradient boosting work for evolving data streams. The subse-
quent section explains our proposed Sgbt method. The experiments section describes 
the experimental setup where Sgbt was evaluated against state-of-the-art stream learn-
ing methods. The final section provides conclusions and directions for future research.
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2 � Related work

Boosting and bagging are two popular ensemble learning techniques used in machine 
learning. Bagging randomly samples instances with replacement to train each member of 
the ensemble. Boosting, on the other hand, attempts to boost the performance of the next 
base learner in the ensemble, considering the loss of the previous one. It combines the 
prediction of weak learners addictively to produce a strong learner (Friedman et al., 2000; 
Friedman, 2001). AdaBoost (Freund & Schapire, 1997) highly weights the misclassified 
instances by the current base learner to improve the next base learner. Gradient boosting 
uses the current base learner’s gradient information of the loss to improve the next base 
learner (Friedman et  al., 2000). XGBoost (Chen & Guestrin, 2016) uses this gradient 
information to derive a particular regression tree that predicts a raw score at the leaf for a 
given instance. It contains an efficient split-finding mechanism, cache-aware data process-
ing, and parallel processing to produce a highly scalable and efficient algorithm for batch 
learning (Chen & Guestrin, 2016).

Compared to batch learning, Stream Learning model learns from an evolving data 
stream (non-iid data), processing one instance at a time. Here, the model should predict at 
any given moment using limited processing and memory (Bifet et al., 2018; Gomes et al., 
2017). Also, it should adjust to distribution changes (concept drifts) in the underlying data 
stream (Bifet et al., 2018; Bifet & Gavalda, 2007; Gomes et al., 2017).

Data stream boosting is challenging due to the evolving nature of the data stream. Here, 
the model needs to adjust to the new input distribution of the stream after a concept drift 
(Bifet et  al., 2018; Montiel et  al., 2020). Online Bagging (OBg) and Online Boosting 
(OB) (Oza & Russell, 2001) were inspired by the observation that a binomial distribution 
Binomial(p, n) can be approximated by a Poisson distribution Poisson(�) with � = np as 
n → ∞ . Here, n is the number of instances, and p is the probability of success in the bino-
mial distribution. Since the probability of selecting a given example is 1/n in batch bag-
ging, the uniform sampling with replacement of the bagging algorithm is approximated by 
Poisson(1) in OBg. On the other hand, in OB, � is computed by tracking the total weights 
of correctly classified and misclassified examples for each base learner. An online version 
of SmoothBoost (Servedio, 2003) was proposed in Chen et al. (2012). This Online Smooth 
Boost (OSB) uses smooth distributions that do not assign too much weight to a single 
example. When the number of weak learners and examples are sufficiently large, OSB is 
guaranteed to achieve an arbitrarily small error rate (Chen et al., 2012; Gomes et al., 2019). 
Recently, two notable approaches were proposed by the stream learning community to lev-
erage gradient boosting for data streams: Axgb (Montiel et al., 2020) and AdIter (Wang 
et al., 2022). Axgb employs mini-batch trained XGBoost as its base learners and adjusts 
the ensemble in response to concept drifts, which it detects using ADWIN (Bifet & Gav-
alda, 2007). AdIter attempts to identify the weak learners in the ensemble and prune them 
when confronted with concept drift. It then employs multiple training iterations via major-
ity vote among the ensemble to support different drift types. Both Axgb and AdIter only 
support binary classification. In contrast, our proposed streaming gradient boosting method 
(Sgbt) supports both binary and multi class problems.

Arf (Gomes et al., 2017) and Srp (Gomes et al., 2019) are popular ensemble learning 
methods for streaming data. They allow one to use efficient stream learning base learn-
ers like Hoeffding Tree (HT) in a random forest or random subspaces setup in conjunc-
tion with efficient drift detectors like ADWIN. Arf is a streaming random forest adaptation 
that combines re-sampling strategies, drift detection, and drift recovery strategies (Gomes 



3328	 Machine Learning (2024) 113:3325–3352

1 3

et  al., 2017). Srp combines random subspaces and re-sampling (i.e., random patches) to 
leverage diversity among base incremental learners (Gomes et al., 2019). It uses the same 
drift detection and recovery strategy as Arf, but tends to outperform Arf (Gomes et al., 
2019) in some benchmarks while not being limited to decision trees.

OSB performed better compared to OB (Chen et  al., 2012). Empirical evaluation 
(Gomes et  al., 2019) shows that even with 100 base learners, Arf and Srp outperform 
OSB by a large margin. In the same evaluation, Srp outperformed Arf. Axgb failed to 
outperform Arf in the Montiel et  al. (2020) empirical evaluation. In Wang et  al. (2022) 
experiments, AdIter also failed to surpass Arf on synthetic evolving datasets with 10,000 
instances. However, in the same evaluation, AdIter surpassed Arf on real-world data. In 
that evaluation, all the other datasets had less than 100,000 instances apart from airlines. 
The above empirical evaluations suggest that the latest gradient boosting methods for 
evolving data streams are yet to surpass current state-of-the-art ensemble methods like Srp 
and Arf. However, our proposed Sgbt was able to outperform Srp and Arf in a variety of 
evolving datasets.

3 � Streaming gradient boosted trees (SGBT)

For a dataset with n instances, let xi be the features for the i-th instance and yi be its relevant 
target value. In gradient boosting, a model � can be represented as S additive functions:

to predict ŷiFriedman (2002); Chen and Guestrin (2016). Here, F  is the space of regression 
trees. In XGBoost (Chen & Guestrin, 2016), each fs corresponds to an independent tree 
structure with leaf scores � . Each regression tree contains a continuous score �i at the leaf 
for the i-th instance. The authors proposed to sum up the corresponding scores at the leaves 
of each tree for prediction. The learning objective is to minimize the regularized objective:

where Ω penalizes the complexity of the tree f:

Here, � penalizes adding a new leaf and � forces leaf predictions to be small. T is the num-
ber of leaves in the tree. l is a differentiable convex loss function that measures the differ-
ence between the prediction ŷi and the target yi . Furthermore, the loss at the s-th step is the 
loss incurred by the previous ( s − 1 ) step and the loss incurred by tree fs plus the regulari-
zation term:

This loss could be approximated using second-order Taylor approximation (Chen & Gues-
trin, 2016) to:

ŷi = 𝜙(xi) =

S∑

s=1

fs(xi), fs ∈ F

(1)L(𝜙) =

n∑

i=1

l(yi, ŷi) +

S∑

s=1

Ω(fs)

Ω(f ) = �T +
1

2
�‖�‖

L
(s) =

n∑

i=1

l(yi, ŷ
(s−1) + fs(xi)) + Ω(fs)
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Here, gi = 𝜕ŷ(s−1) l(yi, ŷ
(s−1)) and hi = 𝜕2

ŷ(s−1)
l(yi, ŷ

(s−1)) are the first and second order (hessian) 
gradient statistics of the loss considering s − 1-th prediction. Though the authors (Chen & 
Guestrin, 2016) use a simplified version of the above loss function by removing constants 
to derive raw score values at the leaves, the below version was elicited to explain it as a 
weighted squared loss with weight hi and target gi∕hi:

This weighted squared loss with hessian as the weight and gradient over hessian as the 
target, considering the previous boosting step’s loss, was first introduced in Friedman et al. 
(2000).

Algorithm 1   Training Sgbt 

Equation 2 provides the flexibility to utilize various streaming regression trees instead of 
the one employed in XGBoost. Moreover, depending on the implementation, the streaming 
regression tree’s regularization term can diverge from that employed in XGBoost. In this 
work, the Tree Replacement strategy explained later in this paper, acts as a regularization 
mechanism.

3.1 � Streaming regression trees with internal tree replacement strategy for gradient 
boosting

In data stream learning, n could be infinite, and learning happens online, where a model 
�i−1 learned at the i − 1th instance is used to predict the ith instance. Also, from any ith 
instance, the underlying distribution of x could change (concept drift). The model �i should 
adjust it’s regression trees to adapt to this new distribution at i. Instead of externally moni-
toring and resetting each fs tree like in AdIter (Wang et al., 2022), in Sgbt, the trees inter-
nally monitor their standardized absolute error and train an alternate tree if it goes above 

L
(s) ≃

n∑

i=1

[
l(yi, ŷ

(s−1)) + gifs(xi) +
1

2
hif

2

s
(xi)

]
+ Ω(fs)

(2)
n∑

i=1

1

2
hi(ft(xi) − gi∕hi)

2 + Ω(fs) + constant.
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a warning level. The tree fs switches to its alternate tree once the error reaches a danger 
zone. fs tree employs a drift detector to monitor its standardized absolute error to trigger 
these warning and danger signals. The rest of the paper identifies this strategy of replac-
ing the active tree with an alternate tree on the drift detection signal as Tree Replacement 
(TR). In the experiments, we used two regression trees for data streams: FIMT-DD (Ikono-
movska et al., 2011) and SGT (Gouk et al., 2019) with in-built drift detectors: Page-Hinck-
ley Test (Pht) (Mouss et al., 2004) and Ddm (Gama et al., 2004). The implementation of 
SGT with Ddm is generic, and one could replace SGT with any other regression tree for 
data streams. Here, TR also serves as a dynamic regularization mechanism by replacing 
trees as data evolves during learning. Arf and Srp use a similar Tree Replacement strategy 
under random-forest and bagging settings for SL classification. But to our knowledge, this 
is the first instance, TR is used in gradient-boosted trees for SL classification. Here, the 
booster is allowed to dynamically adjust to underlying input distribution changes as some 
active trees are replaced by their alternate trees on drift detection.

The loss function in Eq.  2 requires the regression trees to support fractional weights, 
as hi could be a fractional value for some loss functions. Streaming regression trees (SGT 
and FIMT-DD) considered in this work only support integer weights. Supporting fractional 
weights for them is not trivial. For example, SGT and FIMT-DD require the incremen-
tal calculation of variance and co-variance for fractional weights. Though recent work by 
Pébay et al. (2016) and Schubert and Gertz (2018) suggests this is possible, this itself is a 
separate research topic. Also, later in the text, it is clarified that the hessians for the popular 
categorical cross-entropy loss with softmax used in the experiments are consistently below 
1. Hence, even though Sgbt calculates these weights (hessians), it does not pass them to 
the underlying trees for these practical reasons. Alternatively, it passes a weight of 1 to the 
trees.

Instead of using all the features to train at each boosting step, Sgbt uses a subset of fea-
tures based on a predefined feature percentage. This approach of using a subset of features 
to train each ensemble member is also used in Srp (Gomes et  al., 2019) to increase the 
diversity among the base learners. Algorithm 1 explains the training procedure of Sgbt.

3.2 � Multi class support

Two approaches are used to support multi class problems: Sgbt and SgbtMC.

•	 SGBT uses a committee of regression trees in a given boosting step s. Here, a single 
tree is trained for each class. The committee is composed of a softmax function, so the 
probability that an instance, xi , belongs to class c is given by: ŷi,c =

exp(fs,c(xi))∑C

c=1
exp(fs,c(xi))

 . Here 
fs,c is the regression tree trained to predict a real-valued score for class c at the s-th 
boosting step, and C is the number of classes. In practice, hard-wiring fs,C(xi) = 0 
allows Sgbt to reduce the number of trees being trained.1 The categorical cross-entropy 
loss ( lCE ) is used to train the model: lCE(y, ŷ) = −

∑C

c=1
yclog(ŷc) . Here, y is the ground 

truth encoded as a one-hot vector. For lCE , gradient (g) is yc − ŷc , and hessian (h) is 
ŷc(1 − ŷc) . The regression tree committee (composing C − 1 items) at the s-th boosting 

1  This practice is used in Gouk et al. (2019) as well.
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step represents the base learner for the s-th boosting step. This approach is also used in 
SGT to support multi class classification.

•	 SGBT�� uses the same loss function ( lCE ) as in Sgbt. But, it uses a wrapper classifier 
to invoke a binary Sgbt classifier for each class. The task of the binary Sgbt classifier is 
to distinguish a given class from all the other classes. All C classifier votes for the posi-
tive outcome are collected and normalized at prediction. The class associated with the 
classifier that predicted the positive outcome most confidently is considered the final 
class for the instance. This approach is very popular in batch learning and is commonly 
known as one-vs-rest or one-vs-all in literature (Witten et al., 2016). SgbtMC reverts to 
Sgbt for binary class problems to avoid any computing overhead.

Unlike Axgb and AdIter, the above two approaches allow Sgbt to support gradient boost-
ing for evolving data streams on multi class problems.

Algorithm 2   Training SgbtSK

MI

3.3 � Predicting and computing improvements

Two variants of Sgbt are proposed below to improve the computing performance and uti-
lise already calculated hessian weights.

•	 SGBT�� : In most streaming regression trees, the computation and memory complexi-
ties are affected by the number of instances they process. Some computation and mem-
ory savings could be achieved via skip training on random instances. SgbtSK randomly 
skips 1/k-th of instances ( k ≥ 1,∈ ℕ ). k is set to 1 by default, causing it to process all 
instances as in Sgbt. Work by Gunasekara et  al. (2022), Pavlovski et  al. (2017) also 
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exploited skip training for Stream Learning. Line 5 in algorithm 2 highlights this skip 
training.

•	 SGBT�� : Even though current base learners only support integer weights, utilizing 
already calculated fractional hessian weights is helpful. For lCE , hessian for class c at 
i-th instance is always less than 1 ( hi,c < 1 ). Even if one passes hi,c to a ceiling2 func-
tion, it will always return 1. For all instances, multiplying hi,c by 10 and passing that 
to a ceiling function results in a positive integer weight that is greater than 1 for some 
instances. For all the other instances, the weight is set to 1. If ceiling(hi,c ∗ 10) = T  , 
Sgbt can train fs,c base learner T times using instance xi,s with label gi,c∕hi,c . Here, mul-
tiplier 10 ensures that T ≤ 10 for all instances, providing a reasonable upper limit to the 
computational cost of this approach. This technique of training a base learner multiple 
times based on a calculated integer weight for an instance is quite common in stream 
learning (Oza & Russell, 2001; Gomes et al., 2019). Line 12 in algorithm 2 highlights 
this multiple training iteration approach. Furthermore, this multiple-training iteration 
approach allows Sgbt to use streaming regression trees that do not support weights.

Algorithm 2 explains the above two variants of Sgbt in detail. In the experiments, we eval-
uate the effectiveness of these Sgbt variants.

As Sgbt allows different streaming regression trees for its base learners, its final time 
and memory complexities are influenced by the base learner’s time and memory complex-
ities. Sgbt’s time complexity can be derived as O(CSf ) , and its memory complexity as 
O(CSf ) , assuming O(f ) for the base learner’s time and memory complexities. Here, S is the 
number of boosting steps, and C is the number of classes. SgbtMC has the same time and 
memory complexities as Sgbt. The time complexity of SgbtMC could be further improved 
by parallel training each Sgbt. Our implementation of SgbtMC leverages this parallel pro-
cessing. This allows SgbtMC ’s time complexity to be O(Sf ) . This is similar to current state-
of-the-art streaming bagging and random-forest based methods: Srp and Arf. For SgbtMC

SK
 , 

this time complexity is further reduced to O((1 − 1∕k)Sf ) by skipping 1/k-th of instances at 
training. Table 1 contains all the notations introduced in this section.

4 � Experiments

We begin our experiments by comparing Sgbt against current state-of-the-art streaming 
bagging with random subspaces (Srp), random forest (Arf), boosting (OSB), and gradient 
boosting (AdIter) methods on 14 datasets. We also conducted a parameter exploration to 
illustrate the effects of different Sgbt components.

Finally, we show an in-depth analysis concerning the computational requirements of 
Sgbt.

Datasets: AGR​a, AGR​g, LEDa, LEDg, RBFf, RBFm, electricity, airlines and covtype 
are from Gomes et al. (2019). RandomTree, LED, RBF5, RBF_Bm, RBF_Bf were gener-
ated using MOA synthetic generators. The synthetic datasets with drifts simulate different 
types of concept drifts, i.e., abrupt (AGR​a, LEDa), gradual (AGR​g, LEDg), fast incremental 
changes (RBF_Bf, RBFf), and moderate incremental changes (RBF_Bm, RBFm).

2  Similar to Java lang.Math.ceil(v) that returns an integer value greater than or equal to the passed-in value 
v.
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AGR​a is a binary class synthetic dataset with 1  M instances, where abrupt concept 
drifts occur after every 250000 instances, with 50 instances drift width.

AGR​g also contains binary class synthetic data. Here, gradual concept drifts occur 
after every 250000 instances, with 50000 instances drift width. The dataset has 1  M 
instances.

LEDa is a multi class synthetic dataset with 1 M instances, where abrupt concept drifts 
occur after every 250000 instances, with 50 instances drift width.

LEDg is also a multi class synthetic dataset. The dataset has gradual concept drifts 
occurring after every 250000 instances, with 50000 instances drift width. The dataset has 
1 M instances.

RBFf  contains multi class synthetic data. Here, fast incremental concept drifts occur 
with 0.001 centroid’s speed of change. There are 1 M instances in this dataset.

Table 1   Notations

Notation Description

� Ensemble model
S # Boosting steps
s Boosting step
F The space of regression trees
fs Streaming regression tree at boosting step s
xi Input features at i-th instance
n # Instances
� Leaf scores for fs
Ω Regularization term
� Penalizes adding a new leaf
� Penalizes large leaf scores
T Number of leaves in the tree
L(�) Loss of the ensemble
L(s) Loss at s-th boosting step
l Differentiable convex loss function
ŷ Prediction by a given regression tree
y Target value
g Gradient of the loss considering the previous boosting step’s prediction
h Hessian of the loss considering the previous boosting step’s prediction
C Number of classes
c Class index
m Percentage of features used for training fs
M Randomly picked m % of features for each boosting step
lCE Categorical cross-entropy loss
Sgbt Vanilla Sgbt explained in algorithm 1
SgbtMC Sgbt that uses separate Sgbt for each class
SgbtSK Sgbt that randomly skip 1/k-th of instances at training (see line 5 of algorithm 2)
k User-defined skip training parameter ( k ≥ 1,∈ ℕ)
SgbtMI Sgbt that does multiple training considering hessian (see line 12 of algorithm 2)
T # Times to train a given regression tree using an instance for SgbtMI

O(f ) Time and memory complexity of regression tree f
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RBFm also has multi class synthetic data. The dataset contains 1  M instances. Here, 
moderate incremental concept drifts occur with 0.0001 centroid’s speed of change.

RBF_Bf  is a binary class synthetic dataset with 1  M instances that includes fast 
incremental concept drifts with the centroid’s speed of change set to 0.001.

RBF_Bm has 1  M instances. It is a binary class synthetic dataset with moderate 
incremental concept drifts occurring with 0.0001 centroid’s speed of change.

RandomTree is a binary class synthetic dataset without any drifts. It was generated 
using MOA RandomTreeGenerator. It has 100K instances.

LED contains multi class synthetic data without any drifts. The dataset was gener-
ated using MOA LEDGenerator. It also has 100K instances.

RBF5 is a dataset with 100K instances. It contains multi class synthetic data without 
drifts. Data was generated using MOA RandomRBFGenerator.

Electricity contains the Australian New South Wales Electricity Market data when 
the prices are not fixed. These prices are affected by the supply and demand of the mar-
ket itself and are set every five minutes. It is a binary class real-world dataset. The class 
label identifies the price changes (up or down) relative to a moving average of the last 
24 h. The dataset exhibits temporal dependencies. It contains 45310 instances.

Airlines is a binary class real-world dataset. The task is to predict whether a given 
flight will be delayed, given information on the scheduled departure. The dataset has 
539382 instances.

Covertype dataset represents forest cover type for 30 x 30-meter cells obtained from 
the US Forest Service Region 2 Resource Information System (RIS) data. Each class 
corresponds to a different cover type. The dataset contains a multi class problem with 
seven imbalanced class labels. It includes 581010 instances.

Datasets RBF_Bm, RBFm, RBF_Bf and RBFf were generated using MOA Ran-
domRBFGeneratorDrift. While AGR​a and AGR​g were generated using MOA 

Table 2   Dataset properties: has (D)rifts, (R)eal, (S)ynthetic

Name Data Drift # # # Class dist

Type Type Instances Features Classes Max(%) Min(%)

Binary class
AGR​a DS Abrupt 1 M 9 2 52.83 47.17
AGR​g DS Gradual 1 M 9 2 52.83 47.17
RBF_Bf DS Fast 1 M 10 2 51.75 48.25
RBF_Bm DS Moderate 1 M 10 2 51.75 48.25
RandomTree S n/a 100K 10 2 57.84 42.16
Electricity R Unknown ≈45K 8 2 57.55 42.45
Airlines R Unknown ≈539K 7 2 55.46 44.54
Multi class
LEDa DS Abrupt 1 M 24 10 10.08 9.94
LEDg DS Gradual 1 M 24 10 10.08 9.94
RBFf DS Fast 1 M 10 5 30.01 9.27
RBFm DS Moderate 1 M 10 5 30.01 9.27
RBF5 S n/a 100K 10 5 32.17 8.10
LED S n/a 100K 24 10 10.00 9.96
Covtype R Unknown ≈581K 54 7 48.76 0.47
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ConceptDriftStream with AgrawalGenerator. LEDa and LEDg datasets were generated 
using MOA ConceptDriftStream with LEDGeneratorDrift. Table  2 summarizes the 
characteristics of the datasets.

Sgbt was compared against the current state-of-the-art stream learning baseline 
Srp, streaming random forest method Arf, the latest gradient-boosted method for data 
streams AdIter, and the stream-boosting method OSB. Axgb was not considered in the 
evaluation as it failed to outperform Arf (Montiel et al., 2020). Srp used the best param-
eter configurations explained in Gomes et al. (2019). As 100 base learners produced the 
best results for Srp in Gomes et al. (2019), all the baselines used 100 base learners. Arf 
and OSB used the same parameters in Gomes et  al. (2019) evaluation. Arf and OSB 
used the same base learner (HT) in Srp with the same hyperparameters as in Srp.

We collected votes for each class on each instance from AdIter’s Python implemen-
tation and ran it through a MOA dummy classifier to yield the same evaluation as the 
other methods. Sgbt was implemented as an MOA classifier, and it used 100 boost-
ing steps (S) to match other baselines 100 base learners. The SgbtMC variant was com-
pared against the above baselines. Here, the one-vs-rest wrapper classifier was also 
implemented in MOA. Sgbt used a learning rate of 0.0125 and 75% of the features at 
each boosting step. As Sgbt requires streaming regression trees as its base learners, the 

Table 3   Accuracy: SgbtMC against other baselines (values are rounded to 2 decimals). Relevant Shaffer 
Post-hoc test results are shown in figure 1

The best (highest) average accuracy and best (lowest) rank are given in bold

SgbtMC Srp Arf OSB AdIter

Binary class

AGR​a 94.45 ± 0.01 92.81 ± 0.19 87.87 ± 0.08 90.39 ± 0.01 90.73 ± 0.18
AGR​g 91.91 ± 0.01 89.68 ± 0.19 82.45 ± 0.11 87.87 ± 0.03 87.66 ± 0.34
RBF_Bm 92.10 ± 0.66 90.76 ± 0.67 92.10 ± 0.63 89.27 ± 0.84 76.85 ± 1.30
RBF_Bf 84.33 ± 1.22 82.15 ± 1.46 85.61 ± 1.31 78.14 ± 1.25 72.16 ± 1.17
RandomTree 86.19 ± 8.21 87.58 ± 2.78 90.15 ± 3.38 92.09 ± 2.59 68.55 ± 10.79
Electricity 88.50 ± 0.06 89.68 ± 0.14 90.62 ± 0.05 89.51 ± 0.00 78.77 ± 0.08
Airlines 68.79 ± 0.03 68.54 ± 0.05 66.68 ± 0.03 64.56 ± 0.00 62.72 ± 0.07
Avg 86.61 85.89 85.07 84.55 76.78
Rank 2.14 2.43 2.57 3.29 4.57

Multi class

LEDa 74.04 ± 0.01 74.04 ± 0.01 73.95 ± 0.01 72.48 ± 0.00 –
LEDg 73.32 ± 0.01 73.25 ± 0.01 73.12 ± 0.01 72.11 ± 0.01 –
RBFm 88.00 ± 0.76 86.60 ± 0.84 87.82 ± 0.75 76.81 ± 0.99 –
RBFf 76.98 ± 1.34 76.91 ± 1.21 77.69 ± 1.44 50.71 ± 1.06 –
LED 73.82 ± 0.14 73.87 ± 0.12 73.75 ± 0.15 73.86 ± 0.18 –
RBF5 90.13 ± 0.84 90.56 ± 0.96 90.60 ± 0.99 85.67 ± 1.18 –
Covtype 94.29 ± 0.03 95.34 ± 0.01 94.72 ± 0.02 92.69 ± 0.00 –
Avg 81.51 81.51 81.66 74.90 –
Rank 2.00 2.00 2.29 3.71 –
Avg (both) 84.06 83.70 83.37 79.73 –
Rank (both) 2.07 2.21 2.43 3.50 –
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streaming classifier tree HT can not be used as a base learner. Therefore, the streaming 
regression tree FIMT-DD (Ikonomovska et  al., 2011) was chosen as its base learner. 
FIMT-DD used a variance reduction split criterion, a grace period of 25, a split con-
fidence interval of 0.05, a constant learning rate at the leaves, and the regression tree 
option.

Each algorithm was executed multiple times with different random seeds, and the aver-
age accuracy was considered in the evaluation process.3. Appendix  A contains detailed 
information about the experimental setup.

Table 3 compares SgbtMC ’s accuracy against the baselines mentioned above. As one can 
see, SgbtMC outperforms all the baselines on binary class problems considering average 

Fig. 1   Shaffer Post-hoc test with p-value 0.05 for all, binary class, multi class, and evolving (AGR​a, AGR​
g, LEDa, LEDg, RBF_Bm, RBF_Bf, RBFm, RBFf) datasets (accuracy): SgbtMC against other baselines (10 
iterations with different random seeds). A lower rank is better. Table 3 contains the individual accuracy 
values for each algorithm on each dataset

3  Table 3, Figs.  1 and  8 used ten iterations. All the other experiments used three iterations. Code and data 
are available at https://​github.​com/​nuwan​gunas​ekara/​SGBT

https://github.com/nuwangunasekara/SGBT
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accuracy and rank. It also performs equally well on multi class problems. It is also evi-
dent that SgbtMC outperforms other methods on datasets with drifts: AGR​a, AGR​g, LEDa, 
LEDg, and RBFm. This suggests that SgbtMC is a good candidate not only for evolving data, 
but also for binary class problems.

It also performed well on the airlines dataset. On the other hand, Srp yielded good 
results on LEDa, LED, and covtype datasets, while Arf performed well on RBF_Bm, RBF_
Bf, electricity, RBFf, and RBF5. OSB performed well on the RandomTree dataset. The 
streaming gradient boosting method AdIter was the least performant among all methods. 
As it is a binary classifier, AdIter was only evaluated on binary class problems4. Further-
more, KappaM results in Appendix C (Table 9), which evaluate learner’s performance on 
imbalanced data (Bifet et al., 2018), also align with accuracy rankings in Table 3.

Figure 1 shows the Shaffer Post-hoc test results with a p-value of 0.05 for: all, binary 
class, multi class, and evolving (AGR​a, AGR​g, LEDa, LEDg, RBF_Bm, RBF_Bf, RBFm, 
RBFf) datasets considering accuracy. It further highlights the fact that SgbtMC outperforms 
other methods on binary and evolving datasets with statistical significance. For multi class 
problems it is on par with current state-of-the-art Srp. To our knowledge, this is the first 

Fig. 2   Accuracy over time: SgbtMC against Srp, Arf, and OSB on AGR​
g
 . X axis is the number of instances 

seen so far. Vertical dotted lines mark a concept drift’s start, center, and end. SgbtMC[S = 100 , m = 75 , lr =
1.25e−2]

Fig. 3   Accuracy over time: SgbtMC against Srp, Arf, and OSB on LED
g
 . X axis is the number of instances 

seen so far. Vertical dotted lines mark a concept drift’s start, center, and end. SgbtMC[S = 100 , m = 75 , lr =
1.25e−2]

4  Considering AdIter’s weak performance on binary class problems and it’s Python implementation, it was 
not evaluated on multi class problems using MOA one-vs-rest wrapper classifier.
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time a streaming gradient boosted method is able to surpass current state-of-the-art bag-
ging and random-forest based methods in wide range of evolving data and perform well on 
all types of data5. These Fig. 1 post-hoc test results for accuracy also align with KappaM 
post-hoc test results in Fig. 8 (Appendix C) with the same p-value.

We investigate each algorithm’s performance on evolving data further in Figs. 2 and  3 
by comparing accuracy over time for SgbtMC , Srp, Arf, and OSB on AGR​g and LEDg. 
Based on Figs. 2 and  3, it is evident that SgbtMC had the lowest decrease in performance 
around drift points.

Table  4 compares the evaluation time in seconds reported by MOA among single-
threaded SgbtMC (SgbtMC

ST
 ), multi-threaded SgbtMC , and Srp. Srp was chosen due to the 

fact that it had the best predictive performance among competitors considering Table 3 and 
Fig. 1. For binary class problems, both SgbtMC variants perform faster than Srp. Maybe 
FIMT-DD in SgbtMC is a faster base learner than HT in Srp. Compared to SgbtMC

ST
 , Srp 

performs well on multi class problems. However, SgbtMC performed the fastest on multi 
class problems leveraging parallel processing at training and prediction. Considering the 

Table 4   Time (seconds): SgbtMC against Srp (values are rounded to 0 decimals, except ranks)

The best (lowest) average time and best (lowest) rank are given in bold

SgbtMC

ST
SgbtMC Srp

Binary class

AGR​a 1423 ± 34 1187 ± 32 3208 ± 143
AGR​g 1401 ± 100 1160 ± 37 3838 ± 200
RBF_Bm 2278 ± 134 1756 ± 190 3697 ± 293
RBF_Bf 2027 ± 27 1475 ± 130 4728 ± 102
RandomTree 156 ± 7 128 ± 13 334 ± 90
Electricity 44 ± 3 48 ± 5 138 ± 10
Airlines 606 ± 27 507 ± 41 2892 ± 225
Avg 1134 894 2691
Rank 1.86 1.14 3.00

Multi class

LEDa 17489 ± 2191 1667 ± 7 2920 ± 311
LEDg 16802 ± 1715 1669 ± 16 2901 ± 315
RBFm 14511 ± 1058 2767 ± 102 3228 ± 114
RBFf 13580 ± 1550 2399 ± 46 3624 ± 540
LED 1503 ± 104 163 ± 2 295 ± 20
RandomRBF5 1473 ± 119 268 ± 5 163 ± 18
Covtype 20067 ± 1869 1789 ± 22 3801 ± 26
Avg 12203 1532 2419
Rank 3.00 1.14 1.86
Avg (both) 6669 1213 2555
Rank (both) 2.43 1.14 2.43

5  Axgb failed to outperform Arf in the Montiel et al. (2020) empirical evaluation. In Wang et al. (2022) 
experiments, AdIter also failed to surpass Arf on synthetic evolving data.
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Gomes et al. (2019) empirical evaluation on run time for 100 base learners, we would like 
to acknowledge that Arf and OSB can perform faster than Srp in practice. However, they 
have an inferior predictive performance compared to Srp in Table 3 evaluation and in the 
empirical evaluation of Gomes et al. (2019).

4.1 � Multiple steps and multi class support

Another study was conducted to understand the performance of different Sgbt variants: 
Sgbt, SgbtMC , SgbtMI , and SgbtMC

MI
 . SgbtMC supports multi class problems using binary 

Sgbts, and SgbtMI employs multiple iterations by hessian weights. Both SgbtMC and 
SgbtMI are orthogonal, so they can be fused to yield SgbtMC

MI
 . All Sgbt variants used 

the same hyperparameter configurations as in the previous experiments. Table 5 shows 
the results of the study. Since SgbtMC reverts to Sgbt and SgbtMC

MI
 reverts to SgbtMI on 

binary class problems, if one ignores SgbtMC
MI

 and SgbtMC for binary class problems, 
Sgbt performs well on most of the binary class datasets compared to SgbtMI . However, 
SgbtMI has a higher average accuracy for that category. This suggests it performs excep-
tionally well on certain datasets such as RBF_Bm, RBF_Bf and electricity. This results 
on RBF_Bf, which has fast-evolving drifts, is interesting, as it suggests that multiple 
training iterations by hessian in SgbtMI improve Sgbt’s performance on fast-evolving 

Table 5   Accuracy: different variants of Sgbt (values are rounded to 2 decimals)

Sgbt SgbtMC Sgbt
MI SgbtMC

MI

Binary class

AGR​a 94.45 ± 0.01 94.45 ± 0.01 94.30 ± 0.01 94.30 ± 0.01
AGR​g 91.92 ± 0.01 91.92 ± 0.01 91.75 ± 0.01 91.75 ± 0.01
RBF_Bm 91.91 ± 0.19 91.91 ± 0.19 92.58 ± 0.13 92.58 ± 0.13
RBF_Bf 84.54 ± 0.67 84.54 ± 0.67 87.36 ± 0.07 87.36 ± 0.07
RandomTree 85.72 ± 9.40 85.72 ± 9.40 84.05 ± 8.36 84.05 ± 8.36
Electricity 88.54 ± 0.03 88.54 ± 0.03 90.64 ± 0.06 90.64 ± 0.06
Airlines 68.77 ± 0.03 68.77 ± 0.03 67.85 ± 0.03 67.85 ± 0.03
Avg 86.55 86.55 86.93 86.93
Rank 2.36 2.36 2.64 2.64

Multi  class

LEDa 73.96 ± 0.01 74.05 ± 0.01 73.71 ± 0.01 73.99 ± 0.01
LEDg 73.22 ± 0.00 73.32 ± 0.01 72.91 ± 0.01 73.18 ± 0.01
RBFm 87.13 ± 0.71 87.96 ± 0.63 88.18 ± 0.91 88.92 ± 0.57
RBFf 75.40 ± 1.84 77.03 ± 1.39 79.28 ± 1.62 81.14 ± 1.19
LED 73.81 ± 0.17 73.81 ± 0.19 73.56 ± 0.19 73.82 ± 0.18
RBF5 88.80 ± 0.91 89.76 ± 0.72 90.05 ± 0.81 90.68 ± 0.58
Covtype 94.31 ± 0.01 94.29 ± 0.02 95.18 ± 0.02 94.73 ± 0.02
Avg 80.95 81.46 81.84 82.35
Rank 3.29 2.43 2.71 1.57
Avg (both) 83.75 84.01 84.39 84.64
Rank (both) 2.82 2.39 2.68 2.11
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data. For multi class problems, SgbtMC
MI

 is the clear winner. When one compares SgbtMC 
with Sgbt, it is clear that multi class support using binary Sgbts performs better than 
Sgbt with multi class support. On the other hand, multi class results on Sgbt and SgbtMI 
suggest that multiple iterations by hessian improve Sgbt’s accuracy on multi class prob-
lems. This explains why SgbtMC

MI
 performs best on multi class problems, as it includes 

multi class support using binary Sgbts and multiple iterations by hessian approaches. 
Overall performance by SgbtMC

MI
 exceeds the performance of SgbtMC , which is compared 

against other baselines in Table 3. But SgbtMC was used in Table 3 evaluation consid-
ering its computation efficiency compared to SgbtMC

MI
 . On the other hand, SgbtMC

MI
 is a 

good candidate for evolving data stream applications that prioritize predictive perfor-
mance over computation efficiency.

4.2 � Parameter exploration

A parameter exploration was conducted to understand the impact of learning rate (lr), 
boosting steps (S), weight ( hi ) transfer methods, percentage of features (m), and the inde-
pendent TR mechanism at each tree via drift detection on SgbtMC ’s predictive perfor-
mance. The results for all these analyses are shown in Table 6 (ranked separately).

Three learning rates: 6.25e− 3, 1.25e− 2, and 2.50e− 2, were used in the study to under-
stand the effect of learning rate (lr) on SgbtMC ’s performance. All the other configura-
tions: FIMT-DD base learner, 75% of features (m), and 100 boosting steps (S) were kept 
unchanged. As per Table 6, considering SgbtMC [ S = 100 , m = 75 , lr ={6.25e− 3, 1.25e− 2, 
2.50e−2}, FIMT-DD] configurations, in general, larger learning rates (lr) seem to favour 
both binary and multi class problems.

In a separate study to understand the effect of boosting steps on SgbtMC ’s performance, 
five boosting steps (20, 40, 60, 80, 100) were considered. In this study, base learner (FIMT-
DD), feature percentage (m=75%), and learning rate (lr=1.25e− 2) were kept unchanged. 
According to Table  6, when considering SgbtMC [ S = 20, 40, 60, 80, 100 , m = 75 , lr =
1.25e− 2, FIMT-DD] configurations, 100 boosting steps seem to yield good results than 
the smaller boosting steps for both binary and multi class problems. This aligns with OSB 
results in Gomes et al. (2019), where more boosting iterations performed better than fewer 
boosting iterations.

In another study investigating the influence of different feature percentages (m) on 
SgbtMC ’s performance, all SgbtMC configurations remained constant, including the base 
learner (FIMT-DD), learning rate (lr=1.25e−2), and boosting steps (S=100), except for the 
feature percentage (m).

According to Table 6, among SgbtMC [ S = 100 , m = 45, 60, 75, 100 , lr =1.25e− 2] con-
figurations, 75% of features yield good accuracy on most datasets. Not having 100% of the 
features helps to increase the diversity of the ensemble, which avoids overfitting to data. 
These results match (Gomes et al., 2017, 2019) findings where Arf and Srp perform best 
with 60% of the features.

A separate study examines the effect of independent TR mechanisms by each base 
learner on SgbtMC ’s performance. For this study, SGT was selected as the base learner 
since FIMT-DD has a built-in TR mechanism. Hence, a generic regressor with an inbuilt 
TR mechanism based on Ddm’s warning and out-of-control signals was introduced into 
MOA. This allows us to enable or disable the underlying TR strategy using a generic 
regressor with SGT and Ddm or just using SGT. The Ddm settings were: minimum number 
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of instances before permitting a change detection = 250, warning level = 2.0, and out-of-
control level = 2.5. SGT used the same default configurations used in Gouk et al. (2019). 
From Table 6 results, one can see that having an internal TR mechanism often improves 
performance. Also, all the SgbtMC configurations with SGT perform poorly on RBFf. 
Maybe SGT’s default warmStart (number of instances used to estimate bin boundaries for 
numeric values) 1000 is too large for RBFf with fast-moving drifts.

4.3 � Skip training on instances

Another study was conducted using SgbtMC
SK_1∕k

[S = 100 , m = 75 , lr =1.25e− 2] with dif-
ferent k values to understand the effect of random skip training. Here, k was set to 1, 2, 
and 3 so that SgbtMC

SK_1∕k
 would not skip, skipping 1/2 and 1/3 of instances. As per 

Table 7, apart from RBF_Bf and RBFf SgbtMC
SK_1∕3

 , produced good results even with 1/3-
rd of instances skipped. Here, slight poor accuracy in those two datasets may be because 
both RBF_Bf and RBFf have fast-moving drifts.

To further illustrate the influence of random skipping a bit, another study was con-
ducted using SgbtMC

SK_1∕k
[S = 100 , m = 75 , lr =1.25e− 2] with different k values: 1, 2, 3 

on AGR​g and LEDg datasets. The idea here is to understand the effect of skip training 
instances on SgbtMC

SK_1∕k
 ’s performance for binary and multi class problems. Both AGR​g 

Fig. 4   Accuracy over time: Different SgbtMC versions on AGR​
g
 . X axis is the number of instances seen 

so far. Vertical dotted lines mark a concept drift’s start, center, and end. SgbtMC

SK_1∕k
[S = 100 , m = 75 , lr =

1.25e−2]

Fig. 5   Accuracy over time: Different SgbtMC versions on LED
g
 . X axis is the number of instances seen 

so far. Vertical dotted lines mark a concept drift’s start, center, and end. SgbtMC

SK_1∕k
[S = 100 , m = 75 , lr =

1.25e−2]
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and LEDg had drifts happening at the same time intervals. However, AGR​g is a binary 
problem, and LEDg is a multi class problem with 10 classes. Accuracy and model size 
statistics were collected every 10000 instances. When one considers the classification 
accuracy in Figs. 4 and  5, skipping instances for training does not significantly hinder 
the accuracy on both AGR​g and LEDg. On the other hand, skipping instances results in 
significant memory savings on both datasets in Figs. 6 and  7. These savings are much 
more prevalent in LEDg as SgbtMC

SK_1∕k
 needs 10 Sgbts compared to 1 for AGR​g.

5 � Conclusion

This work uses the generic weighted squared loss elicited in Friedman et  al. (2000); 
Chen and Guestrin (2016) with hessian as the weight and gradient over hessian as the 
target, considering the loss of the previous boosting step with streaming regression trees 
with internal TR strategy to propose Sgbt. In the experiments, Sgbt variant SgbtMC 

Fig. 6   Model size over time: Different SgbtMC versions on AGR​
g
 . X axis is the number of instances seen 

so far. Vertical dotted lines mark a concept drift’s start, center, and end. SgbtMC

SK_1∕k
[S = 100 , m = 75 , lr =

1.25e−2]

Fig. 7   Model size over time: Different SgbtMC versions on LED
g
 . X axis is the number of instances seen 

so far. Vertical dotted lines mark a concept drift’s start, center, and end. SgbtMC

SK_1∕k
[S = 100 , m = 75 , lr =

1.25e−2]
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with FIMT-DD as the base learner produced superior results compared to the state-of-
the-art streaming methods on large evolving data with multiple drifts and drift types.

Sgbt calculated hessian weights result in fractions for most of the loss functions. To our 
knowledge, none of the streaming regression trees support non-integer weights. To circum-
vent this limitation, Sgbt employs a weight of 1 or transformed weight (which yields a pos-
itive integer) to train the base learner. As future work, one could explore the work by Pébay 
et al. (2016) and Schubert and Gertz (2018) for incremental calculation of variance and co-
variance to support fractional weights for SGT and FIMT-DD base learners. Another future 
work is to skip training selectively on certain instances considering the loss above a certain 
threshold, like in Gunasekara et al. (2022), instead of random skipping.

Table 7   Accuracy and evaluation time(s) of SgbtMC

SK_1∕k
[S = 100,m = 75,lr =1.25e−2]

Standard deviations are available in Table 10
The best (highest) average accuracy, best (lowest) average time, and best (lowest) rank are given in bold

Accuracy (%) Time (s)

SgbtMC

SK_1∕k
SgbtMC SgbtMC

SK_1∕k
SgbtMC

k 2 (skip 1/2) 3 (skip 1/3) 1 (no skip) 2 (skip 1/2) 3 (skip 1/3) 1 (no skip)

Binary class

AGR​a 94.32 94.36 94.45 719.16 818.16 1386.55
AGR​g 91.81 91.83 91.92 663.56 810.28 1359.81
RBF_Bm 90.55 91.20 91.91 983.85 1218.42 2126.22
RBF_Bf 78.11 80.89 84.54 891.39 1061.86 1749
RandomTree 84.73 85.62 85.72 74.62 93.09 148.69
Electricity 85.88 87.10 88.54 31.43 37.43 54.75
Airlines 67.99 68.31 68.77 309.32 378.3 584.59
Avg 84.77 85.62 86.55 524.76 631.07 1058.52
Rank 3.00 2.00 1.00 1 2 3

Multi class

LEDa 73.91 73.97 74.05 1002.87 1197.72 1747.52
LEDg 73.18 73.22 73.32 977.22 1217.96 1718.98
RBFm 86.17 87.01 87.96 1441.83 1875.82 2773.24
RBFf 68.75 72.62 77.03 1395.00 1683.68 2439.11
LED 73.80 73.76 73.81 91.99 121.11 162.38
RBF5 88.51 89.06 89.76 153.97 201.3 279.21
Covtype 92.23 93.15 94.28 1005.95 1318.55 1944.42
Avg 79.51 80.40 81.46 866.97 1088.02 1580.69
Rank 2.86 2.14 1.00 1 2 3
Avg (both) 82.14 83.01 83.97 695.87 859.55 1319.61
Rank (both) 2.93 2.07 1.00 1 2 3
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Appendix A: Experimental setup

Experiments relating to Table 3, Figs. 1 and  8 used ten iterations with random seeds: 5, 
9, 17, 13, 19, 23, 29, 31, 37 and 121. All the other experiments used three iterations with 
random seeds: 9, 17, and 121.

Experiments were run on an i) Ubuntu 18.04 LST system with AMD EPYC 7702 
64-Core Processor at 4.00GHz, and with 1000GB RAM and on ii)Ubuntu 20.04.3 system 
with an Intel(R) Core(TM) i7-6700K CPU at 4.00GHz, and with 64GB RAM. All CPU 
Time experiments were done on the system i. The OpenJDK version was 11.0.11, and the 
JVM configurations were: -Xmx96g, -Xms50m, and -Xss1g.

Appendix B: Parameter exploration results

Table 8 contains average accuracy and standard deviation for parameter exploration experi-
ments in Sect. 4.2.

Appendix C: KappaM results

Table  9 and Fig.  8 contain KappM results for learners: SgbtMC , Srp, Arf, OSB and 
AdIter on all datasets discussed in Sect.  4. KappaM measures learner’s performance 
against a majority class classifier (Bifet et al., 2018). It is used to evaluate learner’s per-
formance on an imbalanced dataset (Bifet et al., 2018). Here learner rankings in Table 9 
and Fig. 8 align with rankings in Table 3 and Fig. 1.
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Table 9   KappaM (percentage): SgbtMC against other baselines (values rounded to 2 decimals). Relevant 
Shaffer Post-hoc test results are shown in Fig. 8

SgbtMC Srp Arf OSB AdIter

Binary class
AGR​a 88.23 ± 0.02 84.76 ± 0.40 74.28 ± 0.16 79.62 ± 0.02 80.35 ± 0.37
AGR​g 82.85 ± 0.02 78.11 ± 0.39 62.80 ± 0.23 74.29 ± 0.06 73.83 ± 0.72
RBF_Bm 81.28 ± 2.96 78.41 ± 3.52 81.55 ± 2.98 74.63 ± 3.21 46.33 ± 3.03
RBF_Bf 62.76 ± 6.67 58.13 ± 8.04 66.22 ± 6.91 48.39 ± 5.26 35.39 ± 4.54
RandomTree 67.72 ± 17.18 69.50 ± 7.06 74.98 ± 10.45 80.31 ± 7.28 25.36 ± 19.02
Electricity 72.91 ± 0.14 75.69 ± 0.33 77.91 ± 0.12 75.30 ± 0.00 49.99 ± 0.19
Airlines 29.93 ± 0.07 29.37 ± 0.11 25.20 ± 0.06 20.43 ± 0.00 16.31 ± 0.17
Avg 69.38 67.71 66.13 64.71 46.79
Rank 2.14 2.43 2.57 3.29 4.57
Multi class
LEDa 71.11 ± 0.01 71.11 ± 0.01 71.01 ± 0.01 69.37 ± 0.01 –
LEDg 70.31 ± 0.01 70.23 ± 0.01 70.08 ± 0.01 68.96 ± 0.01 –
RBFm 83.12 ± 1.56 81.14 ± 1.79 82.85 ± 1.58 67.40 ± 2.13 –
RBFf 67.61 ± 2.94 67.51 ± 2.85 68.59 ± 3.04 30.73 ± 3.08 –
LED 70.82 ± 0.15 70.87 ± 0.13 70.73 ± 0.16 70.86 ± 0.20 –
RBF5 86.10 ± 1.55 86.70 ± 1.74 86.76 ± 1.77 79.84 ± 2.03 –
covtype 88.85 ± 0.05 90.91 ± 0.03 89.69 ± 0.04 85.74 ± 0.00 –
Avg 76.84 76.92 77.10 67.56 –
Rank 2.00 2.00 2.29 3.71 –
Avg (both) 73.11 72.32 71.62 66.13 –
Rank (both) 2.07 2.21 2.43 3.50 –

Fig. 8   Shaffer Post-hoc test with p-value 0.05 for all datasets (KappaM): SgbtMC against other baselines 
(10 iterations with different random seeds). A lower rank is better. Table 9 contains the individual Kap-
paM values for each algorithm on each dataset
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Appendix D: Skip training on instances

Funding  Open Access funding enabled and organized by CAUL and its Member Institutions. NZ Tertiary 
Education Commission funded Real-time Analytics of Big Data Programme.

Data availability  Open source

Table 10   Average Accuracy and evaluation time(s) with Standard Deviation for Sgbt MC
SK_1∕k [S = 100, 

m = 75, lr =1.25e− 2] (values rounded to 2 decimals, 4 decimals were considered to select the winner)

Accuracy (%) Time (s)

SgbtMC

SK_1∕k
SgbtMC SgbtMC

SK_1∕k
SgbtMC

k 2 (skip 1/2) 3 (skip 1/3) 1 (no skip) 2 (skip 1/2) 3 (skip 1/3) 1 (no skip)

Binary class
AGR​a 94.32 ± 0.02 94.36 ± 0.01 94.45 ± 0.01 719.16 ± 

64.47
818.16 ± 7.11 1,386.55 ± 

51.40
AGR​g 91.81 ± 0.01 91.83 ± 0.03 91.92 ± 0.01 663.56 ± 5.70 810.28 ± 

27.69
1,359.81 ± 

74.20
RBF_Bm 90.55 ± 0.17 91.20 ± 0.15 91.91 ± 0.19 983.85 ± 

18.69
1,218.42 ± 

97.26
2,126.22 ± 

299.86
RBF_Bf 78.11 ± 0.31 80.89 ± 0.20 84.54 ± 0.67 891.39 ± 

23.25
1,061.86 ± 

67.40
1,749.00 ± 

251.29
RandomTree 84.73 ± 8.10 85.62 ± 8.99 85.72 ± 9.40 74.62 ± 3.95 93.09 ± 8.07 148.69 ± 6.50
Electricity 85.88 ± 0.05 87.10 ± 0.26 88.54 ± 0.03 31.43 ± 2.72 37.43 ± 0.67 54.75 ± 4.68
Airlines 67.99 ± 0.03 68.31 ± 0.07 68.77 ± 0.03 309.32 ± 

12.37
378.30 ± 

12.75
584.59 ± 47.24

Avg 84.77 85.62 86.55 524.76 631.07 1,058.52
Rank 3.00 2.00 1.00 1.00 2.00 3.00
Multi class
LEDa 73.91 ± 0.01 73.97 ± 0.03 74.05 ± 0.01 1,002.87 ± 

17.89
1,197.72 ± 

101.18
1,747.52 ± 

149.75
LEDg 73.18 ± 0.01 73.22 ± 0.01 73.32 ± 0.01 977.22 ± 

25.89
1,217.96 ± 

57.35
1,718.98 ± 

128.82
RBFm 86.17 ± 0.82 87.01 ± 0.73 87.96 ± 0.63 1,441.83 ± 

210.95
1,875.82 ± 

227.84
2,773.24 ± 

164.02
RBFf 68.75 ± 1.97 72.62 ± 1.58 77.03 ± 1.39 1,395.00 ± 

92.88
1,683.68 ± 

38.21
2,439.11 ± 

200.90
LED 73.80 ± 0.20 73.76 ± 0.17 73.81 ± 0.19 91.99 ± 6.92 121.11 ± 9.15 162.38 ± 15.80
RBF5 88.51 ± 0.82 89.06 ± 0.79 89.76 ± 0.72 153.97 ± 2.43 201.30 ± 

13.50
279.21 ± 32.25

Covtype 92.23 ± 0.00 93.15 ± 0.00 94.28 ± 0.00 1,005.95 ± 
49.29

1,318.55 ± 
48.46

1,944.42 ± 
262.60

Avg 79.51 80.40 81.46 866.97 1,088.02 1,580.69
Rank 2.86 2.14 1.00 1.00 2.00 3.00
Avg (both) 82.14 83.01 83.97 695.87 859.55 1,319.61
Rank (both) 2.93 2.07 1.00 1.00 2.00 3.00
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