
Vol.:(0123456789)

Machine Learning (2024) 113:3325–3352
https://doi.org/10.1007/s10994-024-06517-y

1 3

Gradient boosted trees for evolving data streams

Nuwan Gunasekara1 · Bernhard Pfahringer1 · Heitor Gomes2 · Albert Bifet1,3

Received: 24 October 2023 / Revised: 22 December 2023 / Accepted: 19 January 2024 /
Published online: 22 March 2024
© The Author(s) 2024

Abstract
Gradient Boosting is a widely-used machine learning technique that has proven highly
effective in batch learning. However, its effectiveness in stream learning contexts lags
behind bagging-based ensemble methods, which currently dominate the field. One reason
for this discrepancy is the challenge of adapting the booster to new concept following a
concept drift. Resetting the entire booster can lead to significant performance degradation
as it struggles to learn the new concept. Resetting only some parts of the booster can be
more effective, but identifying which parts to reset is difficult, given that each boosting step
builds on the previous prediction. To overcome these difficulties, we propose Streaming
Gradient Boosted Trees (Sgbt), which is trained using weighted squared loss elicited in
XGBoost. Sgbt exploits trees with a replacement strategy to detect and recover from drifts,
thus enabling the ensemble to adapt without sacrificing the predictive performance. Our
empirical evaluation of Sgbt on a range of streaming datasets with challenging drift sce-
narios demonstrates that it outperforms current state-of-the-art methods for evolving data
streams.

Keywords  Gradient boosting · Stream learning · Gradient boosted trees · Concept drift

Editor: João Gama.

Bernhard Pfahringer, Heitor Gomes and Albert Bifet have contributed equally to this work.

 *	 Nuwan Gunasekara
	 ng98@students.waikato.ac.nz

	 Bernhard Pfahringer
	 bernhard@waikato.ac.nz

	 Heitor Gomes
	 heitor.gomes@vuw.ac.nz

	 Albert Bifet
	 abifet@waikato.ac.nz

1	 AI Institute, University of Waikato, Hamilton, New Zealand
2	 Victoria University of Wellington, Wellington, New Zealand
3	 LTCI, Télécom Paris, IP Paris, Palaiseau, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-024-06517-y&domain=pdf

3326	 Machine Learning (2024) 113:3325–3352

1 3

1  Introduction

Boosting methods have become increasingly successful in machine learning over the
past decade. While early weighed boosting algorithms such as AdaBoost (Freund &
Schapire, 1997) showed promise, they were later surpassed by gradient boosting meth-
ods (Friedman, 2001, 2002; Friedman et al., 2000). Gradient Boosting leverages the pre-
vious base learner’s gradient information (i.e., the slope of the loss function) to boost
the performance of the next learner in an ensemble. The eXtreme Gradient Boosting
(XGBoost) (Chen & Guestrin, 2016) takes this approach to another level, achieving
high efficiency and superior performance on various time-critical real-world problems.
However, in many real-world scenarios, traditional batch learning with the Independent
and Identically Distributed (iid) assumption cannot keep pace with the evolving nature
of the underlying data stream (Gomes et al., 2017; Bifet et al., 2018).

On the other hand, Stream Learning (SL) accounts for the possibility of change in
the underlying data distribution (concept drift) (Bifet et al., 2018). A model should
respond efficiently in real-time when learning from an evolving data stream (Bifet et al.,
2018). While methods such as Adaptive eXtreme Gradient Boosting (Axgb) (Montiel
et al., 2020) and Adaptive Iterations (AdIter) (Wang et al., 2022) were proposed by the
research community to enable gradient boosting for evolving data streams, they failed
to outperform state-of-the-art ensemble learners like Adaptive Random Forest (Arf)
(Gomes et al., 2017) and Streaming Random Patches (Srp) (Gomes et al., 2019).

The proposed work utilizes streaming regression trees with inbuilt drift detectors in a
gradient-boosted setting. The paper makes the following contributions:

1.	 To our knowledge, Sgbt is the first instance where the weighted squared loss elicited
in Friedman et al. (2000); Chen and Guestrin (2016) with hessian as the weight and
gradient over hessian as the target considering the previous boosting step’s loss, is used
to develop a streaming gradient-boosted method for evolving data streams. This allows
Sgbt to leverage any streaming regression tree as its base learner.

2.	 Sgbt utilizes trees with an internal Tree Replacement (TR) mechanism instead of exter-
nally monitoring each item in the boosting ensemble for drifts and adjusting each item
like Axgb (Montiel et al., 2020) or resetting some parts as in AdIter (Wang et al., 2022).
This Tree Replacement mechanism in Sgbt allows the trees in the booster to adapt
dynamically to concept drifts. Unlike binary-class gradient-boosted streaming imple-
mentations: Axgb and AdIter, Sgbt can solve multi class problems using a committee
of trees at each boosting step or a committee of Sgbts.

3.	 We present an extensive empirical evaluation of Sgbt against current state-of-the-art
streaming bagging with random subspaces (Srp), random forest (Arf), boosting (OSB),
and gradient boosting (AdIter) methods on 14 datasets with different drift types.

Overall, Sgbt outperforms existing techniques for evolving data streams. The paper is
structured as follows. The next section reviews the current state-of-the-art stream learn-
ing methods and recent gradient boosting work for evolving data streams. The subse-
quent section explains our proposed Sgbt method. The experiments section describes
the experimental setup where Sgbt was evaluated against state-of-the-art stream learn-
ing methods. The final section provides conclusions and directions for future research.

3327Machine Learning (2024) 113:3325–3352	

1 3

2 � Related work

Boosting and bagging are two popular ensemble learning techniques used in machine
learning. Bagging randomly samples instances with replacement to train each member of
the ensemble. Boosting, on the other hand, attempts to boost the performance of the next
base learner in the ensemble, considering the loss of the previous one. It combines the
prediction of weak learners addictively to produce a strong learner (Friedman et al., 2000;
Friedman, 2001). AdaBoost (Freund & Schapire, 1997) highly weights the misclassified
instances by the current base learner to improve the next base learner. Gradient boosting
uses the current base learner’s gradient information of the loss to improve the next base
learner (Friedman et al., 2000). XGBoost (Chen & Guestrin, 2016) uses this gradient
information to derive a particular regression tree that predicts a raw score at the leaf for a
given instance. It contains an efficient split-finding mechanism, cache-aware data process-
ing, and parallel processing to produce a highly scalable and efficient algorithm for batch
learning (Chen & Guestrin, 2016).

Compared to batch learning, Stream Learning model learns from an evolving data
stream (non-iid data), processing one instance at a time. Here, the model should predict at
any given moment using limited processing and memory (Bifet et al., 2018; Gomes et al.,
2017). Also, it should adjust to distribution changes (concept drifts) in the underlying data
stream (Bifet et al., 2018; Bifet & Gavalda, 2007; Gomes et al., 2017).

Data stream boosting is challenging due to the evolving nature of the data stream. Here,
the model needs to adjust to the new input distribution of the stream after a concept drift
(Bifet et al., 2018; Montiel et al., 2020). Online Bagging (OBg) and Online Boosting
(OB) (Oza & Russell, 2001) were inspired by the observation that a binomial distribution
Binomial(p, n) can be approximated by a Poisson distribution Poisson(�) with � = np as
n → ∞ . Here, n is the number of instances, and p is the probability of success in the bino-
mial distribution. Since the probability of selecting a given example is 1/n in batch bag-
ging, the uniform sampling with replacement of the bagging algorithm is approximated by
Poisson(1) in OBg. On the other hand, in OB, � is computed by tracking the total weights
of correctly classified and misclassified examples for each base learner. An online version
of SmoothBoost (Servedio, 2003) was proposed in Chen et al. (2012). This Online Smooth
Boost (OSB) uses smooth distributions that do not assign too much weight to a single
example. When the number of weak learners and examples are sufficiently large, OSB is
guaranteed to achieve an arbitrarily small error rate (Chen et al., 2012; Gomes et al., 2019).
Recently, two notable approaches were proposed by the stream learning community to lev-
erage gradient boosting for data streams: Axgb (Montiel et al., 2020) and AdIter (Wang
et al., 2022). Axgb employs mini-batch trained XGBoost as its base learners and adjusts
the ensemble in response to concept drifts, which it detects using ADWIN (Bifet & Gav-
alda, 2007). AdIter attempts to identify the weak learners in the ensemble and prune them
when confronted with concept drift. It then employs multiple training iterations via major-
ity vote among the ensemble to support different drift types. Both Axgb and AdIter only
support binary classification. In contrast, our proposed streaming gradient boosting method
(Sgbt) supports both binary and multi class problems.

Arf (Gomes et al., 2017) and Srp (Gomes et al., 2019) are popular ensemble learning
methods for streaming data. They allow one to use efficient stream learning base learn-
ers like Hoeffding Tree (HT) in a random forest or random subspaces setup in conjunc-
tion with efficient drift detectors like ADWIN. Arf is a streaming random forest adaptation
that combines re-sampling strategies, drift detection, and drift recovery strategies (Gomes

3328	 Machine Learning (2024) 113:3325–3352

1 3

et al., 2017). Srp combines random subspaces and re-sampling (i.e., random patches) to
leverage diversity among base incremental learners (Gomes et al., 2019). It uses the same
drift detection and recovery strategy as Arf, but tends to outperform Arf (Gomes et al.,
2019) in some benchmarks while not being limited to decision trees.

OSB performed better compared to OB (Chen et al., 2012). Empirical evaluation
(Gomes et al., 2019) shows that even with 100 base learners, Arf and Srp outperform
OSB by a large margin. In the same evaluation, Srp outperformed Arf. Axgb failed to
outperform Arf in the Montiel et al. (2020) empirical evaluation. In Wang et al. (2022)
experiments, AdIter also failed to surpass Arf on synthetic evolving datasets with 10,000
instances. However, in the same evaluation, AdIter surpassed Arf on real-world data. In
that evaluation, all the other datasets had less than 100,000 instances apart from airlines.
The above empirical evaluations suggest that the latest gradient boosting methods for
evolving data streams are yet to surpass current state-of-the-art ensemble methods like Srp
and Arf. However, our proposed Sgbt was able to outperform Srp and Arf in a variety of
evolving datasets.

3 � Streaming gradient boosted trees (SGBT)

For a dataset with n instances, let xi be the features for the i-th instance and yi be its relevant
target value. In gradient boosting, a model � can be represented as S additive functions:

to predict ŷiFriedman (2002); Chen and Guestrin (2016). Here, F is the space of regression
trees. In XGBoost (Chen & Guestrin, 2016), each fs corresponds to an independent tree
structure with leaf scores � . Each regression tree contains a continuous score �i at the leaf
for the i-th instance. The authors proposed to sum up the corresponding scores at the leaves
of each tree for prediction. The learning objective is to minimize the regularized objective:

where Ω penalizes the complexity of the tree f:

Here, � penalizes adding a new leaf and � forces leaf predictions to be small. T is the num-
ber of leaves in the tree. l is a differentiable convex loss function that measures the differ-
ence between the prediction ŷi and the target yi . Furthermore, the loss at the s-th step is the
loss incurred by the previous ( s − 1 ) step and the loss incurred by tree fs plus the regulari-
zation term:

This loss could be approximated using second-order Taylor approximation (Chen & Gues-
trin, 2016) to:

ŷi = 𝜙(xi) =

S∑

s=1

fs(xi), fs ∈ F

(1)L(𝜙) =

n∑

i=1

l(yi, ŷi) +

S∑

s=1

Ω(fs)

Ω(f) = �T +
1

2
�‖�‖

L
(s) =

n∑

i=1

l(yi, ŷ
(s−1) + fs(xi)) + Ω(fs)

3329Machine Learning (2024) 113:3325–3352	

1 3

Here, gi = 𝜕ŷ(s−1) l(yi, ŷ
(s−1)) and hi = 𝜕2

ŷ(s−1)
l(yi, ŷ

(s−1)) are the first and second order (hessian)
gradient statistics of the loss considering s − 1-th prediction. Though the authors (Chen &
Guestrin, 2016) use a simplified version of the above loss function by removing constants
to derive raw score values at the leaves, the below version was elicited to explain it as a
weighted squared loss with weight hi and target gi∕hi:

This weighted squared loss with hessian as the weight and gradient over hessian as the
target, considering the previous boosting step’s loss, was first introduced in Friedman et al.
(2000).

Algorithm 1   Training Sgbt 

Equation 2 provides the flexibility to utilize various streaming regression trees instead of
the one employed in XGBoost. Moreover, depending on the implementation, the streaming
regression tree’s regularization term can diverge from that employed in XGBoost. In this
work, the Tree Replacement strategy explained later in this paper, acts as a regularization
mechanism.

3.1 � Streaming regression trees with internal tree replacement strategy for gradient
boosting

In data stream learning, n could be infinite, and learning happens online, where a model
�i−1 learned at the i − 1th instance is used to predict the ith instance. Also, from any ith
instance, the underlying distribution of x could change (concept drift). The model �i should
adjust it’s regression trees to adapt to this new distribution at i. Instead of externally moni-
toring and resetting each fs tree like in AdIter (Wang et al., 2022), in Sgbt, the trees inter-
nally monitor their standardized absolute error and train an alternate tree if it goes above

L
(s) ≃

n∑

i=1

[
l(yi, ŷ

(s−1)) + gifs(xi) +
1

2
hif

2

s
(xi)

]
+ Ω(fs)

(2)
n∑

i=1

1

2
hi(ft(xi) − gi∕hi)

2 + Ω(fs) + constant.

3330	 Machine Learning (2024) 113:3325–3352

1 3

a warning level. The tree fs switches to its alternate tree once the error reaches a danger
zone. fs tree employs a drift detector to monitor its standardized absolute error to trigger
these warning and danger signals. The rest of the paper identifies this strategy of replac-
ing the active tree with an alternate tree on the drift detection signal as Tree Replacement
(TR). In the experiments, we used two regression trees for data streams: FIMT-DD (Ikono-
movska et al., 2011) and SGT (Gouk et al., 2019) with in-built drift detectors: Page-Hinck-
ley Test (Pht) (Mouss et al., 2004) and Ddm (Gama et al., 2004). The implementation of
SGT with Ddm is generic, and one could replace SGT with any other regression tree for
data streams. Here, TR also serves as a dynamic regularization mechanism by replacing
trees as data evolves during learning. Arf and Srp use a similar Tree Replacement strategy
under random-forest and bagging settings for SL classification. But to our knowledge, this
is the first instance, TR is used in gradient-boosted trees for SL classification. Here, the
booster is allowed to dynamically adjust to underlying input distribution changes as some
active trees are replaced by their alternate trees on drift detection.

The loss function in Eq. 2 requires the regression trees to support fractional weights,
as hi could be a fractional value for some loss functions. Streaming regression trees (SGT
and FIMT-DD) considered in this work only support integer weights. Supporting fractional
weights for them is not trivial. For example, SGT and FIMT-DD require the incremen-
tal calculation of variance and co-variance for fractional weights. Though recent work by
Pébay et al. (2016) and Schubert and Gertz (2018) suggests this is possible, this itself is a
separate research topic. Also, later in the text, it is clarified that the hessians for the popular
categorical cross-entropy loss with softmax used in the experiments are consistently below
1. Hence, even though Sgbt calculates these weights (hessians), it does not pass them to
the underlying trees for these practical reasons. Alternatively, it passes a weight of 1 to the
trees.

Instead of using all the features to train at each boosting step, Sgbt uses a subset of fea-
tures based on a predefined feature percentage. This approach of using a subset of features
to train each ensemble member is also used in Srp (Gomes et al., 2019) to increase the
diversity among the base learners. Algorithm 1 explains the training procedure of Sgbt.

3.2 � Multi class support

Two approaches are used to support multi class problems: Sgbt and SgbtMC.

•	 SGBT uses a committee of regression trees in a given boosting step s. Here, a single
tree is trained for each class. The committee is composed of a softmax function, so the
probability that an instance, xi , belongs to class c is given by: ŷi,c =

exp(fs,c(xi))∑C

c=1
exp(fs,c(xi))

 . Here
fs,c is the regression tree trained to predict a real-valued score for class c at the s-th
boosting step, and C is the number of classes. In practice, hard-wiring fs,C(xi) = 0
allows Sgbt to reduce the number of trees being trained.1 The categorical cross-entropy
loss ( lCE ) is used to train the model: lCE(y, ŷ) = −

∑C

c=1
yclog(ŷc) . Here, y is the ground

truth encoded as a one-hot vector. For lCE , gradient (g) is yc − ŷc , and hessian (h) is
ŷc(1 − ŷc) . The regression tree committee (composing C − 1 items) at the s-th boosting

1  This practice is used in Gouk et al. (2019) as well.

3331Machine Learning (2024) 113:3325–3352	

1 3

step represents the base learner for the s-th boosting step. This approach is also used in
SGT to support multi class classification.

•	 SGBT�� uses the same loss function ( lCE ) as in Sgbt. But, it uses a wrapper classifier
to invoke a binary Sgbt classifier for each class. The task of the binary Sgbt classifier is
to distinguish a given class from all the other classes. All C classifier votes for the posi-
tive outcome are collected and normalized at prediction. The class associated with the
classifier that predicted the positive outcome most confidently is considered the final
class for the instance. This approach is very popular in batch learning and is commonly
known as one-vs-rest or one-vs-all in literature (Witten et al., 2016). SgbtMC reverts to
Sgbt for binary class problems to avoid any computing overhead.

Unlike Axgb and AdIter, the above two approaches allow Sgbt to support gradient boost-
ing for evolving data streams on multi class problems.

Algorithm 2   Training SgbtSK

MI

3.3 � Predicting and computing improvements

Two variants of Sgbt are proposed below to improve the computing performance and uti-
lise already calculated hessian weights.

•	 SGBT�� : In most streaming regression trees, the computation and memory complexi-
ties are affected by the number of instances they process. Some computation and mem-
ory savings could be achieved via skip training on random instances. SgbtSK randomly
skips 1/k-th of instances ( k ≥ 1,∈ ℕ ). k is set to 1 by default, causing it to process all
instances as in Sgbt. Work by Gunasekara et al. (2022), Pavlovski et al. (2017) also

3332	 Machine Learning (2024) 113:3325–3352

1 3

exploited skip training for Stream Learning. Line 5 in algorithm 2 highlights this skip
training.

•	 SGBT�� : Even though current base learners only support integer weights, utilizing
already calculated fractional hessian weights is helpful. For lCE , hessian for class c at
i-th instance is always less than 1 ( hi,c < 1 ). Even if one passes hi,c to a ceiling2 func-
tion, it will always return 1. For all instances, multiplying hi,c by 10 and passing that
to a ceiling function results in a positive integer weight that is greater than 1 for some
instances. For all the other instances, the weight is set to 1. If ceiling(hi,c ∗ 10) = T  ,
Sgbt can train fs,c base learner T times using instance xi,s with label gi,c∕hi,c . Here, mul-
tiplier 10 ensures that T ≤ 10 for all instances, providing a reasonable upper limit to the
computational cost of this approach. This technique of training a base learner multiple
times based on a calculated integer weight for an instance is quite common in stream
learning (Oza & Russell, 2001; Gomes et al., 2019). Line 12 in algorithm 2 highlights
this multiple training iteration approach. Furthermore, this multiple-training iteration
approach allows Sgbt to use streaming regression trees that do not support weights.

Algorithm 2 explains the above two variants of Sgbt in detail. In the experiments, we eval-
uate the effectiveness of these Sgbt variants.

As Sgbt allows different streaming regression trees for its base learners, its final time
and memory complexities are influenced by the base learner’s time and memory complex-
ities. Sgbt’s time complexity can be derived as O(CSf) , and its memory complexity as
O(CSf) , assuming O(f) for the base learner’s time and memory complexities. Here, S is the
number of boosting steps, and C is the number of classes. SgbtMC has the same time and
memory complexities as Sgbt. The time complexity of SgbtMC could be further improved
by parallel training each Sgbt. Our implementation of SgbtMC leverages this parallel pro-
cessing. This allows SgbtMC ’s time complexity to be O(Sf) . This is similar to current state-
of-the-art streaming bagging and random-forest based methods: Srp and Arf. For SgbtMC

SK
 ,

this time complexity is further reduced to O((1 − 1∕k)Sf) by skipping 1/k-th of instances at
training. Table 1 contains all the notations introduced in this section.

4 � Experiments

We begin our experiments by comparing Sgbt against current state-of-the-art streaming
bagging with random subspaces (Srp), random forest (Arf), boosting (OSB), and gradient
boosting (AdIter) methods on 14 datasets. We also conducted a parameter exploration to
illustrate the effects of different Sgbt components.

Finally, we show an in-depth analysis concerning the computational requirements of
Sgbt.

Datasets: AGR​a, AGR​g, LEDa, LEDg, RBFf, RBFm, electricity, airlines and covtype
are from Gomes et al. (2019). RandomTree, LED, RBF5, RBF_Bm, RBF_Bf were gener-
ated using MOA synthetic generators. The synthetic datasets with drifts simulate different
types of concept drifts, i.e., abrupt (AGR​a, LEDa), gradual (AGR​g, LEDg), fast incremental
changes (RBF_Bf, RBFf), and moderate incremental changes (RBF_Bm, RBFm).

2  Similar to Java lang.Math.ceil(v) that returns an integer value greater than or equal to the passed-in value
v.

3333Machine Learning (2024) 113:3325–3352	

1 3

AGR​a is a binary class synthetic dataset with 1 M instances, where abrupt concept
drifts occur after every 250000 instances, with 50 instances drift width.

AGR​g also contains binary class synthetic data. Here, gradual concept drifts occur
after every 250000 instances, with 50000 instances drift width. The dataset has 1 M
instances.

LEDa is a multi class synthetic dataset with 1 M instances, where abrupt concept drifts
occur after every 250000 instances, with 50 instances drift width.

LEDg is also a multi class synthetic dataset. The dataset has gradual concept drifts
occurring after every 250000 instances, with 50000 instances drift width. The dataset has
1 M instances.

RBFf contains multi class synthetic data. Here, fast incremental concept drifts occur
with 0.001 centroid’s speed of change. There are 1 M instances in this dataset.

Table 1   Notations

Notation Description

� Ensemble model
S # Boosting steps
s Boosting step
F The space of regression trees
fs Streaming regression tree at boosting step s
xi Input features at i-th instance
n # Instances
� Leaf scores for fs
Ω Regularization term
� Penalizes adding a new leaf
� Penalizes large leaf scores
T Number of leaves in the tree
L(�) Loss of the ensemble
L(s) Loss at s-th boosting step
l Differentiable convex loss function
ŷ Prediction by a given regression tree
y Target value
g Gradient of the loss considering the previous boosting step’s prediction
h Hessian of the loss considering the previous boosting step’s prediction
C Number of classes
c Class index
m Percentage of features used for training fs
M Randomly picked m % of features for each boosting step
lCE Categorical cross-entropy loss
Sgbt Vanilla Sgbt explained in algorithm 1
SgbtMC Sgbt that uses separate Sgbt for each class
SgbtSK Sgbt that randomly skip 1/k-th of instances at training (see line 5 of algorithm 2)
k User-defined skip training parameter ( k ≥ 1,∈ ℕ)
SgbtMI Sgbt that does multiple training considering hessian (see line 12 of algorithm 2)
T # Times to train a given regression tree using an instance for SgbtMI

O(f) Time and memory complexity of regression tree f

3334	 Machine Learning (2024) 113:3325–3352

1 3

RBFm also has multi class synthetic data. The dataset contains 1 M instances. Here,
moderate incremental concept drifts occur with 0.0001 centroid’s speed of change.

RBF_Bf is a binary class synthetic dataset with 1 M instances that includes fast
incremental concept drifts with the centroid’s speed of change set to 0.001.

RBF_Bm has 1 M instances. It is a binary class synthetic dataset with moderate
incremental concept drifts occurring with 0.0001 centroid’s speed of change.

RandomTree is a binary class synthetic dataset without any drifts. It was generated
using MOA RandomTreeGenerator. It has 100K instances.

LED contains multi class synthetic data without any drifts. The dataset was gener-
ated using MOA LEDGenerator. It also has 100K instances.

RBF5 is a dataset with 100K instances. It contains multi class synthetic data without
drifts. Data was generated using MOA RandomRBFGenerator.

Electricity contains the Australian New South Wales Electricity Market data when
the prices are not fixed. These prices are affected by the supply and demand of the mar-
ket itself and are set every five minutes. It is a binary class real-world dataset. The class
label identifies the price changes (up or down) relative to a moving average of the last
24 h. The dataset exhibits temporal dependencies. It contains 45310 instances.

Airlines is a binary class real-world dataset. The task is to predict whether a given
flight will be delayed, given information on the scheduled departure. The dataset has
539382 instances.

Covertype dataset represents forest cover type for 30 x 30-meter cells obtained from
the US Forest Service Region 2 Resource Information System (RIS) data. Each class
corresponds to a different cover type. The dataset contains a multi class problem with
seven imbalanced class labels. It includes 581010 instances.

Datasets RBF_Bm, RBFm, RBF_Bf and RBFf were generated using MOA Ran-
domRBFGeneratorDrift. While AGR​a and AGR​g were generated using MOA

Table 2   Dataset properties: has (D)rifts, (R)eal, (S)ynthetic

Name Data Drift # # # Class dist

Type Type Instances Features Classes Max(%) Min(%)

Binary class
AGR​a DS Abrupt 1 M 9 2 52.83 47.17
AGR​g DS Gradual 1 M 9 2 52.83 47.17
RBF_Bf DS Fast 1 M 10 2 51.75 48.25
RBF_Bm DS Moderate 1 M 10 2 51.75 48.25
RandomTree S n/a 100K 10 2 57.84 42.16
Electricity R Unknown ≈45K 8 2 57.55 42.45
Airlines R Unknown ≈539K 7 2 55.46 44.54
Multi class
LEDa DS Abrupt 1 M 24 10 10.08 9.94
LEDg DS Gradual 1 M 24 10 10.08 9.94
RBFf DS Fast 1 M 10 5 30.01 9.27
RBFm DS Moderate 1 M 10 5 30.01 9.27
RBF5 S n/a 100K 10 5 32.17 8.10
LED S n/a 100K 24 10 10.00 9.96
Covtype R Unknown ≈581K 54 7 48.76 0.47

3335Machine Learning (2024) 113:3325–3352	

1 3

ConceptDriftStream with AgrawalGenerator. LEDa and LEDg datasets were generated
using MOA ConceptDriftStream with LEDGeneratorDrift. Table 2 summarizes the
characteristics of the datasets.

Sgbt was compared against the current state-of-the-art stream learning baseline
Srp, streaming random forest method Arf, the latest gradient-boosted method for data
streams AdIter, and the stream-boosting method OSB. Axgb was not considered in the
evaluation as it failed to outperform Arf (Montiel et al., 2020). Srp used the best param-
eter configurations explained in Gomes et al. (2019). As 100 base learners produced the
best results for Srp in Gomes et al. (2019), all the baselines used 100 base learners. Arf
and OSB used the same parameters in Gomes et al. (2019) evaluation. Arf and OSB
used the same base learner (HT) in Srp with the same hyperparameters as in Srp.

We collected votes for each class on each instance from AdIter’s Python implemen-
tation and ran it through a MOA dummy classifier to yield the same evaluation as the
other methods. Sgbt was implemented as an MOA classifier, and it used 100 boost-
ing steps (S) to match other baselines 100 base learners. The SgbtMC variant was com-
pared against the above baselines. Here, the one-vs-rest wrapper classifier was also
implemented in MOA. Sgbt used a learning rate of 0.0125 and 75% of the features at
each boosting step. As Sgbt requires streaming regression trees as its base learners, the

Table 3   Accuracy: SgbtMC against other baselines (values are rounded to 2 decimals). Relevant Shaffer
Post-hoc test results are shown in figure 1

The best (highest) average accuracy and best (lowest) rank are given in bold

SgbtMC Srp Arf OSB AdIter

Binary class

AGR​a 94.45 ± 0.01 92.81 ± 0.19 87.87 ± 0.08 90.39 ± 0.01 90.73 ± 0.18
AGR​g 91.91 ± 0.01 89.68 ± 0.19 82.45 ± 0.11 87.87 ± 0.03 87.66 ± 0.34
RBF_Bm 92.10 ± 0.66 90.76 ± 0.67 92.10 ± 0.63 89.27 ± 0.84 76.85 ± 1.30
RBF_Bf 84.33 ± 1.22 82.15 ± 1.46 85.61 ± 1.31 78.14 ± 1.25 72.16 ± 1.17
RandomTree 86.19 ± 8.21 87.58 ± 2.78 90.15 ± 3.38 92.09 ± 2.59 68.55 ± 10.79
Electricity 88.50 ± 0.06 89.68 ± 0.14 90.62 ± 0.05 89.51 ± 0.00 78.77 ± 0.08
Airlines 68.79 ± 0.03 68.54 ± 0.05 66.68 ± 0.03 64.56 ± 0.00 62.72 ± 0.07
Avg 86.61 85.89 85.07 84.55 76.78
Rank 2.14 2.43 2.57 3.29 4.57

Multi class

LEDa 74.04 ± 0.01 74.04 ± 0.01 73.95 ± 0.01 72.48 ± 0.00 –
LEDg 73.32 ± 0.01 73.25 ± 0.01 73.12 ± 0.01 72.11 ± 0.01 –
RBFm 88.00 ± 0.76 86.60 ± 0.84 87.82 ± 0.75 76.81 ± 0.99 –
RBFf 76.98 ± 1.34 76.91 ± 1.21 77.69 ± 1.44 50.71 ± 1.06 –
LED 73.82 ± 0.14 73.87 ± 0.12 73.75 ± 0.15 73.86 ± 0.18 –
RBF5 90.13 ± 0.84 90.56 ± 0.96 90.60 ± 0.99 85.67 ± 1.18 –
Covtype 94.29 ± 0.03 95.34 ± 0.01 94.72 ± 0.02 92.69 ± 0.00 –
Avg 81.51 81.51 81.66 74.90 –
Rank 2.00 2.00 2.29 3.71 –
Avg (both) 84.06 83.70 83.37 79.73 –
Rank (both) 2.07 2.21 2.43 3.50 –

3336	 Machine Learning (2024) 113:3325–3352

1 3

streaming classifier tree HT can not be used as a base learner. Therefore, the streaming
regression tree FIMT-DD (Ikonomovska et al., 2011) was chosen as its base learner.
FIMT-DD used a variance reduction split criterion, a grace period of 25, a split con-
fidence interval of 0.05, a constant learning rate at the leaves, and the regression tree
option.

Each algorithm was executed multiple times with different random seeds, and the aver-
age accuracy was considered in the evaluation process.3. Appendix A contains detailed
information about the experimental setup.

Table 3 compares SgbtMC ’s accuracy against the baselines mentioned above. As one can
see, SgbtMC outperforms all the baselines on binary class problems considering average

Fig. 1   Shaffer Post-hoc test with p-value 0.05 for all, binary class, multi class, and evolving (AGR​a, AGR​
g, LEDa, LEDg, RBF_Bm, RBF_Bf, RBFm, RBFf) datasets (accuracy): SgbtMC against other baselines (10
iterations with different random seeds). A lower rank is better. Table 3 contains the individual accuracy
values for each algorithm on each dataset

3  Table 3, Figs. 1 and 8 used ten iterations. All the other experiments used three iterations. Code and data
are available at https://​github.​com/​nuwan​gunas​ekara/​SGBT

https://github.com/nuwangunasekara/SGBT

3337Machine Learning (2024) 113:3325–3352	

1 3

accuracy and rank. It also performs equally well on multi class problems. It is also evi-
dent that SgbtMC outperforms other methods on datasets with drifts: AGR​a, AGR​g, LEDa,
LEDg, and RBFm. This suggests that SgbtMC is a good candidate not only for evolving data,
but also for binary class problems.

It also performed well on the airlines dataset. On the other hand, Srp yielded good
results on LEDa, LED, and covtype datasets, while Arf performed well on RBF_Bm, RBF_
Bf, electricity, RBFf, and RBF5. OSB performed well on the RandomTree dataset. The
streaming gradient boosting method AdIter was the least performant among all methods.
As it is a binary classifier, AdIter was only evaluated on binary class problems4. Further-
more, KappaM results in Appendix C (Table 9), which evaluate learner’s performance on
imbalanced data (Bifet et al., 2018), also align with accuracy rankings in Table 3.

Figure 1 shows the Shaffer Post-hoc test results with a p-value of 0.05 for: all, binary
class, multi class, and evolving (AGR​a, AGR​g, LEDa, LEDg, RBF_Bm, RBF_Bf, RBFm,
RBFf) datasets considering accuracy. It further highlights the fact that SgbtMC outperforms
other methods on binary and evolving datasets with statistical significance. For multi class
problems it is on par with current state-of-the-art Srp. To our knowledge, this is the first

Fig. 2   Accuracy over time: SgbtMC against Srp, Arf, and OSB on AGR​
g
 . X axis is the number of instances

seen so far. Vertical dotted lines mark a concept drift’s start, center, and end. SgbtMC[S = 100 , m = 75 , lr =
1.25e−2]

Fig. 3   Accuracy over time: SgbtMC against Srp, Arf, and OSB on LED
g
 . X axis is the number of instances

seen so far. Vertical dotted lines mark a concept drift’s start, center, and end. SgbtMC[S = 100 , m = 75 , lr =
1.25e−2]

4  Considering AdIter’s weak performance on binary class problems and it’s Python implementation, it was
not evaluated on multi class problems using MOA one-vs-rest wrapper classifier.

3338	 Machine Learning (2024) 113:3325–3352

1 3

time a streaming gradient boosted method is able to surpass current state-of-the-art bag-
ging and random-forest based methods in wide range of evolving data and perform well on
all types of data5. These Fig. 1 post-hoc test results for accuracy also align with KappaM
post-hoc test results in Fig. 8 (Appendix C) with the same p-value.

We investigate each algorithm’s performance on evolving data further in Figs. 2 and 3
by comparing accuracy over time for SgbtMC , Srp, Arf, and OSB on AGR​g and LEDg.
Based on Figs. 2 and 3, it is evident that SgbtMC had the lowest decrease in performance
around drift points.

Table 4 compares the evaluation time in seconds reported by MOA among single-
threaded SgbtMC (SgbtMC

ST
 ), multi-threaded SgbtMC , and Srp. Srp was chosen due to the

fact that it had the best predictive performance among competitors considering Table 3 and
Fig. 1. For binary class problems, both SgbtMC variants perform faster than Srp. Maybe
FIMT-DD in SgbtMC is a faster base learner than HT in Srp. Compared to SgbtMC

ST
 , Srp

performs well on multi class problems. However, SgbtMC performed the fastest on multi
class problems leveraging parallel processing at training and prediction. Considering the

Table 4   Time (seconds): SgbtMC against Srp (values are rounded to 0 decimals, except ranks)

The best (lowest) average time and best (lowest) rank are given in bold

SgbtMC

ST
SgbtMC Srp

Binary class

AGR​a 1423 ± 34 1187 ± 32 3208 ± 143
AGR​g 1401 ± 100 1160 ± 37 3838 ± 200
RBF_Bm 2278 ± 134 1756 ± 190 3697 ± 293
RBF_Bf 2027 ± 27 1475 ± 130 4728 ± 102
RandomTree 156 ± 7 128 ± 13 334 ± 90
Electricity 44 ± 3 48 ± 5 138 ± 10
Airlines 606 ± 27 507 ± 41 2892 ± 225
Avg 1134 894 2691
Rank 1.86 1.14 3.00

Multi class

LEDa 17489 ± 2191 1667 ± 7 2920 ± 311
LEDg 16802 ± 1715 1669 ± 16 2901 ± 315
RBFm 14511 ± 1058 2767 ± 102 3228 ± 114
RBFf 13580 ± 1550 2399 ± 46 3624 ± 540
LED 1503 ± 104 163 ± 2 295 ± 20
RandomRBF5 1473 ± 119 268 ± 5 163 ± 18
Covtype 20067 ± 1869 1789 ± 22 3801 ± 26
Avg 12203 1532 2419
Rank 3.00 1.14 1.86
Avg (both) 6669 1213 2555
Rank (both) 2.43 1.14 2.43

5  Axgb failed to outperform Arf in the Montiel et al. (2020) empirical evaluation. In Wang et al. (2022)
experiments, AdIter also failed to surpass Arf on synthetic evolving data.

3339Machine Learning (2024) 113:3325–3352	

1 3

Gomes et al. (2019) empirical evaluation on run time for 100 base learners, we would like
to acknowledge that Arf and OSB can perform faster than Srp in practice. However, they
have an inferior predictive performance compared to Srp in Table 3 evaluation and in the
empirical evaluation of Gomes et al. (2019).

4.1 � Multiple steps and multi class support

Another study was conducted to understand the performance of different Sgbt variants:
Sgbt, SgbtMC , SgbtMI , and SgbtMC

MI
 . SgbtMC supports multi class problems using binary

Sgbts, and SgbtMI employs multiple iterations by hessian weights. Both SgbtMC and
SgbtMI are orthogonal, so they can be fused to yield SgbtMC

MI
 . All Sgbt variants used

the same hyperparameter configurations as in the previous experiments. Table 5 shows
the results of the study. Since SgbtMC reverts to Sgbt and SgbtMC

MI
 reverts to SgbtMI on

binary class problems, if one ignores SgbtMC
MI

 and SgbtMC for binary class problems,
Sgbt performs well on most of the binary class datasets compared to SgbtMI . However,
SgbtMI has a higher average accuracy for that category. This suggests it performs excep-
tionally well on certain datasets such as RBF_Bm, RBF_Bf and electricity. This results
on RBF_Bf, which has fast-evolving drifts, is interesting, as it suggests that multiple
training iterations by hessian in SgbtMI improve Sgbt’s performance on fast-evolving

Table 5   Accuracy: different variants of Sgbt (values are rounded to 2 decimals)

Sgbt SgbtMC Sgbt
MI SgbtMC

MI

Binary class

AGR​a 94.45 ± 0.01 94.45 ± 0.01 94.30 ± 0.01 94.30 ± 0.01
AGR​g 91.92 ± 0.01 91.92 ± 0.01 91.75 ± 0.01 91.75 ± 0.01
RBF_Bm 91.91 ± 0.19 91.91 ± 0.19 92.58 ± 0.13 92.58 ± 0.13
RBF_Bf 84.54 ± 0.67 84.54 ± 0.67 87.36 ± 0.07 87.36 ± 0.07
RandomTree 85.72 ± 9.40 85.72 ± 9.40 84.05 ± 8.36 84.05 ± 8.36
Electricity 88.54 ± 0.03 88.54 ± 0.03 90.64 ± 0.06 90.64 ± 0.06
Airlines 68.77 ± 0.03 68.77 ± 0.03 67.85 ± 0.03 67.85 ± 0.03
Avg 86.55 86.55 86.93 86.93
Rank 2.36 2.36 2.64 2.64

Multi class

LEDa 73.96 ± 0.01 74.05 ± 0.01 73.71 ± 0.01 73.99 ± 0.01
LEDg 73.22 ± 0.00 73.32 ± 0.01 72.91 ± 0.01 73.18 ± 0.01
RBFm 87.13 ± 0.71 87.96 ± 0.63 88.18 ± 0.91 88.92 ± 0.57
RBFf 75.40 ± 1.84 77.03 ± 1.39 79.28 ± 1.62 81.14 ± 1.19
LED 73.81 ± 0.17 73.81 ± 0.19 73.56 ± 0.19 73.82 ± 0.18
RBF5 88.80 ± 0.91 89.76 ± 0.72 90.05 ± 0.81 90.68 ± 0.58
Covtype 94.31 ± 0.01 94.29 ± 0.02 95.18 ± 0.02 94.73 ± 0.02
Avg 80.95 81.46 81.84 82.35
Rank 3.29 2.43 2.71 1.57
Avg (both) 83.75 84.01 84.39 84.64
Rank (both) 2.82 2.39 2.68 2.11

3340	 Machine Learning (2024) 113:3325–3352

1 3

Ta
bl

e 
6  

T
es

t t
he

n
tra

in
 a

cc
ur

ac
y

of
 S

g
b

tM
C
 fo

r d
iff

er
en

t l
ea

rn
in

g
ra

te
s

(lr
),

bo
os

tin
g

ste
ps

 (S
),

fe
at

ur
e

pe
rc

en
ta

ge
s

(m
),

an
d

Tr
ee

 R
ep

la
ce

m
en

t (
TR

) m
ec

ha
ni

sm
s:

 TR

 v
ia

 d
rif

t
de

te
ct

or
 a

nd
 n

o
TR

. N
ot

es
: (

i)
Re

su
lts

 a
re

 ra
nk

ed
 a

nd
 h

ig
hl

ig
ht

ed
 s

ep
ar

at
el

y
fo

r l
r,

S,
 m

 a
nd

 TR

. (
ii)

 TR

: FI
M

T-
DD

 d

oe
s

TR
 v

ia
 P

h
t,

 a
nd

 S
GT

us

es
 a

 w
ra

pp
er

 c
la

ss
ifi

er
 to

 d
o

TR
 v

ia
 D

d
m

. (
iii

) V
al

ue
s a

re
 ro

un
de

d
to

 2
 d

ec
im

al
s,

4
de

ci
m

al
s w

er
e

co
ns

id
er

ed
 to

 se
le

ct
 th

e
w

in
ne

r

Le
ar

ni
ng

 ra
te

 (l
r)

B
oo

sti
ng

 st
ep

s (
S)

%
 o

f f
ea

tu
re

s (
m

)
TR

Le
ar

ne
r

FI
M

T-
D

D
SG

T

TR
vi

a
Pa

ge
-H

in
ck

le
y

Te
st

(P
h

t)
D

D
M

no
 TR

lr
6.

25
e−

3
1.

25
e−

2
2.

50
e−

2
1.

25
e−

2
1.

25
e−

2
1.

25
e−

2

S
10

0
20

40
60

80
10

0
10

0
10

0

m
75

75
45

60
75

10
0

75

B
in

ar
y

cl
as

s

A
G

R
​ a

94
.4

2
94

.4
5

94
.4

4
94

.0
8

94
.4

2
94

.4
2

94
.4

5
94

.4
5

92
.7

6
93

.7
3

94
.4

5
94

.4
0

93
.8

6
91

.4
0

A
G

R
​ g

91
.9

0
91

.9
2

91
.9

1
91

.5
1

91
.8

7
91

.8
8

91
.9

3
91

.9
2

90
.2

9
91

.2
0

91
.9

2
91

.9
7

91
.6

0
86

.3
9

R
B

F_
B

m
91

.6
9

91
.9

1
92

.0
4

90
.6

0
91

.3
1

91
.5

9
91

.7
4

91
.9

1
90

.9
6

91
.4

8
91

.9
1

91
.6

6
78

.8
5

59
.7

7
R

B
F_

B
f

83
.4

2
84

.5
4

84
.8

2
80

.4
5

82
.3

2
83

.1
4

83
.7

1
84

.5
4

82
.7

5
83

.5
4

84
.5

4
83

.9
8

57
.4

1
57

.2
5

R
an

do
m

Tr
ee

85
.1

4
85

.7
2

86
.3

6
84

.3
5

84
.4

9
85

.2
7

85
.1

0
85

.7
2

81
.8

9
83

.9
9

85
.7

2
81

.3
8

86
.0

7
87

.0
8

el
ec

tri
ci

ty
87

.9
0

88
.5

4
89

.2
7

87
.0

1
87

.6
8

87
.9

6
88

.3
6

88
.5

4
88

.4
2

88
.5

7
88

.5
4

88
.0

6
76

.8
3

73
.4

1
ai

rli
ne

s
68

.7
0

68
.7

7
68

.8
3

68
.0

1
68

.5
1

68
.6

3
68

.7
1

68
.7

7
68

.8
5

68
.8

3
68

.7
7

68
.4

7
64

.7
0

62
.9

4
av

g
86

.1
7

86
.5

5
86

.8
1

85
.1

4
85

.8
0

86
.1

3
86

.2
9

86
.5

5
85

.1
3

85
.9

1
86

.5
5

85
.7

0
78

.4
8

74
.0

3
ra

nk
3.

00
1.

71
1.

29
5.

00
4.

00
2.

86
1.

86
1.

29
3.

29
2.

43
1.

57
2.

71
1.

14
1.

86

3341Machine Learning (2024) 113:3325–3352	

1 3

Ta
bl

e 
6  

(c
on

tin
ue

d)

Le
ar

ni
ng

 ra
te

 (l
r)

B
oo

sti
ng

 st
ep

s (
S)

%
 o

f f
ea

tu
re

s (
m

)
TR

Le
ar

ne
r

FI
M

T-
D

D
SG

T

TR
vi

a
Pa

ge
-H

in
ck

le
y

Te
st

(P
h

t)
D

D
M

no
 TR

lr
6.

25
e−

3
1.

25
e−

2
2.

50
e−

2
1.

25
e−

2
1.

25
e−

2
1.

25
e−

2

S
10

0
20

40
60

80
10

0
10

0
10

0

m
75

75
45

60
75

10
0

75

M
ul

ti
cl

as
s

LE
D

a
74

.0
4

74
.0

5
74

.0
2

74
.0

0
73

.9
6

74
.0

2
74

.0
4

74
.0

5
73

.8
7

73
.9

9
74

.0
5

73
.9

8
73

.6
8

71
.7

3
LE

D
g

73
.3

2
73

.3
2

73
.3

3
73

.2
3

73
.2

6
73

.2
9

73
.2

9
73

.3
2

72
.9

1
73

.2
6

73
.3

2
73

.2
7

72
.8

5
71

.4
2

R
B

F m
87

.7
0

87
.9

6
88

.2
4

86
.4

2
87

.2
5

87
.5

9
87

.8
1

87
.9

6
86

.8
8

87
.5

3
87

.9
6

87
.8

1
66

.8
6

36
.6

4
R

B
F f

76
.1

2
77

.0
3

78
.0

5
72

.3
9

74
.7

5
75

.7
8

76
.5

4
77

.0
3

75
.6

4
76

.4
7

77
.0

3
76

.8
1

28
.5

7
27

.7
9

LE
D

73
.8

4
73

.8
1

73
.7

9
73

.8
1

73
.8

2
73

.8
3

73
.8

4
73

.8
1

73
.8

0
73

.8
9

73
.8

1
73

.5
6

72
.6

7
72

.6
7

R
B

F5
89

.5
8

89
.7

6
89

.9
7

89
.1

6
89

.4
9

89
.5

9
89

.6
7

89
.7

6
89

.2
4

89
.8

4
89

.7
6

85
.9

2
82

.0
1

83
.2

0
co

vt
yp

e
93

.8
6

94
.3

1
94

.7
8

93
.1

7
93

.6
1

93
.9

2
94

.0
7

94
.3

1
94

.2
9

94
.3

9
94

.3
1

93
.8

5
83

.0
8

69
.7

8
av

g
81

.2
1

81
.4

6
81

.7
4

80
.3

1
80

.8
8

81
.1

5
81

.3
2

81
.4

6
80

.9
5

81
.3

4
81

.4
6

80
.7

4
68

.5
3

61
.8

9
ra

nk
2.

57
1.

86
1.

57
4.

86
4.

00
2.

86
1.

86
1.

43
3.

57
2.

00
1.

43
3.

00
1.

14
1.

86
av

g
(b

ot
h)

83
.6

9
83

.9
7

84
.2

7
82

.7
3

83
.3

4
83

.6
4

83
.8

0
83

.9
7

83
.0

4
83

.6
2

83
.9

7
83

.2
2

73
.5

0
67

.9
6

ra
nk

 (b
ot

h)
2.

79
1.

79
1.

43
4.

93
4.

00
2.

86
1.

86
1.

36
3.

43
2.

21
1.

50
2.

86
1.

14
1.

86

St
an

da
rd

 d
ev

ia
tio

ns
 a

re
 av

ai
la

bl
e

in
 A

pp
en

di
x

B
 (T

ab
le

 8
)

Th
e

be
st

(h
ig

he
st)

 av
er

ag
e

ac
cu

ra
cy

 a
nd

 b
es

t (
lo

w
es

t)
ra

nk
 fo

r e
ac

h
ca

te
go

ry
 a

re
 g

iv
en

 in
 b

ol
d

3342	 Machine Learning (2024) 113:3325–3352

1 3

data. For multi class problems, SgbtMC
MI

 is the clear winner. When one compares SgbtMC
with Sgbt, it is clear that multi class support using binary Sgbts performs better than
Sgbt with multi class support. On the other hand, multi class results on Sgbt and SgbtMI
suggest that multiple iterations by hessian improve Sgbt’s accuracy on multi class prob-
lems. This explains why SgbtMC

MI
 performs best on multi class problems, as it includes

multi class support using binary Sgbts and multiple iterations by hessian approaches.
Overall performance by SgbtMC

MI
 exceeds the performance of SgbtMC , which is compared

against other baselines in Table 3. But SgbtMC was used in Table 3 evaluation consid-
ering its computation efficiency compared to SgbtMC

MI
 . On the other hand, SgbtMC

MI
 is a

good candidate for evolving data stream applications that prioritize predictive perfor-
mance over computation efficiency.

4.2 � Parameter exploration

A parameter exploration was conducted to understand the impact of learning rate (lr),
boosting steps (S), weight ( hi ) transfer methods, percentage of features (m), and the inde-
pendent TR mechanism at each tree via drift detection on SgbtMC ’s predictive perfor-
mance. The results for all these analyses are shown in Table 6 (ranked separately).

Three learning rates: 6.25e− 3, 1.25e− 2, and 2.50e− 2, were used in the study to under-
stand the effect of learning rate (lr) on SgbtMC ’s performance. All the other configura-
tions: FIMT-DD base learner, 75% of features (m), and 100 boosting steps (S) were kept
unchanged. As per Table 6, considering SgbtMC [ S = 100 , m = 75 , lr ={6.25e− 3, 1.25e− 2,
2.50e−2}, FIMT-DD] configurations, in general, larger learning rates (lr) seem to favour
both binary and multi class problems.

In a separate study to understand the effect of boosting steps on SgbtMC ’s performance,
five boosting steps (20, 40, 60, 80, 100) were considered. In this study, base learner (FIMT-
DD), feature percentage (m=75%), and learning rate (lr=1.25e− 2) were kept unchanged.
According to Table 6, when considering SgbtMC [ S = 20, 40, 60, 80, 100 , m = 75 , lr =
1.25e− 2, FIMT-DD] configurations, 100 boosting steps seem to yield good results than
the smaller boosting steps for both binary and multi class problems. This aligns with OSB
results in Gomes et al. (2019), where more boosting iterations performed better than fewer
boosting iterations.

In another study investigating the influence of different feature percentages (m) on
SgbtMC ’s performance, all SgbtMC configurations remained constant, including the base
learner (FIMT-DD), learning rate (lr=1.25e−2), and boosting steps (S=100), except for the
feature percentage (m).

According to Table 6, among SgbtMC [ S = 100 , m = 45, 60, 75, 100 , lr =1.25e− 2] con-
figurations, 75% of features yield good accuracy on most datasets. Not having 100% of the
features helps to increase the diversity of the ensemble, which avoids overfitting to data.
These results match (Gomes et al., 2017, 2019) findings where Arf and Srp perform best
with 60% of the features.

A separate study examines the effect of independent TR mechanisms by each base
learner on SgbtMC ’s performance. For this study, SGT was selected as the base learner
since FIMT-DD has a built-in TR mechanism. Hence, a generic regressor with an inbuilt
TR mechanism based on Ddm’s warning and out-of-control signals was introduced into
MOA. This allows us to enable or disable the underlying TR strategy using a generic
regressor with SGT and Ddm or just using SGT. The Ddm settings were: minimum number

3343Machine Learning (2024) 113:3325–3352	

1 3

of instances before permitting a change detection = 250, warning level = 2.0, and out-of-
control level = 2.5. SGT used the same default configurations used in Gouk et al. (2019).
From Table 6 results, one can see that having an internal TR mechanism often improves
performance. Also, all the SgbtMC configurations with SGT perform poorly on RBFf.
Maybe SGT’s default warmStart (number of instances used to estimate bin boundaries for
numeric values) 1000 is too large for RBFf with fast-moving drifts.

4.3 � Skip training on instances

Another study was conducted using SgbtMC
SK_1∕k

[S = 100 , m = 75 , lr =1.25e− 2] with dif-
ferent k values to understand the effect of random skip training. Here, k was set to 1, 2,
and 3 so that SgbtMC

SK_1∕k
 would not skip, skipping 1/2 and 1/3 of instances. As per

Table 7, apart from RBF_Bf and RBFf SgbtMC
SK_1∕3

 , produced good results even with 1/3-
rd of instances skipped. Here, slight poor accuracy in those two datasets may be because
both RBF_Bf and RBFf have fast-moving drifts.

To further illustrate the influence of random skipping a bit, another study was con-
ducted using SgbtMC

SK_1∕k
[S = 100 , m = 75 , lr =1.25e− 2] with different k values: 1, 2, 3

on AGR​g and LEDg datasets. The idea here is to understand the effect of skip training
instances on SgbtMC

SK_1∕k
 ’s performance for binary and multi class problems. Both AGR​g

Fig. 4   Accuracy over time: Different SgbtMC versions on AGR​
g
 . X axis is the number of instances seen

so far. Vertical dotted lines mark a concept drift’s start, center, and end. SgbtMC

SK_1∕k
[S = 100 , m = 75 , lr =

1.25e−2]

Fig. 5   Accuracy over time: Different SgbtMC versions on LED
g
 . X axis is the number of instances seen

so far. Vertical dotted lines mark a concept drift’s start, center, and end. SgbtMC

SK_1∕k
[S = 100 , m = 75 , lr =

1.25e−2]

3344	 Machine Learning (2024) 113:3325–3352

1 3

and LEDg had drifts happening at the same time intervals. However, AGR​g is a binary
problem, and LEDg is a multi class problem with 10 classes. Accuracy and model size
statistics were collected every 10000 instances. When one considers the classification
accuracy in Figs. 4 and 5, skipping instances for training does not significantly hinder
the accuracy on both AGR​g and LEDg. On the other hand, skipping instances results in
significant memory savings on both datasets in Figs. 6 and 7. These savings are much
more prevalent in LEDg as SgbtMC

SK_1∕k
 needs 10 Sgbts compared to 1 for AGR​g.

5 � Conclusion

This work uses the generic weighted squared loss elicited in Friedman et al. (2000);
Chen and Guestrin (2016) with hessian as the weight and gradient over hessian as the
target, considering the loss of the previous boosting step with streaming regression trees
with internal TR strategy to propose Sgbt. In the experiments, Sgbt variant SgbtMC

Fig. 6   Model size over time: Different SgbtMC versions on AGR​
g
 . X axis is the number of instances seen

so far. Vertical dotted lines mark a concept drift’s start, center, and end. SgbtMC

SK_1∕k
[S = 100 , m = 75 , lr =

1.25e−2]

Fig. 7   Model size over time: Different SgbtMC versions on LED
g
 . X axis is the number of instances seen

so far. Vertical dotted lines mark a concept drift’s start, center, and end. SgbtMC

SK_1∕k
[S = 100 , m = 75 , lr =

1.25e−2]

3345Machine Learning (2024) 113:3325–3352	

1 3

with FIMT-DD as the base learner produced superior results compared to the state-of-
the-art streaming methods on large evolving data with multiple drifts and drift types.

Sgbt calculated hessian weights result in fractions for most of the loss functions. To our
knowledge, none of the streaming regression trees support non-integer weights. To circum-
vent this limitation, Sgbt employs a weight of 1 or transformed weight (which yields a pos-
itive integer) to train the base learner. As future work, one could explore the work by Pébay
et al. (2016) and Schubert and Gertz (2018) for incremental calculation of variance and co-
variance to support fractional weights for SGT and FIMT-DD base learners. Another future
work is to skip training selectively on certain instances considering the loss above a certain
threshold, like in Gunasekara et al. (2022), instead of random skipping.

Table 7   Accuracy and evaluation time(s) of SgbtMC

SK_1∕k
[S = 100,m = 75,lr =1.25e−2]

Standard deviations are available in Table 10
The best (highest) average accuracy, best (lowest) average time, and best (lowest) rank are given in bold

Accuracy (%) Time (s)

SgbtMC

SK_1∕k
SgbtMC SgbtMC

SK_1∕k
SgbtMC

k 2 (skip 1/2) 3 (skip 1/3) 1 (no skip) 2 (skip 1/2) 3 (skip 1/3) 1 (no skip)

Binary class

AGR​a 94.32 94.36 94.45 719.16 818.16 1386.55
AGR​g 91.81 91.83 91.92 663.56 810.28 1359.81
RBF_Bm 90.55 91.20 91.91 983.85 1218.42 2126.22
RBF_Bf 78.11 80.89 84.54 891.39 1061.86 1749
RandomTree 84.73 85.62 85.72 74.62 93.09 148.69
Electricity 85.88 87.10 88.54 31.43 37.43 54.75
Airlines 67.99 68.31 68.77 309.32 378.3 584.59
Avg 84.77 85.62 86.55 524.76 631.07 1058.52
Rank 3.00 2.00 1.00 1 2 3

Multi class

LEDa 73.91 73.97 74.05 1002.87 1197.72 1747.52
LEDg 73.18 73.22 73.32 977.22 1217.96 1718.98
RBFm 86.17 87.01 87.96 1441.83 1875.82 2773.24
RBFf 68.75 72.62 77.03 1395.00 1683.68 2439.11
LED 73.80 73.76 73.81 91.99 121.11 162.38
RBF5 88.51 89.06 89.76 153.97 201.3 279.21
Covtype 92.23 93.15 94.28 1005.95 1318.55 1944.42
Avg 79.51 80.40 81.46 866.97 1088.02 1580.69
Rank 2.86 2.14 1.00 1 2 3
Avg (both) 82.14 83.01 83.97 695.87 859.55 1319.61
Rank (both) 2.93 2.07 1.00 1 2 3

3346	 Machine Learning (2024) 113:3325–3352

1 3

Ta
bl

e 
8  

T
es

t t
he

n
tra

in
 a

cc
ur

ac
y

an
d

St
an

da
rd

 D
ev

ia
tio

ns
 o

f S
g

b
tM

C
 fo

r d
iff

er
en

t l
ea

rn
in

g
ra

te
s

(lr
),

bo
os

tin
g

ste
ps

 (S
),

fe
at

ur
e

pe
rc

en
ta

ge
s

(m
),

an
d

Tr
ee

 R
ep

la
ce

m
en

t (
TR

)
m

ec
ha

ni
sm

s:
 TR

 v

ia
 d

rif
t d

et
ec

to
r a

nd
 n

o
TR

 

Le
ar

ni
ng

 ra
te

 (l
r)

B
oo

sti
ng

 st
ep

s (
S)

%
 o

f f
ea

tu
re

s (
m

)
TR

Le
ar

ne
r

FI
M

T-
D

D
SG

T

TR
V

ia
 P

ag
e-

H
in

ck
le

y
Te

st
(P

h
t)

D
D

M
no

 TR

lr
6.

25
e−

3
1.

25
e−

2
2.

50
e−

2
1.

25
e−

2
1.

25
e−

2
1.

25
e−

2

S
10

0
20

40
60

80
10

0
10

0
10

0

m
75

75
45

60
75

10
0

75

B
in

ar
y

cl
as

s

A
G

R
​ a

94
.4

2
±

0.

00
94

.4
5

±

0.
01

94
.4

4
±

0.

01
94

.0
8

±

0.
01

94
.4

2
±

0.

01
94

.4
2

±

0.
01

94
.4

5
±

0.

01
94

.4
5

±

0.
01

92
.7

6
±

0.

01
93

.7
3

±

0.
01

94
.4

5
±

0.

01
94

.4
0

±

0.
00

93
.8

6
±

0.

00
91

.4
0

±

0.
02

A
G

R
​ g

91
.9

0
±

0.

01
91

.9
2

±

0.
01

91
.9

1
±

0.

01
91

.5
1

±

0.
04

91
.8

7
±

0.

02
91

.8
8

±

0.
01

91
.9

3
±

0.

01
91

.9
2

±

0.
01

90
.2

9
±

0.

02
91

.2
0

±

0.
00

91
.9

2
±

0.

01
91

.9
7

±

0.
01

91
.6

0
±

0.

00
86

.3
9

±

0.
11

R
B

F_
B

m
91

.6
9

±

0.
09

91
.9

1
±

0.

19
92

.0
4

±

0.
15

90
.6

0
±

0.

22
91

.3
1

±

0.
15

91
.5

9
±

0.

14
91

.7
4

±

0.
13

91
.9

1
±

0.

19
90

.9
6

±

0.
00

91
.4

8
±

0.

04
91

.9
1

±

0.
19

91
.6

6
±

0.

20
78

.8
5

±

0.
92

59
.7

7
±

1.

20
R

B
F_

B
f

83
.4

2
±

0.

39
84

.5
4

±

0.
67

84
.8

2
±

0.

05
80

.4
5

±

0.
14

82
.3

2
±

0.

10
83

.1
4

±

0.
16

83
.7

1
±

0.

13
84

.5
4

±

0.
67

82
.7

5
±

0.

41
83

.5
4

±

0.
25

84
.5

4
±

0.

67
83

.9
8

±

0.
23

57
.4

1
±

1.

67
57

.2
5

±

1.
50

R
an

-
do

m
Tr

ee
85

.1
4

±

9.
96

85
.7

2
±

9.

40
86

.3
6

±

9.
10

84
.3

5
±

10

.6
1

84
.4

9
±

11

.0
0

85
.2

7
±

9.

67
85

.1
0

±

9.
86

85
.7

2
±

9.

40
81

.8
9

±

5.
95

83
.9

9
±

6.

63
85

.7
2

±

9.
40

81
.3

8
±

14

.5
0

86
.0

7
±

2.

15
87

.0
8

±

2.
08

El
ec

tri
c-

ity
87

.9
0

±

0.
07

88
.5

4
±

0.

03
89

.2
7

±

0.
04

87
.0

1
±

0.

17
87

.6
8

±

0.
05

87
.9

6
±

0.

07
88

.3
6

±

0.
03

88
.5

4
±

0.

03
88

.4
2

±

0.
09

88
.5

7
±

0.

06
88

.5
4

±

0.
03

88
.0

6
±

0.

00
76

.8
3

±

0.
08

73
.4

1
±

0.

22
A

irl
in

es
68

.7
0

±

0.
00

68
.7

7
±

0.

03
68

.8
3

±

0.
02

68
.0

1
±

0.

06
68

.5
1

±

0.
01

68
.6

3
±

0.

02
68

.7
1

±

0.
03

68
.7

7
±

0.

03
68

.8
5

±

0.
03

68
.8

3
±

0.

04
68

.7
7

±

0.
03

68
.4

7
±

0.

00
64

.7
0

±

0.
05

62
.9

4
±

0.

26
A

vg
86

.1
7

86
.5

5
86

.8
1

85
.1

4
85

.8
0

86
.1

3
86

.2
9

86
.5

5
85

.1
3

85
.9

1
86

.5
5

85
.7

0
78

.4
8

74
.0

3
R

an
k

3.
00

1.
71

1.
29

5.
00

4.
00

2.
86

1.
86

1.
29

3.
29

2.
43

1.
57

2.
71

1.
14

1.
86

3347Machine Learning (2024) 113:3325–3352	

1 3

Ta
bl

e 
8  

(c
on

tin
ue

d)

Le
ar

ni
ng

 ra
te

 (l
r)

B
oo

sti
ng

 st
ep

s (
S)

%
 o

f f
ea

tu
re

s (
m

)
TR

Le
ar

ne
r

FI
M

T-
D

D
SG

T

TR
V

ia
 P

ag
e-

H
in

ck
le

y
Te

st
(P

h
t)

D
D

M
no

 TR

lr
6.

25
e−

3
1.

25
e−

2
2.

50
e−

2
1.

25
e−

2
1.

25
e−

2
1.

25
e−

2

S
10

0
20

40
60

80
10

0
10

0
10

0

m
75

75
45

60
75

10
0

75

M
ul

ti
cl

as
s

LE
D

a
74

.0
4

±

0.
01

74
.0

5
±

0.

01
74

.0
2

±

0.
01

74
.0

0
±

0.

00
73

.9
6

±

0.
00

74
.0

2
±

0.

01
74

.0
4

±

0.
02

74
.0

5
±

0.

01
73

.8
7

±

0.
00

73
.9

9
±

0.

01
74

.0
5

±

0.
01

73
.9

8
±

0.

01
73

.6
8

±

0.
00

71
.7

3
±

0.

00
LE

D
g

73
.3

2
±

0.

02
73

.3
2

±

0.
01

73
.3

3
±

0.

01
73

.2
3

±

0.
02

73
.2

6
±

0.

01
73

.2
9

±

0.
01

73
.2

9
±

0.

01
73

.3
2

±

0.
01

72
.9

1
±

0.

01
73

.2
6

±

0.
00

73
.3

2
±

0.

01
73

.2
7

±

0.
01

72
.8

5
±

0.

01
71

.4
2

±

0.
01

R
B

F m
87

.7
0

±

0.
64

87
.9

6
±

0.

63
88

.2
4

±

0.
64

86
.4

2
±

0.

72
87

.2
5

±

0.
70

87
.5

9
±

0.

65
87

.8
1

±

0.
65

87
.9

6
±

0.

63
86

.8
8

±

0.
65

87
.5

3
±

0.

64
87

.9
6

±

0.
63

87
.8

1
±

0.

66
66

.8
6

±

1.
27

36
.6

4
±

0.

65
R

B
F f

76
.1

2
±

1.

45
77

.0
3

±

1.
39

78
.0

5
±

1.

38
72

.3
9

±

1.
46

74
.7

5
±

1.

49
75

.7
8

±

1.
44

76
.5

4
±

1.

44
77

.0
3

±

1.
39

75
.6

4
±

1.

52
76

.4
7

±

1.
48

77
.0

3
±

1.

39
76

.8
1

±

1.
38

28
.5

7
±

1.

50
27

.7
9

±

2.
44

LE
D

73
.8

4
±

0.

22
73

.8
1

±

0.
19

73
.7

9
±

0.

22
73

.8
1

±

0.
21

73
.8

2
±

0.

22
73

.8
3

±

0.
16

73
.8

4
±

0.

17
73

.8
1

±

0.
19

73
.8

0
±

0.

20
73

.8
9

±

0.
25

73
.8

1
±

0.

19
73

.5
6

±

0.
16

72
.6

7
±

0.

16
72

.6
7

±

0.
33

R
B

F5
89

.5
8

±

0.
70

89
.7

6
±

0.

72
89

.9
7

±

0.
78

89
.1

6
±

0.

60
89

.4
9

±

0.
65

89
.5

9
±

0.

66
89

.6
7

±

0.
74

89
.7

6
±

0.

72
89

.2
4

±

0.
34

89
.8

4
±

0.

55
89

.7
6

±

0.
72

85
.9

2
±

1.

23
82

.0
1

±

0.
51

83
.2

0
±

0.

39
C

ov
ty

pe
93

.8
6

±

0.
02

94
.3

1
±

0.

02
94

.7
8

±

0.
01

93
.1

7
±

0.

01
93

.6
1

±

0.
02

93
.9

2
±

0.

01
94

.0
7

±

0.
06

94
.3

1
±

0.

02
94

.2
9

±

0.
07

94
.3

9
±

0.

04
94

.3
1

±

0.
02

93
.8

5
±

0.

00
83

.0
8

±

0.
02

69
.7

8
±

4.

71
A

vg
81

.2
1

81
.4

6
81

.7
4

80
.3

1
80

.8
8

81
.1

5
81

.3
2

81
.4

6
80

.9
5

81
.3

4
81

.4
6

80
.7

4
68

.5
3

61
.8

9
R

an
k

2.
57

1.
86

1.
57

4.
86

4.
00

2.
86

1.
86

1.
43

3.
57

2.
00

1.
43

3.
00

1.
14

1.
86

A
vg

bo
th

83
.6

9
83

.9
7

84
.2

7
82

.7
3

83
.3

4
83

.6
4

83
.8

0
83

.9
7

83
.0

4
83

.6
2

83
.9

7
83

.2
2

73
.5

0
67

.9
6

R
an

k b
ot

h
2.

79
1.

79
1.

43
4.

93
4.

00
2.

86
1.

86
1.

36
3.

43
2.

21
1.

50
2.

86
1.

14
1.

86

(i)
 R

es
ul

ts
 a

re
 ra

nk
ed

 a
nd

 h
ig

hl
ig

ht
ed

 se
pa

ra
te

ly
 fo

r l
r,

S,
 m

 a
nd

 TR

. (
ii)

 TR

: FI
M

T-
DD

 d

oe
s TR

 v

ia
 P

h
t,

 a
nd

 S
GT

us

es
 a

 w
ra

pp
er

 c
la

ss
ifi

er
 to

 d
o

TR
 v

ia
 D

d
m

. (
va

lu
es

 ro
un

de
d

to
 2

 d
ec

im
al

s,
4

de
ci

m
al

s w
er

e
co

ns
id

er
ed

 to
 se

le
ct

 th
e

w
in

ne
r)

Th
e

be
st

(h
ig

he
st)

 av
er

ag
e

ac
cu

ra
cy

 a
nd

 b
es

t (
lo

w
es

t)
ra

nk
 fo

r e
ac

h
ca

te
go

ry
 a

re
 g

iv
en

 in
 b

ol
d

3348	 Machine Learning (2024) 113:3325–3352

1 3

Appendix A: Experimental setup

Experiments relating to Table 3, Figs. 1 and 8 used ten iterations with random seeds: 5,
9, 17, 13, 19, 23, 29, 31, 37 and 121. All the other experiments used three iterations with
random seeds: 9, 17, and 121.

Experiments were run on an i) Ubuntu 18.04 LST system with AMD EPYC 7702
64-Core Processor at 4.00GHz, and with 1000GB RAM and on ii)Ubuntu 20.04.3 system
with an Intel(R) Core(TM) i7-6700K CPU at 4.00GHz, and with 64GB RAM. All CPU
Time experiments were done on the system i. The OpenJDK version was 11.0.11, and the
JVM configurations were: -Xmx96g, -Xms50m, and -Xss1g.

Appendix B: Parameter exploration results

Table 8 contains average accuracy and standard deviation for parameter exploration experi-
ments in Sect. 4.2.

Appendix C: KappaM results

Table 9 and Fig. 8 contain KappM results for learners: SgbtMC , Srp, Arf, OSB and
AdIter on all datasets discussed in Sect. 4. KappaM measures learner’s performance
against a majority class classifier (Bifet et al., 2018). It is used to evaluate learner’s per-
formance on an imbalanced dataset (Bifet et al., 2018). Here learner rankings in Table 9
and Fig. 8 align with rankings in Table 3 and Fig. 1.

3349Machine Learning (2024) 113:3325–3352	

1 3

Table 9   KappaM (percentage): SgbtMC against other baselines (values rounded to 2 decimals). Relevant
Shaffer Post-hoc test results are shown in Fig. 8

SgbtMC Srp Arf OSB AdIter

Binary class
AGR​a 88.23 ± 0.02 84.76 ± 0.40 74.28 ± 0.16 79.62 ± 0.02 80.35 ± 0.37
AGR​g 82.85 ± 0.02 78.11 ± 0.39 62.80 ± 0.23 74.29 ± 0.06 73.83 ± 0.72
RBF_Bm 81.28 ± 2.96 78.41 ± 3.52 81.55 ± 2.98 74.63 ± 3.21 46.33 ± 3.03
RBF_Bf 62.76 ± 6.67 58.13 ± 8.04 66.22 ± 6.91 48.39 ± 5.26 35.39 ± 4.54
RandomTree 67.72 ± 17.18 69.50 ± 7.06 74.98 ± 10.45 80.31 ± 7.28 25.36 ± 19.02
Electricity 72.91 ± 0.14 75.69 ± 0.33 77.91 ± 0.12 75.30 ± 0.00 49.99 ± 0.19
Airlines 29.93 ± 0.07 29.37 ± 0.11 25.20 ± 0.06 20.43 ± 0.00 16.31 ± 0.17
Avg 69.38 67.71 66.13 64.71 46.79
Rank 2.14 2.43 2.57 3.29 4.57
Multi class
LEDa 71.11 ± 0.01 71.11 ± 0.01 71.01 ± 0.01 69.37 ± 0.01 –
LEDg 70.31 ± 0.01 70.23 ± 0.01 70.08 ± 0.01 68.96 ± 0.01 –
RBFm 83.12 ± 1.56 81.14 ± 1.79 82.85 ± 1.58 67.40 ± 2.13 –
RBFf 67.61 ± 2.94 67.51 ± 2.85 68.59 ± 3.04 30.73 ± 3.08 –
LED 70.82 ± 0.15 70.87 ± 0.13 70.73 ± 0.16 70.86 ± 0.20 –
RBF5 86.10 ± 1.55 86.70 ± 1.74 86.76 ± 1.77 79.84 ± 2.03 –
covtype 88.85 ± 0.05 90.91 ± 0.03 89.69 ± 0.04 85.74 ± 0.00 –
Avg 76.84 76.92 77.10 67.56 –
Rank 2.00 2.00 2.29 3.71 –
Avg (both) 73.11 72.32 71.62 66.13 –
Rank (both) 2.07 2.21 2.43 3.50 –

Fig. 8   Shaffer Post-hoc test with p-value 0.05 for all datasets (KappaM): SgbtMC against other baselines
(10 iterations with different random seeds). A lower rank is better. Table 9 contains the individual Kap-
paM values for each algorithm on each dataset

3350	 Machine Learning (2024) 113:3325–3352

1 3

Appendix D: Skip training on instances

Funding  Open Access funding enabled and organized by CAUL and its Member Institutions. NZ Tertiary
Education Commission funded Real-time Analytics of Big Data Programme.

Data availability  Open source

Table 10   Average Accuracy and evaluation time(s) with Standard Deviation for Sgbt MC
SK_1∕k [S = 100,

m = 75, lr =1.25e− 2] (values rounded to 2 decimals, 4 decimals were considered to select the winner)

Accuracy (%) Time (s)

SgbtMC

SK_1∕k
SgbtMC SgbtMC

SK_1∕k
SgbtMC

k 2 (skip 1/2) 3 (skip 1/3) 1 (no skip) 2 (skip 1/2) 3 (skip 1/3) 1 (no skip)

Binary class
AGR​a 94.32 ± 0.02 94.36 ± 0.01 94.45 ± 0.01 719.16 ±

64.47
818.16 ± 7.11 1,386.55 ±

51.40
AGR​g 91.81 ± 0.01 91.83 ± 0.03 91.92 ± 0.01 663.56 ± 5.70 810.28 ±

27.69
1,359.81 ±

74.20
RBF_Bm 90.55 ± 0.17 91.20 ± 0.15 91.91 ± 0.19 983.85 ±

18.69
1,218.42 ±

97.26
2,126.22 ±

299.86
RBF_Bf 78.11 ± 0.31 80.89 ± 0.20 84.54 ± 0.67 891.39 ±

23.25
1,061.86 ±

67.40
1,749.00 ±

251.29
RandomTree 84.73 ± 8.10 85.62 ± 8.99 85.72 ± 9.40 74.62 ± 3.95 93.09 ± 8.07 148.69 ± 6.50
Electricity 85.88 ± 0.05 87.10 ± 0.26 88.54 ± 0.03 31.43 ± 2.72 37.43 ± 0.67 54.75 ± 4.68
Airlines 67.99 ± 0.03 68.31 ± 0.07 68.77 ± 0.03 309.32 ±

12.37
378.30 ±

12.75
584.59 ± 47.24

Avg 84.77 85.62 86.55 524.76 631.07 1,058.52
Rank 3.00 2.00 1.00 1.00 2.00 3.00
Multi class
LEDa 73.91 ± 0.01 73.97 ± 0.03 74.05 ± 0.01 1,002.87 ±

17.89
1,197.72 ±

101.18
1,747.52 ±

149.75
LEDg 73.18 ± 0.01 73.22 ± 0.01 73.32 ± 0.01 977.22 ±

25.89
1,217.96 ±

57.35
1,718.98 ±

128.82
RBFm 86.17 ± 0.82 87.01 ± 0.73 87.96 ± 0.63 1,441.83 ±

210.95
1,875.82 ±

227.84
2,773.24 ±

164.02
RBFf 68.75 ± 1.97 72.62 ± 1.58 77.03 ± 1.39 1,395.00 ±

92.88
1,683.68 ±

38.21
2,439.11 ±

200.90
LED 73.80 ± 0.20 73.76 ± 0.17 73.81 ± 0.19 91.99 ± 6.92 121.11 ± 9.15 162.38 ± 15.80
RBF5 88.51 ± 0.82 89.06 ± 0.79 89.76 ± 0.72 153.97 ± 2.43 201.30 ±

13.50
279.21 ± 32.25

Covtype 92.23 ± 0.00 93.15 ± 0.00 94.28 ± 0.00 1,005.95 ±
49.29

1,318.55 ±
48.46

1,944.42 ±
262.60

Avg 79.51 80.40 81.46 866.97 1,088.02 1,580.69
Rank 2.86 2.14 1.00 1.00 2.00 3.00
Avg (both) 82.14 83.01 83.97 695.87 859.55 1,319.61
Rank (both) 2.93 2.07 1.00 1.00 2.00 3.00

3351Machine Learning (2024) 113:3325–3352	

1 3

Declarations 

Conflict of interest  Not applicable

 Ethical approval  Not applicable

 Consent to participate  Not applicable

Consent for publication  Not applicable

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an applica-
tion to boosting. Journal of computer and system sciences, 55(1), 119–139.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of statistics,
29, 1189–1232.

Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4),
367–378.

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting
(with discussion and a rejoinder by the authors). The Annals of Statistics, 28(2), 337–407.

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM
Sigkdd international conference on knowledge discovery and data mining, pp. 785–794.

Gomes, H. M., Barddal, J. P., Enembreck, F., & Bifet, A. (2017). A survey on ensemble learning for data
stream classification. ACM Computing Surveys (CSUR), 50(2), 1–36.

Bifet, A., Gavaldá, R., Holmes, G., & Pfahringer, B. (2018). Machine learning for data streams: With prac-
tical examples in MOA (pp. 52–96). Massachusetts: The MIT Press. https://​doi.​org/​10.​7551/​mitpr​ess/​
10654.​001.​0001

Montiel, J., Mitchell, R., Frank, E., Pfahringer, B., Abdessalem, T., & Bifet, A. (2020). Adaptive xgboost
for evolving data streams. In 2020 international joint conference on neural networks (IJCNN), pp. 1–8.
IEEE.

Wang, K., Lu, J., Liu, A., Song, Y., Xiong, L., & Zhang, G. (2022). Elastic gradient boosting decision tree
with adaptive iterations for concept drift adaptation. Neurocomputing, 491, 288–304.

Gomes, H. M., Bifet, A., Read, J., Barddal, J. P., Enembreck, F., Pfahringer, B., Holmes, G., & Abdessalem,
T. (2017). Adaptive random forests for evolving data stream classification. Machine Learning, 106(9),
1469–1495.

Gomes, H.M., Read, J., & Bifet, A. (2019). Streaming random patches for evolving data stream classifica-
tion. In 2019 IEEE International conference on data mining (ICDM), pp. 240–249. IEEE.

Bifet, A., & Gavalda, R. (2007). Learning from time-changing data with adaptive windowing. In Proceed-
ings of the 2007 SIAM international conference on data mining, pp. 443–448. SIAM.

Oza, N.C., & Russell, S.J. (2001). Online bagging and boosting. In International workshop on artificial
intelligence and statistics, pp. 229–236. PMLR.

Servedio, R. A. (2003). Smooth boosting and learning with malicious noise. The Journal of Machine Learn-
ing Research, 4, 633–648.

Chen, S.-T., Lin, H.-T., & Lu, C.-J. (2012). An online boosting algorithm with theoretical justifications.
arXiv preprint arXiv:​1206.​6422.

Ikonomovska, E., Gama, J., & Džeroski, S. (2011). Learning model trees from evolving data streams. Data
Mining and Knowledge Discovery, 23(1), 128–168.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7551/mitpress/10654.001.0001
https://doi.org/10.7551/mitpress/10654.001.0001
http://arxiv.org/abs/1206.6422

3352	 Machine Learning (2024) 113:3325–3352

1 3

Gouk, H., Pfahringer, B., & Frank, E. (2019). Stochastic gradient trees. In Asian conference on machine
learning, pp. 1094–1109. PMLR.

Mouss, H., Mouss, D., Mouss, N., & Sefouhi, L. (2004). Test of page-hinckley, an approach for fault detec-
tion in an agro-alimentary production system. In 2004 5th Asian control conference (IEEE Cat. No.
04EX904), vol. 2, pp. 815–818. IEEE.

Gama, J., Medas, P., Castillo, G., & Rodrigues, P. (2004). Learning with drift detection. In Brazilian sympo-
sium on artificial intelligence, pp. 286–295. Springer.

Pébay, P., Terriberry, T. B., Kolla, H., & Bennett, J. (2016). Numerically stable, scalable formulas for paral-
lel and online computation of higher-order multivariate central moments with arbitrary weights. Com-
putational Statistics, 31(4), 1305–1325.

Schubert, E., & Gertz, M. (2018). Numerically stable parallel computation of (co-) variance. In Proceedings
of the 30th international conference on scientific and statistical database management, pp. 1–12

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data mining: Practical machine learning tools and
techniques. The Morgan Kaufmann Series in Data Management Systems (pp. 322–328). San Francisco:
Elsevier.

Gunasekara, N., Gomes, H.M., Pfahringer, B., & Bifet, A. (2022). Online hyperparameter optimization for
streaming neural networks. In 2022 international joint conference on neural networks (IJCNN), pp.
1–9. IEEE.

Pavlovski, M., Zhou, F., Stojkovic, I., Kocarev, L., & Obradovic, Z. (2017). Adaptive skip-train structured
regression for temporal networks. In machine learning and knowledge discovery in databases: Euro-
pean conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part
II 10, pp. 305–321. Springer.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Gradient boosted trees for evolving data streams
	Abstract
	1 Introduction
	2 Related work
	3 Streaming gradient boosted trees (SGBT)
	3.1 Streaming regression trees with internal tree replacement strategy for gradient boosting
	3.2 Multi class support
	3.3 Predicting and computing improvements

	4 Experiments
	4.1 Multiple steps and multi class support
	4.2 Parameter exploration
	4.3 Skip training on instances

	5 Conclusion
	Appendix A: Experimental setup
	Appendix B: Parameter exploration results
	Appendix C: KappaM results
	Appendix D: Skip training on instances
	References

