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Abstract
We study the problem of clustering a set of items from binary user feedback. Such a prob-
lem arises in crowdsourcing platforms solving large-scale labeling tasks with minimal 
effort put on the users. For example, in some of the recent reCAPTCHA systems, users 
clicks (binary answers) can be used to efficiently label images. In our inference problem, 
items are grouped into initially unknown non-overlapping clusters. To recover these clus-
ters, the learner sequentially presents to users a finite list of items together with a question 
with a binary answer selected from a fixed finite set. For each of these items, the user pro-
vides a noisy answer whose expectation is determined by the item cluster and the question 
and by an item-specific parameter characterizing the hardness of classifying the item. The 
objective is to devise an algorithm with a minimal cluster recovery error rate. We derive 
problem-specific information-theoretical lower bounds on the error rate satisfied by any 
algorithm, for both uniform and adaptive (list, question) selection strategies. For uniform 
selection, we present a simple algorithm built upon the K-means algorithm and whose per-
formance almost matches the fundamental limits. For adaptive selection, we develop an 
adaptive algorithm that is inspired by the derivation of the information-theoretical error 
lower bounds, and in turn allocates the budget in an efficient way. The algorithm learns 
to select items hard to cluster and relevant questions more often. We compare the perfor-
mance of our algorithms with or without the adaptive selection strategy numerically and 
illustrate the gain achieved by being adaptive.

Keywords  Online algorithm · Clustering · Community detection · Stochastic block model · 
Crowdsourcing

1  Introduction

Modern Machine Learning (ML) models require a massive amount of labeled data to be 
efficiently trained. Humans have been so far the main source of labeled data. This data 
collection is often tedious and very costly. Fortunately, most of the data can be simply 
labeled by non-experts. This observation is at the core of many crowdsourcing platforms 
such as reCAPTCHA, where users receive low or no payment. In these platforms, complex 

Editor: Hendrik Blockeel.

Extended author information available on the last page of the article

http://orcid.org/0000-0001-6286-9906
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-024-06532-z&domain=pdf


2734	 Machine Learning (2024) 113:2733–2764

1 3

labeling problems are decomposed into simpler tasks, typically questions with binary 
answers. In reCAPTCHAs, for example, the user is asked to click on images (presented in 
batches) that contain a particular object (a car, a road sign), and the system leverages users’ 
answers to label images. As another motivating example, consider the task of classifying 
bird images. Users may be asked to answer binary questions like: “Is the bird grey?”, “Does 
it have a circular tail fin?”, “Does it have a pattern on its cheeks?”, etc. Correct answers to 
those questions, if well-processed, may lead to an accurate bird classification and image 
labels. In both aforementioned examples, some images may be harder to label than others, 
e.g., due to the photographic environment, the birds’ posture, etc. Some questions may be 
harder to answer than others, leading to a higher error rate. To build a reliable system, 
tasks/questions have to be carefully designed and selected, and user responses need to be 
smartly processed. Efficient systems must also learn the difficulty of the different tasks, and 
guess how informative they are when solving the complex labeling problem.

This paper investigates the design of such systems, tackling clustering problems that 
have to be solved using answers to binary questions. We incorporate a model that takes into 
consideration the varying difficulty levels or heterogeneity of clustering each item. We pro-
pose a full analysis of the problem, including information-theoretical limits that hold for 
any algorithm and novel algorithms with provable performance guarantees. Before giving 
a precise statement of our results, we provide a precise description of the problem setting 
and the statistical model dictating the way users answer. This model is inspired by models, 
such as the Dawid–Skene model (Dawid & Skene, 1979) successfully used in the crowd-
sourcing literature, see e.g., Khetan and Oh (2016) and references therein. However, to the 
best of our knowledge, this paper is the first to model and analyze clustering problems with 
binary feedback and accounting for item heterogeneity.

1.1 � Problem setting and feedback model

Consider a large set I  of n items (e.g. images) partitioned into K disjoint unknown clusters 
I1,… , IK . Denote by �(i) the cluster of item i. To recover these hidden clusters, the learner 
gathers binary user feedback sequentially. Upon arrival, a user is presented a list of w ≥ 1 
items together with a question with a binary answer. The question is selected from a prede-
fined finite set of cardinality L. The process of selecting the (list, question) pair for a given 
user can be carried out in either a nonadaptive or adaptive manner (in the latter case, the 
pair would depend on user feedback previously collected). Importantly, our model captures 
item heterogeneity: the difficulty of clustering items varies across items. We wish to devise 
algorithms recovering clusters as accurately as possible using the noisy binary answers col-
lected from T users.

We use the following statistical model parametrized by a matrix p ∶= (pk�)k∈[K],�∈[L]
1 

with entries in [0, 1] and by a vector h ∶= (hi)i∈I ∈ [1∕2, 1]n . These parameters are (ini-
tially) unknown. When the t-th user is asked a question �t = � ∈ [L] for a set Wt of w ≥ 1 
items, she provides noisy answers: for the item i ∈ Ik in the list Wt , her answer Xi�t is 
+1 with probability qi� ∶= hipk� + h̄ip̄k� , and −1 with probability q̄i� , where for brevity, 
x̄ denotes 1 − x for any x ∈ [0, 1] . Answers are independent across items and users. Our 
model is simple, but general enough to include as specific cases, crowdsourcing models 
recently investigated in the literature. For example, the model in Khetan and Oh (2016) 

1  Define for any integer A ≥ 1 , the set [A] ∶= {1,… ,A}.
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corresponds to our model with only one question ( L = 1 ), two clusters ( K = 2 ), and a ques-
tion asked for a single item at a time ( w = 1 ). Note that in our model, answers are collected 
from a very large set of users, and a given user is very unlikely to interact with the system 
several times. This justifies the fact that answers provided by the various users are statisti-
cally identical.

Item hardness. An important aspect of our model stems from the item-specific parame-
ter hi . It can be interpreted as the hardness of clustering item i, whereas pk� corresponds to 
a latent parameter related to question � when asked for an item in cluster k. Note that when 
hi = 1∕2 , qi� = 1∕2 irrespective of the cluster of item i. Hence any question � on item i 
receives completely random responses, and this item cannot be clustered. Further note that 
intuitively, the larger the hardness parameter hi of item i is, the easier it can be clustered. 
Indeed, when asking question � , we can easily distinguish whether item i belongs to cluster 
k or k′ if the difference between the corresponding parameters of user statistical answers 
hipk� + h̄ip̄k� and hipk�� + h̄ip̄k�� is large. This difference is |pk� − pk��|(2hi − 1) , an increas-
ing function of hi . We believe that introducing item heterogeneity is critical to obtain a 
realistic model (without h , all items from the same cluster would be exchangeable), but 
complicates the analysis. Most theoretical results on clustering or community detection do 
not account for this heterogeneity—refer to Sect. 2 for detail.

Illustrative Example. We introduce an example to illustrate the structure and character-
istics of our model.

Example 1  Consider the task of classifying images into two types of birds: Mallards and 
Canadian Geese. Mallards (see Fig. 1a for an image), a type of duck, and Canadian Geese 
(see Fig.  1b for an image), which are not classified as ducks, present a unique classifi-
cation challenge. In this case, L = 1 , and the question posed to the users is: “Is the bird 
in the image a duck?". We assign cluster 1 for the Mallard images and cluster 2 for the 
Canadian Goose images. Assume that p11 = 0.8 and p21 = 0.3 : they are latent probabili-
ties of answering yes to the question given an image of a Mallard and a Canadian Goose, 
respectively.

p11 and p21 represent the latent probabilities of answering yes to a question 1. These 
parameters also consider the scenario where a user, randomly selected from a large 
set, may not answer a question correctly due to a lack of knowledge or other reasons. 
For each image i, hi indicates the difficulty of classification. For instance, when 

Fig. 1   Images for Example 1
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the image is of Mallards (a type of duck), and the image is clear, the classification 
is relatively easy, and hi is set to hi = 1 . Consequently, the probability of correctly 
identifying the Mallards is qi1 = hip11 + h̄ip̄11 = 1 ⋅ 0.8 + 0 ⋅ 0.2 = 0.8 . However, when 
another image j of Mallards is blurred due to poor lighting or other factors, and the 
classification difficulty is hj = 0.8 , the probability of correct classification decreases to 
qj1 = hjp11 + h̄jp̄11 = 0.8 ⋅ 0.8 + 0.2 ⋅ 0.2 = 0.68 . As a result, the feedback obtained for 
image j is more ambiguous compared to that for image i, due to the increased difficulty in 
classification.

Assumption  We make the following mild assumptions on our statistical model 
M ∶= (p, h) . Define for each k ∈ [K] , rk ∶= (rk�)�∈[L] with rk� ∶= 2pk� − 1 . Throughout 
the paper, ‖ ⋅ ‖ denotes the �∞-norm, i.e., ‖x‖ = maxi �xi�.

Assumption (A1) excludes the cases where clustering is impossible even if all param-
eters were accurately estimated. Indeed, when h∗ = 0 , there exists at least one item 
i which receives completely random responses for any question, i.e., qi� = 1∕2 
for any � ∈ [L] . Observe that when �∗ = 0 , there exists k ≠ k′ and c ≥ 0 such that 
2pk� − 1 = c(2pk�� − 1) for all � ∈ [L] . Then, for item i ∈ Ik , we find h� ∈ [1∕2, 1] 
such that 2qi� − 1 = (2h� − 1)(2pk�� − 1) . Items in the different clusters k and k′ can 
have the same value of qi� . As a consequence, from the answers, we cannot determine 
whether i is in cluster k or k′ . In Example 1, r11 = 0.6 , r21 = −0.4 , and the value of �∗ is 
�∗ = |0 ⋅ 0.6 + 0.4| = 0.4 . Assumption (A2) states some homogeneity among the param-
eters of the clusters. It implies that qi� ∈ [�, 1 − �] for all i ∈ I  and � ∈ [L] . Let Ω be the 
set of all models satisfying (A1) and (A2).

For convenience, we provide a table summarizing all the notations in Appendix A.

1.2 � Main contributions

We study both nonadaptive and adaptive sequential (list, question) selection strategies. In 
the case of nonadaptive strategy, we assume that the selection of (list, question) pairs is 
uniform in the sense that the number of times a given question is asked for a given item is 
(roughly) ⌊Tw∕(nL)⌋ . The objective is to devise a clustering algorithm taking as input the 
data collected over T users and returning estimated clusters as accurate as possible. When 
using adaptive strategies, the objective is to devise an algorithm that sequentially selects 
the (list, question) pairs presented to users, and that, after having collected answers from T 
users, returns accurate estimated clusters.

Our contributions are as follows. We first derive information-theoretical performance 
limits satisfied by any algorithm under uniform or adaptive sequential (list, question) selec-
tion strategy. We then propose a clustering algorithm that matches our limits order-wise 
in the case of uniform (list, question) selection. We further present a joint adaptive (list, 
question) selection strategy and clustering algorithm, and illustrate, using numerical exper-
iments on both synthetic and real data, the advantage of being adaptive.

(A1) h∗ ∶= mini∈I(2hi − 1) ∈ (0, 1), (A2) ∃𝜂 > 0, 𝜂 ≤ pk� ≤ 1 − 𝜂.
𝜌∗ ∶= mink≠k� minc≥0 ‖crk� − rk‖ > 0.
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Fundamental limits. We provide a precise statement of our lower bounds on the cluster 
recovery error rate. These bounds are problem specific, i.e., they depend explicitly on the 
model M = (p, h) , and they will guide us in the design of algorithms.

(Uniform selection) In this case, we derive a clustering error lower bound for each indi-
vidual item. Let � denote a clustering algorithm, and define the clustering error rate of item 
i ∈ I  as ��

i
(n,T) ∶= ℙ[i ∈ E�] , where E� denotes the set of mis-classified items under � . 

The latter set is defined as E� ∶= ∪k∈[K]Ik⧵S
�
�(k) , where (S�

1
,… ,S�

K
) denotes the output of � 

and � is a permutation of [K] minimizing the cardinality of ∪k∈[K]Ik⧵S
�
� (k) over all possible 

permutations � of [K]. When deriving problem-specific error lower bounds, we restrict our 
attention to so-called uniformly good algorithms. An algorithm � is uniformly good if for 
all M ∈ Ω and i ∈ I  , ��

i
(n,T) = o(1) as T → ∞ under T = �(n) . We establish that for any 

M ∈ Ω satisfying (A1) and (A2), under any uniformly good clustering algorithm � , as T 
grows large under T = �(n) , for any item i, we have:

In the above definition of the divergence DU
M
(i) , KL (a, b) is the Kullback–Leibler diver-

gence between two Bernoulli distributions of means a and b ( KL (a, b) ∶= a log
a

b
+ ā log

ā

b̄
 ). 

Note that uniformly good algorithms actually exist (see Algorithm 1 presented in Sect. 4).
(Adaptive selection) We also provide clustering error lower bounds in the case the algo-

rithm is also sequentially selecting (list, question) pairs in an adaptive manner. Note that 
here a lower bound cannot be derived for each item individually, say item i, since an adap-
tive algorithm could well select this given item often so as to get no error when returning 
its cluster. Instead we provide a lower bound for the cluster recovery error rate averaged 
over all items, i.e., ��(n,T) ∶= 1

n

∑
i∈I �

�
i
(n, T) . Under any uniformly good joint (list, ques-

tion) selection and clustering algorithm � , as T grows large under T = �(n) , we have:

In the above lower bound, the vector y encodes the expected numbers of times the various 
questions are asked for each item. Specifically, as shown later, yi�

Tw

n
 can be interpreted 

expected number of times the question � is asked for the item i. Maximizing over y in (4) 

(1)��
i
(n, T) ≥ exp

(
−
Tw

n
DU

M
(i)(1 + o(1))

)
,

(2)where DU
M
(i) ∶= min

k�≠𝜎(i) min
h�∈[(h∗+1)∕2,1]

1

L

∑
�

KL (h�pk�� + h̄�p̄k�� , qi�) > 0.

(3)��(n,T) ≥ exp
(
−
Tw

n
D̃

A

M
(1 + o(1))

)
,

(4)where D̃
A

M
∶= max

y∈Y(n)
−

n

Tw
log

(
1

n

n∑
i=1

exp
(
−
Tw

n
DA

M
(i, y)

))
,

(5)DA
M
(i, y) ∶= min

j∶�(j)≠�(i)
∑
�

(
yj� KL (qj� , qi�) + yi� KL (qi� , qj�)

)
,

(6)and Y(n) ∶=

{
y ∈ [0, 1]n×L ∶

∑
i∈I,�∈[L]

yi� = n

}
.
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hence corresponds to an optimal (list, question) selection strategy, and to the minimal error 
rate. Further interpretations and discussions of the divergences DU

M
(i) and DA

M
(i, y) are pro-

vided later in the paper.
Algorithms. We develop algorithms with both uniform and adaptive (list, question) 

selection strategies.
(Uniform selection) In this case, for each item i and based on the collected answers, we 

build a normalized vector (of dimension L) that concentrates (when T is large) around a 
vector depending on the cluster id �(i) only. Our algorithm applies a K-means algorithm to 
these vectors (with an appropriate initialization) to reconstruct the clusters. We are able to 
establish that the algorithm almost matches our fundamental limits. More precisely, when 
T = �(n) and T = o(n2) , under our algorithm, we have, for some absolute constant C > 0,

The above error rate has an optimal scaling in T,  w, L, n. By deriving upper and lower 
bounds on DU

M
(i) ), we further show that the scaling is also optimal in (2hi − 1)2 and almost 

in �∗ (see Assumption (A1)).
(Adaptive selection) The design of our adaptive algorithm is inspired by the informa-

tion-theoretical lower bounds. The algorithm periodically updates estimates of the model 
parameters, and of the clusters. Based on these estimates, we further estimate lower bounds 
on the probabilities to misclassify every item. The items we select are those with the high-
est lower bounds (the items that are most likely to be misclassified); we further select the 
question that would be the most informative about these items. We believe that our algo-
rithm should approach the minimal possible error rate (since it follows the optimal (list, 
question) selection strategy). Our numerical experiments suggest that the adaptive algo-
rithm significantly outperforms algorithms with uniform (list, question) selection strategy, 
especially when items have very heterogenous hardnesses.

2 � Related work

To our knowledge, the model proposed in this paper has been neither introduced nor analyzed 
in previous work. The problem has similarities with crowdsourced classification problems with 
a very rich literature (Dawid & Skene, 1979; Raykar et al., 2010; Karger et al., 2011; Zhou 
et al., 2012; Ho et al., 2013; Long et al., 2013; Zhang et al., 2014; Gao et al., 2016; Ok et al., 
2016) (Dawid–Skene model and its various extensions without clustered structure), Vinayak 
and Hassibi (2016) and Gomes et al. (2011) (Clustering without item heterogeneity). However, 
our model has clear differences. For instance, if we draw a parallel between our model and 
that considered in Khetan and Oh (2016), there tasks correspond to our items, and there are 
only two clusters of tasks. More importantly, the statistics of the answers for a particular task 
do not depend on the true cluster of the task since the ground truth is defined by the majority 
of answers given by the various users. Our results also differ from those in the crowdsourcing 
literature from a methodological perspective. In this literature, fundamental limits are rarely 
investigated, and if they are, they are in the minimax sense by postulating the worst parameter 
setting (e.g., Zhang et al. 2014; Khetan and Oh 2016; Gao et al. 2016) or it is problem-specific 
but without quantifying of the error rate (e.g., Ok et al. 2016). Here we derive more precise 
problem-specific lower bounds on the error rate, i.e., we provide minimum clustering error 

(7)��
i
(n, T) ≤ exp

(
−C(2hi − 1)2�2

∗

Tw

Ln
(1 + o(1))

)
.
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rates given the model parameters (p, h) . Further note that most of the classification tasks 
studied in the literature are simple (can be solved using a single binary question).

Our problem also resembles cluster inference problems in the celebrated Stochastic 
Block Model (SBM), see (Abbe, 2018) for a recent survey. Plain SBM models, however, 
assume that the statistics of observations for items in the same cluster are identical (there 
are no items harder to cluster than others, this corresponds to hi = 1,∀i ∈ I  in our model), 
and observations are typically not operated in an adaptive manner. The closest work in the 
context of SBM to ours is the analysis of the so-called Degree-Corrected SBM, where each 
node is associated with an average degree quantifying the number of observations obtained 
for this node. The average degree then replaces our hardness parameter hi for item i. In Gao 
et al. (2018), the authors study the Degree-Corrected SBM, but deal with minimax perfor-
mance guarantees only, and non-adaptive sampling strategies.

3 � Information‑theoretical limits

3.1 � Uniform selection strategy

Recall that an algorithm � is uniformly good if for all M ∈ Ω and i ∈ I  , ��
i
(n,T) = o(1) 

as T → ∞ under T = �(n) . Assumptions (A1) and (A2) ensure the existence of uniformly 
good algorithms. The algorithm we present in Sect.  4 is uniformly good under these 
assumptions. The following theorem provides a lower bound on the error rate of uniformly 
good algorithms.

Theorem 1  If an algorithm � with uniform selection strategy is uniformly good, then for 
any M ∈ Ω satisfying (A1) and (A2), under T = �(n) , the following holds:

The proof of Theorem 1 will be presented later in this section. Theorem 1 implies that 
the global error rate of any uniformly good algorithm satisfies:

Divergence DU
M
(i) and its properties. The divergence DU

M
(i) , defined in Section 1, quanti-

fies the hardness of classifying item i. This divergence naturally appears in the change-of-
measure argument used to establish Theorem 1. To get a better understanding of DU

M
(i) , 

and in particular to assess its dependence on the various system parameters, we provide the 
following useful upper and lower bounds, proved in Appendix B:

Proposition 1  Fix i ∈ I  . Let k′ be such that:

lim inf
T→∞

Tw

n
DU

M
(i)

log(1∕��
i
(n, T))

≥ 1, ∀i ∈ I.

𝜀𝜋(n, T) ≥ exp
(
−
Tw

n
�D
U

M
(1 + o(1))

)
,

where �D
U

M
∶= −

n

Tw
log

(
1

n

∑
i∈I

exp
(
−
Tw

n
DU

M
(i)
))

and DU
M
(i) ∶= min

k�≠𝜎(i) min
h�∈[(h∗+1)∕2,1]

1

L

∑
�

KL (h�pk�� + h̄�p̄k�� , qi�) > 0.
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Then, we have:

Note that DU
M
(i) vanishes as hi goes to 1/2, which makes sense since for hi ≈ 1∕2 , 

item i is very hard to cluster. We also have DU
M
(i) = 0 when 

min h∗
2hi−1

≤c≤ 1

2hi−1

‖crk� − r�(i)‖22 = 0 . In this case, �∗ = 0 and there exists h� ∈ [(1 + h∗)∕2, 1] 

such that for some k� ≠ �(i) , 2qi� − 1 = (2 h� − 1)(2pk�� − 1) for all � ∈ [L] , so that clus-
tering item i is impossible.

Application to the simpler model of  Khetan and Oh (2016). Consider a model with 
a single question and two clusters of items. From Theorem 1, we can recover an asymp-
totic version of Theorem 2.4. in Khetan and Oh (2016).

Corollary 1  Let L = 1,K = 2 , p = (p11, p21) , and w = 1 . If an algorithm � with uniform selec-
tion strategy is uniformly good, whenever M satisfies (A1) and (A2), under T = �(n) , we have:

where C > 0 is an absolute constant.

The proof of Corollary 1 is presented in Appendix D. Corollary 1 implies,

as T → ∞ under T = �(n) . Smaller hi and |p11 − p21| imply item i is harder to clas-
sify. Note that Theorem  2.4. in Khetan and Oh (2016) (corresponds to p21 = 1 − p11 in 
our Corollary 1) provides a minimax lower bound whereas our result is problem-specific 
and hence more precise. Note that Corollary  1 also applies directly to Example  1 men-
tioned in Introduction. The lower bound on the error probability for each item i scales as 
exp(−c

T

n
(2hi − 1)2) with some constant c > 0.

Proof of Theorem 1  The proof leverages change-of-measure arguments, as those used in the 
classical multi-armed bandit problem (Lai & Herbert, 1985) or the Stochastic Block Model 
(Yun & Proutiere, 2016). Here the proof is however complicated by the fact that we wish a 
lower bound on the error rate for clustering each item.

Let � denote a uniformly good algorithm with uniform selection strategy, and let 
M ∈ Ω be a model satisfying Assumptions (A1) and (A2). In our change-of-measure, we 
denote by M the original model and by N  a perturbed model. Fix i ∈ I  , where �(i) = k . 
Let k� ∈ [K], h� ∈ [(h∗ + 1)∕2, 1] denote the minimizers for the optimization problem lead-
ing to DU

M
(i) , i.e.,

DU
M
(i) = min

h�∈[(h∗+1)∕2,1]

1

L

∑
�

KL (h�pk�� + h̄�p̄k�� , qi�).

(8)

DU
M
(i) ≤ 1

2L�
(2hi − 1)2 min

h∗
2hi−1

≤c≤ 1

2hi−1

‖crk� − r�(i)‖22,

DU
M
(i) ≥ 1

2L
(2hi − 1)2 min

h∗
2hi−1

≤c≤ 1

2hi−1

‖crk� − r�(i)‖22 .

lim inf
T→∞

T

n
C(2hi − 1)2(p11 − p21)

2

log(1∕��
i
(n, T))

≥ 1, ∀i ∈ I,

��
i
(n, T) ≥ exp

(
−
T

n
C(2hi − 1)2(p11 − p21)

2(1 + o(1))
)
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For these choices of i, k′, and h′ , we construct the perturbed model N  as follows. Under 
N  , all responses for items different than i are generated as under M . The responses for i 
under N  are generated as if i was in cluster k′ and had difficulty h′ . We can write the log-
likelihood ratio of the observation under N  to that under M as follows:

where we let q� ∶= (q�
�
)
�∈[L] with q�

�
= h�pk�� + h̄�p̄k��.

Let ℙN  and �N  (resp. ℙM = ℙ and �M = � ) denote, respectively, the probability 
measure and the expectation under N  (resp. M ). Using the construction of N  , a change-
of-measure argument provides us with a connection between the error rate on item i under 
M and the mean and the variance of L under N :

	�  ◻

Proof of (10)  The distribution of the log-likelihood L under N  satisfies: for any g ≥ 0,

Using the definition (9) of the log-likelihood ratio, we bound the first term in (11) as 
follows:

To bound the second term in (11), note that (2h� − 1) is a strictly positive constant.2 Hence, 
the perturbed model N  satisfies (A1). By the definition of the uniformly good algorithm, 
we have ℙN

{
i ∉ S�

k�

}
= o(1) . Hence:

Combining (11), (12) and (13) with g = − log(4��
i
(n, T)) , we have

DU
M
(i) =

1

L

L∑
�=1

KL (h�pk�� + h̄�p̄k�� , qi�) > 0 .

(9)L =

T∑
t=1

1[i ∈ Wt]

L∑
�=1

1[�t = �]

(
1[Xi�t = +1] log

q�
�

qi�
+ 1[Xi�t = −1] log

q̄�
�

q̄i�

)
.

(10)log(1∕��
i
(n,T)) − log 4 ≤ �N[L] +

√
2�N

[
(L − �N[L])

2
]
.

(11)
ℙN{L ≤ g} = ℙN{L ≤ g, i ∈ E�} + ℙN{L ≤ g, i ∉ E�}

≤ ℙN{L ≤ g, i ∈ E�} + ℙN{i ∉ E�}.

(12)

ℙN{L ≤ g, i ∈ E�} = �{L≤g,i∈E�}
dℙN

= �{L≤g,i∈E�}
exp(L)dℙM

≤ exp(g)ℙM{L ≤ g, i ∈ E�}

≤ exp(g)��
i
(n, T).

(13)ℙN{i ∉ E�} = ℙN

{
i ∈ S�

k

} ≤ ℙN

{
i ∉ S�

k�

} ≤ 1

4
.

2  This is true as h′ is optimized over [(h∗ + 1)∕2, 1].
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Using Chebyshev’s inequality, we obtain:

which implies ℙN

�
L ≤ 𝔼N[L] +

√
2𝔼N[(L − 𝔼N[L])

2]
� ≥ 1

2
 . Combining this result to 

(14) implies the claim (10). 	� ◻

Next, Lemma 1 provides the upper bound on mean and variance of L under the model 
N .

Lemma 1  Assume that (A2) holds. For i, i′ such that �(i) = k ≠ k� = �(i�) , under the uni-
form selection strategy, we have

The proof of this lemma is presented to Appendix  C. Note that in view the above 
lemma, the r.h.s. of (10) is asymptotically dominated by �N[L] , since �N[L] = Ω(T∕n) 
and 

�
�N

�
(L − �N[L])

2
�
= O(

√
T∕n) . Thus, Theorem 1 follows from the claim in (10) 

and Lemma 1. 	�  ◻

3.2 � Adaptive selection strategy

The derivation of a lower bound for the error rate under adaptive (list, pair) selection strate-
gies is similar:

Theorem 2  For any M ∈ Ω satisfying (A1) and (A2), and for any uniformly good algo-
rithm � with possibly adaptive (list, question) selection strategy, under T = �(n) , we have:

(14)ℙN

{
L ≤ − log ��

i
(n, T) − log 4

} ≤ 1

2
.

ℙN

�
L − 𝔼N[L] ≥

�
2𝔼N[(L − 𝔼N[L])

2]

�
≤ 𝔼N[(L − 𝔼N[L])

2]
�√

2𝔼N[(L − 𝔼N[L])
2]
�2

=
1

2
,

�N[L] =
Tw

n
DU

M
(i) , and

�N

�
(L − �N[L])

2
� ≤ Tw

Ln
log

�
1

�

� L�
�=1

KL (q�
�
, qi�) +

√
KL (qi�� , qi�) .

lim inf
T→∞

Tw

n
D̃

A

M

log(1∕��(n, T))
≥ 1,

where D̃
A

M
∶= max

y∈Y(n)
−

n

Tw
log

(
1

n

n∑
i=1

exp
(
−
Tw

n
DA

M
(i, y)

))
,

DA
M
(i, y) ∶= min

j∶�(j)≠�(i)
∑
�

(
yj� KL (qj� , qi�) + yi� KL (qi� , qj�)

)
,

and Y(n) ∶=

{
y ∈ [0, 1]n×L ∶

∑
i∈I,�∈[L]

yi� = n

}
.
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Theorem 2 implies ��(n,T) ≥ exp(−
Tw

n
D̃

A

M
(1 + o(1))).

Proof of Theorem 2  Again we use a change-of-measure argument, where we swap two items 
from different clusters. First, we prove the lower bound for the error rate of a fixed item i. 
Fix i ∈ I, let j be an item satisfying �(j) ≠ �(i) and let

DA
M
(i, y) is the value of the optimization problem:

Consider a perturbed model N′ , in which items except i and j have the same response sta-
tistics as under M , and in which item i behaves as item j, and item j behaves as item i. Let 
ℙN′ and �N′ denote, respectively, the probability measure and the expectation under N′ . 
The log-likelihood ratio of the responses under N′ and under M is:

The mean and variance of L under N′ are:

using a slight modification of Lemma 1. By a similar argument as that used in the proof of 
Theorem 1, we get:

DA
M
(i, y) =

L∑
�=1

(
yj� KL (qj� , qi�) + yi� KL (qi� , qj�)

)
.

min
j∶�(j)≠�(i)

∑
�

(
yj� KL (qj� , qi�) + yi� KL (qi� , qj�)

)
.

(15)

L =

T∑
t=1

1[i ∈ Wt]

L∑
�=1

1[�t = �]

(
1[Xi�t = +1] log

qj�

qi�
+ 1[Xi�t = −1] log

q̄j�

q̄i�

)

+

T∑
t=1

1[j ∈ Wt]

L∑
�=1

1[�t = �]

(
1[Xj�t = +1] log

qi�

qj�
+ 1[Xj�t = −1] log

q̄i�

q̄j�

)
.

�N� [L] =

L∑
�=1

(
�N� [Yi�]KL (qj� , qi�) + �N� [Yj�]KL (qi� , qj�)

)

=
Tw

n

L∑
�=1

(
yj� KL (qj� , qi�) + yi� KL (qi� , qj�)

)

=
Tw

n
DA

M
(i, y),

�N�

[
(L − �N[L])

2
] ≤ log

(
1

�

) L∑
�=1

�N� [Yi�]
(
KL (qj� , qi�) +

√
KL (qj� , qi�)

)

+ log

(
1

�

) L∑
�=1

�N� [Yj�]
(
KL (qi� , qj�) +

√
KL (qi� , qj�)

)

=
Tw

n
log

(
1

�

) L∑
�=1

yj�

(
KL (qj� , qi�) +

√
KL (qj� , qi�)

)

+
Tw

n
log

(
1

�

) L∑
�=1

yi�

(
KL (qi� , qj�) +

√
KL (qi� , qj�)

)
,
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as is in (10). Note that the r.h.s. of (16) is asymptotically dominated by �N� [L] as 
�N� [L] = Ω(T∕n) and 

�
�N�

�
(L − �N� [L])2

�
= O(

√
T∕n) . That is,

We deduce that ��
i
(n,T) ≥ exp

(
−

Tw

n
DA

M
(i, y)(1 + o(1))

)
 . Thus, from the definition of D̃A

M
 , 

we have:

Taking the logarithm of the previous inequality, we conclude the proof. 	�  ◻

4 � Algorithms

In this section, we describe our algorithms for both uniform and adaptive (list, question) 
selection strategies.

Algorithm 1   Uniform (list, question) selection.

(16)log(1∕��
i
(n, T)) − log 4 ≤ �N� [L] +

√
2�N�

[
(L − �N� [L])2

]
,

�N� [L] +

√
2�N�

[
(L − �N� [L])2

]
=

Tw

n
DA

M
(i, y)(1 + o(1)) .

��(n, T) =
1

n

∑
i∈I

��
i
(n, T)

=
1

n

∑
i∈I

exp
(
−
Tw

n
DA

M
(i, y)(1 + o(1))

)

≥ exp
(
−
Tw

n
DA

M
(1 + o(1))

)
,
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4.1 � Uniform selection strategy

In this case, we assume that with a budget of T users, each item receives the same 
amount of answers for each question. After gathering these answers, we have to exploit 
the data to estimate the clusters. To this aim, we propose an extension of the K-means 
clustering algorithm, that efficiently leverages the problem structure. The pseudo-code 
of the algorithm is presented in Algorithm 1.

The algorithm first estimates the parameters q
�i : the estimator q̂

�i just counts the 
number of times item i has received a positive answer for question � . We denote by 
q̂i = (q̂

�i)� the resulting vector. By normalizing the vector 2q̂i − 1 , we can decouple the 
nonlinear relationship between q , h and p . Let r̂i = 2q̂i−1

‖2q̂i−1‖ be the normalized vector. 

Then, r̂i concentrates around r̃�(i) ∶= r�(i)∕‖r�(i)‖ . Importantly, the normalized vector 
r̃�(i) does not depend on hi but on the cluster index �(i) only. The algorithm exploits this 
observation, and applies the K-means algorithm to cluster the vectors r̂i . By analyzing 
how r̂i concentrates around r̃�(i) and by applying the results to our properly tuned algo-
rithm (decision thresholds), we establish the following theorem.

Theorem 3  Assume T = �(n) and T = o(n2) . Under Algorithm 1, we have,

We will present the proof of Theorem 3 later in this section. In view of Proposition 1 
and the lower bounds derived in the previous section, we observe that the exponent for 
the mis-classification error of item i has the correct dependence in Tw/Ln and the tight-
est possible scaling in the hardness of the item, namely (2hi − 1)2 . Also note that using 
Proposition 1, the equivalence between the �∞-norm and the Euclidean norm, and (A1), 
we have: DU

M
(i) ≥ C

(2hi−1)
2

L
�2
∗
 , for some absolute constant C > 0 . Hence, Algorithm  1 

has a performance scaling optimally w.r.t. all the model parameters.
The computational complexity of Algorithm 1 is O(n2) . By choosing a small ( log n ) 

subset of items (and not all the items in I  ) to compute centroids ( Ti ), it is possible to 
reduce the computational complexity to O(n log n) . This would not affect the perfor-
mance of the algorithm in practice, but would result in worse performance guarantees.

Proof of Theorem  3  In this proof, we let � = ⌊ Tw

nL
⌋ be the number of times question � is 

asked for item i. We also denote by � ∶= (�1,… , �K) the fractions of items that are in 
the various clusters, i.e., |Ik| = �kn . Without loss of generality, and to simplify the nota-
tion, we assume that the set of misclassified items is E = ∪K

k=1
(Ik ⧵ Sk) , where recall that 

{Sk}k∈[K] is the output of the algorithm (i.e., the permutation � in the definition of this set is 
just the identity).

The proof proceeds in three steps: (i) we first decompose the probability of clustering 
error for item i, using the design of the algorithm and Assumptions (A1) and (A2). We 
show that this probability can be upper bounded by the probabilities of events related to 
‖r̂i −�r𝜎(i)‖ and ‖�k − r̃k‖ for all k, where recall that r̃k ∶= rk∕‖rk‖ . The remaining steps of 
the proof aim at bounding the probabilities of these events. Towards this objective, (ii) in 
the second step, we establish a concentration result on ‖r̂i −�r𝜎(i)‖ , and (iii) the last step 
upper bound ‖�k − r̃k‖.

(17)�i(n, T) ≤ exp

(
−
(2hi − 1)2�2

∗

200

Tw

Ln
(1 + o(1))

)
.
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Step 1. Error probability decomposition. The algorithm classifies item i to the cluster k 
minimizing the distance between r̂i and �k . As a consequence, we have:

where the two above inequalities are obtained by simply applying the triangle inequality. 
Now observe that in view of Assumptions (A1) and (A2), we have: for k� ≠ �(i),

We deduce that:

Step 2. Concentration of r̂i and upper bound on (a). We prove the following lemma, a con-
sequence of a concentration result of q̂i : 	�  ◻

Lemma 2  Let 0 < 𝜀 ≤ ‖2qi−1‖
16

 , r̃i = r�(i)

‖r�(i)‖ , and r̃k =
rk

‖rk‖ . For each i ∈ I ,

with probability at least 1 − −2 L exp
(
−2��2

)
.

The proof of Lemma 2 is presented at Appendix E. Note that by definition of �∗ , we have:

Applying Lemma 2 with 𝜀 =
(2hi−1)𝜌∗

20
<

‖2qi−1‖
16

 , we obtain an upper bound on the term (a):

ℙ{i ∈ E} = ℙ

�
‖r̂i − 𝜉𝜎(i)‖ ≥ min

k�≠𝜎(i) ‖r̂
i − 𝜉k�‖

�

≤ ℙ

�
‖r̂i −�r𝜎(i)‖ + ‖�r𝜎(i) − 𝜉𝜎(i)‖ ≥ min

k�≠𝜎(i)
�‖r̂i −�rk�‖ − ‖�rk� − 𝜉k�‖

��

≤ ℙ
�
∃k� ≠ 𝜎(i) ∶ ‖�r𝜎(i) − 𝜉𝜎(i)‖ + ‖�rk� − 𝜉k�‖ + 2‖r̂i −�r𝜎(i)‖ ≥ ‖�r𝜎(i) −�rk�‖

�
,

‖̃r�(i) − r̃k�‖ =
1

‖r�(i)‖
�����
r�(i) −

‖r�(i)‖
‖rk�‖ rk�

�����
≥ �∗

‖r�(i)‖ =
�∗

‖2p�(i) − 1‖ ≥ �∗
�2� − 1� .

ℙ{i ∈ E} ≤ ℙ

�
∃k� ≠ 𝜎(i) ∶ ‖�r𝜎(i) − 𝜉𝜎(i)‖ + ‖�rk� − 𝜉k�‖ + 2‖r̂i −�r𝜎(i)‖ ≥ 𝜌∗

‖2p𝜎(i) − 1‖
�
,

≤ ℙ

�
‖r̂i −�r𝜎(i)‖ ≥ 𝜌∗

4‖2p𝜎(i) − 1‖ or max
1≤k�≤K ‖𝜉k� −�rk�‖ ≥ 𝜌∗

4‖2p𝜎(i) − 1‖
�

≤ ℙ

�
‖r̂i −�r𝜎(i)‖ ≥ 𝜌∗

4‖2p𝜎(i) − 1‖
�

�������������������������������������������������
term (a)

+

K�
k�=1

ℙ

�
‖𝜉k� −�rk�‖ ≥ 𝜌∗

4�2𝜂 − 1�
�

�������������������������������������������������
term (b)

.

‖r̂i −�ri‖ ≤ 5𝜀

‖2qi − 1‖ ,

(2hi − 1)�∗ ≤ (2hi − 1)‖r�(i)‖ = ‖2qi − 1‖.
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Step 3. Upper bound of the term (b). Next, we establish the following claim:

To this aim, we first show that a large fraction of the items satisfy ‖r̂v −�rv‖ ≤ 1

4

�
n

T

� 1

4 . 

Applying Lemma 2 with � =
‖2qi−1‖

20

�
n

T

� 1

4 , we get:

Define pmax ∶= maxv∈Ik ℙ

�
‖r̂v −�rv‖ ≥ 1

4

�
n

T

� 1

4

�
 . Then from (19), 

pmax ≤ exp

(
−Θ

((
T

n

) 1

2

))
 . Further define S as the number of the items in I  that satisfy 

‖r̂v −�rv‖ ≤ 1

4

�
n

T

� 1

4 , i.e., S =
∑

v∈I 1{‖r̂v−�rv‖≥ 1

4
(
n

T
)
1
4 }

 . Since r̂1,… , r̂n are independent ran-

dom variables, 1
{‖r̂1−�r1‖≥ 1

4
(
n

T
)
1
4 }
,… ,1

{‖r̂n−�rn‖≥ 1

4
(
n

T
)
1
4 }

 are independent Bernoulli random var-

iables. From Chernoff bound, we get:

ℙ

�
‖r̂i −�r𝜎(i)‖ ≥ 𝜌∗

4‖2p𝜎(i) − 1‖
�

= ℙ

�
‖r̂i −�r𝜎(i)‖ ≥ 5

(2hi − 1)‖(2p𝜎(i) − 1)‖
(2hi − 1)𝜌∗

20

�

= ℙ

�
‖r̂i −�r𝜎(i)‖ ≥ 5

‖2qi − 1‖
(2hi − 1)𝜌∗

20

�

≤ 2L exp

�
−
(2hi − 1)2𝜌2

∗

200

Tw

Ln

�

= exp

�
−
(2hi − 1)2𝜌2

∗

200

Tw

Ln
(1 + o(1))

�
.

(18)
K�

k�=1

ℙ

�
‖�k� − r̃k�‖ ≥ �∗

4�2� − 1�
�

≤ exp

�
−n

�
Θ

�
(T∕n)

1

2

log (T∕n)

���
.

(19)

ℙ

�
‖r̂i −�ri‖ ≥ 1

4

�
n

T

� 1

4

�
= ℙ

�
‖r̂i −�ri‖ ≥ 5

‖2qi − 1‖
‖2qi − 1‖

20

�
n

T

� 1

4

�

≤ 2L exp

�
−
‖2qi − 1‖2

200

w

L

�
T

n

� 1

2

�

≤ 2L exp

�
−
h2
∗
𝜌2
∗
w

200L

�
T

n

� 1

2

�
.
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where for (i), we set � = log
1

pmax

 . Therefore, to prove (18), it suffices to show that:

Assume that S ≤ n

log
(

T

n

) . Then, every v having min1≤k≤K ‖r̂v −�rk‖ ≥ 2
�

n

T

� 1

4 cannot be a 

center node (i.e., one the i∗
k
 for k = 1,… ,K ). This is due to the following facts: 

	 (i)	 |Tv| ≤ n

log
(

T

n

) when min1≤k≤K ‖r̂v −�rk‖ ≥ 2
�

n

T

� 1

4 , since for all w such that 

‖r̂w −�rw‖ ≤ 1

4
(
n

T
)
1

4 , ‖r̂v − r̂w‖ ≥ ‖r̂v −�rw‖ − ‖�rw − r̂w‖ ≥ 3

2

�
n

T

� 1

4

.

	 (ii)	 |Tv| ≥ �kn −
n

log
(

T

n

) when 
‖r̂v −�rk‖ ≤ 1

2

�
n

T

� 1

4

 , since for all w ∈ Ik such that 

‖r̂w −�rw‖ ≤ 1

4
(
n

T
)
1

4 , ‖r̂v − r̂w‖ ≤ ‖r̂v −�rk‖ + ‖�rk − r̂w‖ ≤ 3

4

�
n

T

� 1

4

.

Therefore, when T
n
= �(1),

ℙ

⎧
⎪⎨⎪⎩
S ≥ n

log
�

T

n

�
⎫
⎪⎬⎪⎭
≤ inf

𝜆>0

𝔼[exp(𝜆S)]

exp

�
𝜆 n

log
�

T

n

�
� ≤ inf

𝜆>0

(1 + pmax(e
𝜆 − 1))n

exp

�
𝜆 n

log
�

T

n

�
�

≤ inf
𝜆>0

exp

⎛
⎜⎜⎜⎝
npmax(e

𝜆 − 1) − 𝜆
n

log
�

T

n

�
⎞
⎟⎟⎟⎠

(i)≤ exp

⎛⎜⎜⎜⎝
npmax

�
1

pmax

− 1

�
− log

1

pmax

n

log
�

T

n

�
⎞⎟⎟⎟⎠

= exp

�
−n

�
Θ

�
(T∕n)

1

2

log (T∕n)

�
+ pmax − 1

��

≤ exp

�
−n

�
Θ

�
(T∕n)

1

2

log (T∕n)

���

max
1≤k≤K ‖�k − r̃k‖ ≤ �∗

4�2� − 1� when S ≤ n

log
�

T

n

� .
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Let Rk denote the set of items Sk before computing �k ( Sk used for the calculation of �k ) 
– see the algorithm. Then, from (20) and the definition of Sk before computing �k,

From the above inequality and Jensen’s inequality,

Therefore, when T = �(n),

which concludes the proof of (18).
The proof of theorem is completed by remarking that when T = o(n2) , then

This implies that the upper bound we derived for the term (a) is dominating the upper 
bound of the term (b). Finally,

	�  ◻

(20)‖r̂i∗
k
−�rk‖ ≤ 2

�
n

T

� 1

4

.

‖r̂v −�rk‖ ≤ ‖r̂v − r̂i∗
k
‖ + ‖r̂i∗

k
−�rk‖ ≤ 3

�
n

T

� 1

4

for all v ∈ Rk.

‖𝜉k −�rk‖ =
�����

∑
v∈Rk

r̂v

�Rk� −�rk

�����
≤ 1

�Rk�

��
v∈Rk

‖r̂v −�rk‖
�

≤ 3
�
n

T

� 1

4

.

max
1≤k≤K ‖�k − r̃k‖ ≤ �∗

4�2� − 1� when S ≤ n

log
�

T

n

� ,

T

n
= o

(
n

(T∕n)
1

2

log (T∕n)

)
.

ℙ{i ∈ E} ≤ exp

(
−
(2hi − 1)2�2

∗

200

Tw

Ln
(1 + o(1))

)
.
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4.2 � Adaptive selection strategy

Algorithm 2   Adaptive Clustering Algorithm.

Our adaptive (item, question) selection and clustering algorithm is described in Algorithm 2. 
The design of the adaptive (item, question) selection strategy is inspired by the derivation 
of the information-theoretical error lower bounds. The algorithm maintains estimates of the 
model parameters p and h and of the clusters {Ik}k∈[K] . These estimates, denoted by p̂ , ĥ , and 
{Sk}k∈[K] , respectively, are updated every � = T∕(4 log(T∕n)) users. More precisely, we use 
Algorithm 1 to compute {Sk}k∈[K] , and from there, we update the estimates as:

where Yi� is the number of times where question � has been asked for item i so far, and 
where 𝜎̂(i) corresponds to the estimated cluster of i (i.e., i ∈ S𝜎̂(i) ). Let Y ∶= (Yi�)i∈I,�∈[L].

Now using the same arguments as those used to derive error lower bounds, we may esti-
mate that after seeing the t-th user, a lower bound on the mis-classification error for item i 
is exp

(
−d̂i(Y)

)
 , where

p̂k� =
1

2

�∑
i∈Sk

(2q̂i� − 1)

�Sk� + 1

�
,

ĥi = argmin
h�∈[1∕2,1]

��
�∈[L]

Yi� KL (h�p̂𝜎̂(i)� + h̄� ̄̂p𝜎̂(i)� , q̂i�)

�
,



2751Machine Learning (2024) 113:2733–2764	

1 3

The above lower bounds are heuristic in nature, as they are based solely on estimated 
parameters and clusters. These are derived from the divergence DA

M
(i, y) using (5), with a 

particular emphasis on the adjustable parameters for item i. This approach takes a pessi-
mistic view of the hardness parameters, with the exception of those for item i. Revisiting 
the scenario of Example 1, there is only one question ( L = 1 ) and the adaptability of the 
algorithm is principally determined by how the budget T is allocated among the items. 
Observe that, when hi is estimated to be small, the value of 
KL (h�p̂k�� + h̄� ̄̂pk�� , ĥip̂𝜎̂(i)� +

̄̂
hi
̄̂p𝜎̂(i)�) tends to be small. Conversely, when hi is estimated 

to be large, the value of KL (h�p̂k�� + h̄� ̄̂pk�� , ĥip̂𝜎̂(i)� +
̄̂
hi
̄̂p𝜎̂(i)�) tends to be large. Therefore, 

the more difficult the item i is, the greater the need for a larger Yi1 , and the higher the 
frequency of it being selected. Analyzing the accuracy of these lower bounds is particularly 
challenging (it is hard to analyze the estimated item hardness ĥi ). Using these estimated 
lower bounds, we select the items and the question to be asked next. We put in the list Wt 
the w items with the smallest d̂i(Y) . The question � is chosen to maximize the term: 
mink�≠𝜎̂(i∗) KL (h�

i∗
p̂k�� + h�

i∗
̄̂pk�� , ĥi∗ p̂𝜎̂(i∗)� +

̄̂
hi∗

̄̂p𝜎̂(i∗)�), where i∗ = argmin
i∈I

d̂i(Y) (see 

Algorithm 2 for the details). Note that the question is selected by considering the item i∗ 
that seems to be the most difficult to classify.

Note that in order to reduce the computational complexity of the algorithm, we may 
replace the KL function in the definition of di by a simple quadratic function (as suggested 
in the proof of Proposition 1). This simplifies the minimization problem over h′ to find h′

i
 . 

We actually have an explicit expression for h′
i
 with this modification.

The computational complexity of the adaptive algorithm (Algorithm 2 in Appendix) is: 
O(n2T∕�) = O(n2 log(T∕n)) . As in the uniform case, by choosing a small ( log n ) subset of 
items (and not all the items in I  ) to compute centroids ( Ti ), one can reduce the computa-
tional complexity to: O(n log(n) log(T∕n)). We provide experimental evidence on the supe-
riority of our adaptive algorithm in the following sections.

5 � Numerical experiments: synthetic data

In this section, we evaluate the performance of our algorithms on synthetic data. We con-
sider different models. the problem investigated here is different from those one may find 
in the crowdsourcing or Stochastic Block Model literature. Hence, we cannot compare our 
algorithms to existing algorithms developed in this literature. Instead we focus on compar-
ing the performance of our nonadaptive and adaptive algorithms.

Model 1: heterogeneous items with dummy questions: Consider n = 1000 items and 
two clusters ( K = 2 ) of equal sizes. The hardness of the items are i.i.d., picked uniformly 
at random in the interval [0.55, 1]. We ask each user to answer one of four questions. The 
answers’ statistics are as follows: for cluster k = 1 , p1 = (0.01, 0.99, 0.5, 0.5) and for cluster 
k = 2 , p2 = (0.99, 0.01, 0.5, 0.5) . Note that only half of the questions ( � = 1, 2 ) are use-
ful; the other questions ( � = 3, 4 ) generate completely random answers for both clusters. 
Figure 2 (top) plots the error rate averaged over all items and over 100 instances of our 

d̂i(Y) ∶= min
k�≠𝜎̂(i) min

h�∈[1∕2,1]

L∑
�=1

Yi� KL (h�p̂k�� + h̄� ̄̂pk�� , ĥip̂𝜎̂(i)� +
̄̂
hi
̄̂p𝜎̂(i)�) .
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algorithms. Under both algorithms, the error rate decays exponentially with the budget T, 
as expected from the analysis. Selecting items and questions in an adaptive manner brings 
significant performance improvements. For example, after collecting the answers from 
t = 200k , the adaptive algorithm recovers the clusters exactly for most of the instances, 
whereas the algorithm using uniform selection does not achieve exact recovery even with 
t = 1000k users. In particular, the adaptive algorithm is able to reduce the error rates on 
the 20% most difficult items, i.e., items that have the 20% smallest hi . In Fig. 2 (bottom), 
we present the error rate of these items. The error rates for these most difficult items are 
significantly reduced by being adaptive. In Fig. 3, we present the evolution over time of the 

Fig. 2   Model 1: (top) Global error rate vs. number of users. (bottom) Error rate for the 20% most difficult 
items vs. number of users. One standard deviations are shown using shaded areas
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budget allocation observed under our adaptive algorithm. We group items and questions 
into four categories. For example, one category corresponds to the question � = 1, 2 and to 
the 20% most difficult items. As expected, the adaptive algorithm learns to select relevant 
questions ( � = 1, 2 ) with hard items more and more often as time evolves.

Model 2: heterogeneous items without dummy questions.  This model is simi-
lar to Model 1, except that we remove the dummy questions � = 3, 4 , i.e., we set 
p1 = (0.01, 0.99) and p2 = (0.99, 0.01) . The performance of our algorithms are shown in 

Fig. 3   Model 1: The budget allocation under the adaptive algorithm vs. number of users. Items and ques-
tions are grouped into 4 categories, e.g. (0 − 20%,� = 1, 2) is the category regrouping the 20% most diffi-
cult items and questions � = 1, 2 . One standard deviations are shown using shaded areas

Fig. 4   Model 2: Global error rate vs. number of users. One standard deviations are shown using shaded 
areas
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Fig. 4. Overall, compared to Model 1, the error rates are better. For example, exact cluster 
recovery is achieved using only 100k users for almost all instances.

Model 3: homogeneous items with dummy questions. Here we study the homo-
geneous scenario where all items have the same hardness: hi = 1,∀i ∈ I  . We still have 
1000 items grouped into two clusters of equal sizes. We set p1 = (0.3, 0.2, 0.2, 0.2) , 
p2 = (0.7, 0.2, 0.2, 0.2) (question � = 2, 3, 4 are useless). The performance of the algo-
rithms is shown in Fig. 5. The adaptive algorithm exhibits better error rates than the algo-
rithm with uniform selection, although the improvement is not as spectacular as in het-
erogeneous models where adaptive algorithms can gather more information about difficult 
items. In homogeneous models, the adaptive algorithm remains better because it selects 
questions wisely.

6 � Numerical experiments: real‑world data

Finally, we use real-world data to assess the performance of our algorithms. Finding data 
that would fit our setting exactly (e.g. several possible questions) is not easy. We restrict 
our attention here to scenarios with a single question, but with items with different 
hardnesses. We use the waterbird dataset by Welinder et al. (2010). This dataset contains 

Fig. 5   Model 3: Global error rate vs. number of users. One standard deviations are shown using shaded 
areas
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50 images of Mallards (a kind of duck) and 50 images of Canadian Goose (not a duck). The 
dataset reports the feedback of 40 users per image, collected using Amazon Mturk: each 
user is asked whether the image is that of a duck. This scenario mirrors the one outlined 
in Example  1 in Introduction. Each image is unique in the sense that the orientation of 
the animal varies, the brightness and contrasts are different, etc. We hence have a good 
heterogeneity in terms of item hardness. Actually, the classification task is rather difficult, 
and the users’ answers seem very noisy – overall answers are correct 76% of the time.

From this small dataset, we generated a larger dataset containing 1000 images (by 
just replicating images). To emulate the sequential nature of our clustering problem, in 
each round, we pick a user uniformly at random (with replacement), and observe her 
answers to the selected images.

The error rates of both algorithms are shown in Fig.  6. The global error rate is 
averaged over 100 instances. Both algorithms have rather low performance, which can 
be explained by the inherent hardness of the learning task. The adaptive algorithm 
becomes significantly better after t = 20k users. this can be explained as follows. The 
adaptive algorithm needs to estimate the hardness of items before being efficient. Until 
the algorithm gathers enough answers on item i, its estimate of ĥi remains close to 0.5. 
As a consequence, the algorithm continues to pick items uniformly at random. As soon 
as the algorithm gets better estimates of the items’ hardnesses, it starts selecting items 
with strong preferences.

7 � Conclusion

In this paper, we analyzed the problem of clustering complex items using very simple 
binary feedback provided by users. A key aspect of our problem is that it takes into 
account the fact that some items are inherently more difficult to cluster than some others. 
Accounting for this heterogeneity is critical to get realistic models, and is unfortunately 

Fig. 6   Real-World data: global error rate vs. number of users. One standard deviations are shown using 
shaded areas
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not investigated often in the literature on clustering and community detection (e.g. that 
on Stochastic Block Model). The item heterogeneity also significantly complicates any 
theoretical development.

For the case where data is collected uniformly (each item receives the same amount 
of user feedback), we derived a lower bound of the clustering error rate for any individ-
ual item, and we developed a clustering algorithm approaching the optimal error rate. 
We also investigated adaptive algorithms, under which the user feedback is received 
sequentially, and can be adapted to past observations. Being adaptive allows to gather 
more feedback for more difficult items. We derived a lower bound of the error rate that 
holds for any adaptive algorithm. Based on our lower bounds, we devised an adaptive 
algorithm that smartly select items and the nature of the feedback to be collected. We 
evaluated our algorithms on both synthetic and real-world data. These numerical experi-
ments support our theoretical results, and demonstrate that being adaptive leads to dras-
tic performance gains.

Appendix A: Table of notations

Problem-specific notations

I Set of items
Ik Set of items in the item cluster k
n Number of items
K Number of item clusters
�(i) Cluster index of item i
�∶=(�1,… , �K ) Fractions of items in each cluster
w The number of items presented at the same time
Wt Set of items presented to the t-th user
L Number of possible questions
�t Question asked to the t-th user
T Total number of user arrivals within the time horizon
p∶=(pk�)k∈[K],�∈[L] Statistical parameterization of items in cluster k for the question �
h∶=(hi)i∈I Hardness parameter for item i
M Statistical models parameterized by (p,h)
Xi�t Binary feedback from t-th user for item i and for question �
qi�∶=hipk� − h̄ip̄k� Probability of positive answer to item i for question �
h∗ Minimum hardness across items, see Assumption (A1)
�∗ Minimum separation between different clusters, see Assumption (A1)
� Homogeneity parameter among clusters, see Assumption (A2)
Ω Set of all models satisfying Assumptions (A1) and (A2)
rk� Value of 2pk� − 1

E� Set of misclassified items by the algorithm �
��
i
(n,T) Probability that the item i is misclassifed after the T-th user arrived under the algo-

rithm �
��(n,T) Expected proportion of misclassified items after the T-th user arrived under the algo-

rithm �
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Problem-specific notations

Yi� Number of times the item i is presented together with the question �
yi� Normalized expected number of times the question � is asked for the item i under 

some fixed algorithm
DU

M
(i) Divergence for the misclassification of item i with the model M under uniform item 

selection strategy

D̃
U

M
Global divergence with the model M under uniform item selection strategy

DA
M
(i, y) Divergence for the misclassification of item i with the model M under some adaptive 

item selection strategy satisfying � [Yi�] =
Tw

n
yi�

D̃
A

M
Global divergence with the model M under the optimal adaptive item selection 

strategy

 

Generic notations

â Estimated value of a
[a] Set of positive integers upto a, i,e., {1,… , a}

1{A} Indicator function: 0 when A is false, 1 when A is true
‖x‖ �∞ norm of x , i.e., ‖x‖ = maxi xi

‖x‖2 �2 norm of x
ā Value of 1 − a

ℙ(A) Probability that event A occurs
� [a] Expected value of a
KL(a, b) Kullback–Leibler divergence between Bernoulli 

distributions with means a and b

Appendix B: Proof of Proposition 1

For given i ∈ I  , let k = �(i) and k� ∈ [K] be such that:

DU
M
(i) = min

h�∈[(h∗+1)∕2,1]

1

L

L∑
�=1

KL (h�pk�� + h̄�p̄k�� , qi�) .
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Upper bound. Recalling the definition of qi� ∶= hipk� + h̄ip̄k� , it follows that for any 
h� ∈ [(h∗ + 1)∕2, 1],

where the second inequality is from the comparison between the KL divergence from �2

-divergence and the third inequality is from (A2), i.e., qi� ∈ [�, 1 − �] . Now observing that 
h� ∈ [(h∗ + 1)∕2, 1] implies h∗

2hi−1
≤ 2 h�−1

2hi−1
≤ 1

2hi−1
. Taking the minimum over 

h� ∈ [(h∗ + 1)∕2, 1] , we obtain the upper bound.
Lower bound. Using Pinsker’s inequality, we obtain:

where for the last inequality, we again use the fact that h� ∈ [(h∗ + 1)∕2, 1] implies 
h∗

2hi−1
≤ 2 h�−1

2hi−1
≤ 1

2hi−1
 . This completes the proof of Proposition 1. Note that we can further 

write:

using the relationship between the �∞-norm and the Euclidean norm and (A1). 	�  ◻

DU
M
(i) ≤ 1

L

L∑
�=1

KL (h�pk�� + h̄�p̄k�� , hipk� + h̄ip̄k�)

≤ 1

L

L∑
�=1

((h�pk�� + h̄�p̄k��) − (hipk� + h̄ip̄k�))
2

(
1

qi�
+

1

q̄i�

)

≤ 2

L𝜂

L∑
�=1

((h�pk�� + h̄�p̄k��) − (hipk� + h̄ip̄k�))
2

=
2

L𝜂

L∑
�=1

(
(2h� − 1)(2pk�� − 1) + 1

2
−

(2hi − 1)(2pk� − 1) + 1

2

)2

=
1

2L𝜂
(2hi − 1)2

‖‖‖‖
2h� − 1

2hi − 1
rk� − rk

‖‖‖‖
2

2

.

DU
M
(i) ≥ 2

L

L∑
�=1

||(h�pk�� + h̄�p̄k��) − (hipk� + h̄ip̄k�)
||2

=
1

2L

L∑
�=1

||(2h� − 1)(2pk�� − 1) − (2hi − 1)(2pk� − 1)||2

=
1

2L
‖‖(2h� − 1)rk� − (2hi − 1)rk

‖‖22
=

(2hi − 1)2

2L

‖‖‖
(
2h� − 1

2hi − 1

)
rk� − rk

‖‖‖
2

2

≥ (2hi − 1)2

2L
min

h∗
2hi−1

≤ 2h�−1

2hi−1
≤ 1

2hi−1

‖‖crk� − rk
‖‖22 ,

DU
M
(i) ≥ 1

2L
(2hi − 1)2 min

h∗
2hi−1

≤ 2h�−1

2hi−1
≤ 1

2hi−1

‖‖crk� − rk
‖‖22

≥ 1

2L
(2hi − 1)2�2

∗
,
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Appendix C: Proof of Lemma 1

�N[L] can be obtained as follows:

To bound the variance of L , we first decompose L2 as follows:

where 
Lt ∶= 1[i ∈ Wt]

∑L

�=1
1[�t = �]

�
1[Xi�t = +1] log

q�
�

qi�
+ 1[Xi�t = −1] log

q̄�
�

q̄i�

�
 . We 

compute L2
t
 as follows:

where the last inequality follows from the fact that qi� ∈ [�, 1 − �] under (A2), i.e., 
log

q′
�

qi�
≤ log

1

�
 and log q̄′

�

q̄i�
≤ log

1

𝜂
 . We deduce that:

(21)

�N[L] =

L∑
�=1

T∑
t=1

1[i ∈ Wt and �t = �]�N

[
1[Xi�t = +1] log

q�
�

qi�
+ 1[Xi�t = −1] log

q̄�
�

q̄i�

]

=

L∑
�=1

Tw

Ln

(
q�
�
log

q�
�

qi�
+ q̄�

�
log

q̄�
�

q̄i�

)

=
Tw

Ln

L∑
�=1

KL (q�
�
, qi�))

=
Tw

n
DU

M
(i) .

L2 =

T∑
t=1

L2
t
+
∑
t≠t�

LtLt� ,

(22)

L2
t
= 1[i ∈ Wt]

L�
�=1

1[�t = �]

�
1[Xi�t = +1] log

q�
�

qi�
+ 1[Xi�t = −1] log

q̄�
�

q̄i�

�2

= 1[i ∈ Wt]

L�
�=1

1[�t = �]

⎛⎜⎜⎝
1[Xi�t = +1]

�
log

q�
�

qi�

�2

+ 1[Xi�t = −1]

�
log

q̄�
�

q̄i�

�2⎞⎟⎟⎠

≤ log(1∕𝜂)1[i ∈ Wt]

L�
�=1

1[�t = �]

�
1[Xi�t = +1]

�����
log

q�
�

qi�

�����
+ 1[Xi�t = −1]

�����
log

q̄�
�

q̄i�

�����

�
,

(23)

�N

�
T�
t=1

L2
t

�
=

T�
t=1

�N

�
L2
t

�

≤
T�
t=1

�N

�
log(1∕𝜂)1[i ∈ Wt]

L�
�=1

1[�t = �]

�
1[Xi�t = +1]

�����
log

q�
�

qi�

�����
+ 1[Xi�t = −1]

�����
log

q̄�
�

q̄i�

�����

��

= log(1∕𝜂)

L�
�=1

T�
t=1

1[i ∈ Wt and �t = �]�N

�
1[Xi�t = +1]

�����
log

q�
�

qi�

�����
+ 1[Xi�t = −1]

�����
log

q̄�
�

q̄i�

�����

�

= log(1∕𝜂)
Tw

Ln

L�
�=1

�
KL (qi�� , qi�) +

√
KL (qi�� , qi�)

�
,
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where for the last inequality, we used the Pinsker’s inequality. Moreover we can compute 
the expectation of 

∑
t≠t′ LtLt′ as follows:

where for the last equality, we use the expression (21) of �N[L] . Combining (23) with the 
above, it follows that:

	�  ◻

Appendix D: Proof of Corollary 1

We have:

�N

[∑
t≠t�

LtLt�

]
=
∑
t≠t�

�N

[
LtLt�

]

=
∑
t≠t�

�N

[
1[i ∈ Wt]

L∑
𝓁=1

1[𝓁t = 𝓁]

(
1[Xi𝓁t = +1] log

q�
𝓁

qi𝓁
+ 1[Xi𝓁t = −1] log

q̄�
𝓁

q̄i𝓁

)]

⋅ �N

[
1[i ∈ Wt� ]

L∑
𝓁�=1

1[𝓁t� = 𝓁
�]

(
1[Xi𝓁�t� = +1] log

q�
𝓁�

qi𝓁�

+ 1[Xi𝓁�t� = −1] log
q̄�
𝓁�

q̄i𝓁�

)]

=
∑
t≠t�

1[i ∈ Wt and i ∈ Wt� ]

L∑
𝓁=1

L∑
𝓁�=1

1[𝓁t = 𝓁 and 𝓁t� = 𝓁
�]KL (q�

𝓁
, qi𝓁)KL (q�

𝓁� , qi𝓁� )

=

L∑
𝓁=1

L∑
𝓁�=1

T(T − 1)
(
w

Ln

)2

KL (q�
𝓁
, qi𝓁)KL (q�

𝓁� , qi𝓁� )

= T(T − 1)
(
w

Ln

)2

(
L∑

𝓁=1

KL (q�
𝓁
, qi𝓁)

)(
L∑

𝓁�=1

KL (q�
𝓁� , qi𝓁� )

)

= T(T − 1)
(
w

Ln

)2

(
L∑

𝓁=1

KL (q�
𝓁
, qi𝓁)

)2

= �N[L]
2 − T

(
w

Ln

)2

(
L∑

𝓁=1

KL (q�
𝓁
, qi𝓁)

)2

,

�N

�
(L − �N[L])

2
�
= �N[L

2] − �N[L]
2 ≤ Tw

Ln
log(1∕�)

L�
�=1

KL (q�
�
, qi�) +

√
KL (qi�� , qi�) .
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where (a) stems from the relationship between the KL divergence and the �2-divergence 
and (b) is from (A2). Combining this inequality and Theorem 1 yield Corollary 1. 	�  ◻

Proof of Lemma 2

We use Hoeffding’s inequality to establish the lemma.

Theorem 4  (Hoeffding’s inequality for bounded independent random variables (Theorem 1 
of Hoeffding (1963))) Let X1,… ,Xn be independent random variables with values in [0, 1]. 
Denote � = �

�
1

n

∑n

i=1
Xi

�
. Then, for any t ≥ 0,

Lemma 3  Recall that by definition, � ∶= ⌊ Tw

Ln
⌋ . For any 𝜀 > 0 , ‖q̂i − qi‖ ≤ 𝜀 with probabil-

ity at least 1 − −2 L exp
(
−2��2

)
.

Proof of Lemma 3  Note that the number of times question � is asked for item i is � . Using 
Hoeffding’s inequality (Theorem  4), it is straightforward to check: for any 𝜀 > 0 and 
� ∈ [L],

We conclude the proof using the union bound as follows:

	�  ◻

DU
M
(i) = min

h�∈[(h∗+1)∕2,1]
KL (h�p21 + h̄�p̄21, qi1)

≤ KL (hip21 + h̄ip̄21, qi1)

(a)≤ ((hip21 + h̄ip̄21) − qi1)
2

qi1(1 − qi1)

(b)≤ 2

𝜂

(
(hip11 + h̄ip̄11) − (hip21 + h̄ip̄21)

)2

=
2

𝜂

(
(2hi − 1)(2p11 − 1) + 1

2
−

(2hi − 1)(2p21 − 1) + 1

2

)2

=
2

𝜂
(2hi − 1)2(p11 − p21)

2,

ℙ

{
1

n

n∑
i=1

Xi − � ≥ t

}
≤ exp

(
−2nt2

)
.

ℙ

{|||||
1

𝜏

𝜏∑
t=1

(Xi�t − qi�)
|||||
= |q̂i� − qi�| ≥ 𝜀

}
≤ 2 exp

(
−2𝜏𝜀2

)
.

ℙ
�‖q̂i − qi‖ ≥ 𝜀

� ≤ �
�∈[L]

ℙ
��q̂i� − qi�� ≥ 𝜀

� ≤ 2L exp
�
−2𝜏𝜀2

�
.
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Proof of Lemma 2  By Lemma  3, we have ‖q̂i − qi‖ ≤ 𝜀 with probability at least  

1 − 2L exp
(
−2�2�

)
 . Suppose ‖q̂i − qi‖ ≤ 𝜀 and 0 < 𝜀 ≤ ‖2qi−1‖

16  . Using the triangle inequal 
 
ity and the reverse triangle inequality, we have

Therefore,

which implies that:

From 0 < 𝜀 ≤ ‖2qi−1‖
16

, we have 0 < 2𝜀

‖2qi−1‖ ≤ 1

8
 . Now observe that we have:

for all x such that 0 < x < 1

8
 . Then we obtain:

Then, there exists x ∈
�
−

2�

‖2qi−1‖ ,
16�

7‖2qi−1‖
�
 such that 1

‖2q̂i−1‖ =
1

‖2qi−1‖ (1 + x) . Using this x, 
we get:

with probability at least 1 − −2 L exp
(
−2�2�

)
 for all � such that 0 < 𝜀 ≤ ‖2qi−1‖

16
 , where in 

(a), we use 5x ≥ 30

7
x +

32

7
x2 for all 0 < x < 1

16
 and 0 < 𝜀 ≤ ‖2qi−1‖

16
≤ 1

16
 . This concludes the 

proof. 	�  ◻

‖2qi − 1‖ − 2‖qi − q̂i‖ ≤ ‖2q̂i − 1‖ ≤ ‖2qi − 1‖ + 2‖qi − q̂i‖,

‖2qi − 1‖ − 2𝜀 ≤ ‖2q̂i − 1‖ ≤ ‖2qi − 1‖ + 2𝜀

1

‖2qi − 1‖
1

1 +
2𝜀

‖2qi−1‖
≤ 1

‖2q̂i − 1‖ ≤ 1

‖2qi − 1‖
1

1 −
2𝜀

‖2qi−1‖
.

1 − x ≤ 1

1 + x
and

1

1 − x
≤ 1 +

8

7
x ,

1

‖2qi − 1‖
�
1 −

2𝜀

‖2qi − 1‖
�

≤ 1

‖2q̂i − 1‖ ≤ 1

‖2qi − 1‖
�
1 +

8

7

2𝜀

‖2qi − 1‖
�
.

‖r̂i − r̃i‖ =
‖

‖

‖

‖

2q̂i − 1
‖2q̂i − 1‖

−
2qi − 1

‖2qi − 1‖
‖

‖

‖

‖

= 1
‖2qi − 1‖

‖

‖

‖

‖

‖2qi − 1‖
‖2q̂i − 1‖

(2q̂i − 1) − (2qi − 1)
‖

‖

‖

‖

= 1
‖2qi − 1‖

‖

‖

(1 + x)(2q̂i − 1) − 2qi + 1‖
‖

≤ 1
‖2qi − 1‖

(

‖

‖

2(q̂i − qi)‖‖ + ‖

‖

x(2q̂i − 1)‖
‖

)

≤ 1
‖2qi − 1‖

(

‖

‖

2(q̂i − qi)‖‖ + ‖

‖

x(2q̂i − 2qi)‖‖ + ‖x(2qi − 1)‖
)

≤ 1
‖2qi − 1‖

(2� + 16
7
� ⋅ 2� + 16

7
�)

= 1
‖2qi − 1‖

( 30
7
� + 32

7
�2)

(a)
≤ 5�
‖2qi − 1‖

,
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