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Abstract

In this paper we define Brownian local time as the almost sure limit of the local
times of a nested sequence of simple, symmetric random walks. The limit is jointly

continuous in (t, x). The rate of convergence is n
1
4 (log n)

3
4 that is close to the best

possible. The tools we apply are almost exclusively from elementary probability theory.

1 Introduction

The present work is part of a bigger project that aims to rebuild stochastic calculus using
almost sure (strong) approximations by simple, symmetric random walks (RW’s), applying
tools almost exclusively from elementary probability theory. The most advanced tool one
needs for this project is a large deviation inequality. The underlying motivation is partly
didactic, partly the belief that this elementary approach may help in attacking some harder
problems. The prototype of such efforts was the construction of Brownian motion (BM =
Wiener process) as an almost sure limit of simple RW paths, given by Frank Knight in 1962
[6]. This lead him to a related construction of Brownian local time via the now celebrated
Ray-Knight theory in 1963 [7]. An important contribution to the theory of local time was
given by Pál Révész in 1981 [8] in which he showed that Brownian local time can be almost
surely approximated by the local time of a simple, symmetric RW with rate of convergence
n

1
4
+ǫ. Further contributions and generalizations to this were given by Endre Csáki and Pál

Révész in 1983 [3], A.N. Borodin in 1989 [2], and several others. M. Csörgő and L. Horváth
in 1989 [4] gave a best possible strong approximation based on Skorohod embedding with

rate n
1
4 (logn)

1
2 (log logn)

1
4 . This was generalized for a wide class of RW’s by R.F. Bass and

D. Khoshnevisan in 1993 [1].
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The level sets {t : W (t) = x, 0 ≤ t < ∞} of Brownian motion have zero Lebesgue
measure, hence it is not at all obvious that Brownian local time given by the classical
definition of P. Lévy

L(t, x) = lim
ǫց0

1

2ǫ
λ{s ∈ [0, t] : W (s) ∈ (x − ǫ, x+ ǫ)}, (1)

where λ denotes Lebesgue measure, is a well-defined, non-vanishing process which has a
version jointly continuous in (t, x). This fact was first shown by Trotter in 1958 [13]. In
this paper we define Brownian local time as the almost sure limit of the local times of a
nested sequence of simple, symmetric RW’s. This limit is automatically jointly continuous
in (t, x). The rate of convergence is n

1
4 (logn)

3
4 that is close to the best possible.

2 From random walks to Brownian motion

A main tool of the present paper is an elementary construction of BM. The specific con-
struction we are going to use in the sequel, taken from [10], is based on a nested sequence
of simple, symmetric random walks that uniformly converges to the Wiener process on
bounded intervals with probability 1. This will be called “twist and shrink” construction or
RW construction in the sequel.

We summarize the major steps of the “twist and shrink” construction here. We start
with an infinite matrix of independent and identically distributed (i.i.d.) random variables
Xm(k), P {Xm(k) = ±1} = 1/2 (m ≥ 0, k ≥ 1), defined on the same underlying probability
space (Ω,F ,P). Each row of this matrix is a basis of an approximation of the Wiener
process with a dyadic step size ∆t = 2−2m in time and a corresponding step size ∆x = 2−m

in space: Sm(0) = 0, Sm(n) =
∑n

k=1 Xm(k) (n ≥ 1).
The second step of the construction is twisting. From the independent RW’s we want to

create dependent ones so that after shrinking temporal and spatial step sizes, each consec-
utive RW becomes a refinement of the previous one. Since the spatial unit will be halved
at each consecutive row, we define stopping times by Tm(0) = 0, and for k ≥ 0,

Tm(k + 1) = min{n : n > Tm(k), |Sm(n)− Sm(Tm(k))| = 2} (m ≥ 1)

These are the random time instants when a RW visits even integers, different from the
previous one. After shrinking the spatial unit by half, a suitable modification of this RW
will visit the same integers in the same order as the previous RW. We operate here on each
point ω ∈ Ω of the sample space separately, i.e. we fix a sample path of each RW. We
define twisted RWs S̃m recursively for k = 1, 2, . . . using S̃m−1, starting with S̃0(n) = S0(n)
(n ≥ 0) and Sm(0) = 0 for any m ≥ 0. With each fixed m we proceed for k = 0, 1, 2, . . .
successively, and for every n in the corresponding bridge, Tm(k) < n ≤ Tm(k + 1). Any
bridge is flipped if its sign differs from the desired:

X̃m(n) =

{

Xm(n) if Sm(Tm(k + 1))− Sm(Tm(k)) = 2X̃m−1(k + 1),
−Xm(n) otherwise,

and then S̃m(n) = S̃m(n − 1) + X̃m(n). Then S̃m(n) (n ≥ 0) is still a simple symmetric
random walk [10, Lemma 1]. The twisted RW’s have the desired refinement property:

S̃m+1(Tm+1(k)) = 2S̃m(k) (m ≥ 0, k ≥ 0).

The third step of the RW construction is shrinking. The sample paths of S̃m(n) (n ≥ 0)
can be extended to continuous functions by linear interpolation, this way one gets S̃m(t)
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(t ≥ 0) for real t. Then we define the mth approximating RW by

B̃m(t) = 2−mS̃m(t22m).

Then the refinement property takes the form

B̃m+1

(

Tm+1(k)2
−2(m+1)

)

= B̃m

(

k2−2m
)

(m ≥ 0, k ≥ 0). (2)

Note that a refinement takes the same dyadic values in the same order as the previous
shrunken walk, but there is a time lag in general:

Tm+1(k)2
−2(m+1) − k2−2m 6= 0. (3)

Then we quote some important facts from [10] about the above RW construction that
will be used in the sequel. These will be stated in somewhat stronger forms but can be read
easily from the proofs in the cited reference, cf. Lemmas 2-4 and Theorem 3 there.

Lemma 1. Suppose that X1, X2, . . . is a sequence of i.i.d. random variables, E(Xk) = 0,
Var(Xk) = 1, and their moment generating function is finite in a neighborhood of 0. Let
Sk = X1 + · · ·+Xk, k ≥ 1. Then for any C > 1 and N ≥ N0(C) one has

P

{

sup
1≤k≤N

|Sk| ≥ (2CN logN)
1
2

}

≤ 2N1−C .

We mention that this basic fact, that appears in the above-mentioned reference [10],
essentially depends on a large deviation theorem. Also, the lemma is valid even when N is
not an integer.

We have a more convenient result in a special case of Hoeffding’s inequality. Let
S1, S2, . . . , SN be arbitrary (finite or countable) sums of the type: Sk =

∑

r akrXkr with
P {Xkr = ±1} = 1

2 , 1 ≤ k ≤ N , where Xkr and Xls can be dependent when k 6= l. Then
we have the following analog of Lemma 1, cf. [11] or [12]: for any C > 1 and N ≥ 1,

P

{

sup
1≤k≤N

|Sk| ≥
(

2C logN sup
1≤k≤N

Var(Sk)

)
1
2

}

≤ 2N1−C . (4)

Lemma 1 easily implies that the time lags (3) are uniformly small if m or K are large
enough.

Lemma 2. For any C > 1, and for any K > 0 and m ≥ 1 such that K22m ≥ N1(C), we
have

P

{

sup
0≤k2−2m≤K

|Tm+1(k)2
−2(m+1) − k2−2m| ≥

(

3

2
CK log ∗K

)
1
2

m
1
2 2−m

}

≤ 2(K22m)1−C ,

where log∗ x = max{1, logx}.

This lemma and the refinement property (2) implies the uniform closeness of two ap-
proximations of BM if m or K are large enough. We give a proof of the next lemma since
its statement is somewhat stronger than the one of the corresponding Lemma 4 in [10]; also,
we want to emphasize the similarities between this and lemmas about the local time below.
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Lemma 3. For any C > 1, and for any K > 0 and m ≥ 1 such that K22m ≥ N2(C), we
have

(a)

P

{

sup
0≤k2−2m≤K

|B̃m+1(k2
−2m)− B̃m(k2−2m)| ≥ 11

4
CK

1
4 (log∗ K)

3
4m

3
4 2−

m
2

}

≤ 6(K22m)1−C ,

(b)

P

{

sup
j≥1

sup
0≤t≤K

|B̃m+j(t)− B̃m(t)| ≥ 27CK
1
4
∗ (log∗ K)

3
4m

3
4 2−

m
2

}

≤ 6

1− 41−C
(K22m)1−C ,

where K∗ = max{1,K}.

Proof. (a) Using the abbreviation tk = k2−2m, we have

B̃m+1(tk)− B̃m(tk) = B̃m+1

(

4k2−2(m+1)
)

− B̃m+1

(

Tm+1(k)2
−2(m+1)

)

= 2−m−1
(

S̃m+1(4k)− S̃m+1(Tm+1(k))
)

.

Let DK,m = CK
1
4 (log∗ K)

3
4m

3
4 2−

m
2 . Then

P

{

sup
0≤tk≤K

|B̃m+1(tk)− B̃m(tk)| ≥
11

4
DK,m

}

≤ P {AK,m}+
K22m
∑

k=1

P

{

sup
{j:|j−4k|≤N ′}

∣

∣

∣
S̃m+1(j)− S̃m+1(4k)

∣

∣

∣
≥ 11

2
2mDK,m

}

,

where

AK,m =

{

sup
0≤k2−2m≤K

|Tm+1(k)− 4k| ≥ N ′

}

, N ′ = ⌊(24CmK log∗ K)
1
2 2m⌋. (5)

Here we can apply Lemma 2 to the first term and inequality (4) with N ′ and C′ to the
terms in the summation above. The constant C′ > 1 is chosen so that the two terms be
of the same order: (N ′)1−C′ ≈ N−C , where N = K22m. Then (N ′)1−C′ ≤ (K

1
2 2m)1−C′

=
(K22m)−C implies C′ = 2C + 1 < 3C. Since logN ′ ≤ m log∗ C log∗ K if K or m are large
enough and

sup
{j:|j−4k|≤N ′}

Var

(

S̃m+1(j)− S̃m+1(4k)
)

= N ′,

it follows that (2C′N ′ logN ′)
1
2 ≤ 11

2 2
mDK,m.

As a result, we obtain that

P

{

sup
0≤tk≤K

|B̃m+1(tk)− B̃m(tk)| ≥
11

4
DK,m

}

≤ 2(K22m)1−C + 2K22m2(N ′)1−C′ ≤ 6(K22m)1−C .
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This proves (a).

(b) Let D∗
K,m = CK

1
4
∗ (log∗ K)

3
4m

3
4 2−

m
2 . By (a),

sup
0≤tk≤K

|B̃m+1(tk)− B̃m(tk)| <
11

4
D∗

K,m,

except for an event of probability not exceeding 6(K22m)1−C . Consider an interval [tk, tk+1].

Clearly, |B̃m(tk+1)− B̃m(tk)| = 2−m ≤ 2−
1
2D∗

K,m. On the other hand, B̃m+1 makes 4 steps

of magnitude 2−m−1 on this interval. Then the maximum deviation between B̃m+1 and B̃m

at the instant tk+ 1
4
(or at tk+ 3

4
) cannot exceed 11

4 D∗
K,m+ 1

42
−m+2−m−1 ≤ (114 + 3

42
− 1

2 )D∗
K,m.

At time tk+ 1
2
the deviation cannot be larger than 11

4 D∗
K,m + 2−m−1, which is smaller than

the previous bound. Hence

P

{

sup
0≤t≤K

|B̃m+1(t)− B̃m(t)| ≥ 11 + 3 · 2− 1
2

4
D∗

K,m

}

≤ 6(K22m)1−C .

Using the fact that

∞
∑

j=0

(m+ j)
3
4 2−

m+j

2 ≤ m
3
4 2−

m
2

∞
∑

j=0

(1 + j)
3
4 2−

j

2 <
65

8
m

3
4 2−

m
2

(the last inequality can be checked for example by MAPLE), we obtain that

P

{

sup
j≥1

sup
0≤t≤K

|Bm+j(t)−Bm(t)| ≥ 65

8
· 11 + 3 · 2− 1

2

4
D∗

K,m

}

≤
∞
∑

j=0

P

{

sup
0≤t≤K

|Bm+j+1(t)−Bm+j(t)| ≥
11 + 3 · 2− 1

2

4
D∗

K,m+j

}

≤
∞
∑

j=0

6(K22(m+j))1−C =
6

1− 41−C
(K22m)1−C .

Since 65
8 · 11+3·2−

1
2

4 < 27, this proves (b).

It follows then that the above procedure gives a rather natural and nearly optimal (as
far as Skorohod embedding is concerned, see below) construction of BM.

Theorem 1. On any bounded interval the sequence (B̃m) almost surely uniformly converges
as m → ∞ and the limit process is Brownian motion W . For any C > 1, and for any K > 0
and m ≥ 1 such that K22m ≥ N2(C), we have

P

{

sup
0≤t≤K

|W (t)− B̃m(t)| ≥ 27CK
1
4
∗ (log∗ K)

3
4m

3
4 2−

m
2

}

≤ 6

1− 41−C
(K22m)1−C .

Now using the Borel–Cantelli lemma we get that for any fixed K > 0 there is a constant

cK = 28 K
1
4
∗ (log∗ K)

3
4 (taking C = 1 + 1

27 , say) such that almost surely,

lim sup
m→∞

m− 3
4 2

m
2 sup

0≤t≤K
|W (t)− B̃m(t)| < cK . (6)

5



Similarly, for any fixed m ≥ 1 there is a constant cm = 55 m
3
4 2−

m
2 such that almost surely,

lim sup
K→∞

K− 1
4 (logK)−

3
4 sup
0≤t≤K

|W (t)− B̃m(t)| < cm. (7)

For, since K
1
4 (logK)

3
4 and also for any ω ∈ Ω, sup0≤t≤K |W (t)− B̃m(t)| are non-decreasing

in K, it is enough to show that

lim sup
n→∞

n− 1
4 (logn)−

3
4 sup
0≤t≤n+1

|W (t)− B̃m(t)| < cm, (8)

when n runs through integer values only. Since

(n+ 1)
1
4 (log(n+ 1))

3
4

n
1
4 (logn)

3
4

≤ 1 + ǫ

for any ǫ > 0 if n is large enough, taking, say, C = 2+ 1
27 in Theorem 1, the Borel-Cantelli

lemma shows (8).
Next we are going to discuss the properties of another nested sequence of random walks,

obtained by Skorohod embedding. This sequence is not identical, though asymptotically
equivalent to the above RW construction, cf. [10, Theorem 4]. Given a Wiener process W ,
first we define the stopping times which yield the Skorohod embedded process Bm(k2−2m)
into W . For every m ≥ 0 let sm(0) = 0 and

sm(k + 1) = inf {s : s > sm(k), |W (s) −W (sm(k))| = 2−m} (k ≥ 0). (9)

With these stopping times the embedded process by definition is

Bm(k2−2m) = W (sm(k)) (m ≥ 0, k ≥ 0). (10)

This definition of Bm can be extended to any real t ≥ 0 by pathwise linear interpolation.
The next lemma describes some useful facts about the relationship between B̃m and Bm.
These follow from [10, Lemmas 5,7 and Theorem 4], with some minor modifications.

In general, roughly saying, B̃m is more useful when someone wants to generate stochastic
processes from scratch, while Bm is more advantageous when someone needs a discrete
approximation of given processes, like in the case of stochastic integration.

Lemma 4. For any C > 1, and for any K > 0 and m ≥ 1 such that K22m ≥ N3(C) take
the following subset of the sample space:

A∗
K,m =

{

sup
n>m

sup
0≤k2−2m≤K

|2−2nTm,n(k)− k2−2m| < (42 CK log∗ K)
1
2m

1
2 2−m

}

,

where Tm,n(k) = Tn ◦ Tn−1 ◦ · · · ◦ Tm(k) for n > m ≥ 0 and k ≥ 0. Then

P
{

(A∗
K,m)c

}

≤ 2

1− 41−C
(K22m)1−C .

Moreover, limn→∞ 2−2nTm,n(k) = tm(k) exists almost surely and on A∗
K,m we have

B̃m(k2−2m) = W (tm(k)) (0 ≤ k2−2m ≤ K),

cf. (10). Further, on A∗
K,m except for a zero probability subset, sm(k) = tm(k) and

sup
0≤k2−2m≤K

|sm(k)− k2−2m| ≤ (42 CK log∗ K)
1
2m

1
2 2−m.

6



If the Wiener process is built by the RW construction described above using a sequence
(B̃m) of nested RW’s and then one constructs the Skorohod embedded RW’s (Bm), it is
natural to ask about rate of convergence of the latter. The answer described by the next
theorem is that it is essentially the same as the one of (B̃m), cf. Theorem 1.

Theorem 2. For any C > 1, and for any K > 0 and m ≥ 1 such that K22m ≥ max{N2(C),
N3(C)} we have

P

{

sup
0≤t≤K

|W (t)−Bm(t)| ≥ 27CK
1
4
∗ (log∗ K)

3
4m

3
4 2−

m
2

}

≤ 8

1− 41−C
(K22m)1−C .

This theorem and its proof are slight modifications of Theorem 1 in [12]. Kiefer [5]
showed that the best possible rate of convergence one can get with Skorohod embedding is
n

1
4 (log n)

1
2 (log logn)

1
4 . Our rate of convergence n

1
4 (log n)

3
4 , n = K22m, is close to this.

3 An elementary definition of Brownian local time

We define the local time of the random walk (S̃m(k))∞k=0 at a point x ∈ Z at time k ∈ N0 =
{0, 1, 2, . . .} as ℓm(0, x) = 0 and

ℓm(k, x) = #{j : 0 ≤ j < k, S̃m(j) = x} (k ≥ 1).

This is somewhat different from the more usual definition ℓ̃m(k, x) = #{j : 0 < j ≤
k, S̃m(j) = x}, but the former fits better the construction of Brownian motion discussed
in this paper. The local time of the mth approximation B̃m at a point x ∈ 2−m

Z at time
t ∈ 2−2m

N0 is defined as Lm(t, x) = 2−mℓm
(

t22m, x2m
)

, corresponding to the fact that the

spatial step size of B̃m is 2−m. This is in complete agreement with (1) replacing W by B̃m

there.
Finally, we define Lm(t, x) for arbitrary t ∈ R+ and x ∈ R by linear interpolation,

making it into a continuous process:

Lm(t, x) = Lm(tk, xj) +
t− tk

tk+1 − tk
(Lm(tk+1, xj+1)− Lm(tk, xj+1))

+
x− xj

xj+1 − xj
(Lm(tk, xj+1)− Lm(tk, xj))

if x ≥ xj + 2m(t− tk),

Lm(t, x) = Lm(tk, xj) +
t− tk

tk+1 − tk
(Lm(tk+1, xj)− Lm(tk, xj))

+
x− xj

xj+1 − xj
(Lm(tk+1, xj+1)− Lm(tk+1, xj))

if x < xj + 2m(t − tk), where tk = k2−2m (k ∈ N0), xj = j2−m (j ∈ Z), and (t, x) ∈
[tk, tk+1]× [xj , xj+1]. Our aim is to define the local time L(t, x) of Brownian motion as the
limit of Lm(t, x) as m → ∞ and to show that this limit is jointly continuous in (t, x).

The local times at x = 0 are simply denoted by ℓm(k), ℓ̃m(k), and Lm(t), respectively.
Then ℓm(k) = 1 + ℓ̃m(k − 1) for k ≥ 1 integer.

7



One can define “one-sided”, up and down local times ℓ+m(k, x) and ℓ−m(k, x) (k ∈ N0,
x ∈ Z) as well: ℓ±m(0, x) = 0 and

ℓ±m(k, x) = #{j : 0 ≤ j < k, S̃m(j) = x, S̃m(j + 1) = x± 1} (k ≥ 1).

Then ℓm(k, x) = ℓ+m(k, x) + ℓ−m(k, x). The definitions of L+
m(t, x) and L−

m(t, x) for t ∈ R+

and x ∈ R can go in the same way as the definition of Lm(t, x) above.
It can be useful to introduce an even finer division of local time, introducing up-crossing

local time by

ℓ++
m (k, x) = #{j : 1 ≤ j < k, S̃m(j − 1) = x− 1, S̃m(j) = x, S̃m(j + 1) = x+ 1}

and up-bouncing local time by

ℓ−+
m (k, x) = #{j : 1 ≤ j < k, S̃m(j − 1) = x+ 1, S̃m(j) = x, S̃m(j + 1) = x+ 1},

where k ≥ 2, x ∈ Z. Then ℓ+m(k, x) = ℓ++
m (k, x)+ℓ−+

m (k, x). The definitions of down-crossing
and down-bouncing local times ℓ−−

m (k, x) and ℓ+−
m (k, x) are similar.

As it is well-known, see e.g. [9, p. 95], the exact distribution of the local time ℓ̃ of a
simple, symmetric RW (S(k))∞k=0, S(0) = 0, is

P

{

ℓ̃(2k) = j
}

= P

{

ℓ̃(2k + 1) = j
}

= 2−2k+j

(

2k − j

k

)

(j = 0, . . . , k).

Hence the usual argument for the De Moivre–Laplace limit theorem gives that uniformly
for any 0 ≤ j ≤ Kk = o(k

2
3 ) one has

P

{

ℓ̃(k) = j
}

∼
√

2

πk
exp

(

− j2

2k

)

(k → ∞),

where ∼ denotes “asymptotically equal”. Then for any sequence uk → ∞, uk = o(k
1
6 ) we

obtain the following large deviation inequality for local times ℓ(k, x), ℓ+(k, x), and ℓ−(k, x)
(x ∈ Z):

P

{

ℓ±(k, x)√
k

≥ uk

}

≤ P

{

ℓ(k, x)√
k

≥ uk

}

≤ P

{

ℓ(k)√
k

≥ uk

}

≤ exp

(

−u2
k

2

)

(11)

if k is large enough, k ≥ k0.
Both the statements and the proofs of the next lemmas about local times are very similar

to the ones about BM approximations B̃m(t) in Lemma 3.

Lemma 5. For any C > 1, and for any K > 0 and m ≥ 1 such that K22m ≥ N4(C), we
have

P

{

sup
j∈Z

sup
0≤tk≤K

|Lm+1(tk, xj)− Lm(tk, xj)| ≥ 6 CK
1
4 (log∗ K)

3
4m

3
4 2−

m
2

}

≤ 12(K22m)1−C ,

where tk = k2−2m and xj = j2−m.

Proof. We are making use of the fact that a RW of length N = K22m typically cannot have
values or local times much larger than

√
N . Let us introduce the abbreviations DK,m =

8



CK
1
4 (log∗ K)

3
4m

3
4 2−

m
2 , M = (3CmK log∗ K)

1
2 2m (for the “maximum”), N ′′ =

√
3M (for

the “maximal” local time), and Km = ⌊K22m⌋. Then using the triangle inequality

|ℓm+1(4k, 2j)− 2ℓm(k, j)|
≤ |ℓm+1(Tm+1(k), 2j)− 2ℓm(k, j)|+ |ℓm+1(4k, 2j)− ℓm+1(Tm+1(k), 2j)|
=: Am+1(k, j) +Bm+1(k, j),

we get that

P

{

sup
j∈Z

sup
0≤tk≤K

|Lm+1(tk, xj)− Lm(tk, xj)| ≥ 6DK,m

}

≤ P

{

sup
|j|≤M

sup
0≤tk≤K

2−m−1|ℓm+1(4k, 2j)− 2ℓm(k, j)| ≥ 6DK,m

}

+ P

{

sup
|j|>M

sup
0≤tk≤K

|Lm+1(tk, xj)− Lm(tk, xj)| ≥ 6DK,m

}

≤
∑

|j|≤M

N ′′

∑

n=1

P

{

ℓm(Km, j) = n; sup
0≤k≤Km

2−m−1Am+1(k, j) ≥ 3DK,m

}

+
∑

|j|≤M

Km/2
∑

n=N ′′+1

P

{

ℓm(Km, j) = n; sup
0≤k≤Km

2−m−1Am+1(k, j) ≥ 3DK,m

}

+ P

{

sup
|j|≤M

sup
0≤k≤Km

2−m−1Bm+1(k, j) ≥ 3DK,m

}

+ P

{

sup
|j|>M

sup
0≤tk≤K

|Lm+1(tk, xj)− Lm(tk, xj)| ≥ 6DK,m

}

=: p1 + p2 + p3 + p4,

We are going to estimate p1, p2, p3, and p4 one by one.
Estimation of p1.
This is the essential part of the proof. Fixing m ≥ 0, j ∈ [−M,M ], n ≥ 1, and

given ℓm(Km, j) = n, let τ0 < τ1 < · · · < τn−1 < Km denote the random time instants
when the “twisted” RW S̃m(k) is at the point j in the interval [0,Km): S̃m(τi) = j; then
S̃m+1(Tm+1(τi)) = 2j. We define τn = Km, irrespective whether S̃m(τn) = 0 or not. Then
we can write that

ℓm+1(Tm+1(Km), 2j) =

n
∑

i=1

ℓm+1(Tm+1(τi), 2j)− ℓm+1(Tm+1(τi−1), 2j)

=

n
∑

i=1

γn,i.

(The dependence of γn,i on m and j is suppressed in the notation.) Here each random

variable γn,i (i = 1, . . . , n) is the number of time instants when S̃m+1(k) hits the point
2j in the interval [Tm+1(τi−1), Tm+1(τi)). This is simply 1 plus the number of the +1,−1
or −1,+1 pairs of steps of S̃m+1(k), starting from Tm+1(τi−1). Any such sequence ends
with a pair +1,+1 or −1,−1. Clearly, this means that (γn,i)

n
i=1 is a sequence of indepen-

dent, geometrically distributed random variables with parameter p = 1
2 ; E(γn,i) = 2 and

Var(γn,i) = 2.
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From the construction of S̃m+1(k) discussed in Section 2 it is also clear that given
ℓm(Km, j) = n (n ≥ 1),

sup
0≤k≤Km

|ℓm+1(Tm+1(k), 2j)− 2ℓm(k, j)|

= sup
1≤i≤n

|ℓm+1(Tm+1(τi), 2j)− 2ℓm(τi, j)| = sup
1≤r≤n

∣

∣

∣

∣

∣

r
∑

i=1

γn,i − 2r

∣

∣

∣

∣

∣

.

(Note that ℓm(Km, j) = 0 implies ℓm+1(Tm+1(Km), 2j) = 0 as well.) Hence

p1 ≤
∑

|j|≤M

N ′′

∑

n=1

P

{

sup
1≤r≤n

∣

∣

∣

∣

∣

r
∑

i=1

γn,i − 2r

∣

∣

∣

∣

∣

≥ 6 2mDK,m

}

≤ (2M + 1)N ′′
P

{

sup
1≤r≤N ′′

∣

∣

∣

∣

∣

r
∑

i=1

γi − 2√
2

∣

∣

∣

∣

∣

≥ 3
√
2 2mDK,m

}

Here we are going to use Lemma 1 with N ′′ and C′′. The constant C′′ is chosen so that
the error probabilities p1, p2, p3, and p4 be of the same order: (2M + 1)N ′′(N ′′)1−C′′ ≤
(2.5/

√
3)(N ′′)3−C′′ ≈ N1−C , where N = K22m. Then (N ′′)3−C′′ ≤ (K

1
2 2m)3−C′′

=
(K22m)1−C implies C′′ = 2C + 1 < 3C. Since logN ′′ ≤ m log∗ C log∗ K if K or m are

large enough, it follows that (2C′′N ′′ logN ′′)
1
2 ≤ 3

√
2 2mDK,m. Thus we obtain that

p1 ≤ (5/
√
3)(N ′′)3−C′′

< 3(K22m)1−C , (12)

if K22m is large enough.
Estimation of p2.
Here we are using inequality (11):

p2 ≤
∑

|j|≤M

Km/2
∑

n=N ′′+1

P {ℓm(Km, j) = n} ≤ (2M + 1)P {ℓm(Km, 0) ≥ N ′′}

≤ (2M + 1)P

{

ℓm(Km)√
Km

≥ (9Cm log∗ K)
1
2

}

≤ (2M + 1) exp

(

−9

2
Cm log∗ K

)

≤ (K22m)1−C , (13)

if K22m is large enough.
Estimation of p3.
Here Lemma 2 and inequality (11) will be used. Let AK,m and N ′ be the same as in (5).

Then

p3 ≤ P {AK,m}

+
∑

|j|≤M

K22m
∑

k=0

P
{

Ac
K,m; |ℓm+1(4k, 2j)− ℓm+1(Tm+1(k), 2j)| ≥ 6 2mDK,m

}

≤ 2(K22m)1−C

+
∑

|j|≤M

K22m
∑

k=0

P

{

sup
|i−4k|≤N ′

|ℓm+1(4k, 2j)− ℓm+1(i, 2j)| ≥ 6 2mDK,m

}

.
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If i ≥ 4k, say, then

P {ℓm+1(i, 2j)− ℓm+1(4k, 2j) ≥ u} ≤ P {ℓm+1(i− 4k, 0) ≥ u} ,

for any u ≥ 0. For, S̃m+1(0) = 0, while S̃m+1(4k) can be different from 2j and after the first
visit τ ≥ 4k of S̃m+1 to the point 2j it starts from scratch by the strong Markov property
of a simple, symmetric RW. We get that

p3 ≤ 2(K22m)1−C + 2(2M + 1)K22mP

{

sup
0≤i−4k≤N ′

ℓm+1(i− 4k) ≥ 6 2mDK,m

}

≤ 2(K22m)1−C + 2(2M + 1)K22mP

{

ℓm+1(N
′)√

N ′
≥ 2

1
4 (3C)

3
4 (m log∗ K)

1
2

}

≤ 2(K22m)1−C + 2(2M + 1)K22m exp
(

−2−
1
2 (3C)

3
2m log∗ K

)

≤ 4(K22m)1−C , (14)

if K22m is large enough.
Estimation of p4.
Here we are going to apply inequality (4) to S̃m+1(4k) and S̃m(k):

p4 ≤ P

{

sup
0≤tk≤K

|B̃m+1(tk)| ≥ M2−m

}

+P

{

sup
0≤tk≤K

|B̃m(tk)| ≥ M2−m

}

= P

{

sup
0≤k≤Km

|S̃m+1(4k)| ≥ 2M

}

+P

{

sup
0≤k≤Km

|S̃m(k)| ≥ M

}

≥ P

{

sup
0≤k≤Km

|S̃m+1(4k)| ≥
(

2CK22(m+1) log(K22m)
)

1
2

}

+P

{

sup
0≤k≤Km

|S̃m(k)| ≥
(

2CK22m log(K22m)
)

1
2

}

≤ 4(K22m)1−C , (15)

if K22m is large enough.
Combining (12), (13), (14), and (15), we get the statement of the lemma.

Lemma 6. For any C > 1, and for any K > 0 and m ≥ 1 such that K22m ≥ N5(C), we
have

P

{

sup
j∈Z

sup
0≤tk≤K

|L+
m+1(tk, xj)−

1

2
Lm(tk, xj)| ≥ 6 CK

1
4 (log∗ K)

3
4m

3
4 2−

m
2

}

≤ 12(K22m)1−C ,

where tk = k2−2m and xj = j2−m. A similar statement holds for L−
m+1(tk, xj).

Proof. This proof goes similarly as the proof of the previous Lemma 5, except for the
estimation of p1, where there are some differences. Hence this is the only point detailed in
the sequel. We only discuss the case of L+

m+1 as the case of L−
m+1 is analogous.

Fixing m ≥ 0, j ∈ [−M,M ], n ≥ 1, and given ℓm(Km, j) = n, let τ0 < τ1 < · · · <
τn−1 < Km denote the random time instants when S̃m(τi) = j in the interval [0,Km); then
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S̃m+1(Tm+1(τi)) = 2j. We define τn = Km. Then we can write that

ℓ+m+1(Tm+1(Km), 2j) =

n
∑

i=1

ℓ+m+1(Tm+1(τi), 2j)− ℓ+m+1(Tm+1(τi−1), 2j)

=

n
∑

i=1

(αn,i +Xn,i).

(The dependence of αn,i and Xn,i on m and j is suppressed in the notation.) Here each
random variable αn,i (i = 1, . . . , n) is the number of time instants k ∈ [Tm+1(τi−1), Tm+1(τi))

when S̃m+1(k) = 2j, S̃m+1(k+1) = 2j+1, and S̃m+1(k+2) = 2j. This is simply the number
of the +1,−1 pairs of steps of S̃m+1(k) in the interval [Tm+1(τi−1), Tm+1(τi)). Any sequence
of +1,−1 or −1,+1 pairs ends with a pair +1,+1 or −1,−1. In the former case, Xn,i = 1, in
the second caseXn,i = 0. It follows that (αn,i)

n
i=1 is a sequence of independent, geometrically

distributed random variables with parameter p = 2
3 ; E(αn,i) = 1

2 and Var(αn,i) = 3
4 .

Further, (Xn,i)
n
i=1 is a sequence of independent indicator variables with parameter p = 1

2 ;
E(Xn,i) =

1
2 and Var(Xn,i) =

1
4 . The two sequences are also independent.

It is also clear that given ℓm(Km, j) = n (n ≥ 1),

Cm+1(k, j) := sup
0≤k≤Km

|ℓ+m+1(Tm+1(k), 2j)− ℓm(k, j)|

= sup
1≤i≤n

|ℓ+m+1(Tm+1(τi), 2j)− ℓm(τi, j)| = sup
1≤r≤n

∣

∣

∣

∣

∣

r
∑

i=1

(αn,i +Xn,i)− r

∣

∣

∣

∣

∣

.

Hence in the same way as in the proof of Lemma 5,

p1 :=
∑

|j|≤M

N ′′

∑

n=1

P
{

ℓm(Km, j) = n; 2−m−1Cm+1(k, j) ≥ 3DK,m

}

≤
∑

|j|≤M

N ′′

∑

n=1

P

{

sup
1≤r≤n

∣

∣

∣

∣

∣

r
∑

i=1

(αn,i +Xn,i)− r

∣

∣

∣

∣

∣

≥ 6 2mDK,m

}

≤ (2M + 1)N ′′
P

{

sup
1≤r≤N ′′

∣

∣

∣

∣

∣

r
∑

i=1

(αi +Xn,i − 1)

∣

∣

∣

∣

∣

≥ 6 2mDK,m

}

< 3(K22m)1−C , (16)

if K22m is large enough. This ends the proof of the lemma.

Lemma 7. For any C > 1, and for any K > 0 and m ≥ 1 such that K22m ≥ N6(C), we
have

P

{

sup
r≥1

sup
(t,x)∈[0,K]×R

|Lm+r(t, x) − Lm(t, x)| ≥ 79CK
1
4
∗ (log∗ K)

3
4m

3
4 2−

m
2

}

≤ 15

1− 41−C
(K22m)1−C ,

where K∗ = max{1,K}.
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Proof. Step 1

B̃m+1(k2
−2(m+1)) visits new points xj+ 1

2
= (j + 1

2 )2
−m = (2j + 1)2−m−1 (j ∈ Z) that

were not visited by B̃m(k2−2m). Thus first we need to show an inequality for Lm+1(tk, xj+ 1
2
),

similar to the one in Lemma 5:

P

{

sup
j∈Z

sup
0≤tk≤K

|Lm+1(tk, xj+ 1
2
)− Lm(tk, xj+ 1

2
)| ≥ 9 CK

1
4 (log∗ K)

3
4m

3
4 2−

m
2

}

≤ 15(K22m)1−C . (17)

Since Lm(tk, xj+ 1
2
) is obtained by linear interpolation and

ℓm+1(Tm+1(k), 2j + 1) = ℓ+m+1(Tm+1(k), 2j) + ℓ−m+1(Tm+1(k), 2j + 2)

(note that S̃m+1(Tm+1(k)) never equals 2j + 1), it follows that

|Lm+1(tk, xj+ 1
2
)− Lm(tk, xj+ 1

2
)|

= 2−m−1|ℓm+1(4k, 2j + 1)− ℓm(k, j)− ℓm(k, j + 1)|
≤ 2−m−1|ℓm+1(Tm+1(k), 2j + 1)− ℓm(k, j)− ℓm(k, j + 1)|
+ 2−m−1|ℓm+1(4k, 2j + 1)− ℓm+1(Tm+1(k), 2j + 1)|
≤ 2−m−1|ℓ+m+1(Tm+1(k), 2j)− ℓm(k, j)|
+ 2−m−1|ℓ−m+1(Tm+1(k), 2j + 2)− ℓm(k, j + 1)|
+ 2−m−1|ℓm+1(4k, 2j + 1)− ℓm+1(Tm+1(k), 2j + 1)|
=: Fm+1(k, j) +Gm+1(k, j) +Hm+1(k, j).

From this point the proof of (17) goes similarly as the proof of Lemma 5, except for the
estimation of p1, where there are some differences. Hence this is the only point detailed
here. By (16),

p1 :=
∑

|j|≤M

N ′′

∑

n=1

P

{

ℓm(Km, j) = n; sup
0≤k≤Km

Fm+1(k, j) ≥ 3DK,m

}

+
∑

|j|≤M

N ′′

∑

n=1

P

{

ℓm(Km, j + 1) = n; sup
0≤k≤Km

Gm+1(k, j) ≥ 3DK,m

}

< 6(K22m)1−C ,

if K22m is large enough.
Step 2

Let D∗
K,m = CK

1
4
∗ (log∗ K)

3
4m

3
4 2−

m
2 . By Lemma 5,

sup
j∈Z

sup
0≤tk≤K

|Lm+1(tk, xj)− Lm(tk, xj)| < 6D∗
K,m,

except for an event of probability not exceeding 12(K22m)1−C . Also, by (17),

sup
j∈Z

sup
0≤tk≤K

|Lm+1(tk, xj+ 1
2
)− Lm(tk, xj+ 1

2
)| < 9D∗

K,m,

except for an event of probability not exceeding 15(K22m)1−C .
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Consider an interval [tk, tk+1]. Clearly, 0 ≤ Lm(tk+1, xj)−Lm(tk, xj) ≤ 2−m ≤ 2−
1
2D∗

K,m.

On the other hand, B̃m+1 makes 4 steps on this interval. Thus 0 ≤ Lm+1(tk+1, xj) −
Lm+1(tk, xj) ≤ 2 · 2−m−1 = 2−m and 0 ≤ Lm+1(tk+1, xj+ 1

2
) − Lm+1(tk, xj+ 1

2
) ≤ 2−mas

well. Since Lm(t, x) and Lm+1(t, x) are obtained by linear interpolation for real t and x, it
follows that

P

{

sup
(t,x)∈[0,K]×R

|Lm+1(t, x)− Lm(t, x)| ≥ (9 + 2−
1
2 )D∗

K,m

}

≤ 15(K22m)1−C . (18)

From this point the proof is the same as the last part of the proof of Lemma 3(b), except

for the constant multipliers. Since 65
8 (9+2−

1
2 ) < 79, this proves the statement of the lemma.

By the Borel–Cantelli lemma, the previous Lemma 7 leads to an alternative definition of
the local time of Brownian motion W obtained in Theorem 1, via a sequence of continuous
local times of the approximations B̃m.

Theorem 3. On any strip [0,K]×R the sequence (Lm(t, x)) almost surely uniformly con-
verges as m → ∞ and the limit is a process L(t, x) jointly continuous in (t, x), the local
time of Brownian motion W (t). For any C > 1, and for any K > 0 and m ≥ 1 such that
K22m ≥ N6(C), we have

P

{

sup
(t,x)∈[0,K]×R

|L(t, x)− Lm(t, x)| ≥ 79 CK
1
4
∗ (log∗ K)

3
4m

3
4 2−

m
2

}

≤ 15

1− 41−C
(K22m)1−C .

Now using the Borel–Cantelli lemma we get that for any fixed K > 0 there is a constant

cK = 80 K
1
4
∗ (log∗ K)

3
4 (taking C = 1 + 1

79 , say) such that almost surely,

lim sup
m→∞

m− 3
4 2

m
2 sup

(t,x)∈[0,K]×R

|L(t, x) − Lm(t, x)| < cK . (19)

Also, for any fixed m ≥ 1 there is a constant cm = 159 m
3
4 2−

m
2 (taking C = 2 + 1

79 , say)
such that almost surely,

lim sup
K→∞

K− 1
4 (logK)−

3
4 sup
(t,x)∈[0,K]×R

|L(t, x) − Lm(t, x)| < cm. (20)

This also follows by the Borel-Cantelli lemma, in a similar way as (7) did.
One has similar convergence results for the one-sided local times as well.

Theorem 4. On any strip [0,K]×R the sequence (L+
m(t, x)) almost surely uniformly con-

verges as m → ∞ to the one half of the Brownian local time L(t, x). For any C > 1, and
for any K > 0 and m ≥ 1 such that K22m ≥ N7(C), we have

P

{

sup
(t,x)∈[0,K]×R

∣

∣

∣

∣

1

2
L(t, x)− L+

m+1(t, x)

∣

∣

∣

∣

≥ 50CK
1
4
∗ (log∗ K)

3
4m

3
4 2−

m
2

}

≤ 30

1− 41−C
(K22m)1−C .

Similar statements hold for (L−
m+1(t, x)) as well.
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Proof. Step 1

First we need to show an inequality similar to (17) for points xj+ 1
2
:

P

{

sup
j∈Z

sup
0≤tk≤K

∣

∣

∣

∣

L+
m+1(tk, xj+ 1

2
)− 1

2
Lm(tk, xj+ 1

2
)

∣

∣

∣

∣

≥ 9 CK
1
4 (log∗ K)

3
4m

3
4 2−

m
2

}

≤ 15(K22m)1−C . (21)

Our argument will follow a similar path to the ones in Lemmas 6 and 7. Since Lm(tk, xj+ 1
2
)

is obtained by linear interpolation, it follows that

∣

∣

∣

∣

L+
m+1(tk, xj+ 1

2
)− 1

2
Lm(tk, xj+ 1

2
)

∣

∣

∣

∣

= 2−m−1

∣

∣

∣

∣

ℓ+m+1(4k, 2j + 1)− 1

2
(ℓm(k, j) + ℓm(k, j + 1))

∣

∣

∣

∣

≤ 2−m−1

∣

∣

∣

∣

ℓ+m+1(Tm+1(k), 2j + 1)− 1

2
(ℓm(k, j) + ℓm(k, j + 1))

∣

∣

∣

∣

+ 2−m−1|ℓ+m+1(4k, 2j + 1)− ℓ+m+1(Tm+1(k), 2j + 1)|

≤ 2−m−1

∣

∣

∣

∣

ℓ++
m+1(Tm+1(k), 2j + 1)− 1

2
ℓm(k, j)

∣

∣

∣

∣

+ 2−m−1

∣

∣

∣

∣

ℓ−+
m+1(Tm+1(k), 2j + 1)− 1

2
ℓm(k, j + 1)

∣

∣

∣

∣

+ 2−m−1|ℓ+m+1(4k, 2j + 1)− ℓ+m+1(Tm+1(k), 2j + 1)|,

where we applied the notations for up-crossing and up-bouncing local times, introduced
above.

Here, analogously to the proof of Lemma 6, given ℓm(Km, j) = n, one has

ℓ++
m+1(Tm+1(Km), 2j + 1) =

n
∑

i=1

Xn,i,

where Xn,i = 1 if a sequence of +1,−1 or −1,+1 pairs of steps of S̃m+1(k) in the interval
[Tm+1(τi−1), Tm+1(τi)) ends with a pair +1,+1 and 0 otherwise; τ0 < τ1 < · · · < τn−1 < Km

are the random time instants when S̃m(τi) = j in the interval [0,Km) and τn = Km.
Then (Xn,i)

n
i=1 is a sequence of independent indicator variables with parameter p = 1

2 ;
E(Xn,i) =

1
2 and Var(Xn,i) =

1
4 . Further, given ℓm(Km, j) = n,

sup
0≤k≤Km

∣

∣

∣

∣

ℓ++
m+1(Tm+1(k), 2j + 1)− 1

2
ℓm(k, j)

∣

∣

∣

∣

= sup
1≤r≤n

∣

∣

∣

∣

∣

r
∑

i=1

(

Xn,i −
1

2

)

∣

∣

∣

∣

∣

.

Similarly, given ℓm(Km, j + 1) = n,

ℓ−+
m+1(Tm+1(Km), 2j + 1) =

n
∑

i=1

βn,i,

where βn,i is simply the number of the −1,+1 pairs of steps of S̃m+1(k) in the interval
[Tm+1(τi−1), Tm+1(τi)); τ0 < τ1 < · · · < τn−1 < Km are the random time instants when
S̃m(τi) = j+1 in the interval [0,Km) and τn = Km. It follows that (βn,i)

n
i=1 is a sequence of
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independent, geometrically distributed random variables with parameter p = 2
3 ; E(βn,i) =

1
2

and Var(βn,i) =
3
4 . Moreover, given ℓm(Km, j + 1) = n,

sup
0≤k≤Km

∣

∣

∣

∣

ℓ−+
m+1(Tm+1(k), 2j + 1)− 1

2
ℓm(k, j + 1)

∣

∣

∣

∣

= sup
1≤r≤n

∣

∣

∣

∣

∣

r
∑

i=1

(

βn,i −
1

2

)

∣

∣

∣

∣

∣

.

From this point the proof of (21) is essentially the same as the proof of (17).
Step 2

By Lemma 6 and formula (21), using the same argument as in Step 2 of Lemma 7, it
follows that

P

{

sup
(t,x)∈[0,K]×R

∣

∣

∣

∣

L+
m+1(t, x)−

1

2
Lm(t, x)

∣

∣

∣

∣

≥ (9 + 2−
1
2 )D∗

K,m

}

≤ 15(K22m)1−C . (22)

Since | 12 L(t, x)−L+
m+1(t, x)| ≤ | 12 L(t, x)− 1

2 Lm(t, x)|+ | 12 Lm(t, x)−L+
m+1(t, x)|, formula

(22) and Theorem 3 give that

P

{

sup
(t,x)∈[0,K]×R

∣

∣

∣

∣

1

2
L(t, x) − L+

m+1(t, x)

∣

∣

∣

∣

≥
(

79

2
+ 9 + 2−

1
2

)

D∗
K,m

}

≤
(

15

1− 41−C
+ 15

)

(K22m)1−C .

This proves the theorem.

We mention that similar convergence results can be shown for up- and down-crossing or
up- and down-bouncing local times as well.
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