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Abstract

A finite set of points, in general position in the plane, is almost convex if every triple
determines a triangle with at most one point in its interior. For every £ > 3, we
determine the maximum size of an almost convex set that does not contain the vertex
set of an empty convex /-gon.

1 Introduction

A configuration is a finite set of points in the plane such that no 3 points lie on a line. We
say that a configuration is in conver position, if it is the vertex set of a convex polygon. In
1935 Erdos and Szekeres proved the following classical result:

Theorem 1 (Erdd8s and Szekeres [2]) For any n > 3, there is an integer F(n) such that
any configuration of at least F'(n) points contains n points in convez position.

For a configuration X, a subset P C X in convex position is called an empty polygon
(in X ), if the interior of the convex hull conv(P) of P contains no point of X. Answering a
question of Erdés [1], Horton [5] constructed arbitrarily large configurations with no empty
7-gon. Harborth [4] showed that any configuration with more than 9 points contains an
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empty pentagon. The long standing open problem about the existence of empty hexagons
in sufficiently large configurations was settled recently in the affirmative independently by
Gerken [3] and Nicolds [8], see also Valtr [11].

We say that a configuration X is k-convez, if the interior of every triangle determined
by X contains at most k points of X. It is known that large k-convex configurations contain
large empty polygons:

Theorem 2 (Valtr [9]) For any k > 1 and £ > 3, there is a (smallest) integer N (k, £) such
that any k-conver configuration of at least N (k,£) points contains an empty £-gon.

This result in the special case k = 1 was first proved by Karolyi, Pach and Téth [6], an
exponential upper bound for N (1, ¢) being proved later by Kun and Lippner [7]. It is known
(see [7]), that N(k,£) is at most double exponential in k£ + ¢, but it is possible that N(k, ¢)
is only exponential in k£ 4 ¢. The upper bound

k+£

N(k,0) < 262) 1 41
was established by Valtr in [10]. Write

. 2(t4D/2 1, for £ > 3 odd,
= %215/2 -1, for £ > 4 even.

The exponential lower bound N(1,¢) > M, was observed and proved for odd values of £ in
[6], whereas a general upper bound N(1, /) < 2[(25)/31 _ 1 is available in [7]. In this paper
we determine the exact value of N(1,¥):

Theorem 3 For any £ > 3,
N(1,¢) = M,.

2 The lower bound construction

For odd integers ¢ > 3, a construction of a 1-convex set of M, — 1 points that does not
contain any empty /-gon has been given in [6]. It can be easily modified to even values of
£. Informally, the construction for even values of ¢ starts for £ = 4 with the non-convex
configuration of four points marked by 4 in Fig. 1. The ten points marked by 4 and 6 form
the configuration for ¢ = 6, and all the 22 points shown on the figure form the configuration
for £ = 8. Then the construction continues in a similar way for larger even values of /.

For the sake of completeness we include a more formal description following the exposition
in [6]. We need the following recursive construction. Let R; be a set of four points in the
plane such that three of them are the vertices of an equilateral triangle with the fourth point
at its centre. Assume that we have already defined R,,..., R; so that

(i) X; := Ry U...U R; is in general position,

(ii) the vertex set of the polygon P; := conv(Xj) is R;, and

(iii) any triangle determined by R; contains precisely one point of X; in its interior.
Let 21, 29,..., 2 denote the vertices of P; in clockwise order, and let ¢;, §; > 0. For any
1 <17 <, let [; denote the line through z; orthogonal to the bisector of the angle of P; at
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z;i. Let z} and z! be two points on [;, at distance ¢; from z;. Finally, move 2] and 2] away
from P; by a distance 4, in the direction orthogonal to /;, and denote the resulting points
by u; and u, respectively. It is easy to see that if €; and §;/e; are sufficiently small, then

Rji1:={u;,ui | i=1,2,...,r} also satisfies the above three conditions.

Figure 1: The construction for ¢ even.

We have to verify only the last condition. If a € {uj, u;}, b € {uf,uj}, and ¢ € {uy, uy
are three points of R;, for three distinct indices 1, j, k£, then any point of X;; = X; UR;4
which belongs to the interior of Aabc must coincide with the unique point of X; in the
interior of Az;z;z. If there exist ¢ # k such that a = u},b = v}, and ¢ € {u}, uy}, then the

only point of X, inside Aabc is z;. O

In view of Lemma 2.1 in [6], which claims that a configuration X is 1-convex if and only
if any triangle determined by three vertices of conv(X) contains at most one point of X in
its interior, X, is a 1-convex configuration for every positive integer n. Since |X| = 4 and
obviously |R;| = 3-277! for j > 2, it follows that |X,,| = 3-2" — 2 for every positive integer
n. Figure 1 depicts a candidate for X3, the 12 unmarked points forming the set Rs. Since
no three vertices of an empty convex polygon determined by X,, belong to the same R; for
j > 2, and at most three vertices can belong to R;, it follows that any such polygon has at
most 2n + 1 vertices.

With £ = 2n + 2 we have constructed a 1-convex configuration X, of M, — 1 points that
does not contain an empty ¢-gon. The inequality N(1,¢) > M, is thus fully established. O

3 Proof of the upper bound

It remains to show that any 1-convex configuration of size at least M, contains an empty
l-gon. For a set Y C X let i(Y) be the number of points of X lying in the interior of
conv(Y). An (r, s)-configuration is a 1-convex configuration X containing a subset Y C X
of size r + s such that X Nconv(Y) =Y and i(Y) < s.



Here is our key lemma which shows, roughly speaking, that any configuration with (at
most) s > 3 interior points contains a large subconfiguration with at most s — 1 interior
points:

Lemma 1 Ifr > s+3 > 6, then any (r, s)-configuration is an (r+2—t, s—1)-configuration,
where t := [(r+1)/(s +2)] > 2.

Proof. Let r > s+ 3 > 6 and let X be an (r, s)-configuration. We want to show that
X is an (r + 2 — t,s — 1)-configuration. Let Y C X be a subset witnessing that X is an
(r, s)-configuration.

If i(Y) < s, then the removal of t — 1 rightmost points from Y gives a set Y’ C Y of size
(r+2—1t)+ (s —1) such that i(Y') < s — 1. Thus, we may suppose that i(Y) =s. Then X
contains the vertices of a convex r-gon P = pgp; .. .p,—1 containing exactly s points of X in
the interior.

Let u denote the smallest integer such that r + 1 — ut < 2¢t. Since t > (r +1)/(s + 2),
we have r +1 — st < 2¢ and thus u < s. From r +1 — ¢ > 2t it also follows that u > 2.
Consequently, we can partition the interior of P into the following u + 2 convex polygons
(see Fig. 2):

Put

Figure 2: The partition of the interior of P (case r = 17, s = 5).

e the (u+1)-gon I = popipas . . . Put,
e the (¢t 4 1)-gons P; = pupPitt1---Pv1y (1=0,1,...,u—1),
e the polygon Q = pyspusy1 - - - Pr—1Do-
If a polygon P; is not empty for some 0 <7 < u — 1, then the convex hull of the set
(PN X)\APits1, Dity2, - - - ap(i+1)t—1}

contains 7 +s — (t—1) = (r+2—t) + (s — 1) points of X in total and at most s — 1 points
of X in the interior. Thus, X is an (r + 2 — ¢, s — 1)-configuration in this case. So we may
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suppose that the polygons P, ..., P,_; are empty. Since X is 1-convex and the (u + 1)-gon
I can be triangulated into u — 1 triangles, the interior of I contains at most u —1 < s —1
points. It follows that the polygon @ is not empty. Note that Q has r+ 1 — ut < 2t vertices.

The above argument does not depend on the particular choice of the vertex py of P. Thus
we may assume that the 2¢-gons Q; = pipit1 - - . Pit-(20-1) are not empty for e =0,...,2¢ — 1.
Let ¢ € X lie inside @)y. Since 4t —2 < r, the polygons ()g, QJ2;—1 have disjoint interiors, and
there is a j € {0,1,...,2¢t — 2} with ¢ € Q;,¢ & Q;+1. Without loss of generality, we may
assume that 7 = 0. Since Q) is not empty and ¢ & 1, there is a point ¢’ € X, ¢ # q, lying
inside Q1. Qo U Q) is covered by the polygons Py, P; and by the triangle T" = pop;ps;. Since
X is 1-convex, it follows that one of the polygons Py, P; is not empty. As we have already
shown above, this implies that X is an (r + 2 — ¢, s — 1)-configuration. O

Corollary 1 (i) If£ > 5is odd and 1 < j < (£—3)/2, then any (£—2j—1)27+1,2/T1 —2).
configuration is a (2¢ — 5, 2)-configuration.

(ii) If £ > 4 is even and 1 < j < (£ — 2)/2, then any (3(¢ — 25)277' + 1,3 - 27 — 2)-
configuration is a (20 — 5, 2)-configuration.

Proof. (i) For the case j = 1, there is nothing to prove. We further continue by induction on
j. If j > 1, then repeated applications of Lemma 1 show that any ((£—2j—1)2/ 41,27+ —2)-
configuration is an (r, s)-configuration for the pairs

, ¢ — 927 — ,
(rs) = <(z—2j—1)2ﬂ+1—1-+3, 21 _ 9 _ 1),
((£—2j—1)2j+1—2-£_2+_3, 2+ _ 9 9y,
. . . — 927 —
(b—2j—1)2 41-9. 22 =3

2011 9 27,
2 7
Accordingly, it is an (¢ —2(j —1) —1)2/" 1 4+ 1, 2/ — 2)-configuration, thus by the inductive
hypothesis it is also a (2¢ — 5, 2)-configuration.

(ii) If j = 1, then two applications of Lemma 1 show that any (3¢ — 5, 4)-configuration
is a (5¢/2 — 5, 3)-configuration, and further also a (2¢ — 5, 2)-configuration. We continue by
induction on j. If 7 > 1, then once again a repeated application of Lemma 1 implies that
any (3(£—25)2/"1 +1,3-27 — 2)-configuration is an (r, s)-configuration for the pairs

, — 927 =2 .
(r.s) = <3(£—2j)2ﬂ+1-1-€+, 3.9 _9_1),
(3(6—2j)2j1+1—2-€_2+_2, 3.2 -2-2),

(—2j—2

(3(—25)27t+1-3.27"1. 5

,3-20 —2-3.271),

Accordingly, it is a (3(£—2(j —1))2"2 41, 3-27~! — 2)-configuration, thus by the inductive
hypothesis it is also a (2¢ — 5, 2)-configuration. O
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We are ready to finish the proof of Theorem 3. We still need to prove that any 1-convex
configuration X of size M, contains an empty ¢-gon. The case ¢ = 3 is trivial. Thus, let
0> 4.

The convex hull of X has at least [(M,+2)/2| = (M,+ 3)/2 vertices, since otherwise any
triangulation of conv(X) contains a triangle with more than one point in the interior. Thus,
X itself witnesses that it is an (M, + 3)/2, (M, — 3)/2)-configuration. Now, Corollary 1 for
j=(—23)/2 (if £ is odd) or for j = (£ — 2)/2 (if £ is even) shows that X is a (20 — 5,2)-
configuration.

Let Y C X witness that X is a (20— 5, 2)-configuration. If i(Y) = 0, then Y is an empty
(2¢ — 3)-gon and the statement follows from 2/ — 3 > ¢. Now, let i(Y) > 0, and let y; € YV
be an interior point of conv(Y). If i(Y) = 2, then we choose y» € Y as the other interior
point of conv(Y’). Otherwise i(Y) = 1 and we fix any point y, € Y\ {y1}. By the pigeonhole
principle, there are at most £ — 3 points of Y\ {y1,y2} on one of the sides of the line y;ys.
We remove these points from Y. The remaining points of Y form an empty polygon with at
least ¢ vertices. Theorem 3 is proved. O
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