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ON NONCOMMUTATIVE WEIGHTED LOCAL ERGODIC

THEOREMS ON Lp-SPACES

FARRUKH MUKHAMEDOV AND ABDUSALOM KARIMOV

Abstract. In the present paper we consider a von Neumann algebra
M with a faithful normal semi-finite trace τ , and {αt} a strongly contin-
uous extension to Lp(M, τ ) of a semigroup of absolute contractions on
L1(M, τ ). By means of a non-commutative Banach Principle we prove
for a Besicovitch function b and x ∈ Lp(M, τ ), the averages

1

T

Z T

0

b(t)αt(x)dt

converge bilateral almost uniform in Lp(M, τ ) as T → 0.

Mathematics Subject Classification: 46L50, 46L55, 46L53, 47A35, 35A99.
Key words: local ergodic theorem, the Banach Principle, Besicovitch
function.

1. Introduction

It is known (see for example [12]) that in the classical ergodic theory one of
the powerful tools in dealing with the almost everywhere convergence of ergodic
avarages is the well- known Banach Principle, which can be formulated as follows:

Theorem 1.1. Let (S, F,m) be a measurable space with a σ-finite measure and
let X be a Banach space. Let {an} be a sequence of continuous linear maps of X
into the space of measurable functions on S. Assume that supn{|an(x)(s)|} < ∞
for each x ∈ X and almost all s ∈ S. If the sequence an(x) converges almost
everywhere for x in a dense subset of X, then this sequence converges for each
x ∈ X.

This principle is often applied in proofs concerning the almost everywhere con-
vergence of weighted averages, moving averages, etc.

In a non-commutative setting the almost everywhere convergence of sequences of
operators were applied to study of the individual ergodic theorems in von Neumann
algebras by many authors [6],[7],[13],[17],[22] (see [10] for review). But in these
investigations those ergodic theorems were obtained without using an analog of the
Banach Principle. In [8] firstly a non-commutative analog of such principle was
proved for quasi-uniform convergence. Using that result in [14] a uniform sequence
weighted ergodic theorem was proved in the space of integrable operators affiliated
with a von Neumann algebra. Recently, in [3] for the Banach Principle for bilateral
uniform convergence has been adopted, and by means of it the Besicovitch weighted
ergodic theorem has been proved.

In the present paper we are going to prove local and weighted local ergodic
theorems on non-commutative Lp-spaces by means of the Banach principle. Note

1

http://arxiv.org/abs/math/0701415v2
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that such kind of theorems in commutative settings were studied by many authors
(see for example [1],[9],[12]). In a non-commutative setting we mention works [2],
[4], [10], [11], [23].

Let us end this section with description of the organization of the paper. In
Section 2, we recall some preliminary results and formulate the Banach Principle.
There, to prove local ergodic theorem, we adopt the principle in a more convenient
formulation. In the next Section 3 we prove the local ergodic theorem for semigroups
of absolute contractions of Lp-spaces. Note that this section reviews the results of
[2],[11]. Using the result of Sec. 3, in the last Section 4, we establish a weighted
local ergodic theorem by means of the Banach principle.

2. Preliminaries

Let M be a semifinite von Neumann algebra acting on a Hilbert space H , let τ
be a faithful normal semifinite trace on M , let P (M) be the complete lattice of all
projections in M . A densely-defined closed operator x in H is said to be affiliated
with M if y′x ⊂ xy′ for every y′ ∈ M ′, where M ′ is the commutant of the algebra
M . An operator x, affiliated with M , is said to be τ-measurable if for each ε > 0
there exists e ∈ P (M) with τ(e⊥) ≤ ε such that eH ⊂ Dx, where e⊥ = 1I − e, 1I
is the unit of M , Dx is the domain of definition of x. Let S(M) be the set of all
τ−measurable operators affiliated with M . Let ‖ · ‖ stand for the uniform norm in
M . The measure topology in S(M) is given by the system

V (ε, δ) = {x ∈ S(M) : ‖xe‖ ≤ δ for some e ∈ P (M) with τ(e⊥) ≤ ε},

ε > 0, δ > 0, of neighborhoods of zero. Accordingly, a sequence {xn} ⊂ S(M)
converges in measure to x ∈ S(M), xn → x (m), if, given ε > 0, δ > 0, there is a
number N = N(ε, δ) such that for any n ≥ N there exists a projection en ∈ P (M)
satisfying the conditions τ(e⊥n ) < ε and ‖(xn − x)en‖ < δ.

Theorem 2.1. [15] Equipped with the measure topology, S(M) is a complete topo-
logical *-algebra.

For a positive self-adjoint operator x =
∫∞

0
λdeλ affiliated with M one can define

τ(x) = sup
n

τ

(
∫ n

0

λdeλ

)

=

∫ ∞

0

dτ(eλ).

If 0 < p ≤ ∞, then

Lp = Lp(M, τ) =

{

{x ∈ S(M) : ‖x‖p = τ(|x|p)1/p < ∞}, for p 6= ∞

(M, ‖ · ‖), for p = ∞.

Here, |x| is the absolute value of x, i.e. the square root of x∗x. By Lp
+ ( resp. Lp

sa)
we denote the set of positive (resp. self-adjoint) elements of Lp. We refer a reader
to [18] for more information about noncommutative integration and to [19, 21] for
general terminology of von Neumman algebras.

There are several different types of convergences in S(M) each of which, in the
commutative case with finite measure, reduces to the almost everywhere conver-
gence (see for example [16]). In the paper we deal with so called the bilateral
almost uniform (b.a.u.) convergence in S(M) for which xn → x means that for
every ε > 0 there exists e ∈ P (M) with τ(e⊥) ≤ ε such that ‖e(xn − x)e‖ → 0.
It is clear that b.a.u. implies convergence in measure. Now recall well known fact
concerning b.a.u. convergence (see [15],[20]).
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Lemma 2.2. Let M be as above. If two sequences xn and yn converge b.a.u., then
xn + yn converges b.a.u.

In [3] the following results has been proved.

Theorem 2.3. Algebra S(M) is complete with respect to the b.a.u. convergence.

Lemma 2.4. Let 0 ≤ p < ∞, and let {xn} ⊂ Lp be such that lim infn ‖xn‖p = s <
∞. If xn → x b.a.u., then x ∈ Lp and ‖x‖p ≤ s.

Recall a non-commutative the Banach Principle (see [3]). Let (X, ‖ · ‖, ≥) be
an ordered real Banach space with the closed convex cone X+, X = X+ −X+. A
subset X0 ⊂ X+ is said to be minorantly dense in X+ if for every x ∈ X+ there is
a sequence {xn} in X0 such that xn ≤ x for each n, and ‖x− xn‖ → 0 as n → ∞.
A linear map a : X → S(M) is called positive if a(x) ≥ 0 whenever x ∈ X+.

Theorem 2.5. Let X be an ordered real Banach space with the closed convex cone
X+. Let an : X → S(M) be a sequence of positive continuous (in the measure
topology) linear maps satisfying the conditions

(i) For every x ∈ X+ and ε > 0 there is b ∈ M , 0 6= b ≤ I, such that
τ(I − b) < ε, and

sup
n

‖ban(x)b‖ < ∞.

If, for every x from a minorantly dense subset X0 ⊂ X+,
(ii) am(x) − an(x) → 0 b.a.u., m,n → ∞,

then (ii) holds on all of X.

Remark. According to Theorem 2.3 that the fundamental sequences in Theorem
2.5 indeed have their limits belonging to S(M).

As it has been pointed out that the Banach Principle is one of the basic tools
to prove ergodic theorems. But the above formulated Principle is too complicated
to apply, since it requires minorantly density of X0, which makes difficult to check
the condition (ii). Basically, to obtain some ergodic theorems we really need the
following theorem, which is an analog of the Banach Principle.

Theorem 2.6. Let X be a Banach space and let an : X → S(M) be a sequence of
linear maps satisfying the conditions

(i) For every x ∈ X and ε > 0 there is p ∈ P (M), with τ(p⊥) < C(ε−1‖x‖X)α,
such that ‖p an(x)p‖ < ε for all n ∈ N, here C and α are some positive
constants.
If, for every x from a dense subset X0 ⊂ X,

(ii) am(x)− an(x) → 0 b.a.u., m,n → ∞,

then (ii) holds on all of X.

Proof. Let x ∈ X . Due to density of X0 in X , for given ε > 0 there is a sequence
{xn} ⊂ X0 such that ‖xn − x‖X < (ε/2n+1)2/α for every n ∈ N. Then from (i) for
every n ∈ N there is a projection pn ∈ P (M) with τ(p⊥n ) < Cε/2n+1 such that

‖pn(am(xn − x))pn‖ < ε/2n+1 ∀m ∈ N. (2.1)

Putting p =
∧

n
pn, we have τ(p⊥) < Cε/2 and

‖p(am(xn − x))p‖ → 0, n → ∞ uniformly in m.
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Therefore, from the last relation for given ε > 0 one finds n0 ∈ N such that

‖p(am(xn0
− x))p‖ ≤

ε

3
(2.2)

for all m ∈ N. Since xn0
∈ X0 by condition (ii) there is a projection q ∈ P (M)

with τ(q⊥) < ε/2 and N0 ∈ N such that

‖q(am(xn0
)− an(xn0

))q‖ ≤
ε

3
(2.3)

for all m,n ≥ N0. Letting f = p ∧ q one gets τ(f⊥) < ε(C + 1)/2 and (2.2),(2.3)
imply

‖f(am(x) − an(x))f‖ ≤ ‖p(am(xn0
− x))p‖ + ‖p(an(xn0

− x)p‖

+‖q(am(xn0
)− an(xn0

))q‖ ≤ ε

This proves the assertion. �

Remark. We should note that in the proved Theorem a Banach space X need
not be ordered. Hence a condition of minorantly density of X0 and positivity of
an are extra restrictions, which were important in Theorem 2.5. But the condition
(i) in Theorem 2.6 is strong than one in Theorem 2.5. For example, it implies that
each mapping am (m ∈ N) is continuous with respect to b.a.u. convergence, which
can be seen from (2.1).

Recall a positive linear map α : L1(M, τ) → L1(M, τ) will be called an absolute
contraction if α(x) ≤ 1I and τ(α(x)) ≤ τ(x) for every x ∈ M ∩ L1 with 0 ≤ x ≤ 1I.
If α is a positive contraction in L1, then, as it is shown in [22], ‖α(x)‖p ≤ ‖x‖p
holds for each x = x∗ ∈ M ∩ Lp and all 1 ≤ p ≤ ∞. Besides, there exist unique
continuous extensions α : Lp → Lp for all 1 ≤ p < ∞ and a unique ultra-weakly
continuous extension α : M → M (see [11],[22]) . This implies that, for every
x ∈ Lp and any positive integer k, one has ‖αk(x)‖p ≤ 2‖x‖p.

Let {αt}t≥0 be semigroup of absolute contraction on L1. This means that each
αt is an absolute contraction on L1, α0 = Id and αtαs = αt+s for all t, s ≥ 0. By
the same symbol αt we will denote its extension to Lp (1 ≤ p < ∞). In the sequel
we assume that the semigroup {at} is strongly continuous in Lp, for fixed p, i.e.
lim
t→s

‖αtf − αsf‖p = 0 for all s ≥ 0 and f ∈ Lp.

For any T > 0 put

βT (x) =
1

T

T
∫

0

αt(x)dt for x ∈ Lp(M, τ).

It is clear that βT is positive linear map, and maps Lp into itself. The following
maximal theorem was proved in [22],[11].

Theorem 2.7. Let x ∈ Lp
sa then for any ε > 0, there exists projection e ∈ P (M)

such that τ(e⊥) < C(ε−1‖x‖p)
p and

‖eβT (A)e‖ ≤ ε for all T > 0.

3. Local ergodic theorem

This section is devoted to the local ergodic theorem, which can be formulated
as follows
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Theorem 3.1. Let {αt}t≥0 be a strongly continuous extension to Lp(M, τ) of a
semigroup of absolute contractions on L1(M, τ). Then for every x ∈ Lp(M, τ) the
averages βT (x) converge b.a.u. in Lp(M, τ) as T → 0.

Such kind of theorems were proved in [2], [4], [10], [11], [23]. Here we are going
to provide a different proof based on the Banach Principle.

To prove the theorem, we need some auxiliary facts.

Lemma 3.2. Let x ∈ Lp
+, then

−
1

b

∫ a

0

αs(x)ds ≤ βa(βb(x)) − βb(x) ≤
1

b

∫ b+a

b

αs(x)ds (3.1)

for every a, b ∈ R+.

Proof. Denote

y =

∫ b

0

αs(x)ds.

Then for a positive number 0 < h < a we have

αh(y)− y =

∫ b+h

h

αs(x)ds−

∫ b

0

αs(x)ds

=

∫ b+h

b

αs(x)ds−

∫ a

0

αs(x)ds

≤

∫ b+h

b

αs(x)ds

here we have used that
∫ a

0 αs(x)ds ≥ 0. Whence

βa(y)− y =
1

a

∫ a

0

(αh(y)− y)dh

≤
1

a

∫ a

0

(
∫ b+h

b

αs(x)ds

)

dh

≤
1

a

∫ a

0

(
∫ b+a

b

αs(x)ds

)

dh

=

∫ b+a

b

αs(x)ds. (3.2)

The last inequality (3.2) implies

βa(βb(x)) − βb(x) ≤
1

b

∫ b+a

b

αs(x)ds. (3.3)

On the other hand, we have

αh(y) =

∫ b+h

h

αs(x)ds

≥

∫ b

h

αs(x)ds

≥

∫ b

a

αs(x)ds for 0 < h < a.
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Therefore,
∫ b

a

αs(x)ds ≤
1

a

∫ a

0

αh(y)dh

which yields

−
1

b

∫ a

0

αs(x)ds ≤ βa(βb(x)) − βb(x).

This and (3.3) complete the proof. �

Denote

X0 = span{βT (x) : x ∈ Lp
+, T > 0}. (3.4)

Lemma 3.3. The space X0 is dense in Lp.

Proof. Take x ∈ L1, and show there is a sequence {xk} in X0 which converges to x
in norm of L1. Define a sequence {xk} by

xk = k

∫ 1/k

0

αs(x)ds. (3.5)

Since any x ∈ L1 can be represented by x =
3
∑

j=0

ikxj , where xj ∈ Lp
+ ( j = 0, 1, 2, 3),

therefore xk is a linear combination of β1/k(xj), which implies that {xk} ⊂ X0. The
strong continuity of αs implies that for arbitrary ε > 0 there is δ > 0 such that for
every s with |s| < δ the inequality holds ‖αs(x) − x‖p < ε. Pick k0 ∈ N such that
k0 < δ, then

‖xn − x‖p ≤ n

∫ 1/n

0

‖αs(x) − x‖pds < ε ∀n ≥ k0

which completes the proof. �

Lemma 3.4. Let x ∈ Lp
+, then

lim
a→0

βa(βb(x)) = βb(x) b.a.u. (3.6)

for every b > 0.

Proof. First denote

h(a) =
1

b

∫ a

0

αs(x)ds, g(a) =
1

b

∫ b+a

b

αs(x)ds, (3.7)

it is obvious that h(a) ≥ 0, g(a) ≥ 0 for all a > 0. Now due to the strong continuity
of αs we infer

lim
a→0

‖h(a)‖p = 0, lim
a→0

‖g(a)‖p = 0.

From this we conclude that for any ε > 0 there is a sequence {ak} ⊂ R+ such that
τ(hp(ak)) < ε2/22k for all k ∈ N.

Let

hp(ak) =

∫ ∞

0

λde
(k)
λ

be the spectral resolution of hp(ak). Put pk = e
(k)

ε/2k+1 , then τ(p⊥k ) ≤ ε/2k+1. From

pkh(ak)pk =

∫ ε/2k+1

0

λ1/pde
(k)
λ
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one sees that pkh(ak)pk ∈ M , and with the inequality h(a) ≤ h(c) for 0 < a < c
for sufficiently small a we have

‖pkh(a)pk‖ ≤ ‖pkh(ak)pk‖ ≤
ε

2k+1
. (3.8)

Letting p =
∧

pk, one finds τ(p⊥) < ε/2. It follows from (3.8) that

‖ph(a)p‖ ≤ ‖pkh(a)pk‖ ≤
ε

2k+1
for all k ∈ N. (3.9)

By the same argument one finds q ∈ P (M) with τ(q⊥) < ε/2 such that

‖qg(a)q‖ → 0 as a → 0. (3.10)

Put e = p ∧ q, then τ(e⊥) < ε. Now Lemma 3.2 implies that

eh(a)e ≤ e(βa(βb(x)) − βb(x))e ≤ eg(a)e

whence from (3.9)-(3.10) one gets

‖e(βa(βb(x)) − βb(x))e‖ ≤ max{‖eh(a)e‖, ‖eg(a)e‖} → 0 as a → 0.

This competes the proof. �

The proved lemma and Lemma 2.2 yields the following

Corollary 3.5. For any x ∈ X0, we have

lim
a→0

βa(x) = x b.a.u.

Now we are ready to prove the formulated Theorem 3.1.

Proof. Take X = Lp in Theorem 2.6. Then due to Theorem 2.7 the condition (i) of
Theorem 2.6 is satisfied. Now take an arbitrary sequence of positive numbers {an}
such that an → 0. Then according to Lemma 3.5 one sees that βan

(x) converges
b.a.u. for every x ∈ X0. From Lemma 3.3 we already knew that X0 is dense in Lp.
Hence, all the conditions of Theorem 2.6 are satisfied, which implies the assertion
of the theorem. �

Remark. Note that similar results were proved in [2] and [11], respectively in
L1 and Lp spaces. But our approach uses the Banach principle.

4. A weighted local ergodic theorem

In this section by means of Theorem 3.1 and the Banach principle we are going
to prove a weight local ergodic theorem.

Recall that a function P : R+ → C is called trigonometric polynomial if it has
the following form

P (t) =

n
∑

j=1

κje
2πiθjt, t ∈ R+ (4.1)

for some {κj} ⊂ C, and {θj} ⊂ R. By P(R+) we denote the set of all trigonometric
polynomials defined on R+. We say that a measurable function b : R+ → C is a
Besicovitch function if

(i) b ∈ L∞(R+);
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(ii) Given any ε > 0 there is P ∈ P(R+) such that

lim sup
T→0

1

T

∫ T

0

|b(t)− P (t)|dt < ε. (4.2)

Remark. A similar notion of Besicovitch weights was introduced, for example,
in [5].

The next simple lemma will be used in the proof of main result which was proved
in [14].

Lemma 4.1. If a sequence {ãn} in M is such that for every ε > 0 there exist a
b.a.u. convergent sequence {an} ⊂ M and a positive integer n0 satisfying ‖ãn −
an‖ < ε for all n ≥ n0, then {ãn} also converges b.a.u.

The main result of this section is the following

Theorem 4.2. Let M be a von Neumann algebra with a faithful normal semi-
finite trace τ , and {αt}t≥0 be a strongly continuous extension to Lp(M, τ) of a
semigroup of absolute contractions on L1(M, τ). If b is a Besicovitch function and
x ∈ Lp(M, τ), then the averages

β̃T (x) =
1

T

∫ T

0

b(t)αt(x)dt (4.3)

converge b.a.u. in Lp(M, τ).

Proof. Let B be the unit circle in C, i.e. B = {z ∈ C : |z| = 1}. By µ we denote

the normalized Lebesgue measure on B. Let M̃ = M ⊗ L∞(B, µ) with τ̃ = τ ⊗ µ.

Let L̃q = Lq(M̃, τ̃ ) where q ≥ 1.

Let us fix λ ∈ B and define a map α̃
(λ)
t on L̃1 by

(α̃
(λ)
t (f))(z) = αt(f(λ

tz)), f ∈ L̃1, z ∈ B, t > 0. (4.4)

One can see that for f ∈ L̃1
+

(α̃
(λ)
t (f)) =

∫

B

τ(αt(f(λ
tz)))dµ(z)

≤

∫

B

τ(f(λtz))dµ(z) = τ̃ (f)

and α̃
(λ)
t (1I) ≤ 1I. These mean that {α̃

(λ)
t } is a semigroup of absolute contractions

of L̃1. By the same symbol denote its extension to L̃p. Strong continuity of αt

on Lp implies that α̃t is so on L̃p. Therefore, according to Theorem 3.1 for every
f ∈ L̃p the averages

1

T

∫ T

0

α̃
(λ)
t (f)dt

converge b.a.u. in L̃p as T → 0. By Lemma 4.1 [3] we infer that the averages

1

T

∫ T

0

(α̃
(λ)
t (f))(z)dt =

1

T

∫ T

0

αt(f(λ
tz)dt

converge b.a.u. in Lp(M, τ) for almost all z ∈ B. Applying this to the function
f(z) = zx, here x ∈ Lp

+(M, τ) ∩M we obtain b.a.u. convergence of

z
1

T

∫ T

0

λtαt(x)dt for almost all z ∈ B.
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This implies that the averages

1

T

∫ T

0

λtαt(x)dt converge b.a.u. as T → 0 for every λ ∈ B. (4.5)

Now pick an arbitrary ε > 0. Since b is a Besicovitch function, then there exists
Pε ∈ P(R+) such that Pε(t) =

∑n
j=1 κjλ

t
j and (4.2) is satisfied, where {kj}

n
j=1 ⊂ C,

{λj} ⊂ B. Consequently, from (4.5) and Lemma 2.2 we obtain that

1

T

∫ T

0

Pε(t)αt(x)dt (4.6)

converge b.a.u. as T → 0.
On the other hand, from (4.2) one gets

∥

∥

∥

∥

1

T

∫ T

0

b(t)αt(x)dt −
1

T

∫ T

0

Pε(t)αt(x)dt

∥

∥

∥

∥

= 2

(

1

T

∫ T

0

|Pε(t)− b(t)|dt

)

‖x‖ < 2ε‖x‖
(4.7)

Now Lemma 4.1 implies that the average (4.3) converges b.a.u. in Lp
+ ∩ M as

T → 0. This means that b.a.u. convergence of

(β̃T (x))
∗ =

1

T

∫ T

0

b(t)αt(x)dt. (4.8)

The last relation with (4.3) yields that both

β̃
(r)
T (x) =

1

T

∫ T

0

ℜ(b(t))αt(x)dt and β̃
(i)
T (x) =

1

T

∫ T

0

ℑ(b(t))αt(x)dt

averages converge b.a.u. too.
Put

β̃
(R)
T (x) = β̃

(r)
T (x) + βT (x), β̃

(I)
T (x) = β̃

(i)
T (x) + βT (x),

here as before

βT (x) =
1

T

∫ T

0

αt(x)dt.

Now according to Theorem 2.7 given ε > 0 there exists a projection e ∈ P (M)
with τ(e⊥) < C(ε−1‖x‖p)

p such that

sup
T

‖eβT (x)e‖ < ε

Note that, since b from L∞(R+) without loss of generality we may assume that
|b(t)| ≤ 1 for almost every t ∈ R+. Therefore, one finds 0 ≤ ℜ(b) + 1 ≤ 2 which
implies that

eβ̃
(R)
T (x)e ≤ 2eβT (x)e

for every T ∈ R+. This immediately yields

‖eβ̃
(R)
T (x)e‖ ≤ 2ε

Since β̃
(R)
T : X = Lp

+ → S(M) is a positive linear continuous maps, and the
set X0 := Lp

+ ∩ M is dense in X = Lp
+, by Theorem 2.6 we obtain the b.a.u.

convergence of β̃
(R)
T (x) for all x ∈ Lp

+. Remembering that the averages βT (x) also

converge b.a.u. one gets the convergence of β̃
(r)
T (x), x ∈ Lp

+. Analogously, β̃
(i)
T (x)

converges b.a.u. for all x ∈ Lp
+. Therefore, by Lemma 2.2 the averages

β̃T (x) = β̃
(r)
T (x) + iβ̃

(i)
T (x)
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converge b.a.u. for every x ∈ Lp
+, hence for every x ∈ Lp.

It remains to show that the limits of these averages belong to Lp. Taking into
account that ‖ at(x)‖p ≤ 2‖x‖p for each t, we get ‖β̃T (x)‖p ≤ 2‖x‖p for all x ∈ Lp.
This finishes proof due to Lemma 2.4. �

Remark. In the proof we could use Theorem 2.5 instead of Theorem 2.6, since
in that case we may take X = Lp

sa X0 = Lp
+ ∩M . Indeed, X is an ordered Banach

space with closed cone X+ = Lp
+, and X0 is a minorantly dense subset of Lp

+ (see
[3]).
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