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Abstract. We give several effective and explicit results concern-
ing the values of some polynomials in binary recurrence sequences.
First we provide an effective finiteness theorem for certain com-
binatorial numbers (binomial coefficients, products of consecutive
integers, power sums, alternating power sums) in binary recurrence
sequences, under some assumptions. We also give an efficient al-
gorithm (based on genus 1 curves) for determining the values of
certain degree 4 polynomials in such sequences. Finally, partly
by the help of this algorithm we completely determine all com-
binatorial numbers of the above type for the small values of the
parameter involved in the Fibonacci, Lucas, Pell and associated
Pell sequences.

1. Introduction

There are many papers about values of a polynomial p(x) ∈ Q[x]
(taken at integer values of x) in a binary linear recurrence sequence
U . The first such results dealt with the case where U is a special
sequence and p(x) = xm with some m ≥ 2. That is, we are interested
in terms of U which are perfect powers. In 1962 Ogilvy [22], one year
later Moser and Carlitz [20], and Rollett [30] proposed the following
problem: determine all squares in the Fibonacci sequence F . The
problem was solved by Cohn [7, 8] and Wyler [39] who independently
proved with elementary methods that the only squares in the Fibonacci
sequence are F0 = 0, F1 = F2 = 1, F12 = 144. Later, Alfred [1] and
Cohn [9] determined the squares in the Lucas sequence L. Pethő [25]
and Cohn [10] independently determined the perfect powers in the Pell
sequence. Recently, Bugeaud, Mignotte and Siksek [6] showed that the
perfect powers in the Fibonacci and Lucas sequences are exactly F0 =
0, F1 = F2 = 1, F6 = 8, F12 = 144, and L1 = 1, L3 = 4, respectively.

2000 Mathematics Subject Classification. Primary 11B37, secondary 11B83,
11Y50.

Key words and phrases. Binary recurrence sequences, polynomial values, com-
binatorial numbers.

1



2 T. KOVÁCS

Another branch of problems is about triangular numbers in recur-

rence sequences, i.e. we take the polynomial p(x) = x(x+1)
2

. Hoggatt
stated the conjecture that there are only five triangular Fibonacci num-
bers. In 1989 Ming [18] proved that this conjecture is true. Further-
more, Ming [19] and McDaniel [17] determined the triangular numbers
in the Lucas and Pell sequences, respectively. In [34] Szalay described
all values of the polynomials S2(x) and S3(x) in the Fibonacci, Lucas
and Pell sequences, where Sk(x) denotes the sum of kth powers up to
x−1. Further, he listed all numbers of the form

(
x
4

)
in the Fibonacci and

Lucas sequences, as well. As a generalization of the previous results,
Tengely [37] recently determined the g-gonal numbers in the Fibonacci,
Lucas, Pell and associated Pell sequences for g ≤ 20.

The above mentioned results give complete solutions of the problem
in case of certain sequences U and polynomials p. Beside them there are
several results in the literature which provide effective upper bounds
for the solutions under certain assumptions. The most extensively in-
vestigated case is about perfect powers, i.e. where p(x) = xm with
some m ≥ 2. Instead of trying to survey the extremely huge literature
we only refer to the book [31] and the references given there. Finally,
we mention that Szalay [34] provided an algorithm for the complete
description of the values of a polynomial p(x) of degree 3 in a binary
recurrence sequence U under some assumptions.

In this paper we prove three theorems concerning the values of some
polynomials in binary recurrence sequences. First we provide an ef-
fective finiteness theorem for certain combinatorial numbers, namely
for binomial coefficients, products of consecutive integers, power sums
and alternating power sums in binary recurrence sequences, under
some assumptions. The proof of this theorem is based on Baker’s
method together with certain results of Brindza [4], Ping-Zhi [26],
Pintér and Rakaczki [27] and Rakaczki [29]. Our second result is an
extension of the above mentioned result of Szalay. More precisely, it
provides an efficient algorithm for determining the values of certain de-
gree 4 polynomials in binary recurrence sequences, under some assump-
tions. In particular, we implemented the main part of our algorithm
in Magma [3]. Our program can be downloaded from the homepage
www.math.klte.hu/∼tkovacs or the author can send it if requested.
Finally, partly by the help of this algorithm we give all combinatorial
numbers mentioned above for the small values of the parameter in-
volved in the Fibonacci, Lucas, Pell and associated Pell sequences. We
mention that to prove the latter result we reduce the problem to elliptic
and more generally to genus 1 equations. There is an efficient method to
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determine the solutions of such equations developed by Gebel, Pethő
and Zimmer [12] and independently by Stroeker and Tzanakis [32].
Later, the method was further improved and generalized by Stroeker
and Tzanakis (see [33] and the references given there). Moreover, the
program package Magma contains procedures (based on these results)
to resolve such equations. Hence we can ultimately use Magma to solve
our particular equations. For other combinatorial problems solved in a
similar way, we refer to [13] and [16] and the references given there.

2. Notation

Let U = {Un}∞n=0 be a binary recurrence sequence defined by the
initial terms U0, U1 ∈ Z and the recurrence relation

Un = AUn−1 + BUn−2 (n ≥ 2)

where A, B are non-zero integers. Let α and β denote the zeros of the
companion polynomial x2 − Ax − B of U . Further, let D = A2 + 4B
be the discriminant of U and

au = U1 − βU0, bu = U1 − αU0, C = aubu = U2
1 − AU0U1 −BU2

0 .

The sequence U is called non-degenerate if C 6= 0 and α/β is not a
root of unity. It is well-known that if U is non-degenerate then for all
n = 0, 1, . . . we have

Un =
auα

n − buβ
n

α− β
.

From this point on we assume that B = ±1 and that U is non-
degenerate. Then as it is also well-known, U has a so-called associate
sequence V = {Vn}∞n=0 for which

(1) V 2
n −DU2

n = 4C(−B)n

holds for all n = 0, 1, . . .. Observe that by our assumption B = ±1,
we have (−B)n = ±1. Further, note that V0 = 2U1 − AU0, V1 =
AU1 + 2BU0 and V satisfies the same recurrence relation as U .

Beside dealing with general sequences U we consider combinatorial
numbers in certain special famous sequences, too. Let F , L, P and Q
denote the Fibonacci, Lucas, Pell and associated Pell sequence, respec-
tively. These sequences are defined by

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (n ≥ 2),
L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 (n ≥ 2),
P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2 (n ≥ 2),
Q0 = 1, Q1 = 1, Qn = 2Qn−1 + Qn−2 (n ≥ 2).

Now we give what kind of combinatorial numbers we are interested
in. Beside binomial coefficients, we consider power sums, alternating
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power sums and products of consecutive integers as well. We use the
following (standard) notation. For all k, x ∈ N let

Sk(x) = 1k + 2k + . . . + (x− 1)k,

Tk(x) = −1k + 2k − . . . + (−1)x−1(x− 1)k,

Πk(x) = x(x + 1) · · · (x + k − 1).

We mention that Sk(x) is a polynomial of degree k + 1, while Tk(x)
and Πk(x) are polynomials of degree k.

3. New results

We use the previous notation. Further, recall that B = ±1 and
U = {Un}∞n=0 is non-degenerate. All our results concern the equation

(2) Un = p(x)

in integers n, x with n ≥ 0. For the sake of completeness we also take
care of the solutions with x ≤ 0, although these solutions usually do
not have combinatorial meanings.

First we give an effective result for the solutions of (2) which is valid
for general U .

Theorem 3.1. Let k ≥ 2 and p(x) be one of the polynomials Sk−1(x),
Tk(x), Πk(x),

(
x
k

)
. If either k = 2 or p(x) is one of S2(x), Π3(x),

(
x
3

)
,

then further assume that B = 1. Then the solutions n, x of equation
(2) satisfy max (n, |x|) < c0(U, k), where c0(U, k) is an effectively com-
putable constant depending only on U and k.

Obviously, the assumption k ≥ 2 cannot be omitted. The next proposi-
tion shows that the condition B = 1 in the special cases of the theorem
is necessary as well.

Proposition 3.1. Let U be the sequence defined by B = −1 and by the
values U0, U1, A given in the ith row of Table 1, for any i ∈ {1, 2, 3, 4, 5}.
Further, let p(x) be a polynomial from the last column of the ith row of
Table 1. Then equation (2) has infinitely many solutions.

Remark. If (2) has infinitely many solutions then the set of solutions
has some special structure. This structure has been described by Nemes
and Pethő [21], see Theorem 3 (cf. also [23], [24]). It turns out that the
solutions x belong to certain recurrence sequences, while the solutions
n come from some arithmetic progressions. For details see [21], [23] and
[24]. Furthermore, to find the examples provided by Table 1, the above
mentioned Theorem 3 of [21] can also be used. Since the assumptions
of this theorem are not sufficient (see Remark 2 of [21]), it remains
necessary to show that in these cases (2) really has infinitely many
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U0 U1 A p(x)

1 253 254 S1(x), T2(x),
(

x
2

)
2 506 254 Π2(x)

1 3759787041401 3760028828350 S2(x)

7770 455962704852690 58682458798
(

x
3

)
46620 2735776229116140 58682458798 Π3(x)

Table 1

solutions. We also mention that for all polynomials that occur in Table
1 using the method in [21] many more binary recurrence sequences U
can be constructed such that equation (2) has infinitely many solutions.

As we mentioned above, Szalay [34] gave an algorithm for the res-
olution of (2) in the case when p(x) is a polynomial of degree 3. We
extend this result to the degree 4 case. For this purpose we need some
further notation. Let p(x) ∈ Q[x] be a polynomial of degree 4 and
write

p(x) = A0x
4 + A1x

3 + A2x
2 + A3x + A4.

Suppose that the coefficients of p fulfill the relations

A0 =
a

e
, A1 =

4ab

e
, A2 =

6ab2 + c

e
, A3 =

4ab3 + 2bc

e
, A4 =

ab4 + b2c + d

e
,

with some integers a, b, c, d, e, ae 6= 0. Then we have

p(x) =
a(x + b)4 + c(x + b)2 + d

e
.

Write x1 = x + b and let y = Vn where V = {Vn}∞n=0 is the associate
sequence of U . Then by (1) we get

y2 −D

(
ax4

1 + cx2
1 + d

e

)2

= 4C(−B)n,

which yields

(3) Y 2 = h4X
4 + h3X

3 + h2X
2 + h1X + h0,

where

Y = ey, X = x2
1, h4 = a2D, h3 = 2acD,

h2 = (c2 + 2ad)D, h1 = 2cdD, h0 = d2D + 4e2C(−B)n.
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Equation (3) in general is of genus 1, therefore the so-called Ellog
method of Stroeker and Tzanakis [33] can be used to determine all its
integral solutions. In particular, using the program package Magma,
equation (3) can be solved completely in concrete cases. If h0 is
a perfect square then (3) can be solved directly by the procedure
IntegralQuarticPoints. Putting together some tools and results
about genus 1 curves, we give an efficient method for the resolution
of (3) in the general case. For the description of the method see the
proof of Theorem 3.2. (Further, as we mentioned we implemented our
algorithm in Magma, too.) From the solutions, the values x and the
indices n can be easily determined.

Summarizing the above argument, we get

Theorem 3.2. Using the previous notation, suppose that 8aDd(2ad−
c2) 6= −64a2C ± e2 − c4D. Then equation (2) has only finitely many
solutions n, x and these solutions can be effectively determined.

Our final result completely describes the above type combinatorial
numbers for the small values of the parameter k in some well-known
binary recurrence sequences.

Theorem 3.3. Let U ∈ {F, L, P, Q} and p(x) ∈ {S1(x), S2(x), S3(x),
T2(x), T4(x), Π2(x), Π3(x), Π4(x),

(
x
2

)
,
(

x
3

)
,
(

x
4

)
}. Then the solutions n, x

of equation (2) are exactly those which are contained in Table 2. The
sign ”–” shows that the actual equation has no solution. Further, the
references given in the table indicate that the corresponding equation
was solved in the appropriate paper.

Remark. The complete solution of the equation Un = T3(x) remains
open. In this case by relation (1) and with the substitution y = Vn we
get the equation

y2 = D
4x6 − 12x5 + 9x4

16
+ 4C(−B)n

if x is even and

y2 = D
4x6 − 12x5 + 9x4 + 4x3 − 6x2 + 1

16
+ 4C(−B)n

if x is odd. These equations are of genus 2 thus neither Szalay’s method
nor our algorithm given in the proof of Theorem 3.2 can be used to
solve them.
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= Fn Ln Pn Qn

S1(x) [18] [19] [17]
(0,−1), (0, 2), (1,−1),
(1, 2), (2,−2), (2, 3)

S2(x) [34] [34] [34] (0, 2), (1, 2)

S3(x) [34] [34] [34]
(0,−1), (0, 2),
(1,−1), (1, 2)

T2(x)
(0, 0), (0, 1), (1,−1),
(2,−1), (4, 3),
(8, 7), (10, 11)

(1,−1), (2, 3),
(18,−107)

(1,−1) (0,−1), (1,−1), (2, 3)

T4(x)
(0, 0), (0, 1),
(1,−1), (2,−1)

(1,−1) (0, 0), (0, 1), (1,−1) (0,−1), (1,−1)

Π2(x)
(0,−1), (0, 0),
(3,−2), (3, 1)

–
(0,−1), (0, 0), (2,−2),
(2, 1), (4,−4), (4, 3)

–

Π3(x) (0,−2), (0,−1), (0, 0) – (0,−2), (0,−1), (0, 0) –

Π4(x)
(0,−3), (0,−2),
(0,−1), (0, 0)

–
(0,−3), (0,−2),
(0,−1), (0, 0)

–

(
x
2

)
[18] [19] [17]

(0,−1), (0, 2), (1,−1),
(1, 2), (2,−2), (2, 3)(

x
3

)
[35] [35] [35] –

(
x
4

)
[34] [34]

(0, 0), (0, 1), (0, 2), (0, 3),
(1,−1), (1, 4), (3,−2),
(3, 5), (6,−5), (6, 8)

(1,−1), (1, 4)

Table 2

4. Proofs

We need some new concepts and also some lemmas for the proof of
Theorem 3.1. A polynomial f(x) ∈ C[x] is called non-degenerate if it
has at least three zeros of odd multiplicities.

Lemma 4.1 (Brindza [4]). Let b be a non-zero rational number and
f(x) ∈ Q[x] a non-degenerate polynomial. Then for the integral solu-
tions x, y of the hyperelliptic equation

f(x) = by2

we have max (|x|, |y|) < c1, where c1 is an effectively computable con-
stant depending only on b and f .

Lemma 4.2 (Ping-Zhi [26]). Let k be an integer with k ≥ 5, b an
algebraic number and put fk(x) =

(
x
k

)
− b. Then apart from the cases

when k = 6, b = −10±7
√

7
1215

, the polynomial fk(x) is non-degenerate.
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Further on, let Bk(x) and Ek(x) denote the kth Bernoulli and Euler
polynomial, respectively (see e.g. [28]).

Lemma 4.3 (Pintér and Rakaczki [27]). If k is an integer with k ≥ 5
and a, b are complex numbers with b 6= 0 then the polynomial (Bk(x) +
a)2 + b is non-degenerate.

Lemma 4.4 (Rakaczki [29]). If k is an integer with k ≥ 5 and a, b are
complex numbers with b 6= 0 then the polynomial (Ek(x) + a)2 + b is
non-degenerate.

Now we have all the tools to prove Theorem 3.1.

Proof of Theorem 3.1. We split the proof into three parts according to
the value of k. In each part we investigate the possible choices for p(x)
in turn.

The case k ≥ 5. Assume first that p(x) =
(

x
k

)
. By (1) with y = Vn,

we get

y2 = D

(
x

k

)2

+ 4C(−B)n,

for which by factoring the right-hand side we obtain

(4) y2 = D

((
x

k

)
+ 2

√
−C(−B)n

D

)((
x

k

)
− 2

√
−C(−B)n

D

)
.

Note that as B = ±1 and C 6= 0 the zeros of the two factors on the
right-hand side of (4) must be distinct. Thus by Lemmas 4.1 and 4.2
it is enough to consider the cases where

k = 6, b = −10± 7
√

7

1215
.

Hence by a simple calculation we get that one of the factors of the right-
hand side of (4) is non-degenerate. Thus by Lemma 4.1 the theorem
follows.

Now let p(x) = Πk(x). By (1) with y = Vn we obtain that

(5) y2 = DΠk(x)2 + 4C(−B)n.

Since Πk(x) = k!
(

x+k−1
k

)
, and a non-zero constant multiple of a non-

degenerate polynomial is non-degenerate, by the previous argument the
polynomial on the right-hand side of (5) is non-degenerate. Thus the
theorem follows also in this case.

Assume that p(x) = Sk−1(x). It is well-known that

Sk−1(x) =
1

k
(Bk(x)−Bk(0)),



COMBINATORIAL NUMBERS IN BINARY RECURRENCES 9

where Bk(x) is the kth Bernoulli polynomial. Thus by (1) with y = Vn

we have

(6) y2 =
D

k2

(
(Bk(x)−Bk(0))2 +

4C(−B)nk2

D

)
.

Applying Lemma 4.3 with a = −Bk(0) and b = 4C(−B)nk2

D
6= 0, the

polynomial on the right-hand side of (6) is non-degenerate. So the
theorem follows again by Lemma 4.1.

Finally, let p(x) = Tk(x). It is well-known that for all k ∈ N

Tk(x) =
1

2
(Ek(0) + (−1)x+1Ek(x))

holds, where Ek(x) is the kth Euler polnomial. In the usual manner,
(1) gives

(7) y2 =
D

4

(
(Ek(x) + (−1)x+1Ek(0))2 +

16C(−B)n

D

)
.

Using Lemma 4.4 with a = (−1)x+1Ek(0) and b = 16C(−B)n

D
6= 0, we ob-

tain that the polynomial on the right-hand side of (7) is non-degenerate.
Thus by Lemma 4.1 the theorem holds.

The case k = 4. Take first p(x) =
(

x
4

)
. Then (1) yields

y2 = D

(
x

4

)2

+ 4C(−B)n,

where y = Vn. If the discriminant of the polynomial on the right-
hand side is non-zero, then the polynomial is non-degenerate and the
theorem is the consequence of Lemma 4.1. The discriminant of this
polynomial is zero if and only if 4C(−B)n = −9D

16384
, or −D

576
, therefore

we need to check only these two cases. In the first case we obtain the
hyperelliptic equation

y2 = D

(
x

4

)2

− 9D

16384
=

=
D

147456
(4x2 − 12x− 1)(16x4 − 96x3 + 176x2 − 96x + 9)(2x− 3)2

and by Lemma 4.1 we are done. The second case gives the hyperelliptic
equation

y2 = D

(
x

4

)2

− D

576
=

D

576
(x4 − 6x3 + 11x2 − 6x− 1)(x2 − 3x + 1)2

and by Lemma 4.1 the theorem follows again.



10 T. KOVÁCS

When p(x) ∈ {Π4(x), S3(x), T4(x)} the theorem can be verified by a
similar argument. We omit the details.

The case k ≤ 3. First note that when p(x) = T3(x) by a similar
argument as in case of k = 4 the theorem follows. Hence we may
assume that either k = 2, or k = 3, p(x) ∈ {

(
x
3

)
, Π3(x), S2(x)}. Recall

that in these cases we have B = 1. We only consider an example,
all the other possibilities can be handled similarly. Let p(x) =

(
x
2

)
.

Putting y = Vn in (1) we get

(8) y2 = D

(
x

2

)2

+ 4C(−1)n.

The discriminant of the polynomial on the right-hand side is zero if and
only if 4C(−1)n = −D

64
. Thus this polynomial is non-degenerate, unless

256|D is valid. However, as now D = A2 + 4, a simple calculation
gives that it is impossible. Therefore the right-hand side of (8) is non-
degenerate and by Lemma 4.1 the theorem follows. �

For the proof of Proposition 3.1 we need the following concept. Let
Tk(x) denote the Chebisev polynomial of degree k, i.e., T0(x) = 2,
T1(x) = x, and Tn+1(x) = xTn(x)− Tn−1(x) for n ≥ 1. Further, we use
the following result which is an immediate consequence of a theorem
of Nemes and Pethő [21].

Lemma 4.5 (Nemes and Pethő [21]). Let Un be a non-degenerated
binary recurrence sequence with |B| = 1, and

p(x) = akx
k + ak−1x

k−1 + . . . + a0

be a polynomial with integer coefficients of degree k ≥ 2. Let be q =
−(−B)mC/D and E = 2(k − 1)a2

k−1 − 4kakak−2. If (2) has infinitely
many solutions n, x, then

p(x) = ε
√

qTk

(
2k|ak|
η
√

E
x +

2ak−1

η
√

E

)
,

where ε and η are either 1 or −1.

Proof of Proposition 3.1. First we show that the recurrence sequences
from Table 1 corresponding to the appropriate polynomials p(x), can be
constructed by the help of Lemma 4.5. We consider only one example,
the others can be handled similarly. Let p(x) =

(
x
2

)
. Then p(x) can be

written in the form

p(x) =
1

16
T2(2

√
2x−

√
2) =

1

16
(8x2 − 8x).

From this by Lemma 4.5, it follows that if equation (2) has infinitely
many solutions then the parameters of the binary recurrence sequence
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U must satisfy C
D

= − 1
256

. Choosing U0 = 1, U1 = 253, A = 254

with B = −1 we get that C
D

= −252
64512

= − 1
256

. Hence we conclude that
the binary recurrence sequence belonging to the parameters of the first
row of Table 1 and the polynomial p(x) =

(
x
2

)
satisfy the conditions of

Lemma 4.5.
Now we prove that with these choices of the parameters, equation (2)

actually has infinitely many solutions. Since the companion polynomial
of U is x2 − 254x + 1, we have

Un = 3
√

7+8
16

(127 + 48
√

7)n − 3
√

7−8
16

(127− 48
√

7)n (n = 0, 1, . . .).

Let W = {Wn}∞n=0 be the ternary recurrence sequence defined by the
initial values W0 = 2, W1 = 23, W2 = 359 and by the recurrence
relation Wn = 17Wn−1−17Wn−2 +Wn−3 (n ≥ 3). Then the companion
polynomial of W is

x3 − 17x2 + 17x− 1 = (x2 − 16x + 1)(x− 1).

Hence we have

Wn =
3 +

√
7

4
(8 + 3

√
7)n +

3−
√

7

4
(8− 3

√
7)n +

1

2
1n.

Since Un can be written as Un = 1
16

(
(8 + 3

√
7)2n+1 + (8− 3

√
7)2n+1

)
,

it can be easily verified that for all n = 0, 1, . . . we have Un =
(

Wn

2

)
.

Thus with the choice x = Wn equation (2) has infinitely many solutions
in n, x. �

Proof of Theorem 3.2. As we explained before formulating the theo-
rem, to prove the statement it is sufficient to consider equation (3)
with our special settings, i.e.

Y 2 = D
(
a2X4 + 2acX3 + (c2 + 2ad)X2 + 2cdX + d2

)
+ 4C(−B)ne2.

The discriminant of the polynomial on the right-hand side is

∆ = 256D3a4C2e4(16a2Dd2 + 64a2C(−B)ne2 − 8aDc2d + c4D).

Since by our conditions Dae 6= 0, and U is non-degenerate therefore
C 6= 0, thus if

8aDd(2ad− c2) 6= −64a2C(−B)ne2 − c4D,

then ∆ 6= 0. Hence, by Lemma 4.1 the solutions n, x of (2) can be
effectively determined.

The solutions can be determined explicitly in the following way. In
what follows, we use certain procedures of the program package Magma
and also Magma programs of Bruin and Stoll [5] and Tengely [36]. We
emphasize that all the procedures we use or mention are known from
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the literature. The novelty at this point is only that we put them
together in order to get a complete algorithm.

First, by the command HyperellipticCurve we define the hyperel-
liptic curve

(9) Y 2 = h(X),

where h(X) := h4X
4 + h3X

3 + h2X
2 + h1X + h0 is the right-hand

side of (3). If h4 is a perfect square then one can use Runge’s method
to solve (9). In fact, by the help of a Magma program of Tengely,
all solutions can be determined in this case (see [36]). Otherwise, we
try to determine some rational points on the curve (9) with the help
of the procedure Points. If we cannot get any rational points, then
most probably (9) has no rational solutions at all. This can be very
efficiently checked by the procedure TwoCoverDescent of Bruin and
Stoll. (For the description of this procedure and some examples see
[5].)

Assume now that with the procedure Points we obtained some ra-
tional points on (9). Suppose that there is a point (X0, Y0) among them

such that Y0 = 0. Let (X0, 0) =
(

x1

x2
, 0
)

be such a point of the curve.

Then using the substitutions U = x2X − x1 and V = x2
2Y , noting that

h(X0) = 0, we obtain an equation of the shape

V 2 = t4U
4 + t3U

3 + t2U
2 + t1U

with some ti ∈ Z (i = 1, . . . , 4). Factorizing the right-hand side we get
that

(10) sV 2
1 = U

and

(11) sV 2
2 = t4U

3 + t3U
2 + t2U + t1

with some integers s, V1, V2. Equation (10) implies that s | U , hence
(11) yields that s | t1. Thus to solve our original problem it is sufficient
to find the integral points on finitely many elliptic curves given by (11).
This can be done with the procedure IntegralPoints. Following the
substitutions backwards we obtain all integer solutions of (9).

Finally, consider the case when the procedure Points finds only ra-
tional points on (9) with nonzero second coordinates. In this case by
the help of certain birational transformations (9) can be transformed
into an elliptic curve. For the theory of birational transformations
see e.g. Harada and Lang [14], Connell [11], Tzanakis [38], Hermann
[15] and the references given there. To resolve (9) completely, one
can use the procedure IntegralQuarticPoints of Magma (which is
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actually based upon results from [38]). One needs to call the proce-
dure IntegralQuarticPoints by (9) and one of the above mentioned
points. In this way we can get all integral solutions of (9) also in this
case.

We implemented our algorithm for the resolution of (9) in Magma.
The program can be downloaded from www.math.klte.hu/∼tkovacs or
can be requested from the author.

From the solutions of equation (3) all solutions n, x of the original
equation (2) can be easily determined. �

Proof of Theorem 3.3. We split the proof into three parts. We start
with equations which turn to be unsolvable locally. Then we deal with
equations which can be reduced to elliptic equations. Finally, we prove
the theorem for those equations which can be reduced to genus 1 equa-
tions. In all cases we give the proof only for one equation as the other
ones can be handled similarly.

Throughout the proof we shall use the well-known facts that L is the
associate sequence of F and Q is the associate sequence of P .

Locally unsolvable equations. In this part of the proof we deal
with those equations which turn out to be locally unsolvable for some
prime. The following equations belong to this group: Qn = Π2(x), Π4(x).

As an example, take the equation Qn = Π2(x). Writing y = Pn in
(1), we get the equations

y2 = 8(x(x + 1))2 ∓ 8.

A simple calculation modulo 16 leads to a contradiction. Hence equa-
tion Qn = Π2(x) does not have any integer solutions. We note that
our algorithm described in the proof of Theorem 3.2 provides the same
conclusion.

Elliptic equations. In this part we handle those equations which
can be reduced to elliptic equations. The following equations belong to
this set: Qn = S2(x),

(
x
3

)
and Un = Π3(x), with Un ∈ {Fn, Ln, Pn, Qn}.

As an example, consider the equation Pn = Π3(x). With the substi-
tution y = Qn, (1) yields

y2 = 8(x(x + 1)(x + 2))2 ± 4.

With the substitution x1 = 2(x + 1)2 the right-hand side can be trans-
formed to a polynomial of degree 3, therefore we obtain the elliptic
equations

y2 = x3
1 − 4x2

1 + 4x1 ± 4.
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With the procedure IntegralPoints of Magma one can compute the
integer points of these curves, and then determine the solutions n, x of
(2). The solutions are exactly the ones listed in Table 2.

Genus 1 equations. In this part we consider those equations which
can be reduced to genus 1 equations. All the equations considered
which are not mentioned so far belong to this group.

Consider the equation Fn = Π4(x). With y = Ln and x1 = x2 + 3x
by (1) we get the equation

y2 = 5x4
1 + 20x3

1 + 20x2
1 + 4(−1)n.

If n is even then directly, if n is odd then after the substitution x2 =
x1 +1 we can apply the procedure IntegralQuarticPoints of Magma
to compute the integer solutions of this equation. Then we easily get
the solutions n, x of the original equation (2). The solutions are exactly
the ones listed in Table 2. �
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