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Abstract

We prove that Riemann's xi function is strictly increasing (respectively, strictly
decreasing) in modulus along every horizontal half-line in any zero-free, open right
(respectively, left) half-plane. A corollary is a reformulation of the Riemann Hypothesis.

1. Introduction

The Riemann zeta function ζ ( )s  is defined as the analytic continuation of the Dirichlet
series
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which converges if ℜ >( ) .s 1  The zeta function is holomorphic in the complex plane,
except for a simple pole at s =1. The real zeros of ζ ( )s  are s = − − −2 4 6, , , . . .. Its nonreal
zeros lie in the critical strip 0 1≤ ℜ ≤( )s . The Riemann Hypothesis asserts that all the
nonreal zeros  lie on the critical line ℜ =( )s 1 2.

Riemann's xi function ξ( )s  is defined as the product

ξ π ζ( ) : ( ) ( )s s s s s
s= − ( )−1
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where Γ  denotes the gamma function. The zero of s −1 cancels the pole of ζ ( )s , and the

real zeros of s sζ ( ) are cancelled by the (simple) poles of Γ 1

2
s( ), which never vanishes.

Thus, ξ( )s  is an entire function whose zeros are the nonreal zeros of ζ ( )s  (see [1, p. 80]).
The xi function satisfies the remarkable functional equation

ξ ξ( ) ( )1− =s s .

We prove the following monotonicity property of ξ( )s . (Throughout this note,
increasing and decreasing will mean strictly so, and a half-line will be a half-infinite line
not including its endpoint.)

THEOREM  1. The xi function is increasing in modulus along every horizontal half-line lying
in any open right half-plane that contains no xi zeros. Similarly, the modulus decreases on
each horizontal half-line in any zero-free, open left half-plane.

For example, since ξ( )s ≠ 0 outside the critical strip, if t is any fixed number, then
ξ σ( )+ it  is increasing for 1< < ∞σ  and decreasing for −∞ < <σ 0.

In the next section, as a corollary of Theorem 1, we give a reformulation of the
Riemann Hypothesis (a slight improvement of [2, Section 13.2, Exercise 1 (e)]). The
proof of Theorem 1 is presented in the final section.

2. A reformulation of the Riemann Hypothesis

Here is an easy corollary of Theorem 1.

COROLLARY 1. The following statements are equivalent.
(i). If t is any fixed real number, then ξ σ( )+ it  is increasing for 1 2< < ∞σ .

(ii). If t is any fixed real number, then ξ σ( )+ it  is decreasing for −∞ < <σ 1 2.
(iii). The Riemann Hypothesis is true.

        PROOF. If ξ( )s  is increasing along a half-line L (or decreasing on L), then ξ( )s
cannot have a zero on L. It follows, using the functional equation, that each of the
statements (i) and (ii) implies (iii). Conversely, if (iii) holds, then ξ( )s ≠ 0 on the right
and left open half-planes of the critical line, and Theorem 1 implies (i) and (ii).

3. Proof of Theorem 1

We prove the first statement. The second then follows, using the functional equation.
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Let H H s s= = ℜ >{ }( ) : ( )σ σ0 0  be a zero-free, open right half-plane. Fix a real

number t0, and denote by L L t= ( , )σ0 0  the horizontal half-line

L it H it= + >{ } ⊂ = + >{ }σ σ σ σ σ σ0 0 0: : .

In order to prove that ξ( )s  is increasing along L, we employ the Hadamard product
representation of the xi function [1, p. 80]:
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Here the product is over all nonreal zeta zeros ρ , and B is the negative real number

B C: log . . . .= − − = −1
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where C is Euler's constant.
We first prove that 1− ( )s ρ  is increasing on L. Since H s s= ℜ >{ }: ( ) σ0  is zero-free

and L H⊂ , we have

ℜ ≤ < ℜ( ) ( )ρ σ0 s      (s L∈ ).

It follows that the distance s − ρ  and, hence, the modulus 1 1− ( ) = − −
s sρ ρ ρ  are

increasing along L.
We next show that es ρ  is non-decreasing on L. (In fact, es ρ  is increasing on L, but

we do not need this deeper fact.) Let ρ β γ= + i  denote a nonreal zeta zero. Since
β ρ= ℜ ≥( ) 0, the modulus

e e es s tρ ρ βσ γ β γ= =ℜ ( ) +( ) +( )0
2 2

is non-decreasing along L.
It remains to overcome the effect of the Hadamard product factor eBs , which, since

B < 0, is decreasing in modulus on L. We use the following alternate interpretation of the
constant B. First, let ρ ρ1 2, , . . . be the zeta zeros with positive imaginary part, and write
ρ β γn n ni= + , for n ≥ 1. Then B is also given by the formulas [1, p. 82]
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For N ≥ 1, denote the Nth partial sum of the series for −B  by
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Note that − +( )B SN  is positive, and that it approaches zero as N tends to infinity.

Now for N ≥ 2, let P sN ( ) be the finite product
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Then by combining exponential factors, we can write the Hadamard product as
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From what we have shown about 1− ( )s ρ  and es ρ , both P sN ( ) and the infinite

product are increasing in modulus along L. To analyze the remaining factors on L, set
s it= +σ 0 and define the function
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A calculation shows that the derivative ′fN ( )σ  is positive if

σ β
σ β γ
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Now fix σ σ1 0> . Since σ β σ σ1 1 1 0 0− ≥ − > , and − +( ) →B SN 0 as N → ∞, we can

choose N so large that ′ >fN ( )σ1 0. Then ′fN  is also positive on some open interval I

containing σ1. It follows that fN ( )σ  and, therefore, ξ σ( )+ it0  are increasing for σ ∈ I .

Since σ σ1 0( )>  and t0 are arbitrary, the theorem is proved.
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