A NOTE ON MAXIMAL SUBGROUPS OF FREE IDEMPOTENT GENERATED SEMIGROUPS OVER BANDS

IGOR DOLINKA

Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4, 21101 Novi Sad, Serbia E-mail: dockie@dmi.uns.ac.rs

Abstract

We prove that all maximal subgroups of the free idempotent generated semigroup over a band B are free for all B belonging to a band variety **V** if and only if **V** consists either of left seminormal bands, or of right seminormal bands.

Let S be a semigroup, and let E = E(S) be the set of its idempotents; in fact, E, along with the multiplication inherited from S, is a partial algebra. It turns out to be fruitful to restrict further the domain of the partial multiplication defined on E by considering only the pairs $e, f \in E$ for which either $ef \in \{e, f\}$ or $fe \in \{e, f\}$ (i.e. $\{ef, fe\} \cap \{e, f\} \neq \emptyset$). Note that if $ef \in \{e, f\}$ then fe is an idempotent, and the same is true if we interchange the roles of e and f. Such unordered pairs $\{e, f\}$ are called *basic pairs* and their products ef and fe are *basic products*.

The *free idempotent generated semigroup over* E is defined by the following presentation:

 $\mathsf{IG}(E) = \langle E \mid e \cdot f = ef \text{ such that } \{e, f\} \text{ is a basic pair} \rangle.$

Here ef denotes the product of e and f in S (which is again an idempotent of S), while \cdot stands for the concatenation operation in the free semigroup E^+ (also to be interpreted as the multiplication in its quotient IG(E)). An important feature

Mathematics subject classification numbers: 20M05, 20M10, 20F05

Key words and phrases: free idempotent generated semigroup, band, maximal subgroup

The support of the Ministry of Education and Science of the Republic of Serbia, through Grant No. 174019, is gratefully acknowledged.

of $\mathsf{IG}(E)$ is that there is a natural homomorphism from $\mathsf{IG}(E)$ onto the subsemigroup of S generated by E, and the restriction of ϕ to the set of idempotents of $\mathsf{IG}(E)$ is a basic-product-preserving bijection onto E, see e.g. [5, 9, 13].

An important background to these definitions is the notion of the *biordered* set [7] of idempotents of a semigroup and its abstract counterpart. The biordered set of idempotents of S is just a partial algebra on E(S) obtained by restricting the multiplication from S to basic pairs of idempotents. In this way we have that if B is a band (an idempotent semigroup), then, even though there is an everywhere defined multiplication on E(B) = B, its biordered set [3] is in general still a partial algebra. Another way of treating biordered sets is to consider them as relational structures $(E(S), \leq^{(l)}, \leq^{(r)})$, where the set of idempotents E(S) is equipped by two quasi-order relations defined by

$$e \leq^{(l)} f$$
 if and only if $ef = e$,
 $e \leq^{(r)} f$ if and only if $fe = e$.

One of the main achievements of [4, 5, 9] is the result that the class of biordered sets considered as relational structures is *axiomatisable*: there is in fact a finite system of formulæ satisfied by biordered sets such that any set endowed with two quasi-orders satisfying the axioms in question is a biordered set of idempotents of some semigroup. In this sense we can speak about the free idempotent generated semigroup over a biordered set E. A fundamental fact which justifies the term 'free' is that IG(E) is the free object in the category of all semigroups S whose biordered set of idempotents is isomorphic to E: if $\psi : E \to E(S)$ is any isomorphism of biordered sets, then it uniquely extends (via the canonical injection of E into IG(E)) to a homomorphism $\psi' : IG(E) \to S$ whose image is the subsemigroup of S generated by E(S). This is also true if ψ is a (surjective) homomorphism of biordered sets (taken as relational structures), so that the freeness property of IG(E) carries over to even wider categories of semigroups.

In this short note we consider $\mathsf{IG}(B)$, the free idempotent generated semigroup over (the biordered set of) a band B; more precisely, we are interested in the question whether the maximal subgroups of these semigroups are free. It was conjectured in [8] that each maximal subgroup of any semigroup of the form $\mathsf{IG}(E)$ is a free group. Recently, this was disproved [1] (see also [2]), where a certain 72-element semigroup was found whose biordered set E of idempotents yields a maximal subgroup in $\mathsf{IG}(E)$ isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$, the rank 2 free abelian group. Here we will see that a particular 20-element regular band suffices for the same purpose. In fact, as proved by Gray and Ruškuc in [6], every group can be isomorphic to a maximal subgroup of some $\mathsf{IG}(E)$, while the assumption that the semigroup S with E = E(S) is finite yields a sole restriction that the groups in question are finitely presented. This puts forward many new questions, one of which is the characterisation of bands B for which all subgroups of IG(B) are free.

More specifically, as a first approximation to the latter question, we may ask for a description of all varieties \mathbf{V} of bands with the property that for each $B \in \mathbf{V}$ the maximal subgroups of $\mathsf{IG}(B)$ are free. To facilitate the discussion, we depict in Fig. 1 the bottom part of the lattice $\mathcal{L}(\mathbf{B})$ of all band varieties, along with their standard labels (see also [15, Diagram II.3.1]).

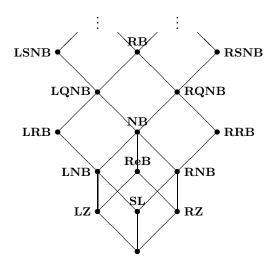


Figure 1: The bottom part of the lattice of all varieties of bands

The main result of this note is the following.

Theorem 1. Let \mathbf{V} be a variety of bands. Then $\mathsf{IG}(B)$ has all its maximal subgroups free for all $B \in \mathbf{V}$ if and only if \mathbf{V} is contained either in LSNB or in RSNB.

This theorem is a direct consequence of the following two propositions.

Proposition 2. For any left (right) seminormal band B, all maximal subgroups of IG(B) are free.

Proposition 3. There exists a regular band B such that IG(B) has a maximal subgroup isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$.

The first of these propositions is a generalisation of the well known result of Pastijn [13, Theorem 6.5] (cf. also [10, 12]) that all maximal subgroups of IG(B) are free for any normal band B. The other one supplies a simpler example with the same non-free maximal subgroup than the one considered in [1, Section 5]. The method used is the one from [6], which is based on the Reidemeister-Schreier type rewriting process for obtaining presentations of maximal subgroups of semigroups developed in [11]. So, before turning to the proofs of the above two propositions, we briefly present this general method yielding presentations for maximal subgroups of IG(E), E = E(S), for an arbitrary semigroup S, and then we explain its particular case when S is a band. Along the way, we assume some familiarity with the most basic notions of semigroup theory, such as Green's relations and the structure of bands, see, for example, [7, 15].

Let S be a semigroup and let D be a \mathcal{D} -class of S containing an idempotent $e_0 \in E(S)$. We are going to label the \mathcal{R} -classes contained in D by R_i , $i \in I$, while L_j , $j \in J$, is the list of all \mathcal{L} -classes of D. The \mathcal{H} -class $R_i \cap L_j$ will be denoted by H_{ij} . Define $\mathcal{K} = \{(i, j) : H_{ij} \text{ is a group}\}$; as is well known, $(i, j) \in \mathcal{K}$ if and only if H_{ij} contains an idempotent, which we denote by e_{ij} . There is no loss of generality if we assume that both I and J contain an index 1, so that $e_0 = e_{11}$.

For a word $\mathbf{w} \in E^*$, let $\overline{\mathbf{w}}$ denote the image of \mathbf{w} under the canonical monoid homomorphism of E^* into S^1 : in other words, when \mathbf{w} is non-empty, $\overline{\mathbf{w}}$ is just the element of S obtained by multiplying in S the idempotents the concatenation of which is \mathbf{w} . We say that a system of words $\mathbf{r}_j, \mathbf{r}'_j \in E^*, j \in J$, is a *Schreier* system of representatives for D if for each $j \in J$:

- the right multiplications by $\overline{\mathbf{r}_j}$ and $\overline{\mathbf{r}'_j}$ are mutually inverse \mathcal{R} -class preserving bijections $L_1 \to L_j$ and $L_j \to L_1$, respectively (so, in particular, right multiplication by \mathbf{r}_1 is the identity mapping on L_1);
- each prefix of \mathbf{r}_j coincides with $\mathbf{r}_{j'}$ for some $j' \in J$ (in particular, the empty word is just \mathbf{r}_1).

It is well-known that such a Schreier system always exists. In the following, we assume that one particular Schreier system has been fixed.

In addition, we will assume that a mapping $i \mapsto j(i)$ has been specified such that $(i, j(i)) \in \mathcal{K}$: such j(i) must exist for each $i \in I$, since D is a regular \mathcal{D} -class (as it contains an idempotent), and so each \mathcal{R} -class R_i must contain an idempotent. The index $j(i) \in J$ is called the *anchor* of R_i .

Finally, call a square a quadruple of idempotents (e, f, g, h) in D such that

$$e \quad \mathcal{R} \quad f$$
$$\mathcal{L} \quad \mathcal{L}$$
$$g \quad \mathcal{R} \quad h.$$

Then there are $i, k \in I$ and $j, \ell \in J$ such that $e \in H_{ij}, f \in H_{i\ell}, g \in H_{kj}$ and $h \in H_{k\ell}$. For an idempotent $\varepsilon \in S$ we say that it *singularises* the square (e, f, g, h) if any of the following two cases takes place:

- (a) $\varepsilon e = e$ and $\varepsilon g = g$, while $e = f\varepsilon$; or
- (b) $e = \varepsilon g$, along with $e\varepsilon = e$ and $f\varepsilon = f$.

Note that case (a) implies $\varepsilon f = f$, $\varepsilon h = h$, $e\varepsilon = e$ and $g = g\varepsilon = h\varepsilon$, while conditions $\varepsilon e = e$, $f = \varepsilon f = \varepsilon h$, $g\varepsilon = g$ and $h\varepsilon = h$ follow from (b). The square (e, f, g, h) is singular if it is singularised by some idempotent of S. Let Σ be the set of all quadruples $(i, k; j, \ell) \in I \times I \times J \times J$ (to be called singular rectangles) such that $(e_{ij}, e_{i\ell}, e_{kj}, e_{k\ell})$ is a singular square in D.

The required general result of [6] can be now paraphrased as follows.

Theorem 4 (Theorem 5 of [6]). Let S be a semigroup with a non-empty set of idempotents E = E(S). With the notation as above, the maximal subgroup of the free idempotent generated semigroup $\mathsf{IG}(E)$ containing $e_{11} \in E$ is presented by $\langle \Gamma \mid \mathfrak{R} \rangle$, where $\Gamma = \{f_{ij} : (i, j) \in \mathcal{K}\}$, while \mathfrak{R} consists of three types of relations:

- (i) $f_{i,j(i)} = 1$ for all $i \in I$;
- (ii) $f_{ij} = f_{i\ell}$ for all $i \in I$ and $j, \ell \in J$ such that $\mathbf{r}_j \cdot e_{i\ell} = \mathbf{r}_{\ell}$;
- (iii) $f_{ij}^{-1}f_{i\ell} = f_{kj}^{-1}f_{k\ell}$ for all $(i,k;j,\ell) \in \Sigma$.

For our purpose, we would like to focus on the particular case when S is a band. Then, clearly, $\mathcal{K} = I \times J$ and $D = \{e_{ij} : i \in I, j \in J\}$. Since $\mathcal{D} = \mathcal{J}$ in any band, the set of all \mathcal{D} -classes of B is partially ordered; it instantly turns out that, by definition, if ε singularises a square (e, f, g, h) in D, then $D_{\varepsilon} \ge D$. Now any such $\varepsilon \in B$ induces a pair of transformations on I and J, respectively, in the following sense. For each $i \in I$ and $j \in J$ there are $i', k \in I$ and $j', \ell \in J$ such that $\varepsilon e_{ij} = e_{i'\ell}$ and $e_{ij}\varepsilon = e_{kj'}$. One immediately sees that it must be $\ell = j$ and k = i, so that B acts on the left on I and on the right on J. Thus it is convenient to write the transformation $\sigma = \sigma_{\varepsilon}^{(l)}$ induced by ε on I to the left of its argument (so that $ee_{ij} = e_{\sigma(i)j}$), while the analogous transformation $\sigma' = \sigma_{\varepsilon}^{(r)}$ on J is written to the right (resulting in the rule $e_{ij}e = e_{i(j)\sigma'}$).

Corollary 5. Let B be a band, let D be a \mathcal{D} -class of B, and let $e_{11} \in D$. Then the maximal subgroup $G_{e_{11}}$ of $\mathsf{IG}(B)$ containing e_{11} is presented by $\langle \Gamma | \mathfrak{R} \rangle$, where $\Gamma = \{f_{ij} : i \in I, j \in J\}$ and \mathfrak{R} consists of relations

$$f_{i1} = f_{1j} = f_{11} = 1 \tag{1}$$

for all $i \in I$ and $j \in J$, and

$$f_{ij}^{-1}f_{i\ell} = f_{kj}^{-1}f_{k\ell},\tag{2}$$

where for some $\varepsilon \in B$ such that $D_{\varepsilon} \ge D$ the indices $i, k \in I, j, \ell \in J$ satisfy one of the following two conditions:

(a) $\sigma_{\varepsilon}^{(l)}(i) = i, \ \sigma_{\varepsilon}^{(l)}(k) = k, \ and \ (j)\sigma_{\varepsilon}^{(r)} = (\ell)\sigma_{\varepsilon}^{(r)} = \ell,$ (b) $\sigma_{\varepsilon}^{(l)}(i) = \sigma_{\varepsilon}^{(l)}(k) = k, \ (j)\sigma_{\varepsilon}^{(r)} = j \ and \ (\ell)\sigma_{\varepsilon}^{(r)} = \ell.$

Proof. Since $\mathcal{K} = I \times J$, we have a generator f_{ij} for each $i \in I$ and $j \in J$. Furthermore, the same reason allows us to choose j(i) = 1 as the anchor for each $i \in I$. Such a choice will imply that the relations of type (i) from Theorem 4 take the form $f_{i1} = 1$, $i \in I$. In particular, we have $f_{11} = 1$. As for the Schreier system, we can choose \mathbf{r}_1 to be the empty word, $\mathbf{r}_j = e_{1j}$ for all $j \in J \setminus \{1\}$ and $\mathbf{r}'_j = e_{11}$ for all $j \in J$. The system \mathbf{r}_j , $j \in J$, of words over E is obviously prefixclosed. Since $e_{i1}e_{ij} = e_{ij}$ and $e_{ij}e_{11} = e_{i1}$ holds for all $i \in I$, $j \in J$, the right multiplications by e_{ij} and e_{11} are indeed mutually inverse bijections between L_1 and L_j and between L_j and L_1 , respectively. Hence, the relations of type (ii) reduce to $f_{11} = f_{1j}$, that is, $f_{1j} = 1$, for all $j \in J$. Thus we have all the relations (1). Finally, the conditions (a) and (b) express precisely the singularisation of a square $(e_{ij}, e_{i\ell}, e_{kj}, e_{k\ell})$ in D by an element $\varepsilon \in B$; therefore, the relations (2) correspond to relations of type (iii).

Rectangles $(i, k; j, \ell) \in I \times J$ of type (a) will be said to be *left-right* singular, while those of type (b) are *up-down* singular (with respect to ε). Another, more compact way of expressing condition (a) is $i, k \in \operatorname{Im} \sigma_{\varepsilon}^{(l)}, \ell \in \operatorname{Im} \sigma_{\varepsilon}^{(r)}$ and $(j, \ell) \in \operatorname{Ker} \sigma_{\varepsilon}^{(r)}$, while (b) is equivalent to $k \in \operatorname{Im} \sigma_{\varepsilon}^{(l)}$, $(i, k) \in \operatorname{Ker} \sigma_{\varepsilon}^{(l)}$ and $j, \ell \in \operatorname{Im} \sigma_{\varepsilon}^{(r)}$.

We can now turn to proving our aforementioned result.

Proof of Proposition 2. Without any loss of generality, assume that $B \in \mathbf{RSNB}$ (the case when B belongs to \mathbf{LSNB} is dual). Recall (e.g. from [15, Proposition II.3.8]) that the variety \mathbf{RSNB} satisfies (and is indeed defined by) the identity tuv = tvtuv. Therefore, if $B = \bigcup_{\alpha \in Y} B_{\alpha}$ is the greatest semilattice decomposition of B, $a \in B$ and $x, y \in D = B_{\alpha}$ for some $\alpha \in Y$, then x = xyx and y = yxy. Hence, we have ax = ax(yx) = ayxaxyx and ay = ay(xy) = axyayxy, implying $ax \mathcal{R} ay$. In particular, for any $\varepsilon \in B$ such that $D_{\varepsilon} \ge D$, $\varepsilon e_{ij} \mathcal{R} \varepsilon e_{k\ell}$ holds in Dfor all $i, k \in I, j, \ell \in J$, so the transformation $\sigma_{\varepsilon}^{(l)}$ is a constant function on I.

We conclude that there are no proper (non-degenerate) rectangles $(i, k; j, \ell)$ that are left-right singular with respect to some $\varepsilon \in B$. In other words, all proper singular rectangles in $I \times J$ —and thus all nontrivial relations of $G_{e_{11}}$ —are of the up-down kind:

$$f_{ij}^{-1}f_{i\ell} = f_{k_0j}^{-1}f_{k_0\ell},$$

where j, ℓ are two fixed points of $\sigma_{\varepsilon}^{(r)}$, $i \in I$ is arbitrary, and (since in this context $\sigma_{\varepsilon}^{(l)}$ is constant) Im $\sigma_{\varepsilon}^{(l)} = \{k_0\}$, for some $\varepsilon \in B$. However, now it is straightforward to deduce the relation (2) for all $i, k \in I$ and fixed points j, ℓ of $\sigma_{\varepsilon}^{(r)}$. Thus we are led to define an equivalence θ_B of $\bigcup_{\varepsilon \in B, D_{\varepsilon} \ge D} \text{Im } \sigma_{\varepsilon}^{(r)} = J$ which is the transitive closure of the relation ρ_B defined by $(j_1, j_2) \in \rho_B$ if and only if $j_1, j_2 \in \text{Im } \sigma_{\varepsilon}^{(r)}$ for some $\varepsilon \in B$. Now it is almost immediate to see that for all $i, k \in I$ and $j, \ell \in J$ such that $(j, \ell) \in \theta_B$ we have that

$$f_{ij}^{-1}f_{i\ell} = f_{kj}^{-1}f_{k\ell}$$

holds in $G_{e_{11}}$. This immediately implies $f_{k\ell} = 1$ for all $k \in I$ and $\ell \in 1/\theta_B$, as well as

$$f_{kj} = f_{k\ell}$$

for all $k \in I$, whenever $(j, \ell) \in \theta_B$. So, let $j_1 = 1, j_2 \dots, j_m \in J$ be a crosssection of J/θ_B . Then it is straightforward to eliminate all the relations from the presentation of $G_{e_{11}}$ while reducing its generating set to

$$\{f_{ij_r}: i \in I \setminus \{1\}, 2 \leqslant r \leqslant m\}.$$

In other words, $G_{e_{11}}$ is a free group of rank (|I| - 1)(m - 1).

Proof of Proposition 3. Let B be the subband of the free regular band on four generators a, b, c, d consisting of two \mathcal{D} -classes: a 2×2 class D_1 consisting of elements ab, aba, ba, bab and a 4×4 class D_0 consisting of elements of the form $\mathbf{u}_1 \mathbf{v} \mathbf{u}_2$, where $\mathbf{u}_1, \mathbf{u}_2 \in \{ab, ba\}$ and $\mathbf{v} \in \{cd, cdc, dc, dcd\}$. So, we can take $I = \{abcd, abdc, bacd, badc\}$, the set of all initial parts of words from D_0 , and $J = \{cdba, dcba, cdab, dcab\}$, the set of all final parts of those words. A direct computation shows that

$$\begin{split} \sigma_{ab}^{(l)} &= \sigma_{aba}^{(l)} = \begin{pmatrix} abcd & abdc & badc & bacd \\ abcd & abdc & abdc & abcd \end{pmatrix}, \\ \sigma_{ba}^{(l)} &= \sigma_{bab}^{(l)} = \begin{pmatrix} abcd & abdc & badc & bacd \\ bacd & badc & badc & bacd \end{pmatrix}, \\ \sigma_{ab}^{(r)} &= \sigma_{bab}^{(r)} = \begin{pmatrix} cdba & cdab & dcab & dcba \\ cdab & cdab & dcab & dcab \end{pmatrix}, \\ \sigma_{ba}^{(r)} &= \sigma_{aba}^{(r)} = \begin{pmatrix} cdba & cdab & dcab & dcba \\ cdba & cdab & dcab & dcba \end{pmatrix}. \end{split}$$

If we enumerate (for brevity of further calculations) $abcd \rightarrow 1, abdc \rightarrow 2, badc \rightarrow 3, bacd \rightarrow 4$ and $cdba \rightarrow 1, cdab \rightarrow 2, dcab \rightarrow 3, dcba \rightarrow 4$, we get

$$\sigma_{ab}^{(l)} = \sigma_{aba}^{(l)} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 2 & 1 \end{pmatrix}, \qquad \sigma_{ba}^{(l)} = \sigma_{bab}^{(l)} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 3 & 4 \end{pmatrix},$$
$$\sigma_{ab}^{(r)} = \sigma_{bab}^{(r)} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 3 & 3 \end{pmatrix}, \qquad \sigma_{ba}^{(r)} = \sigma_{aba}^{(r)} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 4 & 4 \end{pmatrix}.$$

Hence, the list of singular rectangles is exhausted by:

$$(1, 2; 1, 2), (1, 2; 3, 4), (3, 4; 1, 2), (3, 4; 3, 4),$$

 $(1, 4; 2, 3), (1, 4; 1, 4), (2, 3; 2, 3), (2, 3; 1, 4).$

This results in $f_{11} = f_{12} = f_{13} = f_{14} = f_{21} = f_{31} = f_{41} = f_{22} = f_{44} = 1$ and

$$f_{23} = f_{24}, \quad f_{24} = f_{34}, \quad f_{43}^{-1} = f_{33}^{-1} f_{34}$$

 $f_{32} = f_{42}, \quad f_{42} = f_{43}, \quad f_{23} = f_{32}^{-1} f_{33}.$

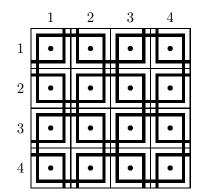


Figure 2: The rectangles in D_0 singularised by elements of D_1

If we denote $x = f_{23}$ and $y = f_{32}$ we obviously remain with these two generators for G_{abcdba} and a single relation

$$yx = f_{33} = xy,$$

so $G_{abcdba} \cong \mathbb{Z} \oplus \mathbb{Z}$.

This completes the proof of Theorem 1.

Remark 6. The band *B* from the previous proof can be also realised as a regular subband of the free band *FB*₃ on three generators *a*, *b*, *c* whose elements are from $D'_1 = \{ab, aba, ba, bab\}$ and $D'_0 = \{\mathbf{u}c\mathbf{v} : \mathbf{u}, \mathbf{v} \in D'_1\}$.

We finish the note by several problems that might be subjects of future research in this direction.

Problem 1. Characterise all bands B with the property that IG(B) has a non-free maximal subgroup.

Problem 2. Characterise all groups that arise as maximal subgroups of $\mathsf{IG}(B)$ for some band B. The same problem stands for regular bands B, and in fact for $B \in \mathbf{V}$ for any particular band variety $\mathbf{V} \ge \mathbf{RB}$.

Problem 3. Given a band variety **V** and an integer $n \ge 1$, describe the maximal subgroups of $\mathsf{IG}(\mathfrak{F}_n \mathbf{V})$, where $\mathfrak{F}_n \mathbf{V}$ denotes the **V**-free band on a set of *n* free generators [16].

Acknowledgement. The author is grateful to the anonymous referee, whose careful reading, comments and suggestions significantly improved the presentation of the results.

References

- M. BRITTENHAM, S. W. MARGOLIS and J. MEAKIN, Subgroups of free idempotent generated semigroups need not be free, J. Algebra, 321 (2009), 3026–3042.
- [2] M. BRITTENHAM, S. W. MARGOLIS and J. MEAKIN, Subgroups of free idempotent generated semigroups: full linear monoids, manuscript, 17 pp. arXiv:1009.5683
- [3] D. EASDOWN, Biordered sets of bands, Semigroup Forum, 29 (1984), 241–246.
- [4] D. EASDOWN, Biordered sets are biordered subsets of idempotents of semigroups, J. Austral. Math. Soc. Ser. A, 37 (1984), 258–268.
- [5] D. EASDOWN, Biordered sets come from semigroups, J. Algebra, 96 (1985), 581– 591.
- [6] R. GRAY and N. RUŠKUC, On maximal subgroups of free idempotent generated semigroups, *Israel J. Math.*, to appear.
- [7] P. M. HIGGINS, *Techniques of Semigroup Theory*, Oxford University Press, Oxford, 1992.
- [8] B. MCELWEE, Subgroups of the free semigroup on a biordered set in which principal ideals are singletons, Comm. Algebra, 30 (2002), 5513–5519.
- [9] K. S. S. NAMBOORIPAD, Structure of regular semigroups. I, Mem. Amer. Math. Soc., 22 (1979), no. 224, vii+119 pp.
- [10] K. S. S. NAMBOORIPAD and F. PASTIJN, Subgroups of free idempotent generated regular semigroups, *Semigroup Forum*, **21** (1980), 1–7.
- [11] N. RUŠKUC, Presentations for subgroups of monoids, J. Algebra, 220 (1999), 365– 380.

- [12] F. PASTIJN, Idempotent generated completely 0-simple semigroups, Semigroup Forum, 15 (1977), 41–50.
- [13] F. PASTIJN, The biorder on the partial groupoid of idempotents of a semigroup, J. Algebra 65 (1980), 147–187.
- [14] M. PETRICH, The translational hull in semigroups and rings, Semigroup Forum, 1 (1970), 283–360.
- [15] M. PETRICH, Lectures in Semigroups, Wiley, New York, 1977.
- [16] M. PETRICH and P. V. SILVA, Structure of relatively free bands, Comm. Algebra, 30 (2002), 4165–4187.