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Abstract

We prove that all maximal subgroups of the free idempotent generated
semigroup over a band B are free for all B belonging to a band variety
V if and only if V consists either of left seminormal bands, or of right
seminormal bands.

Let S be a semigroup, and let E = E(S) be the set of its idempotents; in
fact, E, along with the multiplication inherited from S, is a partial algebra. It
turns out to be fruitful to restrict further the domain of the partial multiplication
defined on E by considering only the pairs e, f ∈ E for which either ef ∈ {e, f}
or fe ∈ {e, f} (i.e. {ef, fe} ∩ {e, f} 6= ∅). Note that if ef ∈ {e, f} then fe is an
idempotent, and the same is true if we interchange the roles of e and f . Such
unordered pairs {e, f} are called basic pairs and their products ef and fe are
basic products.

The free idempotent generated semigroup over E is defined by the following
presentation:

IG(E) = 〈E | e · f = ef such that {e, f} is a basic pair 〉.

Here ef denotes the product of e and f in S (which is again an idempotent of S),
while · stands for the concatenation operation in the free semigroup E+ (also to
be interpreted as the multiplication in its quotient IG(E)). An important feature
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of IG(E) is that there is a natural homomorphism from IG(E) onto the subsemi-
group of S generated by E, and the restriction of φ to the set of idempotents of
IG(E) is a basic-product-preserving bijection onto E, see e.g. [5, 9, 13].

An important background to these definitions is the notion of the biordered
set [7] of idempotents of a semigroup and its abstract counterpart. The biordered
set of idempotents of S is just a partial algebra on E(S) obtained by restricting
the multiplication from S to basic pairs of idempotents. In this way we have
that if B is a band (an idempotent semigroup), then, even though there is an
everywhere defined multiplication on E(B) = B, its biordered set [3] is in general
still a partial algebra. Another way of treating biordered sets is to consider them
as relational structures (E(S),6(l),6(r)), where the set of idempotents E(S) is
equipped by two quasi-order relations defined by

e 6(l) f if and only if ef = e,

e 6(r) f if and only if fe = e.

One of the main achievements of [4, 5, 9] is the result that the class of biordered
sets considered as relational structures is axiomatisable: there is in fact a finite
system of formulæ satisfied by biordered sets such that any set endowed with
two quasi-orders satisfying the axioms in question is a biordered set of idempo-
tents of some semigroup. In this sense we can speak about the free idempotent
generated semigroup over a biordered set E. A fundamental fact which justifies
the term ‘free’ is that IG(E) is the free object in the category of all semigroups
S whose biordered set of idempotents is isomorphic to E: if ψ : E → E(S) is
any isomorphism of biordered sets, then it uniquely extends (via the canonical
injection of E into IG(E)) to a homomorphism ψ′ : IG(E) → S whose image is
the subsemigroup of S generated by E(S). This is also true if ψ is a (surjective)
homomorphism of biordered sets (taken as relational structures), so that the
freeness property of IG(E) carries over to even wider categories of semigroups.

In this short note we consider IG(B), the free idempotent generated semigroup
over (the biordered set of) a band B; more precisely, we are interested in the
question whether the maximal subgroups of these semigroups are free. It was
conjectured in [8] that each maximal subgroup of any semigroup of the form
IG(E) is a free group. Recently, this was disproved [1] (see also [2]), where a
certain 72-element semigroup was found whose biordered set E of idempotents
yields a maximal subgroup in IG(E) isomorphic to Z⊕Z, the rank 2 free abelian
group. Here we will see that a particular 20-element regular band suffices for the
same purpose. In fact, as proved by Gray and Ruškuc in [6], every group can
be isomorphic to a maximal subgroup of some IG(E), while the assumption that
the semigroup S with E = E(S) is finite yields a sole restriction that the groups
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in question are finitely presented. This puts forward many new questions, one
of which is the characterisation of bands B for which all subgroups of IG(B) are
free.

More specifically, as a first approximation to the latter question, we may
ask for a description of all varieties V of bands with the property that for each
B ∈ V the maximal subgroups of IG(B) are free. To facilitate the discussion, we
depict in Fig. 1 the bottom part of the lattice L(B) of all band varieties, along
with their standard labels (see also [15, Diagram II.3.1]).
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Figure 1: The bottom part of the lattice of all varieties of bands

The main result of this note is the following.

Theorem 1. Let V be a variety of bands. Then IG(B) has all its maximal
subgroups free for all B ∈ V if and only if V is contained either in LSNB or in
RSNB.

This theorem is a direct consequence of the following two propositions.

Proposition 2. For any left (right) seminormal band B, all maximal subgroups
of IG(B) are free.

Proposition 3. There exists a regular band B such that IG(B) has a maximal
subgroup isomorphic to Z⊕ Z.

The first of these propositions is a generalisation of the well known result
of Pastijn [13, Theorem 6.5] (cf. also [10, 12]) that all maximal subgroups of
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IG(B) are free for any normal band B. The other one supplies a simpler example
with the same non-free maximal subgroup than the one considered in [1, Section
5]. The method used is the one from [6], which is based on the Reidemeister-
Schreier type rewriting process for obtaining presentations of maximal subgroups
of semigroups developed in [11]. So, before turning to the proofs of the above
two propositions, we briefly present this general method yielding presentations
for maximal subgroups of IG(E), E = E(S), for an arbitrary semigroup S, and
then we explain its particular case when S is a band. Along the way, we assume
some familiarity with the most basic notions of semigroup theory, such as Green’s
relations and the structure of bands, see, for example, [7, 15].

Let S be a semigroup and let D be a D-class of S containing an idempotent
e0 ∈ E(S). We are going to label the R-classes contained in D by Ri, i ∈ I,
while Lj , j ∈ J , is the list of all L-classes of D. The H-class Ri ∩ Lj will be
denoted by Hij. Define K = {(i, j) : Hij is a group}; as is well known, (i, j) ∈ K
if and only if Hij contains an idempotent, which we denote by eij. There is no
loss of generality if we assume that both I and J contain an index 1, so that
e0 = e11.

For a word w ∈ E∗, let w denote the image of w under the canonical monoid
homomorphism of E∗ into S1: in other words, when w is non-empty, w is just
the element of S obtained by multiplying in S the idempotents the concatenation
of which is w. We say that a system of words rj , r

′

j ∈ E∗, j ∈ J , is a Schreier
system of representatives for D if for each j ∈ J :

• the right multiplications by rj and r′j are mutually inverse R-class preserv-
ing bijections L1 → Lj and Lj → L1, respectively (so, in particular, right
multiplication by r1 is the identity mapping on L1);

• each prefix of rj coincides with rj′ for some j′ ∈ J (in particular, the empty
word is just r1).

It is well-known that such a Schreier system always exists. In the following, we
assume that one particular Schreier system has been fixed.

In addition, we will assume that a mapping i 7→ j(i) has been specified such
that (i, j(i)) ∈ K: such j(i) must exist for each i ∈ I, since D is a regular D-
class (as it contains an idempotent), and so each R-class Ri must contain an
idempotent. The index j(i) ∈ J is called the anchor of Ri.

Finally, call a square a quadruple of idempotents (e, f, g, h) in D such that

e R f

L L

g R h.
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Then there are i, k ∈ I and j, ℓ ∈ J such that e ∈ Hij , f ∈ Hiℓ, g ∈ Hkj

and h ∈ Hkℓ. For an idempotent ε ∈ S we say that it singularises the square
(e, f, g, h) if any of the following two cases takes place:

(a) εe = e and εg = g, while e = fε; or

(b) e = εg, along with eε = e and fε = f .

Note that case (a) implies εf = f , εh = h, eε = e and g = gε = hε, while
conditions εe = e, f = εf = εh, gε = g and hε = h follow from (b). The square
(e, f, g, h) is singular if it is singularised by some idempotent of S. Let Σ be the
set of all quadruples (i, k; j, ℓ) ∈ I × I × J × J (to be called singular rectangles)
such that (eij , eiℓ, ekj , ekℓ) is a singular square in D.

The required general result of [6] can be now paraphrased as follows.

Theorem 4 (Theorem 5 of [6]). Let S be a semigroup with a non-empty set of
idempotents E = E(S). With the notation as above, the maximal subgroup of the
free idempotent generated semigroup IG(E) containing e11 ∈ E is presented by
〈Γ | R〉, where Γ = {fij : (i, j) ∈ K}, while R consists of three types of relations:

(i) fi,j(i) = 1 for all i ∈ I;

(ii) fij = fiℓ for all i ∈ I and j, ℓ ∈ J such that rj · eiℓ = rℓ;

(iii) f−1
ij fiℓ = f−1

kj fkℓ for all (i, k; j, ℓ) ∈ Σ.

For our purpose, we would like to focus on the particular case when S is a
band. Then, clearly, K = I × J and D = {eij : i ∈ I, j ∈ J}. Since D = J
in any band, the set of all D-classes of B is partially ordered; it instantly turns
out that, by definition, if ε singularises a square (e, f, g, h) in D, then Dε > D.
Now any such ε ∈ B induces a pair of transformations on I and J , respectively,
in the following sense. For each i ∈ I and j ∈ J there are i′, k ∈ I and j′, ℓ ∈ J
such that εeij = ei′ℓ and eijε = ekj′. One immediately sees that it must be ℓ = j
and k = i, so that B acts on the left on I and on the right on J . Thus it is

convenient to write the transformation σ = σ
(l)
ε induced by ε on I to the left of

its argument (so that eeij = eσ(i)j), while the analogous transformation σ′ = σ
(r)
ε

on J is written to the right (resulting in the rule eije = ei(j)σ′).

Corollary 5. Let B be a band, let D be a D-class of B, and let e11 ∈ D. Then
the maximal subgroup Ge11 of IG(B) containing e11 is presented by 〈Γ | R〉, where
Γ = {fij : i ∈ I, j ∈ J} and R consists of relations

fi1 = f1j = f11 = 1 (1)
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for all i ∈ I and j ∈ J , and

f−1
ij fiℓ = f−1

kj fkℓ, (2)

where for some ε ∈ B such that Dε > D the indices i, k ∈ I, j, ℓ ∈ J satisfy one
of the following two conditions:

(a) σ
(l)
ε (i) = i, σ

(l)
ε (k) = k, and (j)σ

(r)
ε = (ℓ)σ

(r)
ε = ℓ,

(b) σ
(l)
ε (i) = σ

(l)
ε (k) = k, (j)σ

(r)
ε = j and (ℓ)σ

(r)
ε = ℓ.

Proof. Since K = I × J , we have a generator fij for each i ∈ I and j ∈ J .
Furthermore, the same reason allows us to choose j(i) = 1 as the anchor for each
i ∈ I. Such a choice will imply that the relations of type (i) from Theorem 4
take the form fi1 = 1, i ∈ I. In particular, we have f11 = 1. As for the Schreier
system, we can choose r1 to be the empty word, rj = e1j for all j ∈ J \ {1} and
r′j = e11 for all j ∈ J . The system rj, j ∈ J , of words over E is obviously prefix-
closed. Since ei1eij = eij and eije11 = ei1 holds for all i ∈ I, j ∈ J , the right
multiplications by eij and e11 are indeed mutually inverse bijections between L1

and Lj and between Lj and L1, respectively. Hence, the relations of type (ii)
reduce to f11 = f1j , that is, f1j = 1, for all j ∈ J . Thus we have all the relations
(1). Finally, the conditions (a) and (b) express precisely the singularisation of
a square (eij , eiℓ, ekj , ekℓ) in D by an element ε ∈ B; therefore, the relations (2)
correspond to relations of type (iii).

Rectangles (i, k; j, ℓ) ∈ I × J of type (a) will be said to be left-right singular,
while those of type (b) are up-down singular (with respect to ε). Another,

more compact way of expressing condition (a) is i, k ∈ Imσ
(l)
ε , ℓ ∈ Imσ

(r)
ε and

(j, ℓ) ∈ Kerσ
(r)
ε , while (b) is equivalent to k ∈ Imσ

(l)
ε , (i, k) ∈ Kerσ

(l)
ε and

j, ℓ ∈ Imσ
(r)
ε .

We can now turn to proving our aforementioned result.

Proof of Proposition 2. Without any loss of generality, assume that B ∈ RSNB

(the case when B belongs to LSNB is dual). Recall (e.g. from [15, Proposition
II.3.8]) that the variety RSNB satisfies (and is indeed defined by) the identity
tuv = tvtuv. Therefore, if B =

⋃

α∈Y Bα is the greatest semilattice decomposi-
tion of B, a ∈ B and x, y ∈ D = Bα for some α ∈ Y , then x = xyx and y = yxy.
Hence, we have ax = ax(yx) = ayxaxyx and ay = ay(xy) = axyayxy, implying
axR ay. In particular, for any ε ∈ B such that Dε > D, εeij R εekℓ holds in D

for all i, k ∈ I, j, ℓ ∈ J , so the transformation σ
(l)
ε is a constant function on I.

We conclude that there are no proper (non-degenerate) rectangles (i, k; j, ℓ)
that are left-right singular with respect to some ε ∈ B. In other words, all proper
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singular rectangles in I×J—and thus all nontrivial relations of Ge11—are of the
up-down kind:

f−1
ij fiℓ = f−1

k0j
fk0ℓ,

where j, ℓ are two fixed points of σ
(r)
ε , i ∈ I is arbitrary, and (since in this

context σ
(l)
ε is constant) Imσ

(l)
ε = {k0}, for some ε ∈ B. However, now it is

straightforward to deduce the relation (2) for all i, k ∈ I and fixed points j, ℓ

of σ
(r)
ε . Thus we are led to define an equivalence θB of

⋃

ε∈B,Dε>D Imσ
(r)
ε = J

which is the transitive closure of the relation ρB defined by (j1, j2) ∈ ρB if and

only if j1, j2 ∈ Imσ
(r)
ε for some ε ∈ B. Now it is almost immediate to see that

for all i, k ∈ I and j, ℓ ∈ J such that (j, ℓ) ∈ θB we have that

f−1
ij fiℓ = f−1

kj fkℓ

holds in Ge11 . This immediately implies fkℓ = 1 for all k ∈ I and ℓ ∈ 1/θB , as
well as

fkj = fkℓ

for all k ∈ I, whenever (j, ℓ) ∈ θB. So, let j1 = 1, j2 . . . , jm ∈ J be a cross-
section of J/θB . Then it is straightforward to eliminate all the relations from
the presentation of Ge11 while reducing its generating set to

{fijr : i ∈ I \ {1}, 2 6 r 6 m}.

In other words, Ge11 is a free group of rank (|I| − 1)(m− 1).

Proof of Proposition 3. Let B be the subband of the free regular band on four
generators a, b, c, d consisting of two D-classes: a 2 × 2 class D1 consisting of
elements ab, aba, ba, bab and a 4 × 4 class D0 consisting of elements of the form
u1vu2, where u1,u2 ∈ {ab, ba} and v ∈ {cd, cdc, dc, dcd}. So, we can take
I = {abcd, abdc, bacd, badc}, the set of all initial parts of words from D0, and
J = {cdba, dcba, cdab, dcab}, the set of all final parts of those words. A direct
computation shows that

σ
(l)
ab = σ

(l)
aba =

(

abcd abdc badc bacd
abcd abdc abdc abcd

)

,

σ
(l)
ba = σ

(l)
bab =

(

abcd abdc badc bacd
bacd badc badc bacd

)

,

σ
(r)
ab = σ

(r)
bab =

(

cdba cdab dcab dcba
cdab cdab dcab dcab

)

,

σ
(r)
ba = σ

(r)
aba =

(

cdba cdab dcab dcba
cdba cdba dcba dcba

)

.
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If we enumerate (for brevity of further calculations) abcd→ 1, abdc → 2, badc →
3, bacd → 4 and cdba→ 1, cdab → 2, dcab → 3, dcba → 4, we get

σ
(l)
ab = σ

(l)
aba =

(

1 2 3 4
1 2 2 1

)

, σ
(l)
ba = σ

(l)
bab =

(

1 2 3 4
4 3 3 4

)

,

σ
(r)
ab = σ

(r)
bab =

(

1 2 3 4
2 2 3 3

)

, σ
(r)
ba = σ

(r)
aba =

(

1 2 3 4
1 1 4 4

)

.

Hence, the list of singular rectangles is exhausted by:

(1, 2; 1, 2), (1, 2; 3, 4), (3, 4; 1, 2), (3, 4; 3, 4),

(1, 4; 2, 3), (1, 4; 1, 4), (2, 3; 2, 3), (2, 3; 1, 4).

This results in f11 = f12 = f13 = f14 = f21 = f31 = f41 = f22 = f44 = 1 and

f23 = f24, f24 = f34, f−1
43 = f−1

33 f34

f32 = f42, f42 = f43, f23 = f−1
32 f33.

s s s s

s s s s

s s s s

s s s s

4

3

2

1

1 2 3 4

Figure 2: The rectangles in D0 singularised by elements of D1

If we denote x = f23 and y = f32 we obviously remain with these two generators
for Gabcdba and a single relation

yx = f33 = xy,

so Gabcdba
∼= Z⊕ Z.

This completes the proof of Theorem 1.

Remark 6. The band B from the previous proof can be also realised as a regular
subband of the free band FB3 on three generators a, b, c whose elements are from
D′

1 = {ab, aba, ba, bab} and D′

0 = {ucv : u,v ∈ D′

1}.
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We finish the note by several problems that might be subjects of future
research in this direction.

Problem 1. Characterise all bands B with the property that IG(B) has a non-
free maximal subgroup.

Problem 2. Characterise all groups that arise as maximal subgroups of IG(B)
for some band B. The same problem stands for regular bands B, and in fact for
B ∈ V for any particular band variety V > RB.

Problem 3. Given a band variety V and an integer n > 1, describe the maximal
subgroups of IG(FnV), where FnV denotes the V-free band on a set of n free
generators [16].

Acknowledgement. The author is grateful to the anonymous referee, whose
careful reading, comments and suggestions significantly improved the presenta-
tion of the results.
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