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THE ARITHMETIC OF CARMICHAEL QUOTIENTS

MIN SHA

Abstract. Carmichael quotients for an integer m ≥ 2 are intro-
duced analogous to Fermat quotients, by using Carmichael func-
tion λ(m). Various properties of these new quotients are investi-
gated, such as basic arithmetic properties, sequences derived from
Carmichael quotients, Carmichael-Wieferich numbers, and so on.
Finally, we link Carmichael quotients to perfect nonlinear func-
tions.

1. Introduction

Let p be a prime and a an integer not divisible by p, by Fermat’s
little theorem, the Fermat quotient of p with base a is defined as follows

Qp(a) =
ap−1 − 1

p
.

Moreover, if Qp(a) ≡ 0 (mod p), then we call p a Wieferich prime with
base a.
This quotient has been extensively studied from various aspects be-

cause of its numerous applications in number theory and computer
science; see, for example, [7, 8, 9, 11, 16, 17]. A first comprehensive
study of Fermat quotient was published in 1905 by Lerch [12], which
was based on the viewpoint of arithmetic. More arithmetic properties
were investigated in [3].
In [4], the authors generalized the definition of Fermat quotient by

using Euler’s theorem. Let m ≥ 2 and a be relatively prime integers,
the Euler quotient of m with base a is defined as follows

Qm(a) =
aϕ(m) − 1

m
,

where ϕ is Euler’s totient function. Moreover, if Qm(a) ≡ 0 (mod m),
then we call m a Wieferich number with base a. They also undertook
a very careful study of Euler quotients.
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In fact, there are some other generalizations of Fermat quotients,
see [1, 18, 19]. Especially, in [1] the author introduced a quotient like
(ae − 1)/m, where gcd(a,m) = 1 and e is the multiplicative order of a
modulo m.
In this paper, we introduce a different generalization of Fermat quo-

tient by using Carmichael function and study its arithmetic properties.
For a positive integer m, the Carmichael function λ(m) is defined to

be the exponent of the multiplicative group (Z/mZ)∗. More explicitly,
λ(1) = 1; for a prime power pr we define

λ(pr) =

{

pr−1(p− 1) if p ≥ 3 or r ≤ 2,
2r−2 if p = 2 and r ≥ 3;

and
λ(m) = lcm(λ(pr11 ), λ(p

r2
2 ), · · · , λ(p

rk
k )),

where, as usual, “lcm” means the least common multiple, and m =
pr11 p

r2
2 · · · prkk is the prime factorization of m.

For every positive integer m, we have λ(m)|ϕ(m), and λ(m) = ϕ(m)
if and only if m ∈ {1, 2, 4, pk, 2pk}, where p is an odd prime and k ≥ 1.
In addition, if m|n, we have λ(m)|λ(n).

Definition 1.1. Let m ≥ 2 and a be relatively prime integers. The
quotient

Cm(a) =
aλ(m) − 1

m
is called the Carmichael quotient of m with base a. Moreover, if
Cm(a) ≡ 0 (modm), we call m a Carmichael-Wieferich number with
base a.

We want to indicate that the term “Carmichael quotient” was intro-
duced in [2] to denote a different quotient, and we think that there is
no much danger of confusion.
We extend many known results about Fermat quotients or Euler quo-

tients to Carmichael quotients by using the same techniques, such as
basic arithmetic properties with special emphasis on congruences, the
least periods of sequences derived from Carmichael quotient, Carmichael-
Wieferich numbers. Finally, we link Carmichael quotients to perfect
nonlinear functions.

2. Arithmetic of Carmichael Quotients

In what follows, we fix m ≥ 2 an integer unless stated otherwise.
In this section, we study some basic arithmetic properties of Carmichael

quotients and extend some results about Fermat quotients or Euler
quotients in [4, 12, 13]. See [4] for historical literatures.
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For any integer a with gcd(a,m) = 1, we have Cm(a)|Qm(a). In par-
ticular, Cm(a) = Qm(a) when m is an odd prime power. Furthermore,
it is straightforward to prove that they have the following relation.

Proposition 2.1. For any integer a with gcd(a,m) = 1, we have

Qm(a) ≡
ϕ(m)

λ(m)
· Cm(a) (modm).

Proof. Since λ(m)|ϕ(m), we derive

Qm(a) =
(aλ(m))ϕ(m)/λ(m) − 1

m

=
(aλ(m) − 1)

(

1 + aλ(m) + · · ·+ (aλ(m))ϕ(m)/λ(m)−1
)

m

≡
ϕ(m)

λ(m)
Cm(a) (modm).

�

Now we state two fundamental congruences for Carmichael quotients,
which are crucial for further study.

Proposition 2.2. (1) If a and b are integers with gcd(ab,m) = 1, then
we have

Cm(ab) ≡ Cm(a) + Cm(b) (modm).

(2) If a, k are integers with gcd(a,m) = 1, and α is a positive integer,

then we have

Cm(a+ kmα) ≡ Cm(a) +
kλ(m)

a
mα−1 (modmα).

Proof. (1) We only need to notice that

Cm(ab) =
aλ(m)bλ(m) − 1

m

=
(aλ(m) − 1)(bλ(m) − 1) + (aλ(m) − 1) + (bλ(m) − 1)

m
.

(2) Using the binomial expansion, it is easy to see that

Cm(a+ kmα) ≡
aλ(m) + λ(m)aλ(m)−1kmα − 1

m
(modmα),

which implies the desired congruence.
�

The following two corollaries concern some short sums of Carmichael
quotients.
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Corollary 2.3. If m ≥ 3, for any integer a with gcd(a,m) = 1, we
have

m−1
∑

k=0

Cm(a+ km) ≡ 0 (modm).

Proof. First applying Proposition 2.2 (2) and then noticing that λ(m)
is even when m ≥ 3, we obtain

m−1
∑

k=0

Cm(a+ km) ≡
λ(m)

a
·
m(m− 1)

2
≡ 0 (modm).

�

Corollary 2.4. If m ≥ 3, for any integer a with gcd(a,m) = 1, we
have

m2
∑

a=1
gcd(a,m)=1

Cm(a) ≡ 0 (modm).

Proof. Notice that

m2
∑

a=1
gcd(a,m)=1

Cm(a) =

m
∑

a=1
gcd(a,m)=1

m−1
∑

k=0

Cm(a + km).

Then, the desired result follows from Corollary 2.3. �

We want to remark that the results in Corollaries 2.3 and 2.4 are not
true when m = 2.
The next proposition concerns some relationships between various

Cm(a) with fixed base a and different moduli.

Proposition 2.5. (1) If gcd(a,mn) = 1, then

Cm(a)|nCmn(a).

(2) If gcd(a,mn) = gcd(m,n) = 1, then

Cmn(a) ≡
λ(n)

n · gcd(λ(m), λ(n))
Cm(a) (modm).

(3) Assume that gcd(a,mn) = gcd(m,n) = 1, and let X and Y be two

integers satisfying m2X + n2Y = 1. Then

Cmn(a) ≡
nλ(n)

gcd(λ(m), λ(n))
Y Cm(a)+

mλ(m)

gcd(λ(m), λ(n))
XCn(a) (modmn).
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Proof. (2) Under the assumption, noticing that λ(mn) = λ(m)λ(n)
gcd(λ(m),λ(n))

,

we have

Cmn(a) =
a

λ(m)λ(n)
gcd(λ(m),λ(n))−1

mn
=

(aλ(m))
λ(n)

gcd(λ(m),λ(n)) −1

mn

≡ λ(n)(aλ(m)−1)
mn·gcd(λ(m),λ(n))

(modm).

(3) It suffices to show that the equality is true for modulo m and
modulo n respectively. But this follows directly from (2). �

For any integer a with gcd(a,m) = 1, we denote 〈a〉 as the subgroup
of (Z/mZ)∗ generated by a, and we let ordma be the multiplicative
order of a modulo m. The following expression is so-called Lerch’s
expression [13].

Proposition 2.6. If gcd(a,m) = 1 and assume n = ordma, then

Cm(a) ≡
λ(m)

n

m
∑

r=1
r∈〈a〉

1

ar

⌊ar

m

⌋

(modm),

where ⌊x⌋ denotes the greatest integer ≤ x.

Proof. For each 1 ≤ r ≤ m with r ∈ 〈a〉, we write ar ≡ cr(modm),
with 1 ≤ cr ≤ m. Notice that when r runs through all elements with
1 ≤ r ≤ m and r ∈ 〈a〉, so does cr. Let P denote the product of all
such integers cr. If the products and sums below are understood to be
taken over all r with 1 ≤ r ≤ m and r ∈ 〈a〉, we have

P
λ(m)

n =
∏

c
λ(m)

n
r =

∏

(

ar −m
⌊ar

m

⌋)

λ(m)
n

= aλ(m)P
λ(m)

n

∏

(

1−
m

ar

⌊ar

m

⌋)

λ(m)
n

.

So

1 = aλ(m)
∏

(

1−
m

ar

⌊ar

m

⌋)

λ(m)
n

≡ aλ(m)

(

1−m
∑ 1

ar

⌊ar

m

⌋

)

λ(m)
n

(modm2).

Then we get

aλ(m) − 1 ≡ aλ(m)mλ(m)

n

m
∑

r=1
r∈〈a〉

1

ar

⌊ar

m

⌋

(modm2),

which implies the desired congruence. �

In the last part of this section, we describe the decomposition of
Carmichael quotients in the dependence of the prime factorization of
the modulus. Further we investigate Carmichael quotients for prime
power moduli.
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Proposition 2.7. Let m = pr11 · · · prkk be the prime factorization of

m, and let a be an integer with gcd(a,m) = 1. For 1 ≤ i ≤ k, let

di = λ(m)/λ(prii ), mi = m/prii and m′
i ∈ Z such that m2

im
′
i ≡ 1 (mod

prii ). Then

Cm(a) ≡

k
∑

i=1

mim
′
idiCp

ri
i
(a) (modm).

Proof. It suffices to prove for each 1 ≤ j ≤ k,

Cm(a) ≡

k
∑

i=1

mim
′
idiCp

ri
i
(a) (mod p

rj
j ),

that is

Cm(a) ≡ mjm
′
jdjCp

rj
j

(a) (mod p
rj
j ).

Since we have

Cm(a) =
aλ(p

rj
j )dj − 1

m
≡

dj(a
λ(p

rj
j ) − 1)

m
≡ mjm

′
jdjCp

rj
j

(a) (mod p
rj
j ),

the result follows. �

Proposition 2.8. Let p be an odd prime and gcd(a, p) = 1. For any

two integers i and j with 1 ≤ i ≤ j, we have

Cpj(a) ≡ Cpi(a) (mod pi).

Besides, for 3 ≤ i ≤ j and gcd(a, 2) = 1, we have

C2j (a) ≡ C2i(a) (mod 2i−1).

Proof. Notice that Cpi(a) = Qpi(a) if p is an odd prime. By [4, Propo-
sition 4.1], for any integer k ≥ 1, we have

Cpk+1(a) ≡ Cpk(a) (mod pk).

Then the first formula follows.
Since for r ≥ 3, we have

C2r+1(a)− C2r(a) ≡ a2
r−2−1
2

C2r(a) (mod 2r)
≡ 0 (mod 2r−1),

we get the second formula. �

The following corollary, about the relation between Carmichael quo-
tients and Fermat quotients, can be obtained directly from the above
two propositions.
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Corollary 2.9. Suppose that p is an odd prime factor of m, and pα

is the largest power of p dividing m. Let d1 = λ(m)
λ(pα)

, m1 = m/pα, and

m′
1 ∈ Z such that m2

1m
′
1 ≡ 1 (mod pα). Then for any integer a with

gcd(a,m) = 1, we have

Cm(a) ≡ m1m
′
1d1Qp(a) (mod p).

3. Sequences derived from Carmichael quotients

In this section, we will define two periodic sequences by Carmichael
quotients and determine their least (positive) periods following the
method in the proof of [10, Proposition 2.1].
As usual, for a periodic sequence {sn}

∞
n=1, a positive integer j is

called its period if sn+j = sn for any n ≥ 1; if further j is the smallest
positive integer endowed with such property, we call j the least period

of {sn}.
Let m = pr11 · · · prkk be the prime factorization of the integer m (m ≥

2). For each 1 ≤ i ≤ k, put mi = m/prii , and let wi be the integer
defined by pwi

i = gcd(λ(m)/λ(prii ), p
ri
i ), here note that 0 ≤ wi ≤ ri.

Now, we want to define a sequence {an} following the manner in [10].
First, for any integer n and any 1 ≤ i ≤ k, if pi|n, set Cp

ri
i
(n) = 0.

Then, for every integer n ≥ 1, by Proposition 2.7, an is defined as the
unique integer with

an ≡
k

∑

i=1

mim
′
iλ(m)

λ(prii )
Cp

ri
i
(n) (modm), 0 ≤ an ≤ m− 1,

where m′
i ∈ Z is such that m2

im
′
i ≡ 1 (mod prii ) for each 1 ≤ i ≤ k. So,

if gcd(n,m) = 1, we have an ≡ Cm(n) (mod m).
By Proposition 2.2 (2), m2 is a period of {an}. We denote its least

period by T . For each 1 ≤ i ≤ k, let Ti be the least period of the
sequence {an mod prii }. Obviously, we have

T = lcm(T1, · · · , Tk).

Thus, in order to determine T , it suffices to compute Ti for each 1 ≤
i ≤ k.
For every 1 ≤ i ≤ k, we have

(3.1) an ≡
λ(m)

miλ(p
ri
i )

Cp
ri
i
(n) (mod prii ).

So, Ti equals to the least period of {Cp
ri
i
(n) mod pri−wi

i }. Here, we

also denote Ti as the least period of the sequence {Cp
ri
i
(n) mod pri−wi

i }

without confusion. In the sequel, we will calculate Ti case by case for
any fixed 1 ≤ i ≤ k.
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Lemma 3.1. If wi = ri, then Ti = 1.

Proof. Since in this case we have Cp
ri
i
(n) ≡ 0 (mod pri−wi

i ) for all
n ≥ 1. �

Lemma 3.2. If pi > 2 and wi < ri, then Ti = pri−wi+1
i .

Proof. Combining Proposition 2.2 (2) with Proposition 2.8, for integers
n and ℓ with gcd(n, pi) = 1, we have

Cp
ri
i
(n + ℓpri−wi

i ) ≡ C
p
ri−wi
i

(n + ℓpri−wi

i )

≡ C
p
ri−wi
i

(n) + ℓn−1(pi − 1)pri−wi−1
i

≡ Cp
ri
i
(n) + ℓn−1(pi − 1)pri−wi−1

i (mod pri−wi

i ).

Thus, Ti = pri−wi+1
i . �

Now, it remains to consider the case pi = 2.

Lemma 3.3. If pi = 2 and wi = 0, then

Ti =







4 ri = 1,
8 ri = 2,
2ri+2 ri ≥ 3

Proof. Notice that for each n with gcd(n, 2) = 1, by Proposition 2.2
(2) we have

C2ri (n+ ℓ · 2ri) ≡ C2ri (n) + ℓn−1λ(2ri) (mod 2ri).

Then, the result follows easily. �

Lemma 3.4. For r ≥ 3, the least period of the sequence {C2r+1(n)
mod 2r} is 2r+2.

Proof. For r ≥ 3 and gcd(n, 2) = 1, we have C2r+1(n) = n2r−2
+1

2
C2r(n).

Then using Proposition 2.2 (2), we deduce that

C2r+1(n+ ℓ · 2r)− C2r+1(n) = n2r−2
+1

2
(C2r(n + ℓ · 2r)− C2r(n))

≡ n2r−2
+1

2
· ℓn−12r−2 (mod 2r),

which implies the desired result by noticing that n2r−2
≡ 1 (mod 2r)

and then n2r−2
+1

2
is odd. �

Lemma 3.5. If pi = 2 and 3 ≤ ri − wi < ri, then Ti = 2ri−wi+2.

Proof. By Proposition 2.8, for gcd(n, 2) = 1, we have

C2ri (n) ≡ C2ri−wi+1(n) (mod 2ri−wi).

Then, the result follows directly from Lemma 3.4. �
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Lemma 3.6. If pi = 2, ri ≥ 3 and 1 ≤ ri−wi ≤ 2, then Ti = 2ri−wi+2.

Proof. From Proposition 2.8, for gcd(n, 2) = 1, we have

C2ri (n) ≡ C23(n) (mod 22).

So, Ti equals to the least period of the sequence {C23(n) mod 2ri−wi}.
By Proposition 2.2 (2), we have

C23(n + ℓ · 23) ≡ C23(n) + 2ℓn−1 (mod 22),

which implies the desired result. In fact, one can also verify this lemma
by direct calculations. �

Lemma 3.7. If pi = 2, ri = 2 and wi = 1, then Ti = 1.

We summarize the above results in the following proposition.

Proposition 3.8. For each 1 ≤ i ≤ k, if pi is an odd prime, then

Ti =

{

1 wi = ri,
pri−wi+1
i wi < ri;

otherwise if pi = 2, then

Ti =























1 wi = ri,
4 ri = 1, wi = 0,
8 ri = 2, wi = 0,
1 ri = 2, wi = 1,
2ri−wi+2 ri ≥ 3, wi < ri.

In particular, the least period of {an} is T = T1T2 · · ·Tk.

When m = pr with p an odd prime and r ≥ 1, we have T = pr+1,
which is consistent with [10, Proposition 2.1]. If m = 2r with r ≥ 3,
then T = 2r+2; but by [10, Proposition 2.1], the least period of the
sequence defined there by Euler quotient is 2r+1.
Finally, we want to define a new sequence {bn}, which is much simpler

but has the same least period as {an}.
For an integer n ≥ 1 with gcd(n,m) = 1, bn is defined to be the

unique integer with

bn ≡ Cm(n) (modm), 0 ≤ bn ≤ m− 1;

and we also define

bn = 0, if gcd(n,m) 6= 1.

Since bn also satisfies (3.1) for any integer n with gcd(n,m) = 1, the
least period of {bn} equals to that of {an}.

Proposition 3.9. The sequence {bn} has the same least period as {an}.
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4. Carmichael-Wieferich Numbers

In this section, except for extending some results in [4], we study
Carmichael-Wieferich numbers from more aspects, especially Proposi-
tion 4.5.
First, we want to deduce some basic facts for Carmichael-Wieferich

numbers.

Proposition 4.1. If m ≥ 3 and 1 ≤ a ≤ m with gcd(a,m) = 1, then m
cannot be a Carmichael-Wieferich number with bases both a and m−a.

Proof. Notice that λ(m) is even when m ≥ 3. By Proposition 2.2 (2),
we have

Cm(m− a) ≡ Cm(a)−
λ(m)

a
(modm).

Then, the desired result comes from λ(m) < m. �

Corollary 4.2. Ifm ≥ 3, define the set Sm = {a : 1 ≤ a ≤ m, gcd(a,m) =
1, m is a Carmichael-Wieferich number with base a}. Then |Sm| ≤
ϕ(m)/2.

By Proposition 2.2 (2), for any gcd(b,m) = 1, there exists 1 ≤ a ≤
m2 with b ≡ a (mod m2), such that

Cm(b) ≡ Cm(a) (modm).

Hence, if we want to determine with which basem can be a Carmichael-
Wieferich number, we only need to consider 1 ≤ a ≤ m2.
Assume that m has the prime factorization m = pr11 · · ·prkk . In [4,

Proposition 4.4] the authors have used the Euler quotientQm to define a
homomorphism from (Z/m2Z)∗ to (Z/mZ,+), whose image is dZ/mZ,
where
(4.1)

d =
k
∏

i=1

di and di =

{

gcd(prii , 2ϕ(m)/ϕ(prii )) if pi = 2 and ri ≥ 2,
gcd(prii , ϕ(m)/ϕ(prii )) otherwise.

Here, we can do similar things using the Carmichael quotient and ap-
plying the same strategy as in [4].
By Proposition 2.2, the Carmichael quotient Cm(x) induces a homo-

morphism

φm : (Z/m2Z)∗ → (Z/mZ,+), x 7→ Cm(x).

Proposition 4.3. Let m = pr11 · · · prkk be the prime factorization of

m ≥ 2. For 1 ≤ i ≤ k, put

d′i =

{

gcd(prii , 2λ(m)/λ(prii )) if pi = 2 and ri = 2,
gcd(prii , λ(m)/λ(prii )) otherwise.
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Let d′ =
∏k

i=1 d
′
i. Then the image of the homomorphism φm is d′Z/mZ.

Proof. We show the desired result case by case.
(I) First we prove the result for the case k = 1, that is m = pr, where

p is a prime and r is a positive integer.
Suppose that p = 2. If r = 2, then Cm(3) = 2, and for any positive

integer n we have Cm(2n + 1) = n(n + 1), which is even, so the image
of φm is 2Z/mZ. On the other hand, if r = 1 or r ≥ 3, since C2(3) = 1
and C8(3) = 1, by using Proposition 2.8 we see that Cm(3) is an odd
integer, so the image of φm is Z/mZ.
Now, assume that p > 2. Note that Cp(p + 1) ≡ −1 (mod p),

by Proposition 2.8 we have Cm(p + 1) ≡ −1 (mod p), which implies
that p ∤ Cm(p + 1). Thus, there exists a positive integer n such that
nCm(p + 1) ≡ 1 (mod m). Then, by Proposition 2.2 (1) we deduce
that Cm((p+ 1)n) ≡ 1 (mod m). So, the image of φm is Z/mZ.
(II) To complete the proof, we prove the result when k ≥ 2.
For simplicity, denote mi = m/prii and ni = λ(m)/λ(prii ) for each

1 ≤ i ≤ k, and then letm′
i be an integer such thatm2

im
′
i ≡ 1 (mod prii ).

By Proposition 2.7, we have

(4.2) Cm(a) ≡

k
∑

i=1

mim
′
iniCp

ri
i
(a) (mod m).

So, for each 1 ≤ i ≤ k, Cm(a) ≡ mim
′
iniCp

ri
i
(a) (mod prii ). If pi = 2

and ri = 2, note that for any odd integer a > 1, C4(a) is even, then
we see that d′i | niCp

ri
i
(a), and thus d′i | Cm(a). Otherwise if pi > 2 or

ri 6= 2, then d′i | ni, and so d′i | Cm(a). Hence, we have d′ | Cm(a) for
any integer a coprime to m.
Let b = gcd(m,m1m

′
1n1, . . . , mkm

′
knk). Then, there exist integers

X1, . . . , Xk such that

(4.3) b ≡
k

∑

i=1

mim
′
iniXi (mod m).

If we denote bi = gcd(prii , mim
′
ini) for each 1 ≤ i ≤ k, then b =

∏k
i=1 bi,

here we remark that bi = gcd(prii , ni). It is easy to see that for each
1 ≤ i ≤ k, if pi > 2 or ri 6= 2, we have d′i = bi. Further, when pi = 2
and ri = 2, d′i = 2bi if 8 ∤ λ(2p1 . . . pk), and d′i = bi otherwise.
We now have three cases for m:

(i) There exists 1 ≤ j ≤ k such that pj = 2, rj = 2 and

8 ∤ λ(2p1 . . . pk).
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(ii) There exists 1 ≤ j ≤ k such that pj = 2, rj = 2 and

8 | λ(2p1 . . . pk).

(iii) All the other cases.

Clearly, in Cases (ii) and (iii) we have d′ = b, and in Case (i) d′ = 2b.
According to (I), there exist integers ai with pi ∤ ai for 1 ≤ i ≤ k

defined by

Cp
ri
i
(ai) ≡























2Xi in Case (i),
Xi in Case (iii),

(mod prii )
Xi in Case (ii) and i 6= j,
0 in Case (ii) and i = j.

By the Chinese Remainder Theorem, we can choose a positive integer
a such that a ≡ ai (mod p2rii ). So, by Proposition 2.2 (2) we have
Cp

ri
i
(a) ≡ Cp

ri
i
(ai) (mod prii ). Then, combining with (4.3) and the

relation between b and d′, we obtain mim
′
iniCp

ri
i
(a) ≡ d′ (mod prii ) for

each 1 ≤ i ≤ k in all the three cases. Finally, using (4.2) we have
Cm(a) ≡ d′ (mod m), which completes the proof. �

Comparing (4.1) with Proposition 4.3, we have d′ | d. Moreover, by
Proposition 2.1 we get

ϕ(m)

λ(m)
d′Z/mZ = dZ/mZ,

which implies that gcd(ϕ(m)
λ(m)

d′, m) = d.

In Proposition 4.3, if choosing m = 2r with r ≥ 3, we have d = 2
and d′ = 1; while choosing m = 2r1pr2 with r1 ≥ 3 and odd prime
p ≡ 3 (mod 4), we have d = 4 and d′ = 1. Hence, compared with
[4, Proposition 4.4], the homomorphism φm can be surjective in more
cases.
For any integer m ≥ 2, we define the set

Tm = {a :1 ≤ a ≤ m2, gcd(a,m) = 1,

m is a Carmichael-Wieferich number with base a}.

Actually, Tm is the kernel of the homomorphism φm, then the following
result follows directly from Proposition 4.3.

Corollary 4.4. We have |Tm| = d′ϕ(m), where d′ is defined in Propo-

sition 4.3.

Corollary 4.4 shows that any integer m ≥ 2 can be a Carmichael-
Wieferich number with some base. However, the next proposition sug-
gests that such Carmichael-Wieferich numbers are rare.
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Proposition 4.5. We have lim
m→∞

|Tm|
ϕ(m2)

= 0.

Proof. Denote by d(m) the parameter d in (4.1). By Corollary 4.4, we
know that

|Tm|

ϕ(m2)
≤

d(m)

m
.

So, it suffices to prove that lim
m→∞

d(m)
m

= 0.

For primes p, we have

lim
p→∞

d(p)

p
= lim

p→∞

1

p
= 0.

So lim inf
m→∞

d(m)
m

= 0.

Suppose that lim sup
m→∞

d(m)
m

6= 0. Then there exists a subsequence

{d(ni)
ni

} such that lim
i→∞

d(ni)
ni

= lim sup
m→∞

d(m)
m

6= 0.

For an integer m ≥ 2, let m = pr11 · · · prkk be its prime factorization.
Put αm = max{r1, · · · , rk}. Here we use the notation in (4.1). For each

1 ≤ j ≤ k, we have d(m)
m

≤ dj/p
rj
j . In particular, if pj is the largest

prime factor of m, then d(m)
m

≤ 2/p
rj
j .

For each i, let pi be the largest prime factor of ni, we abbreviate

αni
to αi. Since d(ni)

ni
≤ 2

pi
for each i and lim

i→∞
d(ni)
ni

6= 0, there must

exist an integer q such that pi < q for all i. Put β = 2
∏

2≤p<q
p prime

(p − 1).

Since d(ni) ≤ β, we have d(ni)
ni

≤ β
2αi

for each i. Notice that ni → ∞
when i → ∞, we must have αi → ∞ as i → ∞. Hence, we have

lim
i→∞

d(ni)
ni

= 0. This leads to a contradiction.

So, we have lim sup
m→∞

d(m)
m

= 0. This completes the proof. �

Assume that there are infinitely many Sophie Germain primes. We
construct a sequence {ni} with ni = pi(2pi + 1), where pi is a Sophie
Germain prime, and then 2pi + 1 is also a prime. It is easy to see that

d(ni) = pi and lim
i→∞

d(ni)√
ni

= 1√
2
. This implies that the limit lim

m→∞
d(m)√

m
= 0

may be not true in general.
In the sequel, we want to characterize all the Carmichael-Wieferich

numbers.
Let p be a prime and a an integer with p ∤ a. Put

σ(a, p) = ordp(a
p−1 − 1)− 1 if p is odd;
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σ(a, 2) =

{

ord2(a− 1)− 1 if a ≡ 1 (mod 4),
ord2(a+ 1)− 1 if a ≡ 3 (mod 4).

Then, we can state an analogue of [4, Proposition 5.4]. For the conve-
nience of the reader, we reproduce the proof.

Proposition 4.6. Let gcd(a,m) = 1, and m = pr11 · · · prkk be the prime

factorization of m ≥ 3. Fix an integer j with 1 ≤ j ≤ k, let p = pj and
r = rj. If p 6= 2 or r ≤ 2, put

n =

{

0 if ordplcm (p1 − 1, · · · , pk − 1) ≤ r − 1,
ordplcm (p1 − 1, · · · , pk − 1)− r + 1 otherwise;

otherwise if p = 2 and r > 2, put

n =

{

0 if ordplcm (p1 − 1, · · · , pk − 1) ≤ r − 2,
ordplcm (p1 − 1, · · · , pk − 1)− r + 2 otherwise.

Moreover, put

e(m, p) =

{

n if p 6= 2 or r ≤ 2,
n− 1 otherwise.

Then we have

ordpCm(a) = e(m, p) + σ(a, p).

Proof. Notice that λ(m) = pnλ(pr)X , where X is an integer with p ∤ X .
Put b = ap

nλ(pr). Then, since

aλ(m) − 1 = bX − 1 = (b− 1)

X−1
∑

i=0

bi,

b ≡ 1 (mod p) and
∑X−1

i=0 bi ≡ X 6≡ 0 (mod p), we obtain

ordp(a
λ(m) − 1) = ordp(b− 1) = ordp(a

pnλ(pr) − 1).

Thus, if p is an odd prime, by using [4, Lemma 5.1] we have

ordp(a
λ(m) − 1) = ordp((a

p−1)p
n+r−1

− 1) = ordp(a
p−1 − 1) + n + r − 1,

which implies that

ordpCm(a) = e(m, p) + σ(a, p).

Similarly, applying [4, Lemmas 5.1 and 5.3], one can verify the remain-
ing case p = 2 by noticing that m ≥ 3. �

The next proposition, a criterion for a numberm being a Carmichael-
Wieferich number, follows directly from Proposition 4.6.
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Proposition 4.7. Let gcd(a,m) = 1, and m = pr11 · · · prkk be the prime

factorization of m ≥ 3. Then the following statements are equivalent:

(1) m is a Carmichael-Wieferich number with base a,
(2) e(m, pj) + σ(a, pj) ≥ rj, for any 1 ≤ j ≤ k.

Although it is known that Wieferich primes exist for many different
bases (see [15]), the following problem is still open.

Whether Wieferich primes exist for all bases?

Proposition 4.8. For a non-zero integer a, if there exists a Carmichael-

Wieferich number m with base a and m has an odd prime factor, then

there exists a Wieferich prime with base a.

Proof. Let m = pr11 · · · prkk be the prime factorization of m with p1 <
p2 < · · · < pk, where pk is an odd prime. Since e(m, pk) = 0 and m is a
Carmichael-Wieferich number with base a, by Proposition 4.7 we have
σ(a, pk) ≥ rk ≥ 1. Notice that pk is an odd prime, so pk is a Wieferich
prime with base a. �

Finally, we want to remark that a Carmichael-Wieferich number m
with base a is also a Wieferich number with base a, but the converse
is not true.

Example 4.9. From Table 1 of [15], 3 and 7 are two Wieferich primes
with base 19. It is straightforward to see that 2 is not a Wieferich prime
with base 19. By [4, Theorem 5.5], m = 22 · 3 · 7 is a Wieferich number
with base 19. But by Proposition 4.7, m is not a Carmichael-Wieferich
number with base 19.

5. Involving perfect nonlinear function

Let (A,+) and (B,+) be two additive abelian groups, and denote
by Ā the set of non-identity elements of A. When |A| is a multiple of
|B|, we can consider the following definition; see [5] for more details.

Definition 5.1. Let f : A → B be a function from A to B. Then
f is called perfect nonlinear if for every (a, b) ∈ Ā × B, |{x ∈ A :

f(x+ a)− f(x) = b}| = |A|
|B| .

Perfect nonlinear functions have important applications in cryptogra-
phy, sequences and coding theory. For example, as in [6], such functions
can be used to construct authentication codes.
For the homomorphism φm : (Z/m2Z)∗ → (Z/mZ,+), defined in

Section 4, we extend its definition to those integers a with gcd(a,m) 6= 1
by defining φm(a) = 0. Then we get a function

fm : (Z/m2Z,+) → (Z/mZ,+), x 7→ φm(x).



16 MIN SHA

For this function fm, we have the following proposition.

Proposition 5.2. The function fm is perfect nonlinear if and only if

m is a prime number.

Proof. First, suppose that m is a prime number. By [6, Lemma 8] (or
[5, Theorem 48]) and Proposition 4.3, it is easy to show that fm is
perfect nonlinear.
Now assume that m is a composite integer. Let p be a prime factor of

m. Notice that fm(kp) = 0 for any k ≥ 1, and (m+2)p ≤ m(m+2)/2 <
m2. Then choosing (p, 0) ∈ Z/m2Z× Z/mZ, we obtain

|{x ∈ Z/m2Z : fm(x+ p)− fm(x) = 0}| ≥ |{x = kp : 1 ≤ k ≤ m+ 2}|

= m+ 2 > m.

By definition, the function fm is not perfect nonlinear. �

Thus, the function fm gives a new kind of perfect nonlinear functions
when m is a prime number. Furthermore, this kind of perfect nonlinear
functions is much more convenient for computations than that given in
[5, Example 49].
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