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Abstract. We prove: For all concave functions w : [a, b] → [0,∞) and for all functions f ∈ C2[a, b]
with f(a) = f(b) = 0 we have

(
∫ b

a
w(x)f ′(x)2 dx

)2

≤
(

∫ b

a
w(x)f(x)2 dx

)(

∫ b

a
w(x)f ′′(x)2 dx

)

.

Moreover, we determine all cases of equality.
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1. Introduction

In 1932, Hardy and Littlewood [6] established integral inequalities of the form

(1.1)

(
∫

J
f ′(x)2 dx

)2

≤ k(J)

(
∫

J
f(x)2 dx

)(
∫

J
f ′′(x)2 dx

)

,

where J is either R = (−∞,∞) or R+ = (0,∞), and f is a twice-differentiable function such that
f, f ′′ ∈ L2(J), with the best possible constants

(1.2) k(R) = 1, k(R+) = 2.

The square integrability of f ′ and the existence of a finite constant k(J) independent of f are
implicitly parts of the conclusion.

The significance of the result is in providing an estimate of the “size” of the derivative of a function
when bounds on the “sizes” of the function and its second derivative are known, with potential
applications in the study of differential equations.

The above results of Hardy and Littlewood are reproduced in Sections 7.9 and 7.8 of the classical
work “Inequalities” by Hardy, Littlewood, and Pólya [7]. The case J = R is an immediate conse-
quence of integration by parts and the Cauchy-Schwarz inequality. The J = R+ case has a lengthy
proof using calculus of variations. Shorter proofs are found later; see, for example, [13].

Inequalities of the form (1.1) are special cases of a more general result, called the Landau inequalities,
obtained by replacing the L2 norms (of f ′ on the lefthand side and of f and f ′′ on the righthand
side) by other Lp norms, with 1 ≤ p < ∞. We note that now the best constant k(p, J) depends both
on J and p. It is known that k(p,R) < k(p,R+) for all p. The exact values of k(p, J) are known
only for p = 1 (due to Berdyshev [1]) and p = ∞ (due to Hadamard and Landau, respectively),
besides the Hardy-Littlewood result (1.2) for p = 2. We only mention here that k(1,R) = 2. For
details on the other results and further readings, we refer the readers to the monograph [12].

Many further extensions have been obtained. Gabushin used three (possibly) different norms, Lp, Lq

and Lr for f, f ′ and f ′′, respectively, and also studied higher derivative analogues. Kato [8] replaced
L2(J) with a Hilbert space, and the derivatives of f with Af and A2f , respectively, where A is
an m-dissipative operator. Everitt [5] substituted the differentiation operator with a general self-
adjoint second-order differential operator, and showed that the corresponding best constant can
be determined using the mλ function that Titchmarsh introduced in the Weyl theory of limit-
point/limit-circle classification of second-order differential operators. The resulting inequality has
been dubbed the HELP (Hardy-Everitt-Littlewood-Pólya) inequality. See [4] for a survey of this
topic.

In this paper we are concerned with a weighted form of (1.1) which holds for functions defined on
finite intervals and subjected to suitable boundary conditions. More precisely, we determine the
best possible constant κ such that we have for all concave functions w : [a, b] → [0,∞) and for all
f ∈ C2[a, b] with f(a) = f(b) = 0:

(1.3)

(
∫ b

a
w(x)f ′(x)2 dx

)2

≤ κ ·
(

∫ b

a
w(x)f(x)2 dx

)(

∫ b

a
w(x)f ′′(x)2 dx

)

.

Two previous works of the second author pertain to the current paper. First, we note that if J is
replaced by a finite interval [a, b], an inequality of the form (1.1), as well as its more general Landau
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analogue, cannot hold, as shown by the counterexample f(x) = x. However, if one of the three sets
of boundary conditions

f(a) = f(b) = 0, f(a) = f ′(b) = 0, or f ′(a) = f(b) = 0,

is imposed, then (1.1) (or its Landau analogue) is preserved with the same best constant for J = R.
Indeed, it was shown by Kwong and Zettl [10] that any one of these finite-interval results is equivalent
to the original result for J = R. The case J = R+ also has a finite-interval equivalent associated
with the boundary condition f ′(a)/f(a) = f ′(b)/f(b). For details, see [12].

In [13], it was proved that a Landau-type inequality holds when a weight function w is added in
defining the norms of functions, provided that w is an increasing function:

(1.4) ‖f ′‖2 ≤ k(p,R+) ‖f‖ · ‖f ′′‖,

where

‖f‖ =

(
∫

J
w(x)|f(x)|p dx

)1/p

.

We are not claiming that the constant k(p,R+) that appears on the righthand side of (1.4) is
the best possible constant for a given weight w; it is, however, best possible over all choices of
increasing w. Another important point to note is that, unlike the classical Landau inequalities, the
same constant is required in (1.4), irrespective of whether J = R or R+.

2. Lemmas

In this section, we collect a few basic facts on concave functions, which we need for our purposes.
Proofs for the first three lemmas given below as well as more information on this subject can be
found, for example, in the monographs Niculescu and Persson [14], Roberts and Varberg [15], and
Royden and Fitzpatrick [16, Section 6.6].

We recall that a function f : I → R, where I ⊂ R is an interval, is said to be concave if

λf(x) + (1− λ)f(y) ≤ f(λx+ (1− λ)y)

for all x, y ∈ I and λ ∈ (0, 1). If −f is concave, then f is called convex.

Lemma 1. If f : [a, b] → R is concave, then f is continuous on (a, b) and the limits

lim
x→a+

f(x) and lim
x→b−

f(x)

exist.

From now on, we always assume that (if necessary) f has been modified such that f(a) = limx→a+ f(x)
and f(b) = limx→b− f(x) exist, so that f is continuous on [a, b].

The left and right derivatives of a function are defined by

f ′
−(c) = lim

x→c−

f(x)− f(c)

x− c
, f ′

+(c) = lim
x→c+

f(x)− f(c)

x− c
.

Lemma 2. If f : [a, b] → R is concave, then f ′
− and f ′

+ exist and are decreasing on (a, b).

Lemma 3. If f : (a, b) → R is concave, then we have for c, x ∈ (a, b):

f(x)− f(c) =

∫ x

c
f ′
−(t)dt =

∫ x

c
f ′
+(t)dt.
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The next result is nothing more than integration by parts for integrable functions. It is given, for
example, in [17, p. 32] and in [16, p. 128, Problem 52].

Lemma 4. Let w : [a, b] → R be concave. If f ∈ C1[a, b] with f(a) = f(b) = 0, then
∫ b

a
w(t)f ′(t)dt = −

∫ b

a
w′
−(t)f(t)dt.

Lemma 5. Let w : [a, b] → [0,∞) be concave. Then there exists a sequence of non-negative concave

functions (wn) (n = 1, 2, ...) with wn ∈ C2[a, b] such that wn converges uniformly to w on [a, b].

Proof. A result of Bremermann [2] states that if f is convex on [a, b], then for every k ∈ N there
exists a sequence of k-times differentiable convex functions (fn) with fn(x) ≥ fn+1(x) ≥ f(x) and
fn converges to f on [a, b]. Applying Dini’s theorem we conclude that the convergence is uniform.
This implies that there exists a sequence of concave functions (wn) with wn ∈ C2[a, b] such that wn

converges uniformly to w on [a, b]. If it happens that wn ≥ 0 on [a, b] for all n, then (wn) is our
desired sequence.

In the contrary case, we modify wn as follows. First we note that, for every ǫ > 0 there is a natural
number n0 such that for all n ≥ n0 and for all x ∈ [a, b]:

(2.1) |w(x) − wn(x)| < ǫ/2.

We assume that wn is negative somewhere in [a, b] and set

wn(x0) = min
a≤x≤b

wn(x).

Then, wn(x0) < 0. From (2.1) we obtain

w(x0)− wn(x0) < ǫ/2.

Since w(x0) ≥ 0, it follows that

wn(x0) > w(x0)− ǫ/2 ≥ −ǫ/2.

Let w∗
n(x) = wn(x)−wn(x0). Then, w

∗
n is non-negative and concave on [a, b]. Moreover, we get for

n ≥ n0 and x ∈ [a, b]:

|w(x) − w∗
n(x)| ≤ |w(x)− wn(x)|+ |wn(x0)| < ǫ/2 + ǫ/2 = ǫ.

This implies that w∗
n converges uniformly to w on [a, b]. �

3. Main Result

We are now in a position to present our main result. The following theorem reveals that the best
possible constant factor in (1.3) is given by κ = 1.

Theorem. For all concave functions w : [a, b] → [0,∞) and for all functions f ∈ C2[a, b] with
f(a) = f(b) = 0 we have

(3.1)

(
∫ b

a
w(x)f ′(x)2 dx

)2

≤
(

∫ b

a
w(x)f(x)2 dx

)(

∫ b

a
w(x)f ′′(x)2 dx

)

.

Let w 6≡ 0 and f 6≡ 0. Then, the sign of equality holds in (3.1) if and only if

(3.2) f(x) = λ sin

(

nπ(x− a)

b− a

)

,
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where λ is a real number and n is a natural number, and w is linear in each of the subintervals

(3.3) Jk =
[

a+
(k − 1)(b − a)

n
, a+

k(b− a)

n

]

, k = 1, ..., n.

Proof. From Lemma 5, we conclude that it suffices to prove inequality (3.1) under the additional
assumption that the weight function w ∈ C2[a, b].

Integration by parts gives

(3.4)

∫ b

a
w′′(x)f(x)2dx =

[

w′(x)f(x)2
]b

a
− 2

∫ b

a
w′(x)f(x)f ′(x)2dx

and

(3.5)

∫ b

a
w′(x)f(x)f ′(x)dx =

[

w(x)f(x)f ′(x)
]b

a
−

∫ b

a
w(x)[f(x)f ′′(x) + f ′(x)2]dx.

Since f(a) = f(b) = 0, we obtain from (3.4) and (3.5):

(3.6)

∫ b

a
w′′(x)f(x)2dx = 2

∫ b

a
w(x)[f(x)f ′′(x) + f ′(x)2]dx.

Using −w′′(x) ≥ 0 and (3.6), we find
(3.7)
∫ b

a
w(x)f ′(x)2dx ≤

∫ b

a
w(x)f ′(x)2dx−

1

2

∫ b

a
w′′(x)f(x)2dx =

∫ b

a

(
√

w(x)f(x)
)

·
(

−
√

w(x)f ′′(x)
)

dx.

The Cauchy-Schwarz inequality yields

(3.8)

∫ b

a

(
√

w(x)f(x)
)

·
(

−
√

w(x)f ′′(x)
)

dx ≤
(

∫ b

a
w(x)f(x)2dx

)1/2(
∫ b

a
w(x)f ′′(x)2dx

)1/2
.

Combining (3.7) and (3.8) leads to (3.1).

Next, we discuss the case of equality. A short calculation reveals that equality holds in (3.1) if f is
given by (3.2) and if w is linear in each of the subintervals Jk given in (3.3).

Now, we assume that the sign of equality is valid in (3.1). Let w 6≡ 0 and f 6≡ 0. Applying Lemma
5, (3.7), and (3.8) yields
∫ b

a
wn(x)f

′(x)2dx ≤ −

∫ b

a
wn(x)f(x)f

′′(x)dx ≤
(

∫ b

a
wn(x)f(x)

2dx
)1/2(

∫ b

a
wn(x)f

′′(x)2dx
)1/2

.

Letting n → ∞ gives

(3.9)

∫ b

a
w(x)f ′(x)2dx ≤ −

∫ b

a
w(x)f(x)f ′′(x)dx ≤

(

∫ b

a
w(x)f(x)2dx

)1/2(
∫ b

a
w(x)f ′′(x)2dx

)1/2
.

By assumption, the expressions on the left-hand side and right-hand side are equal. This implies
that the sign of equality holds in the second inequality of (3.9). It follows that

√

w(x)f(x) = λ0

√

w(x)f ′′(x)

for some constant λ0. Since w is non-negative and concave with w 6≡ 0, we conclude that w is
positive on (a, b). Hence,

f(x) = λ0f
′′(x)

with λ0 6= 0. Together with the boundary conditions f(a) = f(b) = 0, we see that f must be of the
form given in (3.2).
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Since f is equal to 0 at the end-points of each subinterval Jk, we conclude that the hypothesis of
the Theorem is satisfied for each k. Hence, for all k ∈ {1, 2, ..., n} we have

(3.10)

(
∫

Jk

w(x)f ′(x)2 dx

)2

≤
(

∫

Jk

w(x)f(x)2 dx
)(

∫

Jk

w(x)f ′′(x)2 dx
)

.

We claim that equality must hold in (3.10) for each k.

The following equivalence is easy to verify:

If A, B, and C are positive numbers, then

(3.11) B2 ≤ AC ⇐⇒ B ≤ ǫA+
1

4ǫ
C for all ǫ > 0.

Moreover, “<” holds on the left-hand side if and only if it holds on the right-hand

side.

Applying (3.11) reveals that (3.10) is equivalent to

(3.12)

∫

Jk

w(x)f ′(x)2 dx ≤ ǫ

∫

Jk

w(x)f(x)2 dx+
1

4ǫ

∫

Jk

w(x)f ′′(x)2 dx for all ǫ > 0.

If strict inequality in (3.10) holds for at least one k, then the corresponding inequality (3.12) must
also be strict. After adding up (3.12) for all k, we obtain

∫ b

a
w(x)f ′(x)2 dx < ǫ

∫ b

a
w(x)f(x)2 dx+

1

4ǫ

∫ b

a
w(x)f ′′(x)2 dx for all ǫ > 0.

This implies that the sign of equality does not hold in (3.1), a contradiction.

It remains to show that w is linear in each Jk under the assumptions that f has the representation
(3.2) and that equality is valid in (3.10) for each k. We insert (3.2) in (3.10) (with “=” instead of
“≤”) and substitute

x = a+
(k − 1)(b− a)

n
+

b− a

nπ
t.

Then we get

(3.13)

∫ π

0

W (t) cos2(t)dt =

∫ π

0

W (t) sin2(t)dt

with

W (t) = w
(

a+
(k − 1)(b − a)

n
+

b− a

nπ
t
)

.

The function W is concave. We show that W is linear on [0, π], which implies that w is linear on
Jk.

The identity cos2(A)− sin2(A) = cos(2A) and (3.13) imply

(3.14)

∫ π

0

W (t) cos(2t)dt = 0.

Using Lemma 4 and (3.14) gives

(3.15)

∫ π

0

W ′
−(t) sin(2t)dt =

∫ π/2

0

W ′
−(t) sin(2t)dt+

∫ π

π/2
W ′

−(t) sin(2t)dt = 0.
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We have

(3.16)

∫ π

π/2
W ′

−(t) sin(2t)dt = −

∫ π/2

0

W ′
−(π − t) sin(2t)dt,

so that (3.15) and (3.16) lead to

(3.17)

∫ π/2

0

∆(t) sin(2t)dt = 0,

where

∆(t) = W ′
−(t)−W ′

−(π − t).

Since W ′
− is decreasing on (0, π), it follows that ∆ ≥ 0 on (0, π/2). Moreover, the function t 7→

−W ′
−(π − t) is decreasing on (0, π/2), which implies that ∆ is also decreasing on (0, π/2). Since

sin(2t) > 0 for t ∈ (0, π/2), we conclude from (3.17) that ∆(t) = 0 for all t ∈ (0, π/2). Hence,

(3.18) W ′
−(t) = W ′

−(π − t) for all t ∈ (0, π/2].

Let ǫ be any small positive number. Since W ′
− is decreasing we conclude from (3.18) that W ′

− must
be a constant on (ǫ, π − ǫ). This is valid for any small ǫ > 0, which reveals that W ′

− is a constant
on (0, π). Applying Lemma 3 reveals that W is linear. �

Corollary. For all concave and increasing functions w : [a, b] → [0,∞) and for all functions

f ∈ C2[a, b] with f(a) = f ′(b) = 0 we have

(3.19)

(
∫ b

a
w(x)f ′(x)2 dx

)2

≤
(

∫ b

a
w(x)f(x)2 dx

)(

∫ b

a
w(x)f ′′(x)2 dx

)

.

Let w 6≡ 0 and f 6≡ 0. Then, the sign of equality holds in (3.19) if and only if

f(x) = λ sin

(

(2n− 1)π(x − a)

2(b− a)

)

,

where λ is a real number and n is a natural number, and w is linear in each of the subintervals

Ik =
[

a+
2(k − 1)(b − a)

2n− 1
, a+

2k(b− a)

2n− 1

]

, k = 1, ..., n − 1

and is constant in the subinterval

I =
[

a+
2(n − 1)(b − a)

2n− 1
, b
]

.

Proof. We extend w and f to [a, 2b− a] so that each function is even with respect to x = b, that is,

w(b+ σ) = w(b− σ) and f(b+ σ) = f(b− σ) for σ ∈ (0, b − a].

Then, w is non-negative and concave on [a, 2b− a] and f ∈ C2[a, 2b− a] with f(a) = f(2b− a) = 0.
So, w and f satisfy the hypotheses of the Theorem on the extended domain [a, 2b − a] and the
conclusion follows from the Theorem. �

An obvious analogous result holds for functions f that satisfies f ′(a) = f(b) = 0.
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4. Concluding Remarks

In view of the Theorem two questions arise naturally.

(i) Does the Theorem remain valid if we remove the “concavity” requirement?

(ii) Is there a corresponding result for convex weight functions? More precisely, given a convex
function w : [a, b] → [0,∞), does there exist a constant C such that for all f ∈ C2[a, b] with
f(a) = f(b) = 0:

κ(w, f) =

(

∫ b
a w(x)f ′(x)2 dx

)2

(

∫ b
a w(x)f(x)2 dx

)(

∫ b
a w(x)f ′′(x)2 dx

) ≤ C ?

An example, constructed with the help of the MAPLE software, reveals that in both cases the
answer is “no”.

Let [a, b] = [0, 1], w(x) = x4, and δ ∈ (0, 1/2). The piecewise polynomial function

f(x) =
x

δ
(0 ≤ x ≤ δ), f(x) =

5
∑

k=0

akx
k (δ < x ≤ 2δ), f(x) =

1− x

1− 2δ
(2δ < x ≤ 1)

is determined by the interpolation conditions

f(0) = f(1) = 0, f(δ) = f(2δ) = 1, f ′(δ) =
1

δ
, f ′(2δ) = −

1

1− 2δ
, f ′′(δ) = f ′′(2δ) = 0.

These conditions guarantee that f ∈ C2[0, 1]. MAPLE is used to compute the coefficients:

a0 =
48 δ − 17

2 δ − 1
, a1 = −

183 δ − 64

δ (2 δ − 1)
, a2 =

12(23 δ − 8)

δ2 (2 δ − 1)
,

a3 = −
2(99 δ − 34)

δ3 (2 δ − 1)
, a4 =

68 δ − 23

δ4 (2 δ − 1)
, a5 = −

3(3 δ − 1)

δ5 (2 δ − 1)
.

Straightforward computation gives

κ(w, f) =
(3003 + 14474 δ3 − 53525 δ4 − 12344 δ5)2

26 δ(858 + 72450 δ5 − 531793 δ6 + 674178 δ7)(2042 − 11999 δ + 20182 δ2)
.

Since δ appears as a factor in the denominator, we obtain limδ→0 κ(w, f) = ∞.

(iii) The following example shows that the “monotonicity” requirement on w in the Corollary cannot
be eliminated.

Let [a, b] = [0, 1], w(x) = 1− x and f(x) = sin(πx/2). Straightforward computation gives

κ(w, f) =
(π2 + 4

π2 − 4

)2

≈ 5.5835.



9

References

[1] V.I. Berdyshev, “The best approximation in L(0,∞) to the differentiation operator,” Math. Zametki, 5 (1971),
477-481.

[2] H.J. Bremermann, “Complex convexity”, Trans. Amer. Math. Soc., 82 (1956), 17-51.
[3] L.C. Evans, Partial Differential Equations, Graduate Studies in Math., vol. 19, Amer. Math. Soc., 1998.
[4] W.D. Evans and W.N. Everitt, “HELP inequalities for limit-circle and regular problems,” Proceedings: Mathe-

matical and Physical Sciences, 432 (1991), 367-390
[5] W.N. Everitt, “On an extension to an integro-differential inequality of Hardy, Littlewood and Pólya,” Proc. Roy.
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[7] G.H. Hardy, J.E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1934.
[8] T. Kato, “On an inequality of Hardy, Littlewood and Pólya,” Adv. Math., 7 (1971), 217-218.
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