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Abstract. We study a 2-parameter family of enumerative problems over the reals. Over the
complex field, these problems can be solved by Schubert calculus. In the real case the number
of solutions can be different on the distinct connected components of the configuration space,
resulting in a solution function. The cohomology calculation in the real case only gives the
signed sum of the solutions, therefore in general it only gives a lower bound on the range of the
solution function. We calculate the solution function for the 2-parameter family and we show
that in the even cases the solution function is constant modulo 4. We show how to determine
the sign of a solution and describe the connected components of the configuration space. We
translate the problem to the language of quivers and also give a geometric interpretation of the
sign. Finally, we discuss what aspects might be considered when solving other real enumerative
problems.
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1. Introduction

In this paper we study a 2-parameter family of enumerative problems over the reals:
Given four b-dimensional subspaces in generic position in a 2b-dimesional space what is the

number of 2a-dimensional subspaces having a-dimensional intersection with all the given sub-
spaces?

These are so called Schubert problems which can be solved by Schubert calculus over the com-
plex field. In fact there is a more elegant way to calculate, see [Vak06b]. In general the answer to
an enumerative problem over the complex field is a number. Over the reals, however the subvari-
ety of nongeneric configurations is a real hypersurface with possibly non-connected complement.
Consequently the number of solutions depend on the chamber (connected component) of the
space of configurations, so instead of a number we have a solution function, an integer-valued
function on the chambers. The minimal information we want to know is the range of the solution
function. These solution functions recently were studied intensively see e.g. [FK13], [OT12],
[Sot10], [HSZ13]. The case of a = 2 was calculated in [SS06, Thm 8.1]

Our solution is fairly elementary, in fact we adopt the method of R. Vakil in [Vak06b] from
the complex case to the real (We learned the idea from Tamás Terpai, and only later found the
paper of R. Vakil). We present the method in Section 2.

In Section 3 we explain in what extent Schubert calculus can be extended to the real case:
The cohomology calculation gives us the signed sum of the solutions, therefore in general it only
gives a lower bound of the solution function. It turns out that in our cases this lower bound is
sharp.

Section 4 is devoted to the determination of the sign of a solution. The sign decides whether 2
orientations of a certain vector space coincide so we have to calculate the sign of the determinant
of the change of basis. It turns out that this determinant is a resultant, similarly to the case of
lines on a cubic surface studied in [OT12] and [FK13].

The resultant leads to a combinatorial description of the sign which is presented in Section 5.
In this section we also show that for a and b even, the number of solutions is constant modulo
4. This phenomenon was shown in [HSZ13] and [HHS13] for a class similar problems. They
study so called osculating solutions. It can be considered as an other “real form” for the complex
Schubert problems, so we can expect similar behavior. The modulo 4 property also holds for the
problem of lines on a cubic surface. This property was studied in [BS95]. It would be interesting
to find a unified explanation. We also show that if a and b are both divisible by 2k, then the
number of solutions is constant modulo 2k+1.

In Section 6 we list the chambers of the generic configurations.
In Section 7 we explain the translation to the language of quivers.
In Section 8 we explain the geometric meaning of the sign of a solution in terms of cross ratios.

We shortly mention the case of unordered four-tuples of subspaces.
In Section 9 we speculate on what could be considered as a solution to a real enumerative

problem and review the problem of lines on a cubic surface.
We would like to thank Tamás Terpai, whose explanation initiated the paper, Richárd Rimányi

for many conversations on the topic, Frank Sottile for important comments on the first version of
the manuscript and Mátyás Domokos for educating us on quivers. While finishing the manuscript
the first author was enjoying the hospitality of the Alfréd Rényi Institute.
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2. The enumerative question: The number of balanced subspaces

In this paper we only consider real and complex vector spaces. If not stated otherwise, we
allow both cases.

Definition 2.1. Suppose that four subspaces V1, . . . , V4 of dimension b of the vector space E
of dimension 2b are given. We call a 2a-dimensional subspace W of E balanced relative to
the subspaces Vi, if its intersection with the subspaces Vi has dimension a for all i. When the
subspaces Vi are fixed in advance, we simply say that W is balanced.

The classical problem of determining the number of lines intersecting given four lines can be
rephrased as finding the number of balanced planes when the subspaces Vi are two-dimensional
planes in a four-dimensional vector space. Our aim is to solve this problem in the general case,
in other words we want to determine the number of balanced subspaces in arbitrary dimensions.

To calculate the number of balanced subspaces we use a graph construction. We learned the
idea from Tamás Terpai. Later we learned that this construction was used in the so-called four
subspace problem before. The earliest occurrence we found is [Tur42]. R. Vakil in [Vak06b]
sketches the construction more along the lines we do. For 2a = b he attributes the construction
to H. Derksen.

2.1. The graph construction.

Definition 2.2. Let A,B,C be subspaces of a real or complex vector space V such that both
(A,B) and (B,C) are complementary subspaces (in the algebraic sense): A ∩B = B ∩ C = {0}
and A+B = C +B = V . By the direct sum property, for all a ∈ A there is a unique b ∈ B such
that a+ b ∈ C. This implies that there is a unique map

γ = γC⊂V

A→B : A→ B,

such that γ(a) + a ∈ C for all a ∈ A.

Since the subspaces are linear, it follows that γ is linear, and its graph in A + B = V is
the subspace C. Another way to construct γ is using the projections πA, πB defined by the
direct decomposition V = A ⊕ B. By our assumption πA|C is invertible and γ = πB(πA|C)−1.
Notice that if additionally A∩C = {0}, then γC⊂V

B→A is also defined and equal to the inverse of γC⊂V
A→B.

Returning to our problem, assume now that the subspaces Vi are pairwise transversal. Then
we can define the maps

γi := γVi⊂E

V1→V2

for i = 3 and 4.

Proposition 2.3. If a subspace W ⊂ E is balanced then

γ3(V1 ∩W ) = γ4(V1 ∩W ) = V2 ∩W.

Proof. Let us use the notation Wi := Vi ∩W for i = 1, 2, 3, 4. Then it is easy to see that

γi|W1 = γWi⊂W

W1→W2

for i = 3, 4. Therefore γi(W1) ⊂ W2. By our previous remark γ
Wi⊂W

W1→W2
is invertible, so γi(W1) =

W2. �
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We call ϕ := γ3
−1γ4 the map corresponding to the configuration V1, V2, V3, V4.

Corollary 2.4. The map W 7→ W ∩ V1 is a bijection between the balanced subspaces of E and
the a-dimensional invariant subspaces of the corresponding map ϕ.

Proof. By Proposition 2.3., ifW is a 2a-dimensional balanced subspace thenW1 is an a-dimensional
invariant subspace of ϕ. On the other hand if W1 is an a-dimensional invariant subspace of
ϕ := γ4

−1γ3, then W := W1 + γ3(W1) is balanced, since

V1∩W = W1, V2∩W = γ3(W1), V3∩W = {w+γ3(w) : w ∈ W1}, V4∩W = {w+γ4(w) : w ∈ W1}.

�

Remark 2.5. Since ϕ is invertible, all the eigenvalues are non-zero. Similarly, since V3∩V4 = {0},
1 is not an eigenvalue of ϕ.

We are only interested in generic configurations. A subset of the configuration space is a good
choice for genericity, if it is open and the solution function is locally constant. Ideally we choose
the maximal such subset. We will see later in Remark 4.14. that the following definition is good
in this maximal sense.

Definition 2.6. Four subspaces V1, . . . , V4 of dimension b of the vector space E of dimension
2b are in general position (or generic) if the corresponding map ϕ : V1 → V1 has b distinct
eigenvalues (over C), none of them is equal to 0 or 1.

For the complex case Corollary 2.4. immediately implies that

Theorem 2.7. (R. Vakil [Vak06b]) Let the subspaces V1, . . . , V4 of dimension b of the complex
vector space E of dimension 2b be in general position. Then the number of 2a-dimensional
balanced subspaces is

NC(b, a) =

(
b

a

)
.

For the real case notice that the eigenvalues of ϕ are either real or complex conjugate pairs.
So the corresponding minimal invariant subspaces of ϕ are one or two dimensional, respectively.
Denoting the number of complex conjugate pairs by c we get:

Theorem 2.8. Let the subspaces V1, . . . , V4 of dimension b of the real vector space E of dimension
2b be in general position. If the corresponding map ϕ : V1 → V1 has c complex conjugate pairs
among its eigenvalues, then the number of 2a-dimensional balanced subspaces is

(1) NR(b, a, c) =
c∑
i=0

(
c

i

)(
b− 2c

a− 2i

)
.

Remark 2.9. Notice that we can construct four-tuples of spaces with a given ϕ: Let ϕ : F → F
be a linear map:

E = F ⊕ F, V1 = F ⊕ 0, V2 = 0⊕ F, V3 = {
Ä
f, f
ä

: f ∈ F}, V4 = {
Ä
f, ϕ(f)

ä
: f ∈ F}.

As far as we know this is the only non-trivial infinite family of real enumerative problems
where the values of the solution functions are known.
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a\c 0 1 2 3 4
1 8 6 4 2 0
2 28 16 8 4 4
3 56 26 12 6 0
4 70 30 14 6 6
5 56 26 12 6 0
6 28 16 8 4 4
7 8 6 4 2 0

Table 1. The solution functions NR(8, a, c).

Remark 2.10. This can also be considered as the following problem: In how many ways can
one factor a degree b polynomial χ with real coefficients into two polynomials χC and χD with
real coefficients of degree a and b − a respectively? (See discussion following Theorem 4.13.)
Such a factorization is a special case of the paper [SS06] of E. Soprunova and F. Sottile, where
they examine the number of such factorizations, possibly to multiple polynomials. As they
point out, the general case can be calculated by generating functions. The number of such
factorizations in the currently examined case is obtained as the coefficient of xa1x

b−a
2 in the

polynomial (x1 + x2)b−2c(x2
1 + x2

2)c.

Remark 2.11. Since all real solutions are also complex, the number of complex solutions is a
theoretical upper bound. For some real enumerative problems this cannot be obtained, like the
number of flexes of a smooth plane curve [Kle76]. In our case the maximum of NR(b, a, c) is
obtained for c = 0, i.e. when all eigenvalues are real. NR(b, a, 0) = NC(b, a), i.e. the theoretical
upper bound can be obtained. This also follows from a result of R. Vakil [Vak06b, Prop. 1.3]
stating that all Schubert problems are enumerative over R. It is also an immediate consequence of
the Mukhin-Tarasov-Varchenko theorem in [MTV09] (earlier called Shapiro-Shapiro conjecture).

The minimum is obtained when c is maximal: For u = ba/2c and v = bb/2c = c the number
of solutions is

NR(b, a, v) =


0 if a odd and b even(
v

u

)
otherwise.

Notice that for large b there are large gaps among the possible values of the solution function
f(c) = NR(b, a, c).

Examples 2.12. The example of a = 2, b = 4 is calculated in [GPHH+12, p.16], where for the
values c = 0, 1, 2 we have 6, 2, 2 solutions, respectively. In the next table we list the solution
functions for b = 8 and a < 8. Notice the (obvious) symmetry.

3. Schubert calculus

Results of this section will not be used in the rest of the paper. On the other hand we explain
our motivation to assign signs to balanced subspaces.
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4

a

︸ ︷︷ ︸
b−a

Figure 1. The Young diagram corresponding to the enumerative problem

The traditional method to solve enumerative problems over the complex numbers is Schubert
calculus. Consider the subvariety

σV := {W ∈ Gr2a(E) : dim(V ∩W ) ≥ a}

of the complex Grassmannian manifold Gr2a(E), where V is a b dimensional subspace of a 2b-
dimensional complex vector space E. Then assuming that the b-dimensional subspaces V1, . . . , V4

are generic, the number of 2a-dimensional balanced subspaces is the number of points of the 0-
dimensional subvariety

4⋂
i=1

σVi .

Using the fact that complex manifolds are canonically oriented, we can use cohomology:

NC(b, a) =
∫

Gr2a(E)

[σV ]4,

where [σV ] ∈ H∗(Gr2a(E),Z) is the integer cohomology class represented by the variety σV . If
we choose a complete flag F• in E, such that Fb = V , then we can identify σV with the Schubert
variety σλ = σλ(F•), where λ is the partition with λj = b − a for j = 1, . . . , a. Now we can use
the usual machinery of Schubert calculus. We warn the interested readers that the calculation
is surprisingly complicated. However it is easy using puzzles or checkers (see [KTW04] and
[Vak06a]).

Things get more complicated over the real number field as real subvarieties do not always
represent integer cohomology classes. One possibility is to use mod 2 cohomology. By the theorem
of Borel and Haefliger all the calculations are the same, but in the end we only calculated the
number of solutions modulo 2.

Assuming that a and b are even, by a result of Ehresmann [Ehr34] the subvariety σV will
represent a cohomology class in H∗(Gr2a(E),Z). We also have a limited version of the Schu-
bert calculus ([Feh]) for rational cohomology which says that we have a (degree doubling) ring
isomorphism

d : H∗(Gru(C
v),Q)→ H∗(Gr2u(R

2v),Q),

such that d([σλ]) = [σdλ], where dλ is the ”double” of the partition λ = (λ1, λ2 . . . , λk):

dλ = (2λ1, 2λ1, 2λ2, 2λ2, . . . , 2λk, 2λk).

Using the notation a = 2u, b = 2v and λ for the partition with λj = v − u for j = 1, . . . , u.∫
Gr2a(E)

[σV ]4 =
∫

Gra(Cb)

[σλ]
4 = NC(v, u) =

(
v

u

)
.
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This number is only a lower bound for the number of balanced spaces, since in the real case we
can have different orientations. Hence

Ä
v
u

ä
is actually the signed sum of the solutions. Looking

at (1) we can see that the lower bound is obtained when all eigenvalues of ϕ come in complex
conjugate pairs.

Similar interpretations can probably be given for the cases when a or b are odd using twisted
cohomology (in the spirit of [OT12]).

In the next section we explain how to determine the sign of a balanced subspace for the case
when a and b are even. Concerning the other cases, see Remark 4.15.

4. The sign of a balanced subspace

Following the cohomological interpretation of the previous section we fix orientations of the
Grassmannian Gr = Gr2a(E) and the normal spaces of the (smooth part of the) subvarieties σVi .
If these subvarieties intersect transversally at a point W , then there are two possible orientations
of the tangent space TW Gr (or, to be fancy, the normal space NW{W} ⊂ Gr). The sign of
W is positive if the orientation of TW Gr agrees with the orientation of

⊕4
i=1 NWσVi under the

canonical isomorphism of the two spaces, and negative otherwise.
Changing one of these orientations the sign changes as well, however we will show that there

is a canonical choice for all orientations and that the sign has a (somewhat) geometric meaning.

4.1. Calculating the normal spaces. Again, fix a 2b-dimensional vector space E, a 2a-
dimensional subspace V ⊂ E and an a-dimensional subspace W ⊂ V . To calculate the normal
spaces, we recall the following well known fact (see [Kir08] Corollary 2.19, page 13):

Lemma 4.1. Let G be a Lie group acting on the manifold M , and denote the orbit of m ∈M by
Om := G ·m. Then the tangent space TmOm is isomorphic to TeG/TeH, where H = StabG(m)
is the stabilizer subgroup of m.

We also need the following lemma from linear algebra:

Lemma 4.2. Let C and D be finite-dimensional vector spaces, and C ′ ⊂ C, D′ ⊂ D subspaces.
Using the notation A := Hom(C,D) and A′ := {ψ ∈ A : ψ(C ′) ⊂ D′}, the relation

A/A′ ∼= Hom(C ′, D/D′)

holds.

Proof. Let π : D → D/D′ be the canonical quotient map and ι : C ′ → C the inclusion. Define
q : Hom(C,D)→ Hom(C ′, C/D′) by

(2) q(ψ) := π ◦ ψ ◦ ι.

Then clearly q is surjective and ker(q) = A′. By applying the classical isomorphism theorem,
this gives

(3) A/ ker(q) ∼= q(A) = Hom(C ′, D/D′),

which finishes the proof. �

For GL(E) acting on Gr2a(E) the lemmas imply the well known fact that TW Gr2a(E) ∼=
Hom(W,E/W ).
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Now to calculate the normal space NWσV notice first that σV is the closure of the orbit G′ ·W ,
where

G′ = {ψ ∈ GL(E) : ψ(V ) = V }.
The stabilizer of W in GL(E) is

H = {ψ ∈ GL(E) : ψ(W ) = W}

so by the isomorphism theorems we obtain:

TWσV ∼= TeG
′/Te(H ∩G′) ∼= (TeG

′ + TeH)/TeH,

NWσV ∼= (TeGL(E)/TeH)/((TeG
′ + TeH)/TeH),

and

NWσV ∼= Hom(E,E)/(TeG
′ + TeH).

Clearly

TeG
′ + TeH = {ψ ∈ Hom(E,E) : ψ(V ) ⊂ V }+ {ψ ∈ Hom(E,E) : ψ(W ) ⊂ W}

= {ψ ∈ Hom(E,E) : ψ(W ∩ V ) ⊂ 〈W,V 〉},

and using Lemma 4.2. with C,D = E, C ′ = W ∩ V and D′ = 〈W,V 〉 we obtain:

Proposition 4.3.

NWσV ∼= Hom
Ä
W ∩ V,E/〈W,V 〉

ä
.

In fact we get a little more, looking at the proof of Lemma 4.2 we see that the canonical
quotient map

q : TW Gr2a(E)→ NWσV

can be expressed as

q(ψ) = π ◦ ψ ◦ ι,
where π : E → E/〈W,V 〉 is the canonical quotient map and ι : W ∩ V → E is the inclusion.

4.2. Orienting the normal spaces. The following fact is well known for those who ever wanted
to calculate the orientation of a real Hom-space:

Lemma 4.4. Suppose that A,B are even dimensional real vector spaces with bases {ai : i =
1, . . . ,m} and {bj : j = 1, . . . , n}, respectively. Then the orientation on Hom(A,B), defined by
the lexicographic ordering is independent of the orientations of A and B.

Proof. Interchanging a1 with a2 results in n transpositions in the lexicographic ordering. Sim-
ilarly, interchanging b1 with b2 results in m transpositions in the lexicographic ordering, either
way we add even number of transpositions, so the orientation does not change. �

Notice that the other orientation would also be canonical, we make a choice by using the
lexicographic ordering.

Corollary 4.5. The vector space TW Gr2a(E) admit a canonical orientation. The vector spaces
NWσVi admit canonical orientations if a and b are both even.
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4.3. The splitting map ξ. The notion of transversality fitting our purpose the best is

Definition 4.6. The subspaces Ai, i = 1, . . . n of the vector space A are transversal, if the
splitting map

ξ :=
n⊕
i=1

qi : A→
n⊕
i=1

A/Ai,

is an isomorphism, where qi : A→ A/Ai are the canonical quotient maps.

Moreover we say that submanifolds intersecting at a point are transversal at this point, if
their tangent spaces are transversal subspaces of the tangent space of the ambient manifold. For
subvarieties we add the extra condition that the intersection point has to be a smooth point of
all the subvarieties.

Applying our definition to the varieties σVi we obtain the splitting map

ξW :=
4⊕
i=1

qi : TW Gr→
4⊕
i=1

NWσVi .

Notice that both the source and target of ξW are canonically oriented. Assume now that the
subvarieties σVi are transversal. We arrived to the definition of the sign of a balanced subspace:

Definition 4.7. We say that the sign ε(W ) of a balanced subspace W is +1 if ξW is orientation
preserving, and −1 otherwise.

To determine whether ξW is orientation preserving or not, we will pick bases compatible with
the given orientations for the vector spaces involved and calculate the determinant of the matrix
of ξW in these bases. The determinant depends on the choice of the bases but its sign does not.

Let us remind the readers that this definition is simply the unfolding of the cohomological
definition of the sign of the cohomology class of the intersection point.

4.4. The balanced decomposition of E and the determinant of the splitting map ξW .
The calculation can be simplified with the proper choice of bases. There is no canonical choice,
but almost. Corollary 2.4 immediately implies that

Proposition 4.8. The vector space E is the direct sum of minimal (w.r.t. inclusion) balanced
subspaces.

For the complex case they are all 2-dimensional, corresponding to the eigenvalues of ϕ. For
the real case the real eigenvalues of ϕ correspond to 2-dimensional, the complex conjugate pairs
to 4-dimensional minimal balanced subspaces. We will refer to this decomposition as the block-
decomposition. For us the key property is that all the subspaces Vi and all the balanced subspaces
are homogeneous (in the sense of graded modules) with respect to the block-decomposition: They
are the sum of their intersections with the blocks. Let us introduce some notations: The set of
minimal balanced subspaces will be denoted by B. Given a balanced subspace W of dimension
2a,

SW := {B ∈ B : B ⊂ W}, V B
i := Vi ∩B, V̄ B

i := B/V B
i .

Then we have the decompositions:

E =
⊕
B∈B

B, W =
⊕
B∈SW

B, Vi =
⊕
B∈B

V B
i .
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Consequently, for the tangent and normal spaces:

TW Gr ∼=
⊕
A∈SW

⊕
B/∈SW

Hom(A,B), NWσVi
∼=

⊕
A∈SW

⊕
B/∈SW

Hom(V A
i , V̄

B
i ).

In this decomposition our main object of study, the map ξW becomes ”block-diagonal” therefore

det(ξW ) =
∏

A∈SW

∏
B/∈SW

det(ξA,B),

where ξA,B =
⊕4

i=1 ξ
A,B
i : Hom(A,B) → ⊕4

i=1 Hom(V A
i , V̄

B
i ) is the splitting map corresponding

to the blocks A and B, more precisely for ψ ∈ Hom(A,B) we have

(4) ξA,Bi (ψ) = π ◦ ψ ◦ ι,

where π : B → V̄ B
i is the canonical quotient map and ι : V A

i → A is the inclusion.

4.5. Bases for the blocks. We reduced the main calculation to four cases, depending on the
dimension of the blocks A and B. It is time to get our hands dirty; in this section we introduce
bases for the vector spaces involved.

4.5.1. Bases for a 2-dimensional block. According to Corollary 2.4. a 2-dimensional block B
corresponds to a real eigenvalue β of ϕ. Choose an arbitrary generator x of the one-dimensional
space V B

1 . Choose the generator of V B
2 to be y = γ3(x), thus we have the basis (x, γ3(x)) of B.

Then, following the proof of Corollary 2.4. V B
3 is spanned by x+y and V B

4 is spanned by x+βy.
Written in the (x, y) basis we have:

(5) V B
1 =

ÆÇ
1
0

å∏
, V B

2 =

ÆÇ
0
1

å∏
, V B

3 =

ÆÇ
1
1

å∏
, V B

4 =

ÆÇ
1
β

å∏
.

We will also need generators for the spaces V̄ B
i . Using the scalar product defined by x, y we

identify V̄ B
i with the orthogonal complement of V B

i . A convenient choice for generators is:

(6) V̄ B
1 =

ÆÇ
0
−1

å∏
, V̄ B

2 =

ÆÇ
1
0

å∏
, V̄ B

3 =

ÆÇ
1
−1

å∏
, V̄ B

4 =

ÆÇ
β
−1

å∏
.

4.5.2. Bases for a 4-dimensional block. According to Corollary 2.4. a 4-dimensional block B
corresponds to a pair of complex conjugate eigenvalues λ = µ + iν, λ̄ = µ − iν of ϕ. Choose
an arbitrary pair of generators (x, y) of the two-dimensional space V B

1 . Choose the generator
of V B

2 to be z = γ3(x), w = γ3(y), thus we have the basis (x, y, γ3(x), γ3(y)) of B. Then,
following the proof of Corollary 2.4. V B

3 is spanned by x + z, y + w and V B
3 is spanned by

x + µz − νw, y + νz + µw. In the x, y, z, w bases we get the following, where we omit the
brackets and commas for typographical reasons and refer to these matrices as the matrix of the
corresponding subspace.):

(7) V B
1 =

≥
1
0
0
0

0
1
0
0

Ω
, V B

2 =

≥
0
0
1
0

0
0
0
1

Ω
, V B

3 =

≥
1
0
1
0

0
1
0
1

Ω
, V B

4 =

≥
1
0
µ
−ν

0
1
ν
µ

Ω
.
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We will also need generators for the spaces V̄ B
i . Using the scalar product defined by x, y, z, w we

identify V̄ B
i with the orthogonal complement of V B

i . A convenient choice for generators is:

(8) V̄ B
1 =

≥
0
0
1
0

0
0
0
1

Ω
, V̄ B

2 =

≥
1
0
0
0

0
1
0
0

Ω
, V̄ B

3 =

≥
1
0
−1
0

0
1
0
−1

Ω
, V̄ B

4 =

≥
−L
0
µ
−ν

0
−L
ν
µ

Ω
,

where L = µ2 + ν2.

4.6. The matrix of the splitting map. According to (4) we need to calculate the matrix of
an inclusion and a quotient map. We identified the quotients V̄ B

i with orthogonal complements.
Under this identification the quotient map is identified with an orthogonal projection. We will
use the following trivial facts:

Lemma 4.9. Let C be a subspace of the vector space D. Let {di : i = 1, . . . , n} be a basis for D
and {cj =

∑
cjidi : j = 1, . . . ,m} a basis for C. Then the matrix M of the inclusion ι : C → D

in these bases is Mij = cji.

Lemma 4.10. Let S be a subspace of the vector space T equipped with a scalar product. Let
{tk : k = 1, . . . , v} be an orthonormal basis for T and {sl =

∑
slktk : l = 1, . . . , u} an orthonormal

basis for S. Then the matrix P of the orthogonal projection π : T → S in these bases is Plk = slk.

The splitting map is a linear map between vector spaces of linear maps. A natural choice of a
basis in both the domain and range is the set of linear transformations eik with matrices Eki with
a single 1 entry (we already have bases on our vector spaces!) with the row-column lexicographic
ordering. Combining the previous two lemmas we get:

Lemma 4.11. Let C be a subspace of the vector space D. Let {di : i = 1, . . . , n} be a basis for
D and {cj =

∑
cjidi : j = 1, . . . ,m} a basis for C.

Let S be a subspace of the vector space T equipped with a scalar product. Let {tk : k = 1, . . . , v}
be an orthonormal basis for T and {sl =

∑
slktk : l = 1, . . . , u} an orthonormal basis for S.

Then the matrix Q of qik = π ◦eik ◦ ι is Qlj = slkcji for the inclusion ι : C → D and orthogonal
projection π : T → S.

Now we can construct the matrix of the splitting map. The bases for V̄ B
i are not orthonormal,

only orthogonal, so we normalize with an appropriate scaling factor. Since this factor is positive
(the norm square of the corresponding vector), it does not alter the sign of the determinant, so
we omit it. Applying the previous lemma for C = V A

i , D = A, T = B, S = V B
i , and the basis

described in the previous section we can see that we need to take the tensor products of the
matrices of V A

i and V̄ B
i , transpose them and write them under each other.

4.6.1. A and B are 2-dimensional. Let A correspond to the eigenvalue α and B correspond to
the eigenvalue β. Following the instructions above we arrive to the matrix

(9) ξαβ =

á
0 0 −1 0
0 1 0 0
1 1 −1 −1
β αβ −1 −α

ë



12 LÁSZLÓ M. FEHÉR AND ÁKOS K. MATSZANGOSZ

The determinant is easy to calculate by hand:

(10) det(ξαβ) = β − α.

4.6.2. A is 2-dimensional, B is 4-dimensional. Let A correspond to the eigenvalue α and B
correspond to the pair of eigenvalues λ = µ + iν, λ̄ = µ − iν. Following the instructions above
we arrive to the matrix:

(11) ξα,µ±iν =



0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

1 1 0 0 −1 −1 0 0

0 0 1 1 0 0 −1 −1

−L −αL 0 0 µ αµ ν α ν

0 0 −L −αL ν α ν µ αµ


The determinant is:

(12) det(ξα,µ±iν) =
Ä
ν2 + µ2

ä Ä
µ2 − 2αµ+ α2 + ν2

ä
= (ν2 + µ2)(λ− α)(λ̄− α).

4.6.3. A is 4-dimensional, B is 4-dimensional. Let A correspond to the pair of eigenvalues µ +
iν, µ − iν and B correspond to the pair of eigenvalues δ = κ + iϑ, δ̄ = κ − iϑ. Following the
instructions above and using the notation K = κ2 + ϑ2 we arrive to the matrix of ξµ±iν,κ±iϑ:

(13)



0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 −1 0 −1 0 0 0 0 0

0 1 0 1 0 0 0 0 0 −1 0 −1 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 −1 0 −1 0

0 0 0 0 0 1 0 1 0 0 0 0 0 −1 0 −1

−K 0 −µK ν K 0 0 0 0 κ 0 µκ −ν κ −ϑ 0 −µϑ ν ϑ

0 −K −ν K −µK 0 0 0 0 0 κ ν κ µκ 0 −ϑ −ν ϑ −µϑ
0 0 0 0 −K 0 −µK ν K ϑ 0 µϑ −ν ϑ κ 0 µκ −ν κ
0 0 0 0 0 −K −ν K −µK 0 ϑ ν ϑ µϑ 0 κ ν κ µκ
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The determinant is:

(14) det(ξµ±iν,κ±iϑ) = K2
Ä
(κ−µ)2+(ϑ−ν)2

äÄ
κ−µ)2+(ϑ+ν)2

ä
= K2(δ−λ)(δ−λ̄)(δ̄−λ)(δ̄−λ̄).

4.6.4. A is 4-dimensional, B is 2-dimensional. Let A correspond to the pair of eigenvalues µ +
iν, µ− iν and B correspond to the eigenvalue β. Following the instructions above we arrive to
the matrix:

(15) ξµ±iν,β =



0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 1 0 −1 0 −1 0

0 1 0 1 0 −1 0 −1

β 0 β µ −β ν −1 0 −µ ν

0 β β ν β µ 0 −1 −ν −µ


The determinant is:

(16) det(ξµ±iν,β) = ν2 + µ2 − 2µβ + β2 = ν2 + (β − µ)2 = (β − λ)(β − λ̄).

4.7. Determining the sign of a balanced subspace. All determinants we calculated are
positive, except the first one, so we have the following:

Theorem 4.12. Let W be a balanced subspace, let RW denote the set of real eigenvalues of ϕ
for which the corresponding eigenspace is in W , and R̄W denote the set of real eigenvalues of ϕ
for which the corresponding eigenspace is not in W . Then W has a positive sign if and only if
the resultant ∏

α∈RW

∏
β∈R̄W

β − α

is positive.

Using the complex eigenvalues as well gives the following variant:

Theorem 4.13. Let W be a balanced subspace, let EW denote the set of all eigenvalues of ϕ
for which the corresponding eigenspace is in W (front eigenvalues), and ĒW denote the set of all
eigenvalues of ϕ for which the corresponding eigenspace is not in W (back eigenvalues). Then
W has a positive sign if and only if the resultant∏

λ∈EW

∏
δ∈ĒW

δ − λ

is positive.

This latter resultant has a linear algebraic interpretation. V1 can be written as V1 = C ⊕D,
where C = V1 ∩W and D is the (unique) complementary invariant subspace of ϕ. Let χC :=
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det(ϕ|C − xI) and χD := det(ϕ|D − xI) denote the corresponding characteristic polynomials.
Then ∏

λ∈EW

∏
δ∈ĒW

δ − λ = Res(χC , χD),

where Res
Ä
f(x), g(x)

ä
denotes the usual resultant of two polynomials.

Remark 4.14. We can also see that our genericity condition is correct, if the eigenvalues are
different from 0 and 1, and distinct then det(ξW ) is nonzero for any balanced subspace W ,
therefore the subvarieties σVi are transversal. Also, it is not difficult to see that this is the
maximal possible genericity condition: if the subvarieties σVi are not transversal, then at least
one of the intersection points will have a multiplicity, forcing the solution function to drop its
value or having infinity as its value, so it will not be locally constant at this configuration.

Remark 4.15. We could use Theorem 4.12. as the definition of the sign of a solution, and this
definition would make sense for a or b odd as well. However these signs would depend on the
order of the subspaces Vi and lack the geometric meaning.

5. Combinatorics: the signed sum of solutions and the number of solutions
modulo 4

In this chapter we prove by a combinatorial argument that the bounds obtained in Remark
2.11. are in fact the signed sums of the solutions (defining the sign ε(W ) as the the sign of
det(ξW ), see Remark 4.15.). In Section 3 for a and b even we sketched a cohomological proof of
this equality, based on real Schubert calculus. The result suggests that a cohomological argument
should exist for the other cases as well. Along the proof we get an other interesting result: for
a and b even the number of solutions is constant modulo 4. It was observed in [HSZ13] that
for a wide class of enumerative questions the number of solutions is constant modulo 4. They
study so called osculating solutions. It can be considered as an other “real form” for the complex
Schubert problems, so we can expect similar behavior. Notice that in the example of lines on a
smooth cubic (calculated by B. Segre in [Seg42]) it is also true that the number of solutions is
constant modulo 4. It would be interesting to find a universal explanation. We also show that if
a and b are both divisible by 2k, then the number of solutions is constant modulo 2k+1.

Definition 5.1. Let a, b, c be positive integers satisfying the inequalities a ≤ b and 2c ≤ b. Let
Bi denote the set {b− 2i + 1, b− 2i + 2} for 0 < i ≤ v := bb/2c. We will call Bi the i-th block.
Then we use the notation

Sol(a, b, c) :=
¶
H ⊂ {1, . . . , b} : |H| = a and |H ∩Bi| 6= 1 for i = 1, . . . , c

©
,

and call it the set of solutions.

Notice that we indexed the blocks backwards for notational convenience. Elements of {1, . . . , b}
correspond to the eigenvalues of ϕ, among which the first b− 2c are real. The remaining eigen-
values are arranged into complex conjugate pairs, corresponding to the blocks B1, . . . , Bc

Corollary 2.4. implies that the sets H ∈ Sol(a, b, c) are in bijection with the 2a-dimensional
balanced subspaces WH for a 4-space configuration with c complex conjugate eigenvalues.

For H ∈ Sol(a, b, c) we assign a permutation ρH ∈ Sb−2c by listing the elements of the set
{1, . . . , b−2c}∩H in increasing order first, then listing the elements of the set {1, . . . , b−2c}\H
in increasing order.
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Definition 5.2. The sign ε(H) of a set H ∈ Sol(a, b, c) is the sign of the permutation ρH ∈ Sb−2c.

Theorem 4.12. implies that ε(H) = ε(WH).
We introduce three easy lemmas leading to the results of the section. We keep a and b fixed

in the rest of the section, so we can omit them from the notation.

Lemma 5.3. Let S be a subset of {1, . . . , v} for v = bb/2c. With the notation

CS =
¶
H ⊂ {1, . . . , b} : |H| = a and |H ∩Bi| = 1 ⇔ i ∈ S

©
,

we obtain a partition of the set of solutions:

Sol(a, b, c) =
⋃ ¶

CS : S ⊂ {c+ 1, . . . , v}
©
.

In other words we sort the solutions according to which blocks they intersect properly.

Lemma 5.4. For any S ⊂ {1, . . . , v} we have

|CS| =


2|S| ·

(
v − |S|⌊
a−|S|

2

⌋) if b is odd or a− |S| ≥ 0 is even,

0 otherwise.

Lemma 5.5. For any non-empty S ⊂ {1, . . . , v} we have
∑
H∈CS

ε(H) = 0.

Lemma 5.4. implies that

NR(a, b, c) ≡ |C∅|+
v∑

i=c+1

|C{i}|

modulo 4, therefore

Theorem 5.6.

(1) If a or b is odd then NR(a, b, c) = | Sol(a, b, c)| is congruent to |C∅| modulo 4 independently
of c if and only if

1

2
|C{i}| =

(
v − 1ö
a−1

2

ù)
is even.

(2) For a = 2u and b = 2v even, the number of solutions NR(a, b, c) = | Sol(a, b, c)| is
congruent to |C∅| =

Ä
v
u

ä
modulo 4 independently of c.

In fact for a = 2u and b = 2v even we can even give a formula,

(17) NR(a, b, c) =

(
v

u

)
+

v∑
i=1

4i
(
v − c

2i

)(
v − 2i

u− i

)
,

clearly implying the result in the even case. For the non even case the smallest example satisfying
the modulo 4 property is b = 6 and a = 3, so |C{i}| =

Ä
2
1

ä
and the number of solutions for

c = 0, 1, 2, 3 are 20, 4, 4, 0, respectively.
Theorem 5.6 can be strengthened if further divisibility of a and b is assumed:

Theorem 5.7. Suppose that a and b are both divisible by 2k. Then the number of solutions
NR(a, b, c) = | Sol(a, b, c)| is congruent to |C∅| =

Ä
v
u

ä
modulo 2k+1 independently of c.
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Proof. From equation (17) we can see that the theorem follows from the divisibility of
Ä
v−2i
u−i

ä
by

2k+1−2i under the conditions of the theorem and assuming 2i ≤ k. We use a theorem of Kummer
[Kum52] on the divisibility of binomial coefficients:

Theorem 5.8. (Kummer) Given integers n ≥ m ≥ 0 and a prime number p, the maximum
integer k such that pk divides the binomial coefficient

Ä
n
m

ä
is equal to the number of carries when

m is added to n−m in base p.

We use Kummer’s theorem for n = v − 2i and m = u − i. Since 2k−1 divides u and v − u,
v − u − i and u − i are the same modulo 2k−1. Therefore the number of 1’s in the last k − 1
digits gives a lower bound on the number of carries in base 2 when adding v − u − i to u − i.
The number of 1’s in the last k − 1 digits is clearly at least k − 1 − blog2 ic in both u − i and
v − u − i. Finally to show k − 1 − blog2 ic ≥ k + 1 − 2i, we use the inequality blog2 ic + 1 ≤ i
(i = 1, 2, . . .). �

On the other hand Lemma 5.3. and 5.5 immediately implies that

Theorem 5.9. For u = ba/2c and v = bb/2c the signed sum of the solutions

∑
H∈Sol(a,b,c)

ε(H) =


0 if a odd and b even(
v

u

)
otherwise,

agreeing with the minimal number of solutions as promised.

6. Chambers

As we saw, we have a good understanding of the solution function without a complete list of
the chambers, but for the sake of completeness we give a description. Four-tuples of subspaces
were studied frequently in the last 70 years, especially subspaces of middle dimension, called
medials by Turnbull in [Tur42]. Most of the calculations in the section appeared in some versions
before.

Let us denote the subspace of generic (in the sense of Definition 2.1) four-tuples of spaces in
Grb(R

2b)4 by GC (as generic configurations). Notice that the group GL(2b) acts on GC. For
every generic configuration V1, . . . , V4 we assigned a linear map ϕ : V1 → V1. By taking the
characteristic polynomial χϕ(λ) := det(λI−ϕ) we can define a map χ : GC → P , where P ∼= Rb

is the space of degree b polynomials with leading coefficient 1.

Proposition 6.1. The fibers of χ are exactly the orbits of GL(2b) acting on GC.

Proof. Let V1, . . . , V4 and V
′

1 , . . . , V
′

4 be two configurations in GC. If ϕ : V1 → V1 and ϕ′ :
V
′

1 → V
′

1 has the same characteristic polynomial, then there is a linear map A1 : V1 → V
′

1 such
that A1ϕ = ϕ′A1 (recall that all eigenvalues of ϕ are distinct). We define A2 : V2 → V

′
2 as

A2 := γ
′
3Aγ

−1
3 , using the notation of Section 2.1. Then it is elementary to check that the linear

map A(v1 + v2) := A1(v1) + A2(v2) maps the configuration V1, . . . , V4 to V
′

1 , . . . , V
′

4 .
On the other hand for g ∈ GL(2b) the linear map assigned to the configuration gV1, . . . , gV4 is

g|V1ϕ(g|V1)−1, so they have the same characteristic polynomial. �

It is also elementary to check the following:
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Proposition 6.2. The stabilizer subgroup H of (V1, . . . , V4) ∈ GC is isomorphic to

{τ ∈ GL(V1) : τϕ = ϕτ} ∼= GL(1,C)c ×GL(1,R)b−2c,

where c is the number of complex conjugate pairs of eigenvalues of ϕ as before. H is the image
of ρ(τ) :=

Ä τ 0
0 γ3τγ

−1
3

ä
.

Notice that the determinant of ρ(τ) is always positive, consequently all fibers have 2 compo-
nents.

In the space of characteristic polynomials P the degeneracy conditions are easy to describe:
according to Definition 2.1 all eigenvalues have to be different and 0 and 1 are not allowed. There-
fore connected components of Imχ are labelled by quadruples of non-negative integers (c, x, y, z),
such that 2c+x+y+z = b ; x denoting the number of real eigenvalues in (−∞, 0), y the number
of them in (0, 1) and z the number in (1,∞). The preimage of such a component either splits
into two chambers or it is connected. We claim that it always splits. The first three subspaces
determine an orientation of E: pick a basis e1, . . . eb in V1, then e1, . . . eb, γ3(e1), . . . γ3(eb) is a
basis of E and it is easy to see that different choices for a basis in V1 define this way the same ori-
entation on E. A routine calculation shows that for g ∈ GL(2b) the three subspaces gV1, gV2, gV3

define the same orientation as the Vi’s if and only if det(g) > 0. This implies that if det(g) < 0
then a generic configuration and its g-image are always in different chambers, implying our claim.
Summing up:

Proposition 6.3. The connected components of the space of generic configurations can be labelled
by quadruples of non-negative integers (c, x, y, z), such that 2c+x+y+z = b, and a ±, depending
on the orientation defined by the first three subspaces.

7. Connection with quivers

This section is not necessary for our main result, but we believe it helps to connect with other
notions the reader might be familiar with. We assume some familiarity with the theory of quivers
(see e.g. [Rin80]).

Four-space configurations are naturally linked to D4-quivers: Let E and Ei, i = 1, 2, 3, 4 be
vector spaces and let

Q =
4⊕
i=1

Hom(Ei, E)

denote the corresponding (inwardly oriented)D4-quiver representation space. If q = (q1, q2, q3, q4) ∈
Q, then Vi := Im qi, i = 1, 2, 3, 4 defines a configuration of four subspaces in E. The configuration
is generic in the sense of Definition 2.1. if and only if the corresponding module Mq splits into
non isomorphic indecomposables such that

• all occuring indecomposable have dimension vector (2, 1, 1, 1, 1) if the base field is the
complex numbers,
• all occuring indecomposable have dimension vector (2, 1, 1, 1, 1) or (4, 2, 2, 2, 2) if the base

field is the real numbers.

We call these quiver representations q generic. These indecomposables of course correspond to
our minimal balanced subspaces. The group GL(Q) := GL(E) × X4

i=1 GL(Ei) acts on Q and
it is easy to see that orbits of generic quiver representations correspond bijectively to linear
equivalence classes of generic four-space configurations.
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We can identify 2a-dimensional balanced subspaces with submodules with dimension vector
(2a, a, a, a, a). The connection can be developed further as the characteristic polynomial map χ
of the previous section can be identified with the quotient map for the geometric quotient of the
quiver representation space.

8. Cross ratios: the geometric meaning of the signs

If b = 1 then ϕ(v) = αv for the single eigenvalue α. It is easy to see ([KP81]) that α is the
cross ratio of the four points given by [Vi] ∈ RP1 = P(E). (Or 1/α depending on the convention
for cross ratio.) Therefore for general b the real eigenvalues of ϕ can be identified with cross
ratios in RP1 ∼= S1 corresponding to 2-dimensional balanced subspaces and their intersection
with the subspaces Vi. If a balanced subspace W is given, then these points in RP1 are divided
into ”front” and ”back” points (see Theorem 4.13). The sign of W is positive if and only if the
number of transpositions needed to ”separate” the front and back points is even.

Applying a permutation ρ ∈ S4 to the the Vi’s we change the cross ratios by a Moebius
transformation (This is the so-called anharmonic representation of S4.) It is easy to see that
such (continuous) transformation of RP1 does not change the sign described above. This shows
that the sign of a solution can be defined for unordered four-tuples of subspaces as well. Here we
will have less chambers, as the S4-action glues together some of them.

9. What is the solution of a real enumerative problem?

Given a real enumerative problem ideally we would like to calculate the following data:

(1) Description of the degenerate configurations, i.e. determining the ”walls” of the chambers.
(2) Description of the chambers.
(3) The values of the solution function on the chambers.
(4) Cohomological interpretation.
(5) Calculation of the signs of the solutions and combinatorial or geometric description.
(6) Number theoretic properties of the solution function.

We don’t expect to answer all these even for Schubert problems. Sometimes finding all chambers
doesn’t help much in understanding the solution function. Sometimes it is not possible to give a
cohomological interpretation and meaningful definition for signs. But at least we would like to
see a sharp lower and upper bound for the number of solutions.

We know one other example where the above program was carried out, the case of lines on
a smooth cubic surface. The complex case can be solved with cohomological methods. For
the convenience of the reader we quickly review it: A cubic polynomial q defines a section σq
of the bundle Sym3(S∗) over the space of projective lines Gr2(C4) by restriction (S denotes
the tautological subbundle over the Grassmannian). Lines on the cubic surface defined by q
correspond to zeroes of σq, so for generic q the number can be calculated from the Euler class of
Sym3(S∗). The integral is easy to calculate:∫

Gr2(C4)
e
Ä

Sym3(S∗)
ä

= 27.

The real case was treated by B. Segre in [Seg42] who showed that the number of lines is 3, 7, 15
or 27. He also distinguished two types of lines: take a point of a line on the cubic surface. The
intersection of the cubic surface and (projective) tangent plane at this point will be a plane cubic
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curve, one component of which is the line itself. The other component is either an ellipse or a
hyperbola. Segre called these lines elliptic and hyperbolic, respectively.

The cohomological calculation can be carried out in the real case as well (see e.g. [OT12]):∫
Gr2(R4)

e
Ä

Sym3(S∗)
ä

= 3,

which explains the minimum of the solution function. Signs are defined as the sign of the
intersection of the section σq and the zero section. This was calculated in [OT12]. The different
signs were identified with the elliptic and hyperbolic types in [FK13]. An explanation for the
modulo 4 property was given in [BS95].
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