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CR-STRUCTURES OF CODIMENSION 2 ON TANGENT BUNDLES IN
RIEMANN-FINSLER GEOMETRY

MIRCEA CRASMAREANU AND LAURIAN-IOAN PISCORAN

Abstract. We determine a 2-codimensional CR-structure on the slit tangent bundle
ToM of a Finsler manifold (M, F') by imposing a condition regarding the almost
complex structure ¥ associated to F' when restricted to the structural distribution
of a framed f-structure. This condition is satisfied when (M, F) is of scalar flag
curvature (particularly flat) and in the Riemannian case (M, g) this last condition
means that g is of constant curvature. This CR-structure is finally generalized by
using one positive number but under more difficult conditions. 0

INTRODUCTION

The Finsler geometry is very rich in remarkable tensor fields F of (1, 1)-type and associated
structures. More precisely, there are: an (almost) tangent structure (F?2 = 0), an almost
complex one (F? = —I) and also an almost product structure (F? = I). In [I] another well-
known type of structures, namely f-structure (F® + F = 0) is obtained in this geometry. In
fact, this f-structure belongs to a very interesting particular case which is called framed f-
structure and has, in addition to F', a set of vector fields and differential 1-forms interrelated.
Moreover, a conformal deformation of the Sasaki type metric can be added in order to obtain
a metric framed f-structure. This metric framed f-structure of M. Anastasiei was recently
generalized in [7] and [14].

The present note is concerning with another kind of structures, namely the CR-structures,
with an important role at the border between differential geometry and complex analysis,
as it is pointed out in [6]. We restrict ourselves at the real case; more precisely, based on
a relationship between framed f-structures and CR-structure established in [2, p. 130] we
found a CR-structure on the slit tangent bundle Ty M of a Finsler manifold (M, F). This
CR-structure is constructed with the above almost complex structure denoted ¥ g in Section
2 and its existence is constrained by one condition expressing the vanishing of the Nijenhuis
tensor of U on the structural distribution of the framed f-structure from [I]. The above
condition is expressed as a relation between the curvature of the Cartan nonlinear connection
and the Jacobi endomorphism and is satisfied in dimension two or if (M, F') is of scalar flag
curvature which in the particular case of Riemannian geometry (M, g) means that the metric
g has a constant curvature. Several important classes of Finsler manifolds with scalar flag
curvature are discussed in Chapter 7 of [5].

Inspired by [14] we generalize this CR-structure using a real number § > % but with more
difficult conditions. More precisely, we take into account the same vector fields and 1-forms as
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in the previous framed f-structure but deform the metric and the almost complex structure
on both horizontal and vertical directions. At 8 = 1 we recover the previous CR-structure.

Finally, let us note that our CR-structures are of codimension 2 and the (complex) geometry
of these structures was studied in [10]-[11] and recently in [§] and [9]. But for the Riemannian
case the only studies until now are on hypersurfaces of Sasakian manifolds ([12]-[13]) and not
on (slit) tangent bundle.

1. CR-STRUCTURES FROM FRAMED f-STRUCTURES

Framed f-structures constitute a particular case of f-structures and a detailed study of
this class of tensor fields of (1,1)-type, especially from a local point of view, can be found in
[15].

Let N be a smooth (2n + s)-dimensional manifold with n, s > 1 and fix D a distribution on
N of dimension 2n. Considering D as a vector bundle over N let I'(D) be the module of its
sections. Supposing D is endowed with a morphism J : D — D of vector bundles satisfying
J? = —I where I is the identity (Kronecker) morphism on D, the pair (D, J) is called almost
complex distribution.

The first main notion is given by [2, p. 128]:
Definition 1.1 If for all X,Y € I'(D) we have:
[(JX,JY]—[X,Y] e T(D) (1.1)
N;(X,Y):=[JX,JY] - [X,Y] - J([X,JY]|+ [JX,Y]) =0 ’
then (D, J) is a CR-structure on N and the triple (N, D, J) is a CR-manifold.
A second main notion is:
Definition 1.2 Let ¢ be a tensor field of (1,1)-type and s pairs (£4,7%), 1 < a < s of
vector fields and 1-forms on N. If:

i) 3+ o =0, ranky = 2n,

i) 9 = I+ 3701 1° @ &a, (&) = 0, (&) = 0f, n" 0 0 =0,
then the data (¢, &,,n%) is called a framed f-structure.

To a framed f-structure we associate [2, p. 130]:
1) the torsion tensor field S of (1,2)-type:

S=N,+2) d" ®&, (1.2)
a=1
2) the structural distribution D:
D={X eD(TM);n"(X)=..=n*(X) =0} =NS_; kern® (1.3)
For a 1-form 7 we use the differential:
2dn(X,Y) = X(n(Y)) = Y (n(X)) = n([X,Y]). (1.4)

These notions lead to:

Definition 1.3 The framed f-structure is called D-normalif S vanisheson Die. S(X,Y) =
0 for all X,Y € I'(D).

The relationship between the above structures was pointed out by A. Bejancu in Proposition
1.1 of [2| p. 130]:



CR-STRUCTURES OF CODIMENSION 2 ON TANGENT BUNDLES IN RIEMANN-FINSLER GEOMETRY 3

Proposition 1.4 If (p,&.,n%) is a D-normal framed f-structure then (D,J = ¢|p) is a
CR-structure.

Proof The restriction J of ¢ to D is obviously an almost complex structure. The conditions
(1.1) result from the fact that for X, Y € I'(D) we have:

S(X,Y) =0=[JX, JY]+*([X,Y]) = o([X, JY] + [JX,Y]) = > _n*([X,Y])éa.  (L.5)
a=1
For other details see the cited reference. 0O

2. A METRIC FRAMED f—STRUCTURE ON THE TANGENT BUNDLE OF A FINSLER MANIFOLD

Let M be now a smooth m-dimensional manifold with m > 2 and 7 : TM — M its tangent
bundle. Let x = (2%) = (2!,...,2™) be the local coordinates on M and (z,y) = (2%, %) =
(x!, ..., 2™ y', ....,y™) the induced local coordinates on TM. Denote by O the null-section of

.

Recall after [5] that a Finsler fundamental function on M is a map F : TM — Ry with
the following properties:
F1) F is smooth on the slit tangent bundle TyM := T M \ O and continuous on O,
F2) F is positive homogeneous of degree 1: F(z,\y) = AF(x,y) for every A > 0,
F3) the matrix (g;;) = <%%) is invertible and its associated quadratic form is positive
definite.
The tensor field g = {g;j(z,y);1 < 4,5 <} is called the Finsler metric and the homogeneity
of I' implies:

F(2,y) = 959"y’ = yiy/ (2.1)

where y; = g;;47. The pair (M, F) is called Finsler manifold.

On TyM we have two distributions:
i) V(T'M) := ker 7, called the vertical distribution and not depending of F. It is integrable
and has the basis {Biyi; 1 < i < m}. A remarkable section of it is the Liouville vector field

I' = yi 821"
i) H(TM) with the basis {% = 821' — Nijaiyj} where:
Ni=--0 2.2

with v, = ’yji-kyj y* built from the usual Christoffel symbols:
1 o (09ak | 0gja  Ogjk

ik = 592“ <3azj T ok T e ) (23)
H(TM) is often called the Cartan (or canonical) nonlinear connection of the geometry (M, F')
and a remarkable section of it is the geodesic spray:

0

_ .0 Y
B

In particular, if ¢ does not depends on y we recover the Riemannian geometry.

Sk (2.4)
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The dual basis of the above local basis {%, a%i} of T(TyM) is (dz*,dy" = dy* + N;dxj).
On TyM we have a Riemannian metric of Sasaki type:

Gr = gijda:i ® dx? + gijéyi ® 8y’ (2.5)
Another Finslerian object is the tensor field of (1,1)-type ¥p : T'(ToM) — T'(To M ):

d 0 0 d
v () = v lon) o 0

It results that Up is an almost complex structure and the pair (¥ g, Gr) is an almost Kéhler
structure on Ty M.

In order to obtain a framed f-structure on ToM associated to the Finslerian function F,
the following objects are considered in [I]:

Sl1 _ SlF’& i 112 1 j

n = ﬁyidxf,n = ﬁzyiéy’ (2.7)
p=VYp+n & —N" Q&

G = 4%Gp.

Then the main result of [I] is that the data (¢, &1, &2,nt,n?) is a framed f-structure on Ty M
with n® the G-dual of &,, 1 < a < 2 and, moreover:

Glp, o) =G—n'en' —n* e’ (2.8)

Also, &, are unitary vector fields with respect to G and (G, ¢,&,,n%) is a metric framed
f-structure.

3. PUTTING ALL TOGETHER

The last paragraph of the previous Section provides the ingredients of the first Section
with N = TyM, s = 2 and n = m — 1 which motivates our choice m > 2. The structural
distribution is then:

Dp =kern' Nkern? = {&}7C N {&}+HC = {6197 n{gHor (3.1)

where { X }1¢ is the G-orthogonal complement of span{X}. We have D = (span{¢y, & })+CF
and this implies that Dp has the dimension 2m — 2. For a geometrical meaning of the
distribution span{&1,&2} in [I] is defined the differential 2-form wp, naturally associated to
the metric framed f-structure:

wp = G(-,¢) (3.2)
and it follows that span{&;,&2} is the kernel of wp. Also, the homogeneity of F' implies the
homogeneity of Sy = & which means:

I, Sr] = [€2,61] =& (3.3)
and thus span{&, &2} is an integrable distribution; see also Theorem 3.15 of [3 p. 236].

A concrete expression of D appears in [4, p. 11]. More precisely, consider after the cited
paper:
i) the horizontal vector fields:
0 1

i = @ - ﬁyiSF (3-4)
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and the corresponding (m — 1)-distribution H,,—1 = span{h;;1 <i < m},
ii) the vertical vector fields:
v = a%‘ _ %yif (3.5)
and also the corresponding (m — 1)-distribution V,,,—1 = span{v;; 1 <i < m}.
We have:
Dr =Hpm—1® Va1 (3.6)
and the same Theorem 3.15 of [3, p. 236] proves the integrability of V,,_1; see also [4, p. 12].

Regarding the integrability of the nonlinear connection H (7T'M) we have:

5 6 .0
where: '
. ONY  §N?
i J k
it = ok T G (38)

The tensor field R = {R;-k(:n,y); 1 < 4,5,k < m} is called the curvature of the Cartan
nonlinear connection and: ‘ ‘
R} = szyk (3.9)

are the components of the Jacobi endomorphism ® = R;- 8‘21- ® dz?, [, p. 5. We are ready

now for the first main result:

Theorem 3.1 If the curvature tensor of (M, F) has the form:

Rl = M Xjy; — Xjuk) (3.10)
with X a smooth function on ToM and the tensor field {X]Z:(a;,y); 1 <i,j < m} satisfying:
sz; =y (3.11)

for alli,j € {1,...,m} then the pair (Dp,Jr = Vp|p,) is a CR-structure on ToM .
Proof We express the Nijenhuis tensor field of U as:
Nyp(X,Y) = [VpX, UpY] - [X,Y] - ¥p(A(X,Y)) = B(X,)Y) - Up(A(X,Y)) (3.12)

with A(X,Y) := [X,YpY ]|+ [¥rpX,Y] and B(X,Y) = [VpX,VrY] — [X,Y]. It follows that
B(X,Y)=A(YrX,Y) and then:

Ny, (X,Y) = AWpX,Y) — Upo A(X,Y). (3.13)

We prove firstly that A is a Dp-valued (0, 2)-tensor field. From (3.7) and:
0] N0 oy o
Sz’ oyk | Oyk Oyt Oyl dyk Oy

6 0 o 0 5§ 0 .0
(o) =4 (amap) =0 Alwap) —Fay O

which means that n' o A = 0 and:

(3.14)

we obtain:

A= Rida) Aoyt @ 0

e (3.16)
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A main identity in Finsler geometry is:
yiRL, = (3.17)
and then n? o A = 0 which conclude the first part of the proof.
Secondly, we search for the framework of Proposition 1.4. The torsion tensor S on Dpg is:
S(X,Y) = Np(X,Y) = ([X, Y])&1 = n*([X, Y&
with:
Ny (X,)Y) = [UpX,UrY] + @*([X,Y]) — po A(X,Y).
Since ¢ is an element of a framed f-structure we get:
No(X,Y) = [UpX, UpY] = [X, Y]+ 7' (X, Y])& + (X, Y])2 — p 0 A(X,Y)
and from the definition (2.73) of ¢ it follows:
S(X,Y)=[UpX,UpY] - [X,Y] = (¥p+n' @& —1*©&) 0 AX,Y) = Ny, (X,Y). (3.18)

In local coordinates we have:

o 9
_ i k

and then Ny, has components only when applied on the pair (vq,v). A long but straight-

forward computation yields:

(3.19)

i Lo i 9
Ny, (vg,vp) =2 [Rab + ﬁ(Rayb — Rbya)] o (3.20)
and therefore the normality condition is:

F?Rly, = Riya — Riys (3.21)

which can be expressed as:

- 0

Ny, =n° A <R;5yk ® ay’) . (3.22)

The relation (3.10) yields:
k= AUPXG — y" Xy (3.23)

and then, both sides of (3.21) are equal with AF?(X}y; — X;yk) which gives the final conclu-
sion. The condition (3.11) corresponds to the relation (3.17).

Let us also point out that the condition (3.10) gives the following expression for the Nijen-
huis tensor:

Ny, = 22F?p* A (X;iéyj ® 622) (3.24)

which yields again the vanishing of Ny, on Dp due to the presence of n?. Concerning the
tensor field A we have:

A=\F%|npt A (X§5yj ® 8%/@) - (X;d:pj ® a%) A 772] (3.25)

which proves the relations: n' c A =7n20A4=0. O

Example 3.2 Recall that in dimension 2 the Nijenhuis tensor field of any almost complex
structure vanishes. Then every 2-dimensional Finsler manifold (Ms, F') satisfies the condition
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of Theorem 3.1. Let V(T'M) be spanned by the vector fields I" and V' respectively H(T'M)
be spanned by the vector fields Sy and H. Then Dp is spanned by V and H and:

Jp(H) = —V, Jp(V)=H. (3.26)

We have that H is a linear combination of hy and hs while V is a linear combination of v;
and vy. O

In order to consider examples in any dimension we remark that a solution of condition
(3.11) is:
Y'Y
F2

in-:u5;-+(1—,u)
again with p a smooth function on ToM. It follows:

Example 3.3 If © = 1 then X; = 5; and the Finsler manifold (M, F) is of scalar flag
curvature A since:

(3.27)

Rjy, = Sy — S5un) (3.28)
and then: ' ' '
k= AL F? = y'yr). (3.29)
Corollary 3.4 If (M, F) is of scalar flag curvature then (Dp = (span{Sp,T})*Cr Jp) is
a CR-structure on TyM.

Remark also that the hypothesis of scalar flag curvature yields:
Ny, = 22F’0* Ay ran (3.30)
where 7y (7 is the projector on the vertical part in the Gp-orthogonal decomposition

T(ToM) = H(TM) & V(TM) ie myqay = 0y’ ® 821" However, U is integrable only in

the flat case (i.e. A = 0) since Ny, (I',v,) = 2AF?v,. The integrability of ¥z as a tensor field
of (1,1)-type which is equivalent with the integrability of the Cartan nonlinear connection of
(M, F) and then (TyM, VY p,GF) is a Kahler manifold.

Particular case 3.5 (Riemannian geometry) Let g = (g;j(z)) be a Riemannian metric on
M. Then v} (z,y) = I'j;(z) the Riemannian Christoffel symbols and:

Riy(z,y) = Riy,(x)y" (3.31)

with Ry = ( ;,m) the Riemannian curvature tensor of g. It results that a Riemannian

geometry (M, F = (g;j(z)y'y’ )%) is of scalar flag curvature if and only if ¢ is of constant
curvature. Therefore on the slit tangent bundle of a space form (M, g) there exists a CR-
structure on the distribution complementary (with respect to the Sasaki lift of g) to the
distribution generated by the Liouville vector field and the geodesic spray S,. O

Example 3.6 Returning to the general non-Riemannian case (3.27) with = 0 we get:
Y'Y
X = 70 (3.32)
and then R; r = 0 which means that (M, F') is flat, a situation belonging also to the Example

3.3 for vanishing scalar curvature. O
For the general u we have:

Ny = 2XF*0* A pmyrany + (1 — p)n® @ T] = 20uF>n* A pay (pa) - (3.33)
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4. A 1-PARAMETRIC GENERALIZATION

Let a > 0 and 8 > 0 two positive numbers as well as the smooth function v : [0, +00) — R
which, following the approach of [I4], will be considered as v = v(7) with 7 = F2. Supposing
that:

a+27v(r) >0 (4.1)
for any 7 in the cited paper is constructed the smooth function:

we P (4.2)

o+ TV
and the Riemannian metric on TyM:
where:
1
Hij = Bgij + wy:y;.

Inspired by [14] we define also:
& = (B+wr)Sk, &=T=4¢&
(

7= dyde = o, 7= (2 + widy’ (4.
@F(%):—G?azaa \T/F(azz):Hf‘(;;L‘l

where the lift of indices in the third line is constructed with g~' = (g®). In fact, the only
difference between us and [14] is with respect to 1-form 7'; in order to reobtain that of Section
2 we divide with 7 the 1-forms of Peyghan-Zhong. With a computation similar to that of

Theorem 4.8 of Peyghan-Zhong we derive that (G, @, &,,7%) with:

p=Up+7'®HL-T®& (4.6)
is a metric framed f-structure on TyM if and only if:
B+ Tw=1. (4.7)
From this condition we get that &, = &, and 7* = n*. From (4.2) and (4.7) we obtain:
u(r) = M, w(T) = 1= ﬂ. (4.8)
T T

In the particular case « = § = 1 we recover the metric framed f-structure of Anastasiei since
v=w=0.

Now, under condition (4.7) we have the same structural distribution D but the expression
of the tensor field:

A(X, Y) :=[X, \I’FY] + [\T/FX, Y] (4.9)
is more complicated. More detailed:
T8 s\ __ [6GY SGY ONY ON? F)
A %) = (5t — Sk + ik — Gi gt ) o
T8 8 N_ (0Hy OH!\ ONY ONE\ 9
A(B_yj’ 3_y’“) - <6y;€ - 8y’g> 527 T (Hju oyt Hy; oy ) oy® (4.10)

T8 9.\ _ SHE § 9GT\ 5
Al —)—ﬁm+(H;?R§u+Wi By
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where, with (4.7):
Gij = 595 + S2yiys,  Hiyj = = o + Ly,
GCL - éé;l + B_le“yg, Ha B(Sa y v (4.11)
\IIF(&(:Z) - ﬁ@y + BTByZF \IIF(ayl) o 56:{:i + #yZSF

It results that o disappears and this motives the title of this Section, namely 1-parametric
generalization and not 2-parametric. Note that Vg (h;) = —%Ui and VUp(v;) = Bh;.

Then:

A5 o) = 5 [ (win) — 52 ()] 25

A 526 = (1- B [;f?%)—%@ﬂ% w12)
AL o) = 2 () =+ [BRY + Ly Ry, + 550 ()] o2

Choosing o = 1 the second main result is:

Theorem 4.1 Let 3 > % and the smooth functions v(t) = —w(r) = B=L If for any
X,Y € Dp we have:
1) A(X,Y) € Dp,
2) N\I/F(X7Y) =0,
then (Dp, Jp = Wp|p,) is a CR-structure on TyM.

Proof The condition in g is the expression of (4.1). Exactly as in the proof of Theorem
3.1 we have:
S(Xv Y) = N\I/F (Xv Y) - nl(A(Xv Y))£2 + 772(121(X7 Y))gl (4'13)
and the conclusion follows directly. Let us note that 1) corresponds to the condition (1.1;)
while 2) corresponds to the condition (1.12). O

Let us remark that:

(5 (46 0 (6§ 0
2 1 1
Al —,— | = Al —,=— | — Al —,=— |. 4.14
pn’ e <(5x]’5a:k> e <5azﬂ’8yk> e <5azk’8y1> (4.14)
and then, the vanishing of n' o A (M—a %) implies the vanishing of 772 oA (5%1“ 5;5”). The
vanishing of the former expression means that y; are eigenvalue for 6—J
(5yk Nj Ya
S <— 2 Yk (4.15)
and then y; are eigenvalues for the geodesic spray:
Nyy,
Sr(yk) = <— fo2 )yk (4.16)

Such condition holds in the Euclidian space (R™,g;; = 0;;) but here the expression n? o
7(%, %) is non-vanishing since:

0 (yy’ yy
v () = on =t #0 o

and then it remains an open problem to find Riemannian and/or Finsler manifolds satisfying
the Theorem 4.1 with 5 # 1.
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