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SYMPLECTIC FILLABILITY OF TORIC CONTACT MANIFOLDS

ALEKSANDRA MARINKOVIĆ

Abstract. According to Lerman, compact connected toric contact 3-manifolds with a
non-free toric action whose moment cone spans an angle greater than π are overtwisted,
thus non-fillable. In contrast, we show that all compact connected toric contact manifolds
in dimension greater than three are weakly symplectically fillable and most of them are
strongly symplectically fillable. The proof is based on the Lerman’s classification of toric
contact manifolds and on our observation that the only contact manifolds in higher di-
mensions that admit free toric action are the cosphere bundle of T d, d ≥ 3 (T d

× Sd−1)
and T 2

× Lk, k ∈ N, with the unique contact structure.

keywords: contact manifold, toric action, symplectic fillability.

1. Introduction

A toric contact manifold is a co-oriented contact manifold (V 2d−1, ξ) with an effective
action of the torus T d = (R/2πZ)d, that preserves the contact structure ξ. A complete
classification of compact connected toric contact manifolds was done by Lerman [L1, The-
orem 2.18.]. Contact 3-manifolds that admit a free toric action are contactomorphic to
(T 3, ξk = ker(cos(kθ)dθ1 +sin(kθ)dθ2)), k ∈ N, while contact 3-manifolds that admit a non-
free toric action are topologically S1 × S2 and lens spaces Lp/q, p ∈ Z, q ∈ Z\{0} with
various toric contact structures. Higher dimensional contact manifolds with a non-free toric
action are either of Reeb type or they are contactomorphic to T k × S2d−k−1, k ∈ N with
the unique toric contact structure (see Section 2.1). Finally, higher dimensional contact
manifolds with a free toric action are principal T d−bundles over a sphere Sd−1 and each
principal T d−bundle over Sd−1 admits unique toric contact structure. These bundles are
classified by π1(S

d−2,Zd) and thus, if d 6= 3 there is only a trivial bundle and if d = 3
there are Z3 such bundles, each of them uniquely represented by the triple of integers. In
Section 2.2 we show that all toric contact structures corresponding to the triples with the
same greatest common divisor are contactomorphic and that all these contact structures
can be obtained by the Bourgois construction [B] starting from the natural open book on
the standard contact sphere.

In this article we examine the question of strong and weak symplectic fillability of toric
contact manifolds. A symplectic fillability is an invariant of a contact structure and does
not depend on the toric action. A compact symplectic manifold (W 2d, ω) is called a
strong symplectic filling of a co-oriented contact manifold (V 2d−1, ξ) if V is a topo-
logical boundary of W , and if there is a vector field X defined in a neighborhood of V in
W such that ω(X, ·)|TV is a positive contact form for (V, ξ) and LXω = ω. Note that the
last condition implies that ω is exact near the boundary of W, due to Cartan’s formula
LXω = dω(X, ·, ·) + d(ω(X, ·)) = d(ω(X, ·)). When the condition LXω = ω holds on the
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2 A. MARINKOVIĆ

whole manifold W, then the vector field X is called a Liouville vector field. A compact sym-
plectic 4-manifold (W,ω) is called a weak symplectic filling of a contact 3-manifold (V, ξ)
if V is a topological boundary of W and if ω|ξ > 0, that is, if ω gives a positive orientation
of ξ. A definition of weak fillability in dimensions greater than three was recently introduced
by Massot, Niederkrüger and Wendl in [MNW] and it generalizes this definition in dimen-
sion three. A compact symplectic manifold (W,ω) is called a weak symplectic filling of a
contact manifold (V, ξ) if V is a topological boundary of W , and if there is a positive contact
form α on V such that the orientation on V given by α agrees with the boundary orientation
of W and α ∧ (ω|ξ + τdα)d−1 > 0, for all τ ≥ 0. Note that both definitions (strong and
weak fillability) do not depend on the choice of a positive contact form for the same contact
structure. A contact manifold (V, ξ) is called strongly (weakly) symplectically fillable
if it allows a strong (weak) symplectic filling. A strong symplectic filling is also a weak
symplectic filling. Indeed, if (W,ω) is a strong filling, then ω = dα on V, for some positive
contact form α and thus α ∧ (ω|ξ + τdα)d−1 = (1 + τ)d−1α ∧ dαd > 0. In contrast, a weak
filling may not be a strong filling. For example, (T 3, ξk = ker(cos kθdθ1 + sin kθdθ2)), k > 1
is weakly fillable [Gi] but not strongly fillable [E2] and examples of weakly but not strongly
fillable 5-dimensional contact manifolds are provided in [MNW].

As proved by Eliashberg in [E3] an obstruction to fillability of contact 3-manifolds is
overtwistedness. A contact structure ξ on a 3-manifold V is called overtwisted if there
is a disc ∆ ⊂ V that is tangent to ξ along the boundary ∂∆, that is Tx∆ = ξx, at every
point x ∈ ∂∆. The notion of overtwisted contact structures is recently generalized to higher
dimensional contact manifolds by Borman, Eliashberg and Murphy [BEM]. They also show
that an overtwisted contact structure is not (semi-positive) weakly fillable.

We first summarise already known results on fillability of toric contact 3-manifolds:

Theorem 1.1. A compact connected toric contact 3-manifold with a free toric action
is strongly symplectically fillable if it is contactomorphic to (T 3, ξ1). Otherwise (when it is
contactomorphic to (T 3, ξk), for some k > 1), it is only weakly fillable. A compact connected
toric contact 3-manifold with a non-free toric action is strongly symplectically fillable if the
corresponding moment cone spans an angle not greater than π. Otherwise, it is overtwisted.

The main result in this article is the following theorem:

Theorem 1.2. Any compact connected toric contact manifold of dimension greater than
three is weakly symplectically fillable. Moreover, if the toric action is not free, or if the
toric contact manifold is a trivial principal T d-bundle over Sd−1 (with a free toric action),
then V is strongly symplectically fillable.

The proof is based on the Lerman’s classification of toric contact manifolds and on the
classification of contact structures on non-trivial T 3-bundles over S2 that admit free toric
action, done in Section 2.2. For these particular contact structures we are able to show only
weak fillability (see Proposition 3.7). We do not know if strong fillability result holds in
these cases.

As already mentioned, Borman, Eliashberg and Murphy in [BEM] introduced the notion
of overtwisted contact structures in dimensions higher than three. Since overtwisted contact
structures are not weakly fillable we conclude:
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Corollary 1.3. There does not exist toric contact manifold in dimension greater than three
with overtwisted contact structure.
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2. Toric contact manifolds

In this Section we recall the classification of compact connected toric contact manifolds
done by Lerman and starting from this classification we completely determine all contact
manifolds with a free toric action. We focus on the properties that are relevant to show
symplectic fillability.

To any toric contact manifold (V 2d−1, ξ) and a T d-invariant contact form α one can
associate a T d-invariant map, called a moment map, µα = (µ1, . . . , µd) : V → Rd, defined
by µk = α(Xk), k = 1, . . . d, where, for every p ∈ V, Xk(p) = ( d

dt |t=0exp (0, . . . , t, . . . 0)) ∗ p.
Note that an invariant contact form always exists. Indeed, if α is not invariant we obtain an
invariant contact form αinv by averaging, that is, αinv =

∫
t∈T d t

∗α. The moment cone of a
toric contact manifold (V, ξ) is defined to be the cone over µα(V ), or, equivalently, it is the
union of the origin and the moment map image of (V ×R+, d(e

tαinv)), the symplectization
of V, that is a toric symplectic manifold. Note that the definition of the moment cone does
not depend on the choice of an invariant contact form.

Definition 2.1. Two toric contact manifolds (V 2d−1
i , ξi), i = 1, 2 are equivalent if there

is a contactomorphism ϕ : V1 7→ V2 and an isomorphism λ : T d 7→ T d such that ϕ(t ∗1 p) =
λ(t) ∗2 ϕ(p), for evety t ∈ T d and every p ∈ V1, where ∗1 and ∗2 denote toric actions on V1

and V2 respectively.

If two toric contact manifolds are equivalent, then the corresponding moment cones differ
by a SL(d,Z) transformation. On the other hand, if moment cones differ by a SL(d,Z)
transformation and they uniquely determine toric contact manifolds, then these toric contact
manifolds are equivalent.

2.1. Toric contact manifolds with non-free toric action. Let (V 2d−1, ξ) be a compact
toric contact manifold with a non-free toric action.

• If dimV = 3, then V is diffeomorphic to a lens space Lp/q, p ∈ Z, q ∈ Z\{0} or

S1 × S2 [L1, Theorem 2.18.(ii)]. As a toric contact manifold V is classified by two real
numbers t1 and t2 such that t1 ∈ [0, 2π), t1 < t2 and tan ti ∈ Q or cos ti = 0, i = 1, 2. If
t2 − t1 ≥ 2π, then the moment cone of V is the whole space R2. If t2 − t1 < 2π, then the
moment cone of V has two facets {(s cos ti, s sin ti) ∈ R2|s ≥ 0}, i = 1, 2, with the angle
between facets t2− t1. In particular, when t2− t1 < π, then V is of Reeb type (see below).
When t2 − t1 = π, then V is contactomorphic to (S1 × S2, ker(xdθ + i

4(zdz − zdz))), where

S2 = {(z, x) ∈ C × R| |z|2 + x2 = 1}. When t2 − t1 > π, then the contact structure ξ
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is overtwisted (see the Proof of Theorem 1.5 in [L1]). First examples of overtwisted toric
contact manifolds are constructed by Lerman in [L2] using the method of contact cut.

• If dimV > 3, then (V, ξ) is uniquely determined by the moment cone [L1, Theorem
2.18.(iii)] and the cone is always convex [L1, Theorem 4.2.]. Moreover:

(1) If the cone is strictly convex, meaning it does not contain any linear subspace
of a positive dimension, then V is a toric contact manifold of Reeb type [BG]
and a prequantization space. Here is the sketch of the proof, for more details see
[AM, Proposition 2.19.], [L3, Lemma 3.7.], [Bo, Theorem 2.7.]. We remark that all
properties of toric contact manifolds of Reeb type also hold in 3-dimensional case.
According to the definition, the moment cone for V withouth the origin is a moment
map image of the symplectization W of V, that is a (non-compact) toric symplectic
manifold. Take any vector R ∈ Zd given as a positive linear combination of inward
normal vectors to the facets of the cone. The vector R defines a S1-subaction of the
toric action on W . The symplectic reduction of W with respect to that S1-action
is a toric symplectic orbifold (M,ω), whose moment polytope is the intersection of
the moment cone and one hyperplane perpendicular to R. Changing the hyperplane
corresponds to rescaling the symplectic form ω. The prequantization of M, that is,
the principal S1-bundle with the first chern class 1

2π [ω], is V and the connection
1-form is α such that dα = π∗ω, where π : V → M is the projection. The 1-form α
is a contact form for ξ and the S1-bundle action on V is precisely the action given
by the Reeb vector field Rα. The toric action on M lifts to a torus action on V
that commutes with this S1-action. A direct sum of these actions is a toric action
on V. Since the Reeb vector field Rα generates S1-subaction of the toric action, by
definition introduced by Boyer and Galicki, V is of Reeb type.

(2) If the cone is not strictly convex and k > 0 denotes the dimension of the linear
subspace contained in the cone, then k < d [L1, Lemma 4.5.], i.e. the cone is not
equal to the whole space. Such a cone is isomorphic (there is SL(d,Z) transfor-
mation) to the cone C = {x1, . . . , xd−k ≥ 0} ⊂ Rd. The toric contact manifold
corresponding to the cone C is T k × S2d−k−1, with the following contact structure.
Using the coordinates

T k × S2d−k−1 =
{
(eiθ1 , . . . , eiθk , x1, . . . , xk, z1, . . . , zd−k) ∈ T k × Rk × Cd−k |

k∑

l=1

|xl|
2 +

d−k∑

j=1

|zj |
2 = 1

}
,

the contact structure is given as the kernel of the following contact form

βk =

k∑

l=1

xldθl +
i

4

d−k∑

j=1

(zjdzj − zjdzj)

and the toric T d-action on T k × S2d−k−1 is given by

(s1, . . . , sk, t1, . . . , td−k) ∗ (e
iθ1 , . . . , eiθk , x1, . . . , xk, z1, . . . , zd−k) 7−→

(s1e
iθ1 , . . . , ske

iθk , x1, . . . , xk, t1z1, . . . , td−kzd−k).
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According to classification theorem by Lerman [L1, Theorem 2.18.(iii)] it follows
that (V, ξ) is equivalent to (T k × S2d−k−1, ker βk).

2.2. Toric contact manifolds with a free toric action. Let (V 2d−1, ξ) be a compact
toric contact manifold with a free toric action. Then the moment cone is the whole space
Rd. Indeed, consider the normalized invariant contact form α, that is, a contact form with
||µα(p)|| = 1, for every p ∈ V, where || · || is the norm on Rd given by the standard inner
product. This contact form can be defined by α(p) = 1

||µβ(p)||β(p), where β is any invariant

contact form. Since µβ(p) 6= 0, for every p ∈ V [L1, Lemma 2.12.], it follows that α is

well defined. According to [L1, Corollary 4.7.] the moment map µα : V → Sd−1 ⊂ Rd is
a submersion and in particular surjective. Thus the moment cone is equal to Rd. (Note
that toric contact manifolds with a non-free toric action whose moment cone is equal to the
whole space exist only in dimension three.)

• If dimV = 3 and k ∈ N is the number of connected components of the fibers of
the moment map, then V is contactomorphic to (T 3, ξk = ker(cos kθdθ1 + sin kθdθ2)) [L1,
Theorem 2.18.(i)]. Here θ1, θ2 and θ denote the coordinates on T 3 = (R/2πZ)3.

• If dimV > 3, then the fibers of the moment map are connected, thus V is a principal
T d-bundle over Sd−1. Moreover, each such bundle admits unique toric contact structure
[L1, Theorem 2.18.(iii)]. These contact structures are particular examples of the contact
structures constructed by Lutz [Lu]. The toric contact manifold corresponding to the trivial

bundle is the cosphere bundle of T d, that is (T d × Sd−1, ker(
∑d

i=1 xidθi)) with the unique
toric action [L1, Theorem 1.3.] given by

(t1, . . . , td) ∗ (e
iθ1 , . . . , eiθd , x1, . . . , xd) 7−→ (t1e

iθ1 , . . . , tde
iθd , x1, . . . , xd).

Non-trivial principal T d-bundles over Sd−1 exist only when d = 3. Indeed, since a T d-bundle
over a sphere Sd−1 can be trivialized over two open sets: upper and lower hemisphere, it
follows that it is determined by only one transition map (up to homotopy), the map from
the intersection of these sets, that is, from equator Sd−2, to the torus T d. Thus, these
bundles are classified by πd−2(T

d) = (πd−2(S
1))d. Since πd−2(S

1) = 0 for d − 2 > 1 and
π1(S

1) = Z it follows that when d > 3 there is only the trivial principal T d-bundle over
Sd−1 while when d = 3, there are Z3 such bundles, each of them represented by the triple
of integers (k1, k2, k3). Due to Lerman, each triple represents unique toric contact manifold
with a free toric action.

We now want to show that all toric contact manifolds corresponding to the triples with
the same greatest common divisor are contactomorphic.

Lemma 2.2. The total space of principal T 3-bundles over S2 that are represented by triples
with the greatest common divisor equal to k ∈ Z\{0} is T 2 × Lk and the corresponding
T 3-actions differ only by a reparametrization of T 3.

Proof. Each T 3-bundle over the sphere S2 is uniquely determined by only one transition
map g : S1 7→ T 3. The bundle represented by the triple (k1, k2, k3) has the transition map
g(k1,k2,k3)(e

iθ) = (ek1θ, ek2θ, ek3θ). Thus, in order to show that two bundles with transition

maps g(k1,k2,k3) and g′(k′
1
,k′

2
,k′

3
) are isomorphic, it is enough to find a map λ : T 3 7→ T 3 such
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that λ ◦ g(k1,k2,k3) = g′(k′
1
,k′

2
,k′

3
), that is, to find a reparametrization of the torus T 3. In terms

of integer triples, that means to find a SL(3,Z) matrix that sends (k1, k2, k3) to (k′1, k
′
2, k

′
3).

Let (k1, k2, k3) ∈ Z3 be a primitive vector, that is, a triple with GCD(k1, k2, k3) = 1 (If
ki = 0, for some i ∈ {1, 2, 3}, then we take the greatest common divisor of the remaining
ones). The vector (k1, k2, k3) ∈ Z3 can be completed to a Z-basis of Z3. If (k1, k2, k3), e1, e2
are such a basis, then the inverse of the matrix with columns given by (k1, k2, k3), e1, e2
is an integer matrix with determinant equal to 1 that sends (k1, k2, k3) to (1, 0, 0). The
same matrix sends (k1, k2, k3), with GCD(k1, k2, k3) = k, to (k, 0, 0). This matrix defines
a reparametrization of the torus T 3 that shows that bundles represented by (k, 0, 0) and
(k1, k2, k3) with GCD(k1, k2, k3) = k are isomorphic.

Let us now explain the total space of these bundles. In general, all principal G−bundles
over a CW-complex X, up to isomorphism of the bundles, are in bijection with [X,BG],
homotopy classes of all maps f : X → BG, where BG denotes the classifying space for
G. Precisely, every such bundle is isomorphic to the bundle f∗γ, the pull back of the
universal bundle γ corresponding to G, for some map f : X → BG. In particular, every
principal G = G1 ×G2−bundle is isomorphic to the bundle f∗(γ1 × γ2), for some function
f : X → (B(G1 ×G2) ∼= BG1 ×BG2), where γi is a universal principal Gi-bundle, i = 1, 2.
Since f = (f1, f2) ◦∆, where fi : X → BGi and ∆ : X → X ×X is the diagonal map, it
follows that f∗(γ1 × γ2) = ∆∗((f1, f2)∗(γ1 × γ2)) = ∆∗(f∗

1γ1, f
∗
2γ2) = f∗

1γ1 ×X f∗
2γ2. This

means that there is a bijection between principal G1 ×G2−bundles over X and a fibre sum
of principal G1−bundles over X and principal G2−bundles over X.

In particular, there is a bijection between principal T 3−bundles over S2 and a fibre sum
of three principal S1−bundle over S2. Zero in the triple (k1, k2, k3) represents a trivial S1-
bundle over S2 while k ∈ Z\{0} represents a non-trivial principal S1−bundle over S2, the
lens space Lk, k ∈ Z\{0}, where Lk = S3/

(z1,z2)∼(e
2πi
k z1,e

2πi
k z2)

. Thus, the total space of the

bundle represented by (k, 0, 0), k ∈ Z\{0}, is T 2 × Lk.

The free T 3-action on T 2 × Lk represented by the triple (k, 0, 0) is given by

(t1, t2, t3) ∗ (e
iθ1 , eiθ2 , [z1, z2]k) → (t1e

iθ1 , t2e
iθ2 , t3 ∗ [z1, z2]k), (2.1)

for every (t1, t2, t3) ∈ T 3 and every (eiθ1 , eiθ2 , [z1, z2]k) ∈ T 2 × Lk, where [z1, z2]k denotes a

point in Lk and the free S1 = (R/2πZ)−action on Lk is given by t ∗ [z1, z2]k → t
1

k [z1, z2]k =

[t
1

k z1, t
1

k z2]k. Thus, the T
3-action on the bundle T 2×Lk represented by the triple (k1, k2, k3)

is given by

λ(t1, t2, t3) ∗ (e
iθ1 , eiθ2 , [z1, z2]k),

for every (t1, t2, t3) ∈ T 3 and every (eiθ1 , eiθ2 , [z1, z2]k) ∈ T 2×Lk, where λ : T 3 7→ T 3 is given
by the matrix that sends (k1, k2, k3) to (k, 0, 0). That means that T 3-actions represented
by the triples with the same greatest common divisor differ only by a reparametrization of
T 3. �

Let us find an invariant contact structure on these bundles. We start from the map
f(z1, z2) = z21 + z22 , that defines a compatible open book on (S3, ξst = ker i

4

∑2
j=1(zjdzj −

zjdzj)) with the binding f−1(0)∩S3 and the fibration πθ(z1, z2) =
f(z1,z2)
|f(z1,z2)| . We now want to
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use the method by Bourgeois [B] to show that Refdθ1+Imfdθ2+
i
4

∑2
j=1(zjdzj−zjdzj) is a

contact form on T 2×S3. First, the binding f−1(0)∩S3 consists of two connected components,
circles: {(z1, iz1) ∈ S3} and {(z1,−iz1) ∈ S3}. Next, the solid tori {|iz1 − z2| < |iz1 + z2|}
and {|iz1−z2| > |iz1+z2|} are tubular neighborhoods inside S3 of these circles, respectively.
Finally, S3 is the union of these solid tori and the T 2-torus {|iz1 − z2| = |iz1 + z2|}. Now
consider a smooth function ρ(z1, z2) = |f(z1, z2)|. This function is a distance function from
the binding in the small neighborhood of the binding and is constant (equal to the square
root of the radius of the sphere) on the torus {|iz1 − z2| = |iz1 + z2|}, i.e. outside of the
tubular neighborhood of the binding. If we consider the sphere of a radius ǫ, for a sufficiently
small ǫ > 0, then, due to Bourgeois [B], the map ρπθ = f defines a contact form on T 2×S3

by Refdθ1 + Imfdθ2 +
i
4

∑2
j=1(zjdzj − zjdzj). A pull back of this contact form under the

diffeomorphism (eiθ1 , eiθ2 , z1, z2) 7→ (eiθ1 , eiθ2 , 1√
2
(z1 + iz2, iz1 + z2)) is a contact form

α = α1 = i(z1z2 − z1z2)dθ1 + (z1z2 + z1z2)dθ2 +
i

4
(z1dz1 − z1dz1 − (z2dz2 − z2dz2)) (2.2)

and α is invariant under the toric T 3-action represented by the triple (1, 0, 0) (see (2.1)). In
particular, α is invariant under the diagonal Zk-action on S3-factor of T 2×S3, so it descends
to a contact form αk on the quotient T 2×Lk and the contact form αk is invariant under the
T 3-action represented by (k, 0, 0) (2.1). Since the toric actions (k, 0, 0) and (k1, k2, k3), for
any choice of k1, k2, k3 ∈ Z with GCD(k1, k2, k3) = k differ by a reparametrization of the
torus, it follows that αk is invariant under toric action represented by any triple (k1, k2, k3)
with GCD(k1, k2, k3) = k. Thus, we conclude (T 2 × Lk, kerαk) is a contact manifold with
free toric actions, for any choice of k1, k2, k3 with GCD(k1, k2, k3) = k.
We proved the following Theorem:

Theorem 2.3. Contact manifolds with a free toric action that correspond to non-trivial
T 3-bundles over S2 are of the form (T 2 × Lk, kerαk), k ∈ N with the unique toric action
given by (2.1). More precisely, all toric contact manifolds represented by the triples with
the greatest common divisor equal to k are contactomorphic to (T 2 × Lk, kerαk) and the
toric actions are equivalent, i.e. they differ by a reparametrization of the torus.

Remark 2.4. As explained, for any k ∈ N, the contact manifold (T 2 × Lk, kerαk) admits
unique toric action, up to equivalence (Definition 2.1). However, it admits infinitely many
non-equivariant toric actions. Two toric actions on (V, ξ) are equivariant if there is a
contactomorphism ϕ of (V, ξ) such that ϕ(t∗1 p) = t∗2ϕ(p), for every p ∈ V and every torus
element t. That is, in contrast to the equivalence of toric actions (see Definition 2.1), the
reparametrization of the torus is not allowed. Assume that two toric actions represented by
(k1, k2, k3) and (k′1, k

′
2, k

′
3) are equivariant. Then ϕ is a bundle diffeomorphism, so it induces

a diffeomorphism of basis f : S2 → S2. If γ(k1,k2,k3) and γ(k′
1
,k′

2
,k′

3
) denote these bundles,

then the bundles f∗γ(k′
1
,k′

2
,k′

3
) and γ(k1,k2,k3) are isomorphic (f∗γ(k′

1
,k′

2
,k′

3
) = γ(k1,k2,k3)). Since

the group of diffeomorphisms of S2 is homotopy equivalent to the orthogonal group O(3),
and O(3) has two connected components, SO(3) and −SO(3), it follows that f belongs to
one of these two subgroups. If f ∈ SO(3), then f is homotopic to the identity map id on
S2 and thus

γ(k1,k2,k3) = f∗γ(k′
1
,k′

2
,k′

3
) = id∗γ(k′

1
,k′

2
,k′

3
) = γ(k′

1
,k′

2
,k′

3
).
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On the other hand, if f ∈ −SO(3), then f is homotopic to the map j(x, y, z) = (−x,−y,−z)
on S2 and thus

γ(k1,k2,k3) = f∗γ(k′
1
,k′

2
,k′

3
) = j∗γ(k′

1
,k′

2
,k′

3
) = γ(−k′

1
,−k′

2
,−k′

3
).

We conclude that if (k1, k2, k3) 6= ±(k′1, k
′
2, k

′
3), then the actions (k1, k2, k3) and (k′1, k

′
2, k

′
3)

are not equivariant. The choice of such triples with GCD equal to k is infinite.

3. Weak and strong symplectic fillability

In this Section we examine the question of weak and strong symplectic fillability of
compact connected toric contact manifolds using the classification described in the previous
section. Note that the fillability property does not depend on the toric action, it only
depends on the contact structure.

As explained in Section 2.1.(1) every toric contact manifold of Reeb type is a prequanti-
zation of some toric symplectic orbifold (this also includes 3-dimensional case). It follows
then that it is fillable by a symplectic orbifold. K. Niederkrüger and F. Pasquotto in [NP]
explained the resolution of the singular point in that orbifold and proved:

Theorem 3.1. ([NP, Proposition 4.4]) A contact manifold that is a prequantization of a
symplectic orbifold is strongly symplectically fillable.

We conclude:

Corollary 3.2. Any toric contact manifold of Reeb type is strongly symplectically fillable.

Remark 3.3. From Corollary 3.2 we see that a contact manifold with an overtwisted toric
contact structure cannot be of Reeb type. Therefore the class of toric contact manifolds
that are not of Reeb type, with a non-free toric action, is much larger in dimension 3 than in
higher dimensions, where there is only T k×S2d−k−1, with the unique toric contact structure.

Proposition 3.4. (T k × S2d−k−1, βk =
∑k

l=1 xldθl +
i
4

∑d−k
j=1 (zjdzj − zjdzj)), d ≥ k ≥ 1 is

strongly symplectically fillable.

Proof. The strong symplectic filling is (T k ×D2d−k, ω,X) where

ω =

k∑

l=1

dxl ∧ dθl +
i

2

d−k∑

j=1

dzj ∧ dzj and X =

k∑

l=1

xl
∂

∂xl
+

1

2

d−k∑

j=1

(zj
∂

∂zj
+ zj

∂

∂zj
).

�

Remark 3.5. For the contact manifolds from previous Proposition a stronger notion of
fillability holds. A complex manifold (M,J) is a Stein manifold if it admits a smooth
non-negative proper function f such that d(−df ◦ J) is a symplectic form on M, i.e. a
plurisubharmonic function. A function f(z) = |z|2 is a plurisubharmonic function on
(Cm, ι), thus a complex space is a Stein manifold. If (M,J) is a Stein manifold, then
(M × Cm, J × ι) is also a Stein manifold, called m-subcritical Stein manifold. More

precisely, if f is a plurisubharmonic on M, then f̃ = f + |z|2 is a plurisubharmonic on
M ×Cm. A contact manifold (V, ξ) is (m-subcritical) Stein fillable if there is (m-subcritical)
Stein manifold (M,J) such that V is a regular level of a plurisubharmonic function f, the
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vector field grad f points outward V and −df ◦ J is a positive contact form for ξ. Stein
fillability implies strong fillability. Indeed, for (V = f−1(c), ker(−df ◦ J)) the strong filling
is (W = f−1[0, c], d(−df ◦ J)). The contact manifold from the previous Proposition is for
d = k Stein fillable (being a cosphere bundle of T k) and for d > k it is (d − k)-subcritical
Stein fillable.

For the purpose of this note we prove the following Lemma in dimension 5, but, as
mentioned in [MNW] it holds in higher dimensions as well.

Lemma 3.6. If (V, ξ = kerα′) is a weakly fillable contact 3-manifold, then a contact
manifold (T 2 × V, ker(α = f1dθ1 + f2dθ2 + α′)) is weakly fillable, for any choice of smooth
functions fi : V → R, i = 1, 2 that makes α a contact form.

Proof. Choose an orientation on V such that α′ is a positive contact form, i.e. α′ ∧ dα′ > 0.
Let (W,ω) be a weak filling of (V, ξ = kerα′). It then holds α′ ∧ (ω + τdα′) > 0, for all
constants τ ≥ 0, and, in particular α′ ∧ω > 0. Next, we fix the orientation on T 2×V, given
by a contact form α, that is α ∧ dα2 > 0. Note that α′ ∧ dα′ ∧ volT 2 is also a volume form
on T 2 × V . Assume

α′ ∧ dα′ ∧ dθ1 ∧ dθ2 > 0,

i.e. assume α′∧dα′∧dθ1∧dθ2 induces the same orientation as α∧dα2. Since α′∧ω induces
the same orientation on V as α′ ∧ dα′ also it holds

α′ ∧ ω ∧ dθ1 ∧ dθ2 > 0.

Now, instead of α, for any t > 0 consider 1-form

αt = t(f1dθ1 + f2dθ2) + α′.

Since αt ∧ dαt ∧ dαt = t2α ∧ dα ∧ dα it follows that αt, for any t > 0, is a contact form on
T 2 × V inducing the same orientation as α = α1, that is, it holds

αt ∧ dα2
t > 0.

Due to Gray stability, for all t > 0, contact structures kerαt are contactomorphic. Since
symplectic fillability is an invariant of contact structures, in order to show that (T 2×V, kerα)
is weakly fillable it is enough to show weak fillability of (T 2×V, kerαt) for some t > 0. Due
to the definition of weak fillability, we have to show Pt(τ) > 0 for all τ ≥ 0 and for some
fixed t > 0 where

Pt(τ) = αt ∧ (ω + dθ1 ∧ dθ2 + τdαt)
∧2.

We compute

Pt(τ) = τ2αt ∧ dα2
t + 2αt ∧ (ω + τdαt) ∧ dθ1 ∧ dθ2 + 2ταt ∧ ω ∧ dαt.

Note that for all t > 0 it holds

Pt(0) = 2α′ ∧ ω ∧ dθ1 ∧ dθ2 > 0.

In order to show that for some small t > 0 it holds Pt(τ) > 0 for all τ ≥ 0, it is enough
to show that the function Pt(τ) is increasing, since Pt(0) > 0. So, we want to show that
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the first derivative (with respect to τ) of Pt(τ) is positive (for some small fixed t > 0). It
follows that

d

dτ
Pt(τ) = 2ταt ∧ dα2

t + 2αt ∧ dαt ∧ dθ1 ∧ dθ2 + 2αt ∧ ω ∧ dαt =

2ταt ∧ dα2
t + 2α′ ∧ dα′ ∧ dθ1 ∧ dθ2 + 2t2(f2df1 − f1df2) ∧ ω ∧ dθ1 ∧ dθ2.

The first summand in d
dτ Pt is positive for all t > 0 and all τ > 0. The second summand is

a positive constant (doesn’t depend on τ). Let us choose t > 0 small enough such that

2α′ ∧ dα′ ∧ dθ1 ∧ dθ2 + t2(f2df1 − f1df2) ∧ ω ∧ dθ1 ∧ dθ2 > 0.

For such a small t > 0, it follows that d
dτ Pt is positive, thus Pt is monotone, increasing

function.
Note that t > 0 depends on the point p ∈ T 2 × V in which we compute 2α′ ∧ dα′ ∧ dθ1 ∧
dθ2+ t2(f2df1− f1df2)∧ω∧ dθ1∧ dθ2. If V is compact we can find t that will not depend on
the point, i.e we can find t such that 2α′ ∧ dα′ ∧ dθ1 ∧ dθ2 + t2(f2df1 − f1df2)∧ω ∧ dθ1 ∧ dθ2
is positive for all points. �

Proposition 3.7. (T 2 × Lk, kerαk), k ∈ N is weakly symplectically fillable.

Proof. The contact structure (T 2 × S3, kerα1) given by (2.2) is a particular example of
the contact structure considered in Lemma 3.6 and since αk, k > 1 is obtained from α1

under the diagonal Zk-action on S3, it follows that (T 2 × Lk, kerαk), k > 1 is also a
particular example considered in Lemma 3.6. In order to apply Lemma 3.6 we have to
show that (S3, kerα′

1) and (Lk, kerα
′
k), k > 1 are weakly fillable contact manifolds, where

α′
1 =

i
4(z1dz1 − z1dz1 − (z2dz2 − z2dz2)) and α′

k denotes the Zk-quotient of α
′
1.

Note that kerα′
k, k ∈ N, is the standard tight contact structure on the lens space Lk,

(L1 = S3) (see Sections 2.1. and 2.3. in [E1]), thus not overtwisted. Moreover, (Lk, kerα
′
k) is

invariant under the standard T 2-action on Lk, thus, (Lk, kerα
′
k) is a toric contact 3-manifold.

Since Lk is not homeomorphic to S1 × S2, according to classification of toric contact 3-
manifolds, it follows that (Lk, kerα

′
k) is of Reeb type, thus strongly fillable (Corollary 3.2)

and, in particular, weakly fillable. �

We are now ready to prove Theorem 1.1 and Theorem 1.2. As for toric contact 3-
manifolds, we recall that Giroux in [Gi] proved that (T 3, ξk = ker(cos(kθ)dθ1+sin(kθ)dθ2)),
k ∈ N are weakly fillable while Eliashberg in [E2] proved that only (T 3, ξ1) is strongly
symplectically fillable. The rest of the proof of Theorem 1.1 follows from the classification
of toric contact 3-manifolds (Section 2), Corollary 3.2 and Proposition 3.4. The proof of
Theorem 1.2 follows from the classification (Section 2) and Corollary 3.2, Proposition 3.4
and Proposition 3.7.
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