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ON AMALGAMATED BANACH ALGEBRAS

H. POURMAHMOOD AGHABABA AND N. SHIRMOHAMMADI

Abstract. Let A and B be Banach algebras, θ : A → B be a continuous Banach algebra

homomorphism and I be a closed ideal in B. Then the direct sum of A and I with respect

to θ, denoted A ⊲⊳
θ
I , with a special product becomes a Banach algebra which is called the

amalgamated Banach algebra. In this paper, among other things, we compute the topological

centre of A ⊲⊳
θ
I in terms of that of A and I . Using this, we provide a characterization of the

Arens regularity of A ⊲⊳
θ
I . Then we determine the character space of A ⊲⊳

θ
I in terms of that

of A and I . Moreover, we study the weak amenability of A ⊲⊳
θ
I .

1. Introduction

Let A and B be Banach algebras, θ : A→ B be a continuous Banach algebra homomorphism,

which without loss of generality we can assume that ‖θ‖ ≤ 1, and let I be a closed ideal in B.

We consider the Banach algebra A ⊲⊳ θ I = {(a, i) : a ∈ A, i ∈ I}, the l1-direct sum of A and I,

with the following product formula:

(a, i) · (a′, i′) = (aa′, θ(a)i′ + iθ(a′) + ii′).

A ⊲⊳ θ I is called the amalgamation of A with B along I with respect to θ.

The algebraic version of amalgamated Banach algebras are studied by many algebraists, see

for example [7, 8, 9, 10, 20].

A special case of amalgamated Banach algebras, with I = B, is studied by some authors,

see [1, 3, 14], for example. To our knowledge there are no concrete Banach algebra with this

structure. While, as Example 2.1 shows, many classes of concrete Banach algebras can be

represented as amalgamated Banach algebras.

The organization of paper is as follows. In Section 2 of this paper, after presenting some ex-

amples of amalgamated Banach algebras we establish some primary properties of these algebras.

In Sections 3 and 4, we characterize the second dual and topological centres of A ⊲⊳ θ I as well

as its Arens regularity. In Section 5 we characterize the character space of A ⊲⊳ θ I. Finally,

Section 6 is devoted to the investigation of the weak amenability of A ⊲⊳ θ I.
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2. Some Examples and Primary Properties

We commence this section with listing a number of concrete Banach algebras that have the

amalgamated structure.

Example 2.1. (i) If θ = 0, then A ⊲⊳ 0 I is nothing but the cartesian product of A and I.

(ii) Let A be a non-unital Banach algebra. Then the unitization of A, i.e. A# = C ⊕ A, is

the amalgamation of C with A# along A with respect to the homomorphism θ : C → A#

defined by θ(λ) = (λ, 0).

(iii) Let A be a Banach algebra and X be a Banach A-bimodule. Then the module extension

Banach algebra S = A⊕X is the amalgamation of A with S along X with respect to the

injection θ : A → S defined by θ(a) = (a, 0). Notice that the class of module extension

Banach algebras include the class of triangular Banach algebras.

(iv) Let A be a Banach algebra and φ be a nonzero character on A. Then A ⊲⊳φ
C is the

Banach algebra with the underlying Banach space A⊕ C and with the product

(a, λ) · (a′, λ′) = (aa′, φ(a)λ′ + φ(a′)λ+ λλ′).

(v) Let A and B be Banach algebras and let φ be a nonzero character on A. Then A ⊲⊳ θ B,

the amalgamation of A with B# along B with respect to the homomorphism θ : A→ B#

defined by θ(a) = (φ(a), 0), is the Banach algebra with the underlying Banach space

A⊕1 B, the l1-direct sum of A and B, and with the following product formula:

(a, b) · (a′, b′) = (aa′, φ(a)b′ + φ(a′)b+ bb′).

This is a known Banach algebra denoted by A⊕φ B, called the φ-Lau product of A and

B, see [21] for example. This class includes the class of Lau algebras introduced in [17].

(vi) One of the other interesting examples is the semidirect product of Banach algebras.

Indeed, let B be a Banach algebra, A be a closed subalgebra of B and I be a closed ideal

in B. If ι : A → B is the inclusion map, the amalgamated Banach algebra C = A ⊲⊳ ι I

is A ⋉ I, the semidirect product of A and I [6, Page 8] (as far as we know, the term

“semidirect product” in the theory of (commutative) Banach algebras is introduced and

studied by Thomas in [22]). We give an important class of Banach algebras which can be

recognized as a semidirect product. Let A be a dual Banach algebra with predual A∗ and

consider A∗∗, the second dual of A equipped with either first or second Arens product

(see Section 3 for definitions). It is shown in [6, Theorem 2.15] that A∗∗ = A ⋉ A⊥
∗ ,

where A⊥
∗ = {F ∈ A∗∗ : F = 0 on A∗}. We remark that every von Neumann algebra,

the measure algebra M(G) of a locally compact group G, and the second dual of an

Arens regular Banach algebra are examples of dual Banach algebras. Also the measure

algebra of a locally compact group G has a natural semidirect product structure. In fact

we have M(G) = l1(G) ⋉Mc(G), where l
1(G) and Mc(G) denote the space of discrete

measures and continuous measures in M(G), respectively.
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In the following proposition, we have collected some basic properties of the Banach algebra

A ⊲⊳ θ I.

Proposition 2.1. Let A ⊲⊳ θ I be the amalgamation of A with B along I with respect to θ.

(i) A ∼= A × {0} is a closed subalgebra of A ⊲⊳ θ I, I ∼= {0} × I is a closed ideal in A ⊲⊳ θ I

and A⊲⊳ θI
I

∼= A.

(ii) A ⊲⊳ θ I is commutative if and only if A and θ(A) + I are commutative.

(iii) (a, i) is an identity for A ⊲⊳ θ I if and only if a = 1A, i
2 = i, i ∈ AnnI(θ(A)) and

θ(a) + i = 1θ(A)+I , where AnnI(θ(A)) = {j ∈ I : jθ(a) = θ(a)j = 0 for all a ∈ A}.

(iv) ((aα, iα))α is a (bounded) left (right, or two-sided) approximate identity for A ⊲⊳ θ I if

and only if (aα)α is a (bounded) left (right, or two-sided) approximate identity for A,

(θ(aα) + iα)α is a (bounded) left (right, or two-sided) approximate identity for θ(A) + I

and iαθ(a) → 0 for all a ∈ A.

(v) If A ⊲⊳ θ I is commutative, then A ⊲⊳ θ I is regular if and only if both A and I are regular

(see [16, Definition 4.2.1]).

(vi) A ⊲⊳ θ I is amenable if and only if A and I are amenable (see [19, Definition 2.1.9]).

Proof. All of the parts (i)-(iv) can be easily checked. The part (v) follows from Theorems 4.2.6

and 4.3.8 of [16], since A⊲⊳ θI
I

∼= A. Finally, (vi) follows from Corollary 2.3.2, Theorem 2.3.7 and

Theorem 2.3.10 of [19]. �

Corollary 2.2. Let A ⊲⊳ id A be the amalgamation of A with A along A with respect to the

identity map id on A.

(i) A ⊲⊳ id A is commutative if and only if A is commutative.

(ii) (a, b) is an identity for A ⊲⊳ id A if and only if a = 1A and b = 0.

(iii) ((aα, bα))α is a (bounded) left (right, or two-sided) approximate identity for A ⊲⊳ id A if

and only if (aα)α is a (bounded) left (right, or two-sided) approximate identity for A and

bα → 0.

(v) If A is commutative, then A ⊲⊳ id A is regular if and only if A is regular.

(vi) A ⊲⊳ id A is amenable if and only if A is amenable.

3. The First and Second Arens Products on (A ⊲⊳ θ I)∗∗

Let A be a Banach algebra and A∗ and A∗∗ be the first and second duals of A, respectively.

Let a ∈ A, f ∈ A∗. Then a · f and f · a ∈ A∗ are defined by

〈a · f, b〉 = 〈f, ba〉, 〈f · a, b〉 = 〈f, ab〉 (b ∈ A),

making A∗ an A-bimodule. Similarly, A∗∗ is an A-bimodule.

There are two natural products on A∗∗, called the first and second Arens products, and are

denoted by � and ♦, respectively. They were introduced by Arens [2] (for more details the
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reader is refereed to [4]). We recall briefly the definitions. For f ∈ A∗ and F ∈ A∗∗ define

f · F ∈ A∗ and F · f ∈ A∗ by

〈f · F, a〉 = 〈F, a · f〉, 〈F · f, a〉 = 〈F, f · a〉 (a ∈ A).

Now, for F,G ∈ A∗∗, define F�G ∈ A∗∗ and F♦G ∈ A∗∗ by

〈F�G, f〉 = 〈F,G · f〉, 〈F♦G, f〉 = 〈G, f · F 〉 (f ∈ A∗).

Then (A∗∗,�) and (A∗∗,♦) are Banach algebras containing A as a closed subalgebra.

Proposition 3.1. (A ⊲⊳ θ I)∗ is isometrically isomorphic to A∗ ⊕∞ I∗ as Banach spaces. The

isomorphism Ψ : A∗ ⊕∞ I∗ → (A ⊲⊳ θ I)∗ is given by

〈(a, i),Ψ(f, g) 〉 = f(a) + g(i) ((a, i) ∈ A ⊲⊳ θ I, (f, g) ∈ A∗ ⊕∞ I∗).

Proof. The proof is straightforward and is omitted. �

Corollary 3.2. (A ⊲⊳ θ I)∗∗ is isometrically isomorphic to A∗∗ ⊕1 I
∗∗ as Banach spaces.

Now we explore the left and right module actions of A ⊲⊳ θ I on (A ⊲⊳ θ I)∗ in order to provide

a characterization of the first and second Arens product on (A ⊲⊳ θ I)∗∗.

Theorem 3.3. Let A ⊲⊳ θ I be the amalgamation of A with B along I with respect to θ. Then

((A ⊲⊳ θ I)∗∗,�) = (A∗∗,�) ⊲⊳ θ∗∗ (I∗∗,�),

where θ∗∗ is the second adjoint of θ.

Proof. Let a, b ∈ A, i, j ∈ I, f ∈ A∗ and g ∈ I∗. Then (f, g) ·(a, i) ∈ (A ⊲⊳ θ I)∗ can be calculated

as follows:

〈(b, j), (f, g) · (a, i) 〉 = 〈(a, i) · (b, j), (f, g) 〉

= 〈(ab, iθ(b) + θ(a)j + ij), (f, g) 〉

= 〈 ab, f 〉+ 〈 θ(a)j, g 〉+ 〈 iθ(b), g 〉+ 〈 ij, g 〉

= 〈 b, f · a 〉+ 〈 j, g · θ(a) 〉+ 〈 θ(b), g · i 〉+ 〈 j, g · i 〉

= 〈 b, f · a 〉+ 〈 j, g · θ(a) 〉+ 〈 b, θ∗(g · i) 〉+ 〈 j, g · i 〉

= 〈 b, f · a+ θ∗(g · i) 〉+ 〈 j, g · (θ(a) + i) 〉,

and so

(3.1) (f, g) · (a, i) = (f · a+ θ∗(g · i), g · (θ(a) + i)).
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Further, let F1 ∈ A∗∗, F2 ∈ I∗∗. Then, in order to calculate (F1, F2) · (f, g) ∈ (A ⊲⊳ θ I)∗, one

has

〈(a, i), (F1, F2) · (f, g) 〉 = 〈(f, g) · (a, i), (F1, F2) 〉

= 〈(f · a+ θ∗(g · i), g · (θ(a) + i)), (F1, F2) 〉

= 〈 f · a+ θ∗(g · i), F1 〉+ 〈 g · (θ(a) + i), F2 〉

= 〈 a, F1 · f 〉+ 〈 i, θ∗∗(F1) · g 〉+ 〈 θ(a), F2 · g 〉+ 〈 i, F2 · g 〉

= 〈 a, F1 · f + θ∗(F2 · g) 〉+ 〈 i, F2 · g + θ∗∗(F1) · g 〉

= 〈(a, i), (F1 · f + θ∗(F2 · g), F2 · g + θ∗∗(F1) · g) 〉 .

Thus

(3.2) (F1, F2) · (f, g) = (F1 · f + θ∗(F2 · g), F2 · g + θ∗∗(F1) · g).

Now for (F1, F2), (G1, G2) ∈ (A ⊲⊳ θ I)∗∗ ∼= A∗∗ ⊕1 I
∗∗ and (f, g) ∈ (A ⊲⊳ θ I)∗ ∼= A∗ ⊕∞ I∗, using

(3.1) and (3.2), we have

〈(f, g), (F1, F2)�(G1, G2) 〉 = 〈(G1, G2) · (f, g), (F1, F2) 〉

= 〈(G1 · f + θ∗(G2 · g), G2 · g + θ∗∗(G1) · g), (F1, F2) 〉

= 〈G1 · f + θ∗(G2 · g), F1 〉+ 〈G2 · g + θ∗∗(G1) · g, F2 〉

= 〈 f, F1�G1 〉+ 〈G2 · g, θ
∗∗(F1) 〉+ 〈 g, F2�G2 〉+ 〈 θ∗∗(G1) · g, F2 〉

= 〈 f, F1�G1 〉+ 〈 g, θ∗∗(F1)�G2 〉+ 〈 g, F2�G2 〉+ 〈 g, F2�θ
∗∗(G1) 〉

= 〈 f, F1�G1 〉+ 〈 g, θ∗∗(F1)�G2 + F2�G2 + F2�θ
∗∗(G1) 〉

= 〈(f, g), (F1�G1, θ
∗∗(F1�G1) + θ∗∗(F1)�G2 + F2�G2 + F2�θ

∗∗(G1) 〉 .

Therefore,

(F1, F2)�(G1, G2) = (F1�G1, θ
∗∗(F1)�G2 + F2�G2 + F2�θ

∗∗(G1)).

This completes the proof. �

Similarly, as notation in the proof of Theorem 3.3, one can show that

(3.3) (a, i) · (f, g) = (a · f + θ∗(i · g), (θ(a) + i) · g),

(f, g) · (F1, F2) = (f · F1 + θ∗(g · F2), g · F2 + g · θ∗∗(F1)),

(F1, F2)♦(G1, G2) = (F1♦G1, θ
∗∗(F1)♦G2 + F2♦θ

∗∗(G1) + F2♦G2).

Therefore,

((A ⊲⊳ θ I)∗∗,♦) = (A∗∗,♦) ⊲⊳ θ∗∗ (I∗∗,♦).
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4. Topological Centres

Let A be a Banach algebra andX a Banach A-bimodule. ThenX∗∗ is canonically an (A∗∗,�)-

bimodule ((A∗∗,♦)-bimodule), see [4, Page 248]. Let x′′ ∈ X∗∗ and let Lx
′′ , Rx

′′ : (A∗∗,�) → X∗∗

be the left and right multiplication operators, respectively, i.e.

Lx
′′ (a

′′

) = x
′′

�a
′′

= lim
β

lim
α
xβaα and Rx

′′ (a
′′

) = a
′′

�x
′′

= lim
α

lim
β
aαxβ (a

′′

∈ A∗∗),

where (aα) and (xβ) are nets in A∗∗ and X∗∗, respectively, in such a way that aα → a
′′

in the

w∗-topology of A∗∗ and xβ → x
′′

in the w∗-topology of X∗∗.

Likewise let Lx
′′ ,Rx

′′ : (A∗∗,♦) → X∗∗ be the left and right multiplication operators, respec-

tively, i.e.

Lx
′′ (a

′′

) = x
′′

♦a
′′

= lim
α

lim
β
xβaα and Rx

′′ (a
′′

) = a
′′

♦x
′′

= lim
β

lim
α
aαxβ (a

′′

∈ A∗∗).

The left and right topological centres, Zℓ,t
A (X∗∗) and Zr,t

A (X∗∗) of X∗∗ are

Zℓ,t
A (X∗∗) = {x′′ ∈ X∗∗ : Lx′′ = Lx′′} = {x′′ ∈ X∗∗ : x′′�a′′ = x′′♦a′′, ∀a′′ ∈ A∗∗},

and

Zr,t
A (X∗∗) = {x′′ ∈ X∗∗ : Rx′′ = Rx′′} = {x′′ ∈ X∗∗ : a′′�x′′ = a′′♦x′′, ∀a′′ ∈ A∗∗},

respectively. Then we say that X is Arens regular (as an A-bimodule) or A acts regularly on X

if

Zℓ,t
A (X∗∗) = Zr,t

A (X∗∗) = X∗∗,

and X is left strongly Arens irregular if Zℓ,t
A (X∗∗) = X, right strongly Arens irregular if

Zr,t
A (X∗∗) = X, and strongly Arens irregular if it is both left and right strongly Arens irregular.

If X = A, we will use the common notation Zℓ
t (A

∗∗) and Zr
t (A

∗∗) in place of Zℓ,t
A (A∗∗) and

Zr,t
A (A∗∗), respectively.

Now, let B be a Banach algebra, I be a closed ideal in B and θ : A → B be a continuous

Banach algebra homomorphism. Then we define

Zℓ
θ∗∗(A

∗∗) = {F ∈ Zℓ
t (A

∗∗) : θ∗∗(F ) ∈ Zℓ
I(θ(A)

∗∗)},

note that θ(A)∗∗ = θ∗∗(A∗∗) ([4, Page 251]), where

Zℓ
I(θ(A)

∗∗) = {F ∈ θ(A)∗∗ : LF = LF on I∗∗} = {F ∈ θ(A)∗∗ : F�G = F♦G, ∀G ∈ I∗∗}.

Theorem 4.1. With above notation and assumptions, one has

Zℓ
t ((A ⊲⊳ θ I)∗∗) = Zℓ

t (A
∗∗ ⊲⊳ θ∗∗ I∗∗) = Zℓ

θ∗∗(A
∗∗) ⊲⊳ θ∗∗ (Zℓ

t (I
∗∗) ∩ Zℓ,t

θ(A)(I
∗∗)).
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Proof. Let (F1, G1) ∈ Zℓ
t (A

∗∗ ⊲⊳ θ∗∗ I∗∗). Then L(F1,G1) = L(F1,G1) if and only if for all (F2, G2) ∈

A∗∗ ⊲⊳ θ∗∗ I∗∗,

(F1, G1)�(F2, G2) = (F1, G1)♦(F2, G2),

if and only if

(F1�F2, θ
∗∗(F1)�G2 +G1�θ

∗∗(F2) +G1�G2) = (F1♦F2, θ
∗∗(F1)♦G2 +G1♦θ

∗∗(F2) +G1♦G2),

if and only if LF1
= LF1

, Lθ∗∗(F1) = Lθ∗∗(F1) on I
∗∗, LG1

= LG1
on I∗∗ and θ(A)∗∗. Hence,

(F1, G1) ∈ Z
ℓ
θ∗∗(A

∗∗) ⊲⊳ θ∗∗ (Zℓ
t (I

∗∗) ∩ Zℓ,t

θ(A)(I
∗∗)).

�

Using above theorem we characterize Arens regularity and strong Arens irregularity of A ⊲⊳ θ I.

Corollary 4.2. A ⊲⊳ θ I is Arens regular if and only if A and I are Arens regular, θ(A) acts

regularly on I and I acts regularly on θ(A).

Corollary 4.3. A ⊲⊳ θ I is strongly Arens irregular if and only if A and I are strongly Arens

irregular, I acts strongly irregular on θ(A) and θ(A) acts strongly irregular on I.

In the following example we determine topological centres of some amalgamated Banach

algebras.

Example 4.1. Keep the notation of Example 2.1.

(i) If θ = 0, then

Zℓ
t ((A⊕ I)∗∗) = Zℓ

t ((A ⊲⊳ 0 I)∗∗) = Zℓ
t (A

∗∗) ⊲⊳ 0 Zℓ
t (I

∗∗) = Zℓ
t (A

∗∗)⊕ Zℓ
t (I

∗∗).

(ii) Zℓ
t ((A

#)∗∗) = C⊕ Zℓ
t (A

∗∗) = Zℓ
t (A

∗∗)#.

(iii) ([11]) Let S = A⊕X be the module extension Banach algebra corresponding A and X.

Then, by noting that θ is the canonical embedding of A into S, and I = X with X2 = 0,

we have

Zℓ
θ∗∗(A

∗∗) = {F ∈ Zℓ
t (A

∗∗) : F ∈ Zℓ
X(A∗∗)} = Zℓ

t (A
∗∗) ∩ Zℓ

X(A∗∗),

and

Zℓ
t (I

∗∗) ∩ Zℓ,t

θ(A)(I
∗∗) = Zℓ

t (X
∗∗) ∩ Zℓ,t

A (X∗∗) = Zℓ
t (X

∗∗) = X∗∗.

Therefore,

Zℓ
t (S

∗∗) = (Zℓ
t (A

∗∗) ∩ Zℓ
X(A∗∗)) ⊲⊳θ

∗∗

X∗∗,

that is, Zℓ
t (S

∗∗) is the module extension Banach algebra corresponding Zℓ
t (A

∗∗)∩Zℓ
X(A∗∗)

and X∗∗.

(iv) Zℓ
t ((A ⊲⊳φ

C)∗∗) = Zℓ
t (A

∗∗) ⊲⊳φ
C. Details are similar to details of the next general case.
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(v) ([21, Corollary 2.13]) For computing Zℓ
t ((A ⊕φ B)∗∗) we note that since θ : A → B#

is defined by θ(a) = (φ(a), 0) = φ(a), one can easily check that θ∗∗ : A∗∗ → (B#)∗∗ =

C⊕B∗∗ is given by θ∗∗(F ) = (F (φ), 0) = F (φ) = φ(F ). So

Zℓ
θ∗∗(A

∗∗) = Zℓ
φ(A

∗∗) = Zℓ
t (A

∗∗),

and

Zℓ,t

θ(A)(I
∗∗) = Zℓ,t

C
(B∗∗) = B∗∗.

Whence

Zℓ
t ((A⊕φ B)∗∗) = Zℓ

t (A
∗∗) ⊲⊳θ

∗∗

Zℓ
t (B

∗∗) = Zℓ
t (A

∗∗)⊕φ Z
ℓ
t (B

∗∗).

(vi) If I = B and θ is surjective, then

Zℓ
t ((A ⊲⊳ θ B)∗∗) = (Zℓ

t (A
∗∗) ∩ (θ∗∗)−1(Zℓ

t (B
∗∗))) ⊲⊳id Zℓ

t (B
∗∗).

(vii) Assume that B = A. Then

Zℓ
t ((A ⊲⊳ id I)∗∗) = (Zℓ

t (A
∗∗) ∩ Zℓ

I(A
∗∗)) ⊲⊳id (Zℓ

t (I
∗∗) ∩ Zℓ,t

A (I∗∗)).

(ix) Zℓ
t ((A ⊲⊳ id A)∗∗) = Zℓ

t (A
∗∗) ⊲⊳ id Zℓ

t (A
∗∗).

(x) Let B = I = A∗∗ and let ι : A→ A∗∗ be the cononical injection. Then

Zℓ
A∗∗(ι(A)∗∗) = Zℓ

A∗∗(A∗∗) = A∗∗,

and so Zℓ
ι∗∗(A

∗∗) = Zℓ
t (A

∗∗). Also Zℓ,t

ι(A)((A
∗∗)∗∗) = Zℓ,t

A (A∗∗∗∗) = A∗∗∗∗, and thus

Zℓ
t ((A ⊲⊳ ι A∗∗)∗∗) = Zℓ

t (A
∗∗) ⊲⊳ ι∗∗ Zℓ

t (A
∗∗∗∗).

Example 4.2. By Example 4.1 in mind we have the followings:

(i) The Banach algebra A ⊲⊳ 0 I is Arens regular if and only if A and I are Arens regular.

(ii) The unitization of A, A#, is Arens regular if and only if A is Arens regular.

(iii) The module extension Banach algebra S = A ⊕ X is Arens regular if and only if A is

Arens regular and A acts regularly on X.

(iv) A ⊲⊳φ
C is Arens regular if and only if A is Arens regular.

(v) A⊕φ B is Arens regular if and only if A and B are Arens regular.

(vi) If I = B and θ is surjective, then A ⊲⊳ θ B is Arens regular if and only if A and B are

Arens regular.

(vii) If B = A, then A ⊲⊳ θ I is Arens regular if and only if A is Arens regular and A and I

act regularly on each other.

(ix) The Banach algebra A ⊲⊳ id A is Arens regular if and only if A is Arens regular.

(x) The Banach algebra A ⊲⊳ ι A∗∗ is Arens regular if and only if A and A∗∗ are Arens

regular.
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Example 4.3. Let G be an infinite locally compact group. Then by [18, Theorem 1] we have

Zℓ
t (L

1(G)∗∗) = L1(G), and so

Zℓ
t ((L

1(G) ⊲⊳ id L1(G))∗∗) = Zℓ
t (L

1(G)∗∗) ⊲⊳ id Zℓ
t (L

1(G)∗∗) = L1(G) ⊲⊳ id L1(G).

Therefore, L1(G) ⊲⊳ id L1(G) is strongly Arens irregular.

5. Characters of A ⊲⊳ θ I

In this section, first, we provide a characterization of character space of A ⊲⊳ θ I, and then we

calculate the Jacobson radical of A ⊲⊳ θ I when it is commutative.

Theorem 5.1. Let σ(A) 6= ∅ and θ(A)I ∪ Iθ(A) = I. Then σ(A ⊲⊳ θ I) = E ∪ F , where

E = {((i · ψ) ◦ θ, ψ) : ψ ∈ σ(I), i ∈ I, ψ(i) = 1}, F = {(φ, 0) : φ ∈ σ(A)}.

Moreover, E is open and F is closed in σ(A ⊲⊳ θ I).

Proof. Let (φ,ψ) ∈ σ(A ⊲⊳ θ I) and (a, i), (a′, i′) ∈ A ⊲⊳ θ I. Then

(5.1)

φ(aa′) + ψ(θ(a)i′ + iθ(a) + ii′) = 〈(φ,ψ), (aa′, θ(a)i′ + iθ(a) + ii′) 〉

= 〈(φ,ψ), ((a, i) · (a′, i′) 〉

= (φ(a) + ψ(i))(φ(a′) + ψ(i′))

= φ(a)φ(a′) + φ(a)ψ(i′) + ψ(i)φ(a′) + ψ(i)ψ(i′).

By taking a = a′ = 0 we see that ψ ∈ σ(I) ∪ {0}. Next by taking i = i′ = 0 it follows that

φ ∈ σ(A) ∪ {0}. But from (5.1), φ = 0 implies ψ(θ(a)i′) + ψ(iθ(a′)) = 0 for all a, a′ ∈ A and

i, i′ ∈ I, from which it follows that ψ = 0 on θ(A)I ∪ Iθ(A), and hence ψ = 0. But this is a

contradiction since (φ,ψ) ∈ σ(A ⊲⊳ θ I) and so (φ,ψ) 6= (0, 0). Now we have two cases:

Case I: If ψ = 0, then (φ,ψ) = (φ, 0).

Case II: If ψ 6= 0, then by (5.1) we have

ψ(θ(a)i′) + ψ(iθ(a′))− ψ(i)φ(a′)− φ(a)ψ(i′) = 0,

which implies (take a′ = 0, i = 0),

ψ(θ(a)i′) = φ(a)ψ(i′) (a ∈ A, i′ ∈ I).

Choose i′ ∈ I such that ψ(i′) = 1, then φ(a) = ψ(θ(a)i′) = (i′ ·ψ)◦θ(a) for all a ∈ A. Therefore,

(φ,ψ) = ((i′ · ψ) ◦ θ, ψ) with ψ(i′) = 1.

Since the reverse inclusion is easy to check, so we omit its proof.

Now we show that E is open in the w∗-topology of σ(A ⊲⊳ θ I) induced from w∗-topology of

A∗ × I∗. Let ((i · ψ0) ◦ θ, ψ0) ∈ σ(A ⊲⊳ θ I). Then there is i0 ∈ I in such a way that ψ(i0) 6= 0.

Let ε = |ψ(i0)|. Then

U = {(φ,ψ) ∈ σ(A ⊲⊳ θ I) : |(φ,ψ)(0, i0)− ((i · ψ0) ◦ θ, ψ0)(0, i0)| < ε}

= {(φ,ψ) ∈ σ(A ⊲⊳ θ I) : |ψ(i0)− ψ0(i0)| < ε},
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is a neighborhood of ((i ·ψ0) ◦ θ, ψ0) in the w∗-topology of σ(A ⊲⊳ θ I). Since (φ, 0) ∈ U leads to

the contradiction |ψ0(i0)| < ε, it follows that U ⊆ E. Therefore, E is open and F is closed. �

Corollary 5.2. ([21, Proposition 2.4]) Let σ(A) 6= ∅ and φ ∈ σ(A). Then

σ(A⊕φ B) = {(ϕ, 0) : ϕ ∈ σ(A)} ∪ {(φ,ψ) : ψ ∈ σ(B)} = (σ(A) × {0}) ∪ ({φ} × σ(B)).

Proof. It is enough to note that (i · ψ) ◦ θ = θ if ψ(i) = 1. �

Let A be a commutative Banach algebra. The radical of A, radA, is the intersection of the

kernels of all characters of A. Also A is called semisimple if radA = {0}.

Theorem 5.3. Let A ⊲⊳ θ I be commutative, σ(A) 6= ∅ and θ(A)I = I. Then rad(A ⊲⊳ θ I) =

radA⊕ rad I.

Proof. Let (a, i) ∈ rad(A ⊲⊳ θ I). Then for each φ ∈ σ(A), φ(a) = (φ, 0)(a, i) = 0, that is,

a ∈ radA. Now let ψ ∈ σ(I) and ψ(j) = 1 for some j ∈ I. Then (j · ψ) ◦ θ belongs to σ(A) and

so (j · ψ) ◦ θ(a) = 0. Hence

ψ(i) = ((j · ψ) ◦ θ, ψ)(a, i) − (j · ψ) ◦ θ(a) = 0,

and thus i ∈ rad I.

Conversely let a ∈ radA and i ∈ rad I. Then for each φ ∈ σ(A), (φ, 0)(a, i) = φ(a) = 0 and

for each ψ ∈ σ(I),

((j · ψ) ◦ θ, ψ)(a, i) = (j · ψ) ◦ θ(a) + ψ(i) = 0.

Therefore, by Theorem 5.1, (a, i) ∈ rad(A ⊲⊳ θ I). �

Corollary 5.4. Let A ⊲⊳ θ I be commutative, σ(A) 6= ∅ and θ(A)I = I. Then A ⊲⊳ θ I is

semisimple if and only if both A and I are semisimple.

6. Weak Amenability

Let A be a Banach algebra and X a Banach A-bimodule. A derivation from A into X

is a bounded linear map satisfying D(ab) = a · D(b) + D(a) · b for all a, b ∈ A. For each

x ∈ X we denote by adx the derivation D(a) = a · x − x · a for all a ∈ A, called an inner

derivation. We denote by Z1(A,X) the space of all derivations from A into X and by B1(A,X)

the space of all inner derivations from A intoX. The first cohomology group of A with coefficients

in X is H1(A,X) = Z1(A,X)/B1(A,X). A Banach algebra A is called weakly amenable if

H1(A,A∗) = 0.

In [12], B. E. Forrest and L. W. Marcoux have investigated the weak amenability of triangular

Banach algebras, and Y. Zhang has studied the weak amenability of module extension Banach

algebras [23]. Motivated by these earlier investigations, in this section, we study the weak

amenability of amalgamated Banach algebra A ⊲⊳ θ I.
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Theorem 6.1. If A ⊲⊳ θ I is commutative, then A ⊲⊳ θ I is weakly amenable if and only if A and

I are weakly amenable.

Proof. This is immediate by Proposition 2.1, [4, Propositions 2.8.64 and 2.8.65(ii) and Theorem

2.8.69(i)] and noting that A⊲⊳ θI
I

∼= A. �

Example 6.1. Let G be a locally compact abelian group and consider M(G) = l1(G)⋉Mc(G),

the semidirect product of l1(G) andMc(G); see Example 2.1(iv). Since l1(G) is weakly amenable,

by above theorem, M(G) is weakly amenable if and only if Mc(G) is weakly amenable.

In general case, we have one direction of Theorem 6.1.

Proposition 6.2. If A and I are weakly amenable, then A ⊲⊳ θ I is also weakly amenable.

Proof. It follows immediately from Proposition 2.1 and [4, Proposition 2.8.65(ii)]. �

The converse of above proposition does not hold in general. Indeed, it is shown in [15] that

the augmentation ideal I of L1(SL(2,R)) is not weakly amenable and that its unitization I# is

weakly amenable.

Example 6.2. Let G be a locally compact group. Since M(G) = l1(G) ⋉Mc(G) and l1(G) is

always weakly amenable, by Proposition 6.2, M(G) is weakly amenable, provided that Mc(G)

is weakly amenable.

Example 6.3. Let G be a locally compact group. Then l1(G) ⋉ L1(G) is weakly amenable.

In order to prove a partial converse of Proposition 6.2 we first look at derivations from A to

A∗.

Proposition 6.3. H1(A,A∗) embeds in H1(A ⊲⊳ θ I, (A ⊲⊳ θ I)∗).

Proof. Every D ∈ Z1(A,A∗) defines a derivation D̃ : A ⊲⊳ θ I → (A ⊲⊳ θ I)∗ by D̃(a, i) =

(D(a), 0), and it can be easily checked that D̃ is inner if and only if D is inner. It follows that

the mapping D 7→ D̃ induces an embedding from H1(A,A∗) into H1(A ⊲⊳ θ I, (A ⊲⊳ θ I)∗). �

Corollary 6.4. If A ⊲⊳ θ I is weakly amenable, then so is A.

The following corollary has been obtained in [13] with a different method. In fact, we have

given a short proof for this result.

Corollary 6.5. ([13, Theorem 2.2]) Let A be a dual Banach algebra. If A∗∗ is weakly amenable,

then so is A.

Weak amenability of module extension Banach algebras is extensively studied in [23]. We are

going to characterize the weak amenability of Banach algebras A ⊲⊳ id A and A⊕φ B.
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6.1. Weak Amenability of A ⊲⊳ id A. Here, we focus on the special case A ⊲⊳ id A.

Proposition 6.6. Let A2 be dense in A. Then D ∈ Z1(A ⊲⊳ id A, (A ⊲⊳ id A)∗) if and only if

D(a, b) = (D1(a) +D2(b),D2(a) +D2(b)) (a, b ∈ A),

for some D1,D2 ∈ Z1(A,A∗). Moreover, D = ad(f,g) if and only if D1 = adf and D2 = adg,

where f, g ∈ A∗.

Proof. Let D : A ⊲⊳ id A→ (A ⊲⊳ id A)∗ be a derivation. Then we may write

D(a, b) = (D1(a) +D2(b),D3(a) +D4(b)) (a, b ∈ A),

where Dk : A → A∗ (1 ≤ k ≤ 4) is a linear operator. If we use the derivation property of D

together with the equations (3.1) and (3.3), we get

(

D1(a1a2) +D2(a1b2 + b1a2 + b1b2),D3(a1a2) +D4(a1b2 + b1a2 + b1b2)
)

=
(

a1D1(a2) + a1D2(b2) + b1D3(a2) + b1D4(b2) +D1(a1)a2 +D2(b1)a2 +D3(a1)b2 +D4(b1)b2,

(a1[D3(a2) +D4(b2)] + b1[D3(a2) +D4(b2)] + [D3(a1) +D4(b1)]a2 + [D3(a1) +D4(b1)]b2
)

.

By setting a1 = a2 = 0, we see that D1,D3 ∈ Z1(A,A∗). By setting b1 = b2 = 0 and noting

that A2 is dense in A, we get D2 = D4 ∈ Z1(A,A∗). Also, by choosing a2 = b1 = 0, we obtain

D2(a1b2) = a1 ·D2(b2) +D3(a1) · b2,

which implies D2(a1) · b2 = D3(a1) · b2 for all a1, b2 ∈ A. Since A2 is dense in A, it follows that

D2 = D3. The claim about inner derivations can be easily verified. �

Theorem 6.7. Let A2 be dense in A. Then, as vector spaces, we have

H1(A ⊲⊳ id A, (A ⊲⊳ id A)∗) ∼= H1(A,A∗)⊕H1(A,A∗).

Proof. Define ϕ : Z1(A,A∗)⊕Z1(A,A∗) → Z1(A ⊲⊳ id A, (A ⊲⊳ id A)∗) by ϕ(D1,D2) = D, where

D(a, b) = (D1(a) +D2(b),D2(a) +D2(b)) (a, b ∈ A).

The Proposition 6.6 shows that ϕ is well defined and onto. Since D is inner if and only if D1

and D2 are inner, according to the Proposition 6.6, ϕ induces the desired isomorphism. �

Since every weakly amenable Banach algebra is square dense, we have the following corollary.

Corollary 6.8. The Banach algebra A ⊲⊳ id A is weakly amenable if and only if A is weakly

amenable.

Example 6.4. Let A be a C∗-algebra or a group algebra of a locally compact group. Then

A ⊲⊳ id A is weakly amenable.



ON AMALGAMATED BANACH ALGEBRAS 13

6.2. Weak Amenability of A ⊕φ B. Let (a, b) ∈ A ⊕φ B and (f, g) ∈ (A ⊕φ B)∗. Then

(a, b) · (f, g), (f, g) · (a, b) ∈ (A⊕φ B)∗ are given by

(6.1) (a, b) · (f, g) = (a · f + g(b)φ, φ(a)g + b · g),

(6.2) (f, g) · (a, b) = (f · a+ g(b)φ, φ(a)g + g · b).

Proposition 6.9. Let B2 be dense in B. Then D ∈ Z1(A⊕φ B, (A⊕φ B)∗) if and only if

D(a, b) = (D1(a) +D2(b),D4(b)) (a ∈ A, b ∈ B),

such that

(i) D1 ∈ Z1(A,A∗),

(ii) D4 ∈ Z1(B,B∗),

(iii) D2 : B → A is a bounded linear map satisfying

(1) a ·D2(b) = D2(b) · a = φ(a)D2(b) for all a ∈ A and b ∈ B,

(2) D2(bb
′) = 〈 b,D4(b

′) 〉φ+ 〈 b′,D4(b) 〉 φ for all b, b′ ∈ B.

Moreover, D = ad(f,g) if and only if D1 = adf , D2 = 0 and D4 = adg (f ∈ A∗, g ∈ B∗).

Proof. Let D : A⊕φ B → (A⊕φ B)∗ ∼= A∗ ⊕∞ B∗ be a derivation. Then D is of the form

D(a, b) = (D1(a) +D2(b),D3(a) +D4(b)) (a ∈ A, b ∈ B),

where D1 : A → A∗, D2 : B → A∗, D3 : A → B∗ and D4 : B → B∗ are linear operators. If we

use the derivation property of D together with the equations (6.1) and (6.2), we get
(

D1(aa
′) + φ(a)D2(b

′) + φ(a′)D2(b) +D2(bb
′),D3(aa

′) + φ(a)D4(b
′) + φ(a′)D4(b) +D4(bb

′)
)

=
(

aD1(a
′) + aD2(b

′) + 〈 b,D3(a
′) 〉φ+ 〈 b,D4(b

′) 〉φ, φ(a)D3(a
′) + φ(a)D4(b

′) + bD3(a
′) + bD4(b

′))+

(D1(a)a
′ +D2(b)a

′ + 〈 b′,D3(a) 〉φ+ 〈 b′,D4(b) 〉 φ, φ(a
′)D3(a) + φ(a′)D4(b)] +D3(a)b

′ +D4(b)b
′
)

.

By setting b = b′ = 0 we see that D1 ∈ Z1(A,A∗) and D3 ∈ Z1
φ(A,A

∗). Letting a = a′ = 0 one

obtains D4 ∈ Z1(B,B∗) and D2(bb
′) = 〈 b,D4(b

′) 〉φ+ 〈 b′,D4(b) 〉 φ.

Now put a = b′ = 0. Then we get b ·D3(a
′) = 0 in B∗ which implies D3 = 0 by density of B2 in

B. Hence D2(b) · a
′ = φ(a′)D2(b). Similarly, choosing a′ = b = 0 gives a ·D2(b

′) = φ(a)D2(b
′).

Using (6.1) and (6.2) one can easily see that D = ad(f,g) if and only if D1 = adf , D2 = 0 and

D4 = adg. �

Let B be a Banach algebra. A derivation D : B → B∗ is called cyclic if

〈 b,D(b′) 〉+ 〈 b′,D(b) 〉 = 0 for all b, b′ ∈ B.

We denote by Z1
c(B,B

∗) the space of all cyclic derivations which includes B1(B,B∗). The first

cyclic cohomology group of B is H1
c(B,B

∗) = Z1
c(B,B

∗)/B1(B,B∗).

Theorem 6.10. H1(A,A∗)⊕H1
c(B,B

∗) embeds in H1(A⊕φ B, (A⊕φ B)∗).
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Proof. Define ψ : Z1(A,A∗)⊕Z1
c (B,B

∗) −→ Z1(A⊕φ B, (A⊕φ B)∗) by ψ(D1,D2) = D, where

D(a, b) = (D1(a),D4(b)) (a ∈ A, b ∈ B).

It follows from Proposition 6.9 that D is a derivation and it is inner if and only if D1 and D2 are

inner. So ψ induces an injective linear map from H1(A,A∗)⊕H1
c(B,B

∗) into H1(A⊕φB, (A⊕φ

B)∗). �

Corollary 5.6 of [15] shows that in general H1(B,B∗) does not embeds into H1(A⊕φB, (A⊕φ

B)∗), and thus it seems that Theorem 6.10 be the best that one could expect.

Corollary 6.11. ([21, Theorem 2.11]) If A⊕φB is weakly amenable, then A is weakly amenable

and B is cyclicly amenable.
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