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TRANSFORMATIONS ON DENSITY OPERATORS AND ON POSITIVE

DEFINITE OPERATORS PRESERVING THE QUANTUM RÉNYI

DIVERGENCE

MARCELL GAÁL AND LAJOS MOLNÁR

Abstract. In a certain sense we generalize the recently introduced and extensively studied
notion called quantum Rényi divergence (in another name, sandwiched Rényi relative entropy)
and describe the structures of corresponding symmetries. More precisely, we characterize all
transformations on the set of density operators which leave our new general quantity invariant
and also determine the structure of all bijective transformations on the cone of positive definite
operators which preserve the quantum Rényi divergence.

1. Introduction and formulation of the results

We begin with a brief survey of former results which have led us to the investigation of the
problem described in the abstract. Relative entropy is one of the most important numerical
quantities in quantum information theory. It is used as a measure of distinguishability between
quantum states, or their mathematical representatives, the density operators. In fact, there are
several concepts of relative entropy among which the most common one is due to Umegaki. In
[9] the second author determined the general form of all bijective transformations on the set of
density operators which preserve that type of relative entropy. The motivation to explore the
structure of those transformations came from the fundamental theorem of Wigner concerning
quantum mechanical symmetry transformations. Those transformations are bijective maps on
the set of pure states (whose representatives are rank-one projections on a Hilbert space) which
preserve the quantity of transition probability (trace of the product of rank-one projections).
Roughly speaking, Wigner’s theorem states that any quantum mechanical symmetry transfor-
mation is implemented by either a unitary or an antiunitary operator on the underlying Hilbert
space. The result in [9] says that the same conclusion holds for the bijective transformations
on the set of density operators which preserve the Umegaki relative entropy. In the paper [12]
the bijectivity assumption was removed from the result in [9] while in [10] the structures of
preservers of other types of relative entropy were determined. After this, in [11] a far-reaching
generalization of the previously mentioned results was given. Namely, all transformations on
the set of density operators which preserve any so-called quantum f -divergence with respect to
an arbitrary strictly convex function were determined.

Our present results are closely related to the aforementioned ones. Here we consider the
recently introduced and very extensively studied notion called quantum Rényi divergence [15]
(or, in another terminology, sandwiched Rényi relative entropy) and describe its preservers on
the space of density operators as well as on the cone of all positive definite operators on a
finite dimensional complex Hilbert space. Concerning some recent results on quantum Rényi
divergence we refer e.g. to [2, 3, 4, 7, 14, 16].

To formulate our present results we need a short summary of some notation, basic concepts
and facts which is given in the next paragraphs.

Denote by R+ the set of all positive real numbers and set R+
0 = R+ ∪{0}. Let H be a finite

dimensional complex Hilbert space. We denote by B(H) the algebra of all linear operators on
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H , by B(H)+ the cone of all positive semidefinite operators on H , and by B(H)++ the cone
of all positive definite (invertible positive semidefinite) operators on H . In what follows S(H)
stands for the set of all density operators on H which are operators in B(H)+ having unit
trace. We recall that B(H) is a complex Hilbert space with the Hilbert-Schmidt inner product
〈., .〉HS : B(H)× B(H) → C defined by

〈A,B〉HS = TrAB∗ (A,B ∈ B(H)),

Tr standing for the usual trace functional on B(H).
Next we give the definition of quantum f -divergence. To do this, for any A ∈ B(H) we

introduce the left and the right multiplication operators LA, RA : B(H) → B(H) defined by

LAT = AT, RAT = TA (T ∈ B(H)).

Clearly, LARB = RBLA holds for every A,B ∈ B(H). If A,B ∈ B(H)+, then LA and RB are
positive Hilbert space operators on B(H) as a Hilbert space, hence so is their product LARB.

Let f : R+
0 → R be a function which is continuous on R+ and assume that the limit

γ = lim
t→∞

f(t)

t

exists in the extended real line [−∞,∞]. Essentially following [6, 2.1 Definition], for A ∈ B(H)+

and B ∈ B(H)++ the quantum f -divergence Sf(A‖B) of A and B is defined by

Sf (A‖B) =
〈√

B, f(LARB−1)
√
B
〉

HS
,

while in the general case, i.e. for A,B ∈ B(H)+, we set

Sf(A‖B) = lim
εց0

Sf(A‖B + εI)

where I stands for the identity operator on H . By [6, 2.2 Proposition] the limit above exists
in [−∞,∞] and it can be computed as follows. Let A,B ∈ B(H)+ and for any λ ∈ R denote
by Pλ, respectively by Qλ the projection on H onto the kernel of A− λI, respectively onto the
kernel of B − λI. According to [6, 2.3 Corollary] we have

(1) Sf(A||B) =
∑

a∈σ(A)





∑

b∈σ(B)\{0}

bf
(a

b

)

TrPaQb + γaTrPaQ0



 ,

where σ(.) stands for the spectrum of operators in B(H) and the convention 0·(−∞) = 0·∞ = 0
is used.

Two important examples of quantum f -divergences on density operators follow, see [6, 2.7
Example].

(i) If

f(t) =

{

t log t, t > 0
0, t = 0,

then for A,B ∈ S(H) we have

Sf (A‖B) =

{

TrA(logA− logB), suppA ⊂ suppB
∞, otherwise

which is just the usual Umegaki relative entropy of A and B. Here and in what follows
supp stands for the support of an operator which is the orthogonal complement of its
kernel.
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(ii) Let α ∈ ]0, 1[ ∪ ]1,∞[ be fixed and f(t) = tα (t ≥ 0). Pick A,B ∈ S(H). For α ∈ ]0, 1[
we have

Sf(A‖B) = TrAαB1−α

and for α ∈ ]1,∞[ we have

Sf(A‖B) =

{

TrAαB1−α, suppA ⊂ suppB
∞, otherwise.

The ”traditional” Rényi relative entropy Sα(.‖.) with parameter α is closely related to
the quantum f -divergence above and is defined as follows. Pick A,B ∈ S(H). For
α ∈ ]0, 1[ set

Sα(A‖B) =

{

(α− 1)−1 log (TrAαB1−α) , suppA 6⊥ suppB
∞, otherwise.

and for α ∈ ]1,∞[ set

Sα(A‖B) =

{

(α− 1)−1 log (TrAαB1−α) , suppA ⊂ suppB
∞, otherwise.

We further mention that the quantum Tsallis relative entropy is a particular quantum f -
divergence, see e.g. [11], p. 2312.

As already written above, in [11] we determined all transformations (not necessarily bijec-
tive) of S(H) which preserve the quantum f -divergence corresponding to any strictly convex
(or strictly concave) function f : R+

0 → R. We proved that any such transformation on S(H)
is necessarily implemented by a unitary or an antiunitary operator H and hence the same con-
clusion holds for maps preserving Rényi relative entropy (and quantum Tsallis entropy) with
any parameter.

Let us now turn to the concept of the quantum Rényi divergence introduced in [15]. We
recall that it was also introduced in [16] under the name ”sandwiched Rényi relative entropy”.
Referring to [15], the definition of the quantum Rényi divergence Dα(.‖.) with parameter α is
as follows. Pick arbitrary nonzero A,B ∈ B(H)+. For α ∈ ]0, 1[ define

Dα(A‖B) =

{

(α− 1)−1 log
(

(TrA)−1Tr
(

B
1−α

2α AB
1−α

2α

)α)

, suppA 6⊥ suppB

∞, otherwise

and for α ∈ ]1,∞[ define

Dα(A‖B) =

{

(α− 1)−1 log
(

(TrA)−1Tr
(

B
1−α

2α AB
1−α

2α

)α)

, suppA ⊂ suppB

∞, otherwise.

Our primary aim in this paper is to describe the transformations of S(H) which preserve the
quantum Rényi divergence. Apparently, the problem is equivalent to the description of the
preservers of the following related quantities. Pick any A,B ∈ S(H) and for α ∈ ]0, 1[ set

(2) D′
α(A‖B) = Tr

(

B
1−α

2α AB
1−α

2α

)α

and for α ∈ ]1,∞[ set

(3) D′
α(A‖B) =

{

Tr
(

B
1−α

2α AB
1−α

2α

)α

, suppA ⊂ suppB

∞, otherwise.

Obviously, if these quantities were quantum f -divergences corresponding to some strictly convex
(or strictly concave) functions, then our result in [11] would apply and we would be done.
Therefore, we need to verify that the quantities D′

α are not quantum f -divergences. This is the
content of our first proposition.
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Proposition 1. For any α ∈ ]0, 1[∪ ]1,∞[ we have that D′
α(.||.) is not a quantum f -divergence

on S(H).

Consequently, our original question does make sense and hence we can proceed. In fact, in
what follows we solve a more general preserver problem. Namely, we introduce a quantity on
S(H) much more general than D′

α and describe the corresponding invariance transformations.
To do this, pick continuous functions f : R+ → R+ and g : R+

0 → R+
0 . We must emphasize

that this function f has nothing to do with the function appearing in the concept of quantum
f -divergence. We believe the use of the symbol f in that other context causes no confusion.
We define the quantity D′

f,g(.‖.) for arbitrary A ∈ B(H)+ and B ∈ B(H)++ by

D′
f,g(A‖B) = Tr g (f(B)Af(B)) .

Next, following the common approach used also in (1), for any A,B ∈ B(H)+ we would like to
define

(4) D′
f,g(A‖B) = lim

εց0
D′

f,g(A‖B + εI).

In the next proposition we see that this can really be done in certain cases meaning that the
limit in (4) exists under certain conditions on f and g.

Proposition 2. Assume that f : R+ → R+ and g : R+
0 → R+

0 are continuous functions and
g(0) = 0. Select A,B ∈ B(H)+ and denote by PB the orthogonal projection on H onto the
support of B.

(i) If lim
εց0

f(ε) = 0, then the limit

(5) D′
f,g(A‖B) = lim

εց0
Tr g (f(B + εI)Af(B + εI))

exists and we have

(6) D′
f,g(A‖B) = Tr g (f(B|suppB)PBAPBf(B|suppB)) .

(Here the operator f(B|suppB)PBAPBf(B|suppB) acts on suppB.)

(ii) If lim
εց0

f(ε) = ∞, g is monotone increasing and has limit ∞ at ∞, then the limit (5)

exists and we have

(7) D′
f,g(A‖B) =

{

Tr g (f(B|suppB)PBAPBf(B|suppB)) , suppA ⊂ suppB
∞, otherwise.

After this we can formulate the main results of the paper. First observe that any unitary or
antiunitary similarity transformation on S(H), i.e. any map on S(H) of the form A 7→ UAU∗

with unitary or antiunitary operator U on H , leaves the above defined quantities D′
f,g(.‖.)

invariant (see e.g. the first two sentences in the proof of Lemma 8). In what follows we
present results which state that if f and g satisfy certain conditions then, conversely, any
transformation φ (not necessarily bijective) on S(H) that preserve D′

f,g(., ‖.) is a unitary or
antiunitary similarity transformation, i.e. induced by a unitary or an antiunitary operator on
H . This means that the symmetries of S(H) with respect to any member of a large class of
”generalized” divergences are all the most simple transformations.
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Theorem 3. Assume that f : R+ → R+ is a continuous function with lim
εց0

f(ε) = 0, and

g : R+
0 → R+

0 is an injective continuous function with g(0) = 0. If φ : S(H) → S(H) is a
transformation satisfying

D′
f,g(φ(A)‖φ(B)) = D′

f,g(A‖B) (A,B ∈ S(H))

then there is either a unitary or an antiunitary operator U on H such that φ is of the form

φ(A) = UAU∗ (A ∈ S(H)).

In the next result we obtain the same conclusion under different conditions on f and g.

Theorem 4. Assume that f : R+ → R+ is a strictly monotone decreasing strictly convex
function with lim

εց0
f(ε) = +∞, and g : R+

0 → R+
0 is a strictly monotone increasing strictly

convex (or strictly concave) continuous function with g(0) = 0 and limt→∞ g(t) = ∞. If
φ : S(H) → S(H) is a transformation satisfying

D′
f,g(φ(A)‖φ(B)) = D′

f,g(A‖B) (A,B ∈ S(H))

then there is either a unitary or an antiunitary operator U on H such that φ is of the form

φ(A) = UAU∗ (A ∈ S(H)).

Clearly, the former statement implies that the transformations on S(H) which preserve the
quantum Rényi entropy with parameter α ∈ ]0, 1[ are implemented by unitary or antiunitary
operators. The latter statement does the same job for the case where α ∈ ]1,∞[. Therefore,
we have the following immediate corollary.

Corollary 5. If α ∈ ]0, 1[ ∪ ]1,∞[ and φ : S(H) → S(H) is a transformation satisfying

Dα(φ(A)||φ(B)) = Dα(A||B) (A,B ∈ S(H))

then there is either a unitary or an antiunitary operator U on H such that φ is of the form

φ(A) = UAU∗ (A ∈ S(H)).

We emphasize that the bijectivity of the transformation φ is not assumed in the previous
statements. However, we shall see that in the proofs we seriously use the fact that φ is a
transformation mapping density operators to density operators. In certain investigations in
quantum theory, especially where differential geometrical tools are applied, it is more natural
to consider all positive (definite) operators and not only the densities normalized by the unit
trace condition. Concerning that setting we have the following result. We point out that
below we consider transformations on the cone of all positive definite operators on H but we
need to assume their bijectivity. Moreover, we have the statement only for the quantum Rényi
divergences, not for any more general numerical quantities. We note that, as we shall see, the
proof of the following result is very much different from the proofs of Theorems 3 and 4.

Theorem 6. Let α ∈ ]0, 1[ ∪ ]1,∞[. If φ : B(H)++ → B(H)++ is a bijective transformation
satisfying

Dα(φ(A)||φ(B)) = Dα(A||B) (A,B ∈ B(H)++)

then there is either a unitary or an antiunitary operator U on H and a scalar c ∈ R+ such that
φ is of the form

φ(A) = cUAU∗ (A ∈ B(H)++).

Of course, the natural question immediately arises that what happens if we omit the con-
dition of bijectivity of the transformation above. We leave this as a probably highly nontrivial
open problem.
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2. Proofs

In this section we present the proofs of our results. To the proof of Proposition 1 we need
the following lemma.

Lemma 7. Let n ≥ 2 be an integer and f : R+ → R a function with the property that

(8)
n
∑

k=1

bkf

(

ak
bk

)

= 0

holds whenever a1, . . . , an and b1, . . . , bn are positive numbers such that
∑n

k=1 ak =
∑n

k=1 bk = 1.
Then there is a real number c for which we have f(t) = c(t− 1) (t ∈ R+).

Proof. Choosing ak = bk = 1/n (k = 1, . . . , n) we have f(1) = 0. Let t, s be positive real
numbers less than, say, 0.9. Then, by the given property of f , we have

tf
(s

t

)

+ (0.9− t)f

(

0.9− s

0.9 − t

)

+
n−2
∑

k=1

0.1

n− 2
f(1) = 0.

(Observe that if n = 2, then there is no need for the above ”trick”, instead of the number 0.9
we can choose 1 and the last sum in the above displayed equation does not show up.) Since
f(1) = 0, it follows that

(9) tf
(s

t

)

+ (0.9− t)f

(

0.9− s

0.9− t

)

= 0

for any real numbers 0 < t, s < 0.9. Now fix t, s such that (0.9 − s)/(0.9 − t) = x be an
arbitrarily preassigned positive number. Then for every real number λ from a small enough
neighborhood of 1 we have

(10) λtf
(s

t

)

+ (0.9− λt)f

(

0.9− λs

0.9− λt

)

= 0.

The function

λ 7→ 0.9− λs

0.9− λt

is strictly monotone and hence invertible with continuously differentiable inverse in a small
neighborhood of 1. From (10) we deduce that f is continuously differentiable in a neighborhood
of x. Since x was an arbitrary positive number, it follows that f is continuously differentiable
on R+. Going back to (9) and differentiating with respect the variable s we have

(11) f ′
(s

t

)

+ f ′

(

0.9− s

0.9− t

)

= 0

for any 0 < t, s < 0.9. Again, choosing particular t, s such that (0.9 − s)/(0.9 − t) = x is an
arbitrarily preassigned positive number, and replacing t, s by λt, λs for λ close enough to 1, we
see from (11) that f ′ is constant in a neighborhood of x. Therefore, the continuous function
f ′ is locally constant which implies that it is globally constant. We deduce that f is of the
form f(t) = ct + d (t ∈ R+) and then by the property (8) it follows easily that d = −c. This
completes the proof of the lemma. �

Now we can present the proof of Proposition 1. Below we shall frequently use the following
notation. For any vectors x, y ∈ H we define the operator x⊗ y ∈ B(H) by (x⊗ y)z = 〈z, y〉x
(z ∈ H). It is apparent that P ∈ B(H) is a rank-one projection if and only if there is a unit
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vector x ∈ H such that P = x⊗ x. Elementary computation rules concerning the operation ⊗
are the following. For any A ∈ B(H), x, y ∈ H we have

A · x⊗ y = (Ax)⊗ y

x⊗ y · A = x⊗ (A∗y)

Tr(x⊗ y) = 〈x, y〉.

Proof of Proposition 1. Assume that for a given positive number α which is different from 1,
D′

α is a quantum f -divergence, where f : R+
0 → R is function which is continuous on R+ and

the limit γ = limt→∞ f(t)/t exists in the extended sense. Let n = dimH . For any positive
numbers a1, . . . , an and b1, . . . , bn with

∑n
k=1 ak =

∑n
k=1 bk = 1 choose an orthonormal basis

in H and consider A,B ∈ S(H) whose matrices with respect to that basis are Diag[a1, . . . , an]
and Diag[b1, . . . , bn], respectively. By D

′
α(A‖B) = Sf (A|B) we have

n
∑

k=1

bk

(

ak
bk

)α

=
n
∑

k=1

bkf

(

ak
bk

)

.

Therefore, by Lemma 7 it follows that

(12) f(t) = tα + c(t− 1) (t > 0)

holds for some real number c. Substituting the matrices Diag[1, 0, . . . , 0] and Diag[b1, . . . , bn]
with positive diagonal entries into the formulas (1) and (2) or (3), we obtain

b1−α
1 = b1f

(

1

b1

)

+ b2f(0) + . . .+ bnf(0) = b1f

(

1

b1

)

+ (1− b1)f(0).

Taking the form in (12) into consideration we easily obtain f(0) = −c and hence we have
f(t) = tα + c(t− 1) for every t ≥ 0.

Observe further, that in the case where α < 1 we have γ = c, while in the case where α > 1
we have γ = ∞. It is now not difficult to verify (we omit the details) that for α < 1 we have
Sf (A‖B) = TrAαB1−α (A,B ∈ S(H)) and for α > 1 we have

Sf(A‖B) =

{

TrAαB1−α, suppA ⊂ suppB
∞, otherwise

for any A,B ∈ B(H). Cf. example (ii) in the introduction.
It follows that for any invertible density operator B ∈ S(H) and arbitrary density operator

A ∈ S(H) we have

TrAαB1−α = Tr
(

B
1−α

2α AB
1−α

2α

)α

.

Substituting any rank-one projection P = x⊗x into the place of A (x ∈ H is an arbitrary unit
vector), the above displayed equality implies that

〈B1−αx, x〉 = ‖B 1−α

2α x‖2α = 〈B 1−α

α x, x〉α

holds for any invertible density operator B ∈ S(H) and unit vector x ∈ H . Considering the
spectral decomposition B =

∑

b∈σ(B) bQb of B, it follows that

∑

b∈σ(B)

b1−α〈Qbx, x〉 =





∑

b∈σ(B)

b
1−α

α 〈Qbx, x〉





α

.
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Here the only constraint regarding the numbers 〈Qbx, x〉 (b ∈ σ(B)) is that they are non-
negative and their sum is 1. In particular, for 0 ≤ t, s ≤ 1/2 we have

t1−α + s1−α

2
=

(

t
1−α

α + s
1−α

α

2

)α

which, by the strict convexity/concavity of the function t 7→ t1/α (t ≥ 0), leads to a contradic-
tion. This proves our first proposition. �

Next we present two useful lemmas and then prove that the quantity D′
f,g defined in (4) is

well-defined when the functions f, g satisfy certain conditions.

Lemma 8. Assume that h : R+
0 → R+

0 is a continuous function. Then we have

Tr h(BAB) = Trh
(√

AB2
√
A
)

(A,B ∈ B(H)+).

Proof. Observe that for any unitary operator U ∈ B(H) and X ∈ B(H)+ we have h(UXU∗) =
Uh(X)U∗ which follows from the fact that h can be uniformly approximated by polynomials
on compact sets. Hence Trh(UXU∗) = Tr h(X). It is now sufficient to show that BAB is

unitarily similar to
√
AB2

√
A, i.e. there is a unitary operator U ∈ B(H) such that

BAB = U∗
√
AB2

√
AU.

Considering the polar decomposition of
√
AB we have

√
AB = U |

√
AB|, where U is a partial

isometry. Since H is finite dimensional, any partial isometry can be extended to a unitary
operator so we can assume that U is unitary. Then we have

√
AB2

√
A = U |

√
AB|(U |

√
AB|)∗ = U |

√
AB|2U∗ = UBABU∗

and we obtain our statement. �

In the next lemma we present a characterization of the order what we shall also need.

Lemma 9. Assume that h : R+
0 → R+

0 is strictly monotone increasing continuous function with
h(0) = 0. Then for B,C ∈ B(H)+ we have

B2 ≤ C2 ⇐⇒ Tr h(BAB) ≤ Tr h(CAC) (A ∈ B(H)++).

Proof. First we assume that B2 ≤ C2 holds. Then for all A ∈ B(H)++ we have
√
AB2

√
A ≤√

AC2
√
A. The monotonicity of trace functions (see [1, 2.10. Theorem]) implies that

Tr h
(√

AB2
√
A
)

≤ Tr h
(√

AC2
√
A
)

.

By Lemma 8 we deduce that for all A ∈ B(H)++ the inequality Tr h(BAB) ≤ Tr h(CAC) is
valid.

As for the converse statement, first observe that any rank-one projection can be approxi-
mated by a sequence of positive definite operators in the operator norm topology. So, assuming

Tr h(BAB) ≤ Tr h(CAC) (A ∈ B(H)++),

by the continuity of the function h we obtain that

Tr h(BPB) ≤ Tr h(CPC)

holds for every rank-one projection P on H . Choosing any unit vector x ∈ H and considering
P = x⊗ x we easily get

h
(

‖Bx‖2
)

≤ h
(

‖Cx‖2
)

.

By the strict monotonicity of h we infer ‖Bx‖2 ≤ ‖Cx‖2 for every unit vector x ∈ H which
implies B2 ≤ C2. This completes the proof of the lemma. �
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We are now in a position to give the proof of our second proposition.

Proof of Proposition 2. In the proof we apply the main ideas of the proof of [15, Lemma 13].
Pick any B ∈ B(H)+. With respect to the orthogonal decomposition H = suppB⊕ (suppB)⊥

we can write

B =

(

B0 0
0 0

)

where B0 = B|suppB. We choose an arbitrary A ∈ B(H)+. With respect to the same orthogonal
decomposition we have

A =

(

A0 C
C∗ A1

)

where A0, C and A1 are appropriate operators. Easy computation gives

(13) f(B + εI)Af(B + εI) =

(

f(B0 + εI)A0f(B0 + εI) f(ε)f(B0 + εI)C
f(ε)C∗f(B0 + εI) f 2(ε)A1

)

.

In this displayed formula as well as below, I denotes the identity operator not necessarily on
H but on an appropriate subspace of it. If limεց0 f(ε) = 0, we deduce from (13) that

lim
εց0

f(B + εI)Af(B + εI) =

(

f(B0)A0f(B0) 0
0 0

)

.

By the continuity of g and the property g(0) = 0 it follows that

lim
εց0

g(f(B + εI)Af(B + εI)) =

(

g(f(B0)A0f(B0)) 0
0 0

)

and we easily obtain (6).
In the case where limεց0 f(ε) = ∞, under the assumption suppA ⊂ suppB we have

C = 0, A1 = 0 and it follows that the limit (5) exists and we have

D′
f,g(A‖B) = Tr g (f(B|suppB)PBAPBf(B|suppB)) .

Assume now that suppA 6⊂ suppB. Then there exists a unit vector v ∈ H such that v ∈ kerB
and v 6∈ kerA. With respect to the decomposition suppB ⊕ kerB of H , the vector v is of the
form

v =

(

0
z

)

and

(14) Av =

(

A0 C
C∗ A1

)(

0
z

)

=

(

Cz
A1z

)

6=
(

0
0

)

holds. We claim A1z 6= 0. Assume on the contrary that A1z = 0. Since A ∈ B(H)+, for
arbitrary w ∈ suppB we have

0 ≤
〈(

A0 C
C∗ A1

)(

w
z

)

,

(

w
z

)〉

= 〈A0w,w〉+ 2ℜ 〈Cz, w〉 .

Hence for all t ∈ R and for an arbitrary w ∈ suppB we have

0 ≤ t2 〈A0w,w〉+ 2tℜ 〈Cz, w〉
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which implies that for every w ∈ suppB the equality

2ℜ 〈Cz, w〉 = 0

holds. From this we deduce Cz = 0 which contradicts (14). Therefore, we have A1z 6= 0.
Denote by Q the projection onto the subspace spanned by v, i.e. let Q = v ⊗ v. Recall

v ∈ kerB. We compute

QAQ = 〈Av, v〉Q = 〈A1z, z〉Q.
On the other hand, we have

f(B + εI)2 =

(

f(B0 + εI)2 0
0 f 2(ε)I

)

Since Q projects onto a subspace of kerB, it then follows that

f(B + εI)2 ≥ f(ε)2Q.

Therefore, applying Lemma 9 we deduce

Tr g(f(B + εI)Af(B + εI)) ≥ Tr g(f(ε)2QAQ) = g
(

f 2(ε) 〈A1z, z〉
)

.

Observe that the kernel of A1 is the same as the kernel of its square root which implies that
〈A1z, z〉 is a positive real number. By the properties of f, g we see that in the latter displayed
formula the right hand side quantity tends to infinity as ε tends to zero. This completes the
proof of the proposition. �

We can now turn to the proofs of our main results. Observe that by Proposition 2, the
quantity D′

f,g in Theorems 3,4 is well-defined. We denote by P1(H) the set of all rank-one
projections on H .

Proof of Theorem 3. Assume the conditions in the statement hold and φ : S(H) → S(H) is a
transformation satisfying

D′
f,g(φ(A)‖φ(B)) = D′

f,g(A‖B) (A,B ∈ S(H)).

First we show that φ preserves the orthogonality in both directions, i.e. it satisfies

φ(A)φ(B) = 0 ⇐⇒ AB = 0

for any A,B ∈ S(H). To see this we need the following characterization of orthogonality. By
the formula (6) and by the properties of f, g it easily follows that for any A,B ∈ S(H) we have

AB = 0 ⇐⇒ D′
f,g(A‖B) = 0.

Since φ preserves the quantity D′
f,g(.‖.), it then follows that φ preserves the orthogonality in

both directions.
Apparently, we can characterize the elements of P1(H) as those operators in S(H) which

belong to a set of n pairwise orthogonal density operators onH . By the orthogonality preserving
property of φ we infer that it maps P1(H) into itself. We claim that φ preserves also the
transition probability (the trace of product) on P1(H). To prove this, let P,Q ∈ P1(H) be
arbitrary. Applying (6) one can check that

D′
f,g(P‖Q) = g

(

f 2(1) TrPQ
)
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and similarly
D′

f,g(φ(P )‖φ(Q)) = g
(

f 2(1) Trφ(P )φ(Q)
)

.

By the injectivity of g it follows that

Trφ(P )φ(Q) = TrPQ.

This means that the restriction of φ to P1(H) preserves the transition probability. The non-
bijective version of Wigner’s theorem (see e.g. [8, Theorem 2.1.4]) describes the structure of
all such maps. Since H is finite dimensional, we obtain that there exists either a unitary or an
antiunitary operator U on H such that

φ(P ) = UPU∗ (P ∈ P1(H)).

Consider the transformation ψ : S(H) → S(H) defined by ψ(A) = U∗φ(A)U (A ∈ S(H)).
It is clear that this map preserves the quantity D′

f,g(A||B) and has the additional property that
it acts as the identity on P1(H). Let A ∈ S(H) be fixed and Q ∈ P1(H) be arbitrary. Using
(6) again, we infer

D′
f,g(A‖Q) = Tr g

(

f 2(1)QAQ
)

and similarly
D′

f,g(ψ(A)‖Q) = Tr g
(

f 2(1)Qψ(A)Q
)

.

By the properties of ψ we have

Tr g
(

f 2(1)QAQ
)

= Tr g
(

f 2(1)Qψ(A)Q
)

holds for every rank-one projection Q on H . Therefore, for every x ∈ H with ‖x‖ = 1 we
deduce

g
(

f 2(1) 〈Ax, x〉
)

= g
(

f 2(1) 〈ψ(A)x, x〉
)

.

Since g is injective, it follows that

〈Ax, x〉 = 〈ψ(A)x, x〉

holds for every unit vector x ∈ H and then we obtain

A = ψ(A) = U∗φ(A)U (A ∈ S(H)).

This completes the proof of the theorem. �

We next present the proof of our second main result.

Proof of Theorem 4. The basic ideas of the argument below are close to those of the proof of
[11, Theorem] but there are smaller or bigger differences at many places. Therefore, for the
sake of understandability, readability and completeness we present the proof with essentially
all details.

Assume the conditions in the statement hold and φ : S(H) → S(H) is a transformation
satisfying

D′
f,g(φ(A)‖φ(B)) = D′

f,g(A‖B) (A,B ∈ S(H)).

We first show that φ preserves the rank, i.e. for any A ∈ S(H) the rank of φ(A) equals the rank
of A. In order to see it, let A,B ∈ S(H) be arbitrary. Using (7), it follows that D′

f,g(A‖B) <∞
holds if and only if suppA ⊂ suppB. We infer from this that

supp φ(A) ⊂ suppφ(B) ⇐⇒ suppA ⊂ suppB
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next that
supp φ(A) = suppφ(B) ⇐⇒ suppA = suppB

and finally that

(15) supp φ(A) ( supp φ(B) ⇐⇒ suppA ( suppB.

Observe that the rank of A is k if and only if there is a strictly increasing chain (with respect
to the relation of inclusion) of supports of n density operators on H such that its kth element
is suppA. Using this characterization and (15) we see that φ leaves the rank of operators
invariant. In particular, we have

(16) φ(P1(H)) ⊂ P1(H).

We next verify that φ is injective. Let B,B′ ∈ S(H) and suppose that φ(B) = φ(B′). For all
P ∈ P1(H) we have D′

f,g(φ(P )‖φ(B)) = D′
f,g(φ(P )‖φ(B′)) and by the preserver property of φ

this implies D′
f,g(P‖B) = D′

f,g(P‖B′). Therefore, for any P ∈ P1(H) we have D′
f,g(P‖B′) <∞

if and only if D′
f,g(P‖B) <∞ and hence we obtain suppB = suppB′.

Pick any P ∈ P1(H) with suppP ⊂ suppB and apply (7) and the preserver property of φ.
We easily deduce that for every x ∈ H with ‖x‖ = 1 and x ∈ suppB

g
(

‖f(B|suppB)x‖2
)

= g
(

‖f(B′|suppB′)x‖2
)

holds. Due to the fact that g is injective we conclude that

〈f 2(B)x, x〉 = ‖f(B)x‖2 = ‖f(B′)x‖2 = 〈f 2(B)x, x〉

and hence f 2(B|suppB) = f 2(B′|suppB′) is valid on suppB = suppB′. Since f 2 is strictly
monotone decreasing we deduce B = B′ which proves that φ is injective.

In the next part of our argument we assume that H is two-dimensional. We claim that for
any B ∈ S(H) we have

[min σ(B),maxσ(B)] ⊂ [min σ(φ(B)),maxσ(φ(B))]

meaning that φ can only enlarge the convex hull of the spectrum of the elements of S(H). To
verify this property first observe that by (16) the inclusion above holds for all B ∈ P1(H). Now
pick a rank-two operator B ∈ S(H) and set λ = maxσ(B) ∈ [1/2, 1[. Then there are mutually
orthogonal projections P,Q ∈ P1(H) such that B = λP + (1 − λ)Q. Applying (7), for any
R ∈ P1(H) we obtain rather easily that

(17) D′
f,g(R‖B) = g

(

f 2(λ) TrPR + f 2(1− λ) TrQR
)

.

Since f is strictly monotone decreasing and g is strictly monotone increasing, so g ◦ f 2 is
strictly monotone decreasing on R+ and thus g (f 2(λ)) ≤ g (f 2(1− λ)). It follows that as R
runs through the set P1(H), the numbers TrPR,TrQR provide all pairs of non-negative re-
als with sum 1, and hence, using the continuity of g, the quantity D′

f,g(R‖B) runs through

the interval [g (f 2(λ)) , g (f 2(1− λ))]. Similarly, we infer that for any R ∈ P1(H) the num-
ber D′

f,g(φ(R)‖φ(B)) belongs to [g (f 2(µ)) , g (f 2(1− µ))], where µ = maxσ(φ(B)). By the
preserver property of φ we obtain that

g
(

f 2(µ)
)

≤ g
(

f 2(λ)
)

≤ g
(

f 2(1− λ)
)

≤ g
(

f 2(1− µ)
)

.

Due to the fact that g ◦ f 2 is strictly monotone decreasing on R+ this implies

min σ(φ(B)) ≤ min σ(B) ≤ maxσ(B) ≤ maxσ(φ(B))
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which verifies our claim.
In the most crucial part of the proof which follows we show that φ (I/2) = I/2. Assume on

the contrary that there is a number λ1 ∈]1/2, 1[ and mutually orthogonal projections P1, Q1 ∈
P1(H) for which

(18) φ

(

1

2
I

)

= λ1P1 + (1− λ1)Q1.

By (17) for any R ∈ P1(H) we have D′
f,g (R ‖I/2) = g(f 2 (1/2)) and then we deduce that

g

(

f 2

(

1

2

))

= D′
f,g

(

φ(R)

∥

∥

∥

∥

φ

(

1

2
I

))

=

g
(

f 2(λ1) TrP1φ(R) + f 2(1− λ1) TrQ1φ(R)
)

.

Since g is injective, we have

(19) f 2

(

1

2

)

= f 2(λ1) TrP1φ(R) + f 2(1− λ1) TrQ1φ(R).

As 1 = TrP1φ(R) + TrQ1φ(R) holds, this gives us that f 2 (1/2) is a convex combination
of f 2(λ1) and f 2(1 − λ1). Since these latter numbers are different (f 2 is strictly monotone
decreasing), we infer that TrP1φ(R) has the same value for any R ∈ P1(H) and the same holds
for TrQ1φ(R), too. We next prove that

(20) TrP1φ(R) > TrQ1φ(R).

Due to the strict convexity of f we obtain f 2 is also strictly convex. Using that property
and the fact that f 2 is strictly monotone decreasing, referring to (19) one can verify that
TrP1φ(R) > 1/2 and then obtain TrP1φ(R) > TrQ1φ(R). Indeed, in any representation of
f 2 (1/2) as a convex combination of f 2(t) and f 2(1−t) (t ∈]1/2, 1[), the coefficient of the former
term is necessarily greater than the coefficient of the latter one.

It follows from what we have observed above that when R runs through the set P1(H), the
number ϑ = TrP1φ(R) remains constant, and since f 2 is clearly injective, ϑ is different from
the numbers 0, 1. By (19) we have

(21) ϑf 2(λ1) + (1− ϑ)f 2(1− λ1) = f 2

(

1

2

)

.

Next let us consider φ (φ (I/2)). We have

φ

(

φ

(

1

2
I

))

= λ2P2 + (1− λ2)Q2

for some 1/2 ≤ λ2 < 1 and mutually orthogonal projections P2, Q2 in P1(H). In fact, as φ can
only enlarge the convex hull of the spectrum and λ1 > 1/2, it follows that λ2 ≥ λ1 > 1/2. Pick
an arbitrary rank-one projection R on H and set R2 = φ(φ(R)). Since φ preserves D′

f,g(.‖.),
similarly to (19) we have

g

(

f 2

(

1

2

))

= D′
f,g

(

φ(φ(R))

∥

∥

∥

∥

φ

(

φ

(

1

2
I

)))

=

D′
f,g(R2‖λ2P2 + (1− λ2)Q2) =

g
(

f 2(λ2) TrP2R2 + f 2(1− λ2) TrQ2R2

)

.
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This gives us that

(22) f 2

(

1

2

)

= f 2(λ2) TrP2R2 + f 2(1− λ2) TrQ2R2.

Here λ2 > 1/2 is fixed. Since the pair TrP2R2,TrQ2R2 of non-negative real numbers has sum
1, it follows just as above that the numbers TrP2R2 and TrQ2R2 are also fixed, they do not
change when R varies. Moreover, by the strict convexity of f 2 we also necessarily have

(23) TrP2R2 > TrQ2R2.

Now choose unit vectors e and f from the ranges of P1 and Q1, respectively. Consider a
unit vector from the range of P2. Let ξ, η be its coordinates with respect to the basis {e, f}. It
is easy to see that the representing matrix of P2 is

(

ξ
η

)(

ξ
η

)t

,

where t denotes the transposition. Moreover, since R2 is a rank-one projection which is the
image (under φ) of a rank-one projection, its matrix representation is of the form

(

ϑ ε
√

ϑ(1 − ϑ)

ε
√

ϑ(1− ϑ) 1− ϑ

)

,

where ϑ is the same as in (21), and ε ∈ C with |ε| = 1 varies as R varies. We have

TrP2R2 = Tr

[

(

ξ
η

)(

ξ
η

)t(
ϑ ε

√

ϑ(1− ϑ)

ε
√

ϑ(1− ϑ) 1− ϑ

)

]

.

Elementary computations show that the latter quantity equals

ϑξξ +
√

ϑ(1− ϑ)εξη +
√

ϑ(1− ϑ)εξη + (1− ϑ)ηη =

ϑ|ξ|2 + (1− ϑ)|η|2 + 2
√

ϑ(1 − ϑ)ℜ(εξη).

As we have already showed, the value of TrP2R2 does not change when R varies and ϑ is also
constant. Therefore, we obtain that the value of

ϑ|ξ|2 + (1− ϑ)|η|2 + 2
√

ϑ(1− ϑ)ℜ(εξη)

is the same for infinitely many values of ε (by the injectivity of φ we see that R2 runs through a
set of continuum cardinality, so there is such a large set for the values of ε, too). It follows that
ℜ(εξη) is the same for infinitely many values of ε which clearly implies that ξη = 0. Therefore,
the column vector

(

ξ
η

)

is a scalar multiple of
(

1
0

)

or

(

0
1

)

.

Obviously, this can happen only when P2 = P1 or P2 = Q1. Using the fact that R2 is the image
of a rank-one projection under φ, it follows from (20) that

(24) TrP1R2 > TrQ1R2.
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If P2 = Q1, then P1 = Q2 and due to (23) we have

TrQ1R2 > TrP1R2

which contradicts (24). Therefore, the possibility P2 = Q1 is ruled out and, consequently, we
have P2 = P1 and Q2 = Q1. Thus we obtain

(25) φ

(

φ

(

1

2
I

))

= λ2P1 + (1− λ2)Q1.

By (22) we have

f 2(λ2) TrP1R2 + f 2(1− λ2) TrQ1R2 = f 2

(

1

2

)

.

On the other hand, referring to the sentence preceding (21) we see that TrP1R2 = ϑ and
TrQ1R2 = 1− ϑ, thus it follows that

(26) ϑf 2(λ2) + (1− ϑ)f 2(1− λ2) = f 2

(

1

2

)

.

We assert that the equation

(27) ϑf 2(t) + (1− ϑ)f 2(1− t) = f 2

(

1

2

)

has at most two solutions in ]0, 1[. Indeed, consider the function

t 7→ ϑf 2(t) + (1− ϑ)f 2(1− t) (t ∈]0, 1[).

Since f 2 is strictly convex, the same holds for this function, too. Therefore it cannot take the
same values at three different places and hence (27) does not have three different solutions in
]0, 1[. But by (21) and (26) λ1, λ2 and clearly 1/2 too are solutions. Since λ2 ≥ λ1 > 1/2,
it then follows that λ2 = λ1 and referring to (18) and (25) we see that φ (φ (I/2)) = φ (I/2).
Since φ is injective, this gives us that φ (I/2) = I/2. Therefore, φ sends I/2 to itself.

Now let I/2 6= A ∈ S(H) be a rank-two operator and denote by λ ∈]1/2, 1[ its maximal
eigenvalue. We assert that σ(φ(A)) = σ(A). Let h : ]0, 1[→ R be the function defined by

h(t) = g

(

f 2

(

1

2

)

t

)

+ g

(

f 2

(

1

2

)

(1− t)

)

(t ∈]0, 1[).

Using the formula (7) we obtain

D′
f,g

(

A

∥

∥

∥

∥

1

2
I

)

= h(λ)

and, similarly,

D′
f,g

(

φ(A)

∥

∥

∥

∥

1

2
I

)

= h(λ′),

where λ′ = maxσ(φ(A)) > 1/2. Since φ preserves D′
f,g(.‖.) and sends I/2 to itself, it follows

that D′
f,g (φ(A) ‖I/2) = D′

f,g (A ‖I/2), and hence that h(λ) = h(λ′). If g is assumed to be
strictly convex (the case when g is strictly concave can be handled in a similar way), then
we have that h is strictly convex and symmetric with respect to the middle point 1/2 of its
domain. By elementary properties of convex functions this implies that the restriction of h to
]1/2, 1[ is strictly monotone increasing. We necessarily obtain that λ = λ′ and this yields that
the spectrum of A coincides with that of φ(A). Therefore, φ is spectrum preserving.
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Select mutually orthogonal projections P,Q ∈ P1(H) and pick a number λ ∈]1/2, 1[.
Consider the operator B = λP + (1 − λ)Q. By the spectrum preserving property of φ
we can choose another pair P ′, Q′ ∈ P1(H) of mutually orthogonal projections such that
φ(B) = λP ′ + (1− λ)Q′. We have learnt before (see the discussion around (17)) that when R
runs through the set of all rank-one projections, the quantity D′

f,g(R‖B) runs through the inter-

val [g (f 2(λ)) , g (f 2(1− λ))]. Using the equation (17) we easily see that D′
f,g(R‖B) = g (f 2(λ))

if and only if TrPR = 1 which holds exactly when R = P . Therefore, we obtain

R = P ⇐⇒ D′
f,g(R‖B) = g

(

f 2(λ)
)

⇐⇒ D′
f,g(φ(R)‖φ(B)) = g

(

f 2(λ)
)

⇐⇒ D′
f,g(φ(R)‖λP ′ + (1− λ)Q′) = g

(

f 2(λ)
)

⇐⇒ φ(R) = P ′.

This gives us that φ(P ) = P ′ and we similarly obtain φ(Q) = Q′. Consequently, φ preserves
the orthogonality between rank-one projections and we also have

(28) φ(B) = φ(λP + (1− λ)Q) = λφ(P ) + (1− λ)φ(Q).

Next, we show that φ preserves the nonzero transition probabilities between rank-one pro-
jections. Let P and R be different rank-one projections which are not orthogonal to each other.
Choose a rank-one projection Q which is orthogonal to P . Pick λ ∈]1/2, 1[. On the one hand,
we have

D′
f,g(R‖λP + (1− λ)Q) = g

(

f 2(λ) TrPR+ f 2(1− λ) TrQR
)

and on the other hand, by (28), we compute

D′
f,g(R‖λP + (1− λ)Q) = D′

f,g(φ(R)‖λφ(P ) + (1− λ)φ(Q))

= g
(

f 2(λ) Trφ(P )φ(R) + f 2(1− λ) Trφ(Q)φ(R)
)

.

Comparing the right-hand sides and using the injectivity of g, we infer

TrPR = Trφ(P )φ(R).

Consequently, φ preserves the transition probability between rank-one projections.
Above we have supposed that H is two-dimensional. Assume now that H is an arbitrary

finite dimensional Hilbert space and φ : S(H) → S(H) is a transformation which preserves
the quantity D′

f,g(.‖.). We show that φ preserves the transition probability between rank-one
projections in this case too. In fact, we can reduce the general case to the previous one. To see
this, first letH2 be a two-dimensional subspace ofH and A0 ∈ S(H) be such that suppA0 = H2.
Set H ′

2 = supp φ(A0). Since φ preserves the rank, H ′
2 is also two-dimensional. By what we have

learnt at the beginning of the proof, φ maps any element of S(H) whose support is included
in H2 to an element of S(H) whose support is included in H ′

2. In that way φ gives rise to a
transformation φ0 : S(H2) → S(H ′

2) which preserves the quantity D′
f,g(.‖.). Consider a unitary

operator V : H ′
2 → H2. The transformation V φ0(.)V

∗ maps S(H2) into itself and preserves the
quantity D′

f,g(.‖.). We have already seen that such a transformation necessarily preserves the
transition probability between rank-one projections which implies that the same holds for φ0 as
well. Since for any two rank-one projections P,Q there exists a rank-two element A0 ∈ S(H)
such that suppP, suppQ ⊂ suppA0, it follows that we have

TrPQ = Trφ(P )φ(Q).

By the non-bijective version of Wigner’s theorem we infer that there is either a unitary or
an antiunitary operator U on H such that

φ(P ) = UPU∗ (P ∈ P1(H)).
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Define the map ψ : S(H) → S(H) by ψ(A) = U∗φ(A)U (A ∈ S(H)). It is clear that ψ
preserves D′

f,g(.‖.) and it acts as the identity on P1(H). Let A ∈ S(H). Since ψ leaves the
quantity D′

f,g(.‖.) invariant, it preserves the inclusion between the supports of elements of S(H)
(see the first part of the proof). This implies that for every rank-one projection P on H we
have

suppP ⊂ suppA⇐⇒ suppP ⊂ suppψ(A).

We easily obtain that suppA = suppψ(A). Let P be an arbitrary rank-one projection which
satisfies suppP ⊂ suppA = suppψ(A). Using (7) and the equality D′

f,g(P‖ψ(A)) = D′
f,g(P‖A)

we deduce that for any x ∈ suppA with ‖x‖ = 1 the equation

g
(

‖f(ψ(A)|suppA)x‖2
)

= g
(

‖f(A|suppA)x‖2
)

.

holds. Just as at the end of the proof of Theorem 3 it follows that f 2(ψ(A)|suppA) equals
f 2(A|suppA). Using the injectivity of f 2 we can infer that ψ(A) = A and next that φ(A) =
UAU∗. This completes the proof of the theorem. �

Finally, we present the proof of our last result.

Proof of Theorem 6. As a consequence of Lemma 9, by the preservation of Dα(.||.) under the
transformation φ we infer that the following equivalences hold

B
1−α

α ≤ C
1−α

α

⇐⇒ Tr
(

B
1−α

2α AB
1−α

2α

)α

≤ Tr
(

C
1−α

2α AC
1−α

2α

)α

(A ∈ B(H)++)

⇐⇒ Tr
(

φ(B)
1−α

2α φ(A)φ(B)
1−α

2α

)α

≤ Tr
(

φ(C)
1−α

2α φ(A)φ(C)
1−α

2α

)α

(A ∈ B(H)++)

⇐⇒ φ(B)
1−α

α ≤ φ(C)
1−α

α .

This implies that

B ≤ C ⇐⇒ φ(B
α

1−α )
1−α

α ≤ φ(C
α

1−α )
1−α

α

is valid for any B,C ∈ B(H)++. We conclude that the bijective map ψ : B(H)++ → B(H)++

defined by

ψ(X) = φ(X
α

1−α )
1−α

α (X ∈ B(H)++)

is an order automorphism of B(H)++. The structure of such transformations is described in
[13]. It follows from [13, Theorem 1] that ψ is of the form

ψ(X) = TXT ∗ (X ∈ B(H)++)

where T is an invertible linear or conjugate-linear operator on H . By the definition of ψ we
have

(29) φ(X) =
(

TX
1−α

α T ∗
)

α

1−α

(X ∈ B(H)++).

Consider the polar decomposition T = U |T | where U is a unitary or antiunitary operator on
H . We apparently have

φ(X) =
(

U |T |X 1−α

α |T |U∗
)

α

1−α

= U
(

|T |X 1−α

α |T |
)

α

1−α

U∗ (X ∈ B(H)++).

Since the unitary as well as antiunitary similarity transformations are clearly invariant under
Dα(.‖.), without serious loss of generality we can and do assume that in (29) we have T ∈



18 MARCELL GAÁL AND LAJOS MOLNÁR

B(H)++. Our aim now is to show T is a scalar multiple of the identity. Using the preserver
property of φ and (29), we deduce that

(30)

1

Tr
(

TA
1−α

α T
)

α

1−α

Tr

(

(

TB
1−α

α T
)

1

2

(

TA
1−α

α T
)

α

1−α

(

TB
1−α

α T
)

1

2

)α

=
1

TrA
Tr
(

B
1−α

2α AB
1−α

2α

)α

holds for all A,B ∈ B(H)++. Let B = T
−2α

1−α and A = I. We obtain from (30) that

1

TrT
2α

1−α

Tr T
2α

2

1−α =
1

Tr I
Tr T−2α

or, equivalently,

(Tr I)(TrT
2α

2

1−α ) = (TrT−2α)(Tr T
2α

1−α ).

Let t1, . . . , tn be the eigenvalues of the positive invertible operator T listed in decreasing order.

By the last displayed formula, for the finite sequences xk = t−2α
k , yk = t

2α

1−α

k (k = 1, . . . , n) we
have

∑n
k=1 xkyk
n

=

∑n
k=1 xk
n

∑n
k=1 yk
n

.

Depending on α > 1 or α < 1, the finite sequences x1, . . . , xn and y1, . . . , yn are either similarly
ordered or oppositely ordered. By Tchebychef’s inequality (see e.g. 2.17. in [5]) it follows that
either the xk’s or the yk’s are equal. In either case we have the tk’s are equal implying that T
is a positive constant multiple of the identity. This completes the proof of the theorem. �
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generalization and some properties, J. Math. Phys. 54 (2013), 122203.

16. M. M. Wilde, A. Winter and D. Yang, Strong converse for the classical capacity of entanglement-breaking
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