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Abstract

It is well-known that the Shannon entropies of some parameterized
probability distributions are concave functions with respect to the
parameter. In this paper we consider a family of such distributions
(including the binomial, Poisson, and negative binomial distributions)
and investigate the Shannon, Rényi, and Tsallis entropies of them with
respect to the complete monotonicity.
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1 Introduction

Let c ∈ R, Ic :=
[

0,−1
c

]

if c < 0, and Ic := [0,+∞) if c ≥ 0.
For α ∈ R and k ∈ N0 the binomial coefficients are defined as usual by

(

α

k

)

:=
α(α− 1) . . . (α− k + 1)

k!
if k ∈ N, and

(

α

0

)

:= 1.

Let n > 0 be a real number such that n > c if c ≥ 0, or n = −cl with
some l ∈ N if c < 0.

For k ∈ N0 and x ∈ Ic define

p
[c]
n,k(x) := (−1)k

(

−n
c

k

)

(cx)k(1 + cx)−
n

c
−k, if c 6= 0,
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p
[0]
n,k(x) := lim

c→0
p
[c]
n,k(x) =

(nx)k

k!
e−nx.

Details and historical notes concerning these functions can be found in [3],
[7], [21] and the references therein. In particular,

d

dx
p
[c]
n,k(x) = n

(

p
[c]
n+c,k−1(x)− p

[c]
n+c,k(x)

)

. (1)

Moreover,
∞
∑

k=0

p
[c]
n,k(x) = 1; (2)

∞
∑

k=0

kp
[c]
n,k(x) = nx, (3)

so that
(

p
[c]
n,k(x)

)

k≥0
is a parameterized probability distribution. Its associ-

ated Shannon entropy is

Hn,c(x) := −

∞
∑

k=0

p
[c]
n,k(x) log p

[c]
n,k(x),

while the Rényi entropy of order 2 and the Tsallis entropy of order 2 are
given, respectively, by (see [18], [20])

Rn,c(x) := − log Sn,c(x); Tn,c(x) := 1− Sn,c(x),

where

Sn,c(x) :=
∞
∑

k=0

(

p
[c]
n,k(x)

)2

, x ∈ Ic.

The cases c = −1, c = 0, c = 1 correspond, respectively, to the binomial,
Poisson, and negative binomial distributions. For other details see also [15],
[16].

In this paper we investigate the above entropies with respect to the com-
plete monotonicity.
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2 Shannon entropy

A. Let’s start with the case c < 0.

Hn,−1 is a concave function; this is a special case of the results of [19]; see
also [6], [8], [9] and the references therein.

Here we shall determine the signs of all the derivatives of Hn,c.

Theorem 1 Let c < 0. Then, for all k ≥ 0,

H(2k+2)
n,c (x) ≤ 0, x ∈

(

0,−
1

c

)

, (4)

H(2k+1)
n,c (x) =

{

≥ 0 x ∈ (0,− 1
2c
],

≤ 0 x ∈ [− 1
2c
,−1

c
).

(5)

Proof We have n = −cl with l ∈ N. As in [10], let us represent log (l!)
by integrals:

log (l!) =

∫ ∞

0

(

l −
1− e−ls

1− e−s

)

e−s

s
ds =

∫ 1

0

(

1− (1− t)l

t
− l

)

dt

log (1− t)
.

(6)
Now using (2), (3) and (6) we get

Hn,c(x) = Hl,−1(−cx) = −l [(−cx) log (−cx) + (1 + cx) log (1 + cx)] +

∫ 1

0

−t

log (1− t)

(1 + cxt)l + (1− t− cxt)l − 1− (1− t)l

t2
dt.

It is a matter of calculus to prove that

H ′′
n,c(x) = cl

(

1

x
−

c

1 + cx

)

+ c2l(l − 1)

∫ 1

0

−t

log (1− t)

[

(1 + cxt)l−2 + (1− t− cxt)l−2
]

dt,

and for k ≥ 0

3



H(2k+2)
n,c (x) = cl(2k)!

(

1

x2k+1
−

(

c

1 + cx

)2k+1
)

+ l(l − 1) . . . (l − 2k − 1)c2k+2

∫ 1

0

−t

log (1− t)

[

(1 + cxt)l−2k−2 + (1− t− cxt)l−2k−2
]

t2kdt.

For 0 < t < 1 we have

0 <
−t

log (1− t)
< 1, (7)

so that

H(2k+2)
n,c (x) ≤ cl(2k)!

(

1

x2k+1
−

(

c

1 + cx

)2k+1
)

+ (8)

+l(l− 1) . . . (l− 2k− 1)c2k+2

∫ 1

0

[

(1 + cxt)l−2k−2 + (1− t− cxt)l−2k−2
]

t2kdt.

Repeated integration by parts yields
∫ 1

0

(1+cxt)l−2k−2t2kdt ≤
(2k)!

(l − 2)(l − 3) . . . (l − 2k − 1)(cx)2k

∫ 1

0

(1+cxt)l−2dt,

and so
∫ 1

0

(1 + cxt)l−2k−2t2kdt ≤
(2k)!

[

(1 + cx)l−1 − 1
]

(l − 1)(l − 2) . . . (l − 2k − 1)(cx)2k+1
. (9)

Replacing x by −1
c
− x we obtain

∫ 1

0

(1−t−cxt)l−2k−2t2kdt ≤
(2k)!

[

1− (−cx)l−1
]

(l − 1)(l − 2) . . . (l − 2k − 1)(1 + cx)2k+1
. (10)

From (8), (9) and (10) it follows that

H(2k+2)
n,c (x) ≤ cl(2k)!

[

(1 + cx)l−1

x2k+1
−

c2k+1(−cx)l−1

(1 + cx)2k+1

]

≤ 0,

and this proves (4).

It is easy to verify that H
(2k+1)
n,c

(

− 1
2c

)

= 0. Since H
(2k+2)
n,c ≤ 0, it follows

that H
(2k+1)
n,c is decreasing, and this implies (5).
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B. Consider the case c = 0.

Hn,0 is the Shannon entropy of the Poisson distribution. The derivative of
this function is completely monotonic: see, e.g., [2, p. 2305]. For the sake of
completeness we insert here a short proof.

Theorem 2 H ′
n,0 is completely monotonic, i.e.,

(−1)kH
(k+1)
n,0 (x) ≥ 0, k ≥ 0, x > 0. (11)

Proof Let us remark that Hn,0(y) = H1,0(ny); so it suffices to investigate
the derivatives of H1,0(x).

According to [10, (2.5)],

H1,0(x) = x− x log x+

∫ ∞

0

e−t

t

(

x−
1− exp (x(e−t − 1))

1− e−t

)

dt

= x− x log x−

∫ 1

0

(

x−
1− e−sx

s

)

ds

log (1− s)
.

It follows that

H ′
1,0(x) = − log x−

∫ 1

0

(

1− e−sx
) ds

log (1− s)

and for k ≥ 1,

H
(k+1)
1,0 (x) = (−1)k

(

(k − 1)!

xk
+

∫ 1

0

ske−sx ds

log (1− s)

)

. (12)

By using (7) we get

∫ 1

0

ske−sx

log (1− s)
ds ≥ −

∫ 1

0

sk−1e−sxds =

= −

∫ x

0

tk−1

xk
e−tdt ≥ −

∫ ∞

0

1

xk
tk−1e−tdt = −

(k − 1)!

xk
.

Combined with (12), this proves (11) for k ≥ 1. In particular, we see that
Hn,0 is concave and non-negative on [0,+∞); it follows that H ′

n,0 ≥ 0 and
so (11) is completely proved.
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C. Let now c > 0.

Theorem 3 For c > 0, H ′
n,c is completely monotonic.

Proof Since Hm,c(y) = Hm

c
,1(cy), it suffices to study the derivatives of

Hn,1(x).
By using (2), (3) and

logA =

∫ ∞

0

e−x − e−Ax

x
dx, A > 0,

we get

Hn,1(x) = n ((1 + x) log (1 + x)− x log x)+

∫ ∞

0

e−ns − e−s

s(1− e−s)

(

1− (1 + x− xe−s)−n
)

ds

= n ((1 + x) log (1 + x)− x log x) +

∫ 1

0

1− (1− t)n−1

t log (1− t)

(

1− (1 + tx)−n
)

dt.

It follows that, for j ≥ 1,

1

n
H

(j+1)
n,1 (x) = (−1)j−1(j − 1)!

(

(x+ 1)−j − x−j
)

+

+(−1)j−1(n+1)(n+2) . . . (n+j)

∫ 1

0

−t

log (1− t)

[

1− (1− t)n−1
]

(1+xt)−n−j−1tj−1dt.

Using again (7), we get

(−1)j−1 1

n
H

(j+1)
n,1 (x) ≤ (j − 1)!

(

(x+ 1)−j − x−j
)

+

+(n+ 1)(n+ 2) . . . (n+ j)

∫ 1

0

[

1− (1− t)n−1
]

(1 + xt)−n−j−1tj−1dt

= u(x) + v(x),

where

u(x) :=
(j − 1)!

(x+ 1)j
− (n+1)(n+2) . . . (n+ j)

∫ 1

0

tj−1(1− t)n−1(1+xt)−n−j−1dt,

v(x) := (n + 1)(n+ 2) . . . (n+ j)

∫ 1

0

tj−1(1 + xt)−n−j−1dt−
(j − 1)!

xj
.
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We shall prove that u(x) ≤ 0 and v(x) ≤ 0, x > 0. Let us remark that

∫ 1

0

tj−1(1− t)n−1(1 + xt)−n−j−1dt ≥

∫ 1

0

tj−1(1− t)n(1 + xt)−n−j−1dt, (13)

and integration by parts yields

∫ 1

0

tj−1(1− t)n

(1 + xt)n+j+1
dt =

j − 1

(n + 1)(x+ 1)

∫ 1

0

tj−2(1− t)n+1

(1 + xt)n+j+1
dt.

Applying repeatedly this formula we obtain

∫ 1

0

tj−1(1− t)n

(1 + xt)n+j+1
dt =

(j − 1)!

(n+ 1)(n+ 2) . . . (n+ j)

1

(x+ 1)j
. (14)

Now (13) and (14) imply u(x) ≤ 0.
Using again integration by parts we get

∫ 1

0

tj−1(1 + xt)−n−j−1dt ≤
j − 1

(n+ j)x

∫ 1

0

tj−2(1 + xt)−n−jdt

≤ · · · ≤
(j − 1)!

(n + 1)(n+ 2) . . . (n + j)

1

xj
,

which shows that v(x) ≤ 0.
We conclude that

(−1)j−1H
(j+1)
n,1 (x) ≤ 0, j ≥ 1, x > 0. (15)

In particular, (15) shows that Hn,1 is concave on [0,+∞); it is also non-
negative, which means that H ′

n,1 ≥ 0. Combined with (15), this shows that
H ′

n,1 is completely monotonic, and the proof is finished.

Remark 3.1 (14) can be obtained alternatively by using the change of vari-
ables y = (1 − t)/(1 + xt) and the properties of the Beta function. An
alternative proof of the inequality v(x) ≤ 0 follows from

∫ 1

0

tj−1(1 + xt)−n−j−1dt ≤
1

xj−1

∫ ∞

0

(xt)j−1

(1 + xt)n+j+1
dt =

=
1

xj

∫ ∞

0

sj−1

(1 + s)j+n+1
ds =

1

xj
B(j, n + 1) =

1

xj

(j − 1)!n!

(n+ j)!
.
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Corollary 3.1 The following inequalities are valid for x > 0 and c ≥ 0:

log
x

cx+ 1
≤

∞
∑

k=0

p
[c]
n+c,k(x) log

k + 1

ck + n
≤ log

nx+ 1

ncx+ n
. (16)

In particular, for c = 0 and n = 1,

log x ≤

∞
∑

k=0

e−xx
k

k!
log (k + 1) ≤ log (x+ 1).

Proof We have seen that H ′
n,c(x) ≥ 0. An application of (1) yields

H ′
n,c(x) = n

(

log
1 + cx

x
+

∞
∑

k=0

p
[c]
n+c,k(x) log

k + 1

n+ ck

)

.

This proves the first inequality in (16); the second is a consequence of
Jensen’s inequality applied to the concave function log t.

3 Rényi entropy and Tsallis entropy

The following conjecture was formulated in [13]:

Conjecture 3.1 Sn,−1 is convex on [0, 1].

Th. Neuschel [11] proved that Sn,−1 is decreasing on
[

0, 1
2

]

and increasing
on
[

1
2
, 1
]

. The conjecture and the result of Neuschel can be found also in [5].
A proof of the conjecture was given by G. Nikolov [12], who related it

with some new inequalities involving Legendre polynomials. Another proof
can be found in [4].

Using the important results of Elena Berdysheva [3], the following exten-
sion was obtained in [17]:

Theorem 4 ([17, Theorem 9]). For c < 0, Sn,c is convex on
[

0,−1
c

]

.

A stronger conjecture was formulated in [14] and [17]:

Conjecture 4.1 For c ∈ R, Sn,c is logarithmically convex, i.e., log Sn,c is
convex.
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It was validated for c ≥ 0 by U. Abel, W. Gawronski and Th. Neuschel [1],
who proved a stronger result:

Theorem 5 ([1]). For c ≥ 0, the function Sn,c is completely monotonic,
i.e.,

(−1)m
(

d

dx

)m

Sn,c(x) > 0, x ≥ 0, m ≥ 0.

Consequently, for c ≥ 0, Sn,c is logarithmically convex, and hence convex.

Summing up, for the Rényi entropy Rn,c = − log Sn,c and Tsallis entropy
Tn,c = 1− Sn,c, we can state

Corollary 5.1 i) Let c ≥ 0. Then Rn,c is increasing and concave, while
T ′
n,c is completely monotonic on [0,+∞).

ii) Tn,c is concave for all c ∈ R.

Proof

i) Apply Theorem 5.

ii) For c < 0, apply Theorem 4. For c ≥ 0, Theorem 5 shows that Sn,c is
convex, so that Tn,c is concave.

Remark 5.1 As far as we know, Conjecture 4.1 is still open for c < 0, so
that the concavity of Rn,c, c < 0, remains to be investigated.
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