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Abstract

It is well-known that the Shannon entropies of some parameterized
probability distributions are concave functions with respect to the
parameter. In this paper we consider a family of such distributions
(including the binomial, Poisson, and negative binomial distributions)
and investigate the Shannon, Rényi, and Tsallis entropies of them with
respect to the complete monotonicity.
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1 Introduction

Let c € R, I, := [0,—1] if ¢ < 0, and I, := [0, +00) if ¢ > 0.
For @ € R and k € Ny the binomial coefficients are defined as usual by

(a) _ala—1...(a—k+1) k€N, and (3) 1

k k!

Let n > 0 be a real number such that n > cif ¢ > 0, or n = —cl with
some [ € Nif ¢ < 0.
For k € Ny and z € I, define
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Details and historical notes concerning these functions can be found in [3],
[7], [21] and the references therein. In particular,

d C C C
@) = (P k(@) = k(@) 1)

Moreover,

> ph(@) =1 (2)
k=0

>kl (x) = na, (3)
k=0

so that (pgf]k(x)> is a parameterized probability distribution. Its associ-
’ k>0

ated Shannon entropy is
Hy () = — Zp[:}k(fc) IOgPEi]k(x)a
k=0

while the Rényi entropy of order 2 and the Tsallis entropy of order 2 are
given, respectively, by (see [18], [20])

R, c(x) = —logSpc(z); Thelx):=1—5,.(),

where
b 2
Sne(T) == Z (ch]k(x)> , x€l.
k=0
The cases ¢ = —1, ¢ = 0, ¢ = 1 correspond, respectively, to the binomial,

Poisson, and negative binomial distributions. For other details see also [15],
[16].

In this paper we investigate the above entropies with respect to the com-
plete monotonicity.



2 Shannon entropy

A. Let’s start with the case ¢ < 0.

H, _ is a concave function; this is a special case of the results of [19]; see
also [6], [8], [9] and the references therein.
Here we shall determine the signs of all the derivatives of H,, ..

Theorem 1 Let ¢ < 0. Then, for all k > 0,

n,c

1
HZ*(2) <0, o€ (o, ——) | 4)
C

>0 e (Oa_i]a

HZ (@) = {_ (5)

Proof We have n = —cl with [ € N. As in [10], let us represent log (I!)
by integrals:

log (I!) = /OOO (z- 11::) isds:/ol (# _z) log(afit—t)'
(6)

Now using (), (@) and (@) we get

H, () = H _1(—cx) = =l [(—cz)log (—cz) + (1 + cx)log (1 + cx)] +

/1 —t (1+c:vt)l+(1—t—cxt)l—l—(l—t)ldt

It is a matter of calculus to prove that

- c2l(l—1)/0 ﬁ [(1+cat) 2+ (1=t — cat)?] dt,

and for £k >0



1 c 2k+1
H*2) (1) = cl(2k)! -
me (@) =R g = (1 .

+ 1l —=1)... (1 =2k — 1)

1
—t
/ ——— [(T+cat) 2+ (1 — t — cat) 272 24t
o log

(1-1)
For 0 < ¢t < 1 we have
- —t
log (1 —t)

. . 2k+1

1
H(I—=1)...(I—2k—1)c*+? / [(1+ cat) ™72 4+ (1 — t — cat)' ] t**dt.
0

0 <1, (7)

so that

Repeated integration by parts yields

(2k)! : ~
(1—=2)(1—3)...(l =2k —1)(cx)?* /0 (1+cat) ™ “dt,

1
/ (1+cat) 2722k gt <
0

and so

(k) [(1 + cx)' ! 1] ;
(I—1)(1—=2)...(1 =2k — 1)(cx)2k+1’ (9)

1
/ (1 + cat) =222k qt <
0

Replacing x by —% — x we obtain

(2k)! [1 = (—cx) ]
(=11 —=2)...(1 =2k —1)(1 + cx)2k+1"
From (8)), (@) and (I0) it follows that

14+ Ca?)l_l 02k+1(—cx)l_1
(2k+2) ( B
H,7 () < cl(2F)! o2k 1 (1 + co)2+1 <0,

1
/ (1—t—cat) 222k qt < (10)
0

and this proves ().
It is easy to verify that H,(ffﬂ) (—2—10) = 0. Since H7(55+2) < 0, it follows
that Hy(?f ) i decreasing, and this implies ([]).
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B. Consider the case ¢ = 0.

H, o is the Shannon entropy of the Poisson distribution. The derivative of
this function is completely monotonic: see, e.g., [2, p. 2305]. For the sake of
completeness we insert here a short proof.

Theorem 2 H)  is completely monotonic, i.e.,
(~1*HS () >0, k>0, x>0 (11)

Proof Let us remark that H, o(y) = Hi,0(ny); so it suffices to investigate
the derivatives of Hy o(z).
According to [10, (2.5)],

Hio(x) = z—uzlogx +/ 67 ( 1 —exp(z(e 1))) u
0

1—et

= x—xlogx — /1 L-e™ ds
B & 0 s log (1 —s)

It follows that

Hi (z)=—1o z—/l(l—e_“)L
Lod/ & 0 log (1 — s)
and for k > 1,
kE—1)! ! ds
H(]H‘l) — (=1 k ( / k, —sx %2 ) 12
) = 0 (B [ e (12)

By using (7)) we get

1 k_—sx 1
/ Lals > —/ sFle™5%ds =
o log(1l—s) 0

T k-1 1 k—1)!
=— | —etdt>— —thleTtdt = | ) .
0 xF 0 zF xk

Combined with (I2), this proves (1)) for £ > 1. In particular, we see that
H, is concave and non-negative on [0, +00); it follows that H; , > 0 and
so ([I)) is completely proved.



C. Let now ¢ > 0.

Theorem 3 For c> 0, H), . is completely monotonic.

,C

Proof Since H,,(y) = Hm 1(cy), it suffices to study the derivatives of
Hn,l(x)-
By using (2), (38]) and

© —xr _ ,—Azx
logA:/ € T ir, A>0,
0
we get

Hyi(x)=n((1+2z)log(l+2)— xlogz)+/0 A= (1-(14+z—ze®)™)ds

1 p—
= 1 log (1 —xl — (1= (1 +tx) ") dt.
n((1+z)log(1+ x) xog:c)+/0 Flog (1= 1) (1—(Q+tx)™)
It follows that, for j > 1,
1

n

HIM (@) = (177G - D! (e + 1) 7 —a79) +

1 ) (n42) - (n+) /O ﬁ 1 (1 7] (1)

Using again (), we get

<—1>J“1%H,Sf'f”<x> <G-DH(@+D7—a7)+
+(n+D(n+2)...(n+7) /1 [1— (1= (1L +at) "7t
= u(w) + v(2),

ule) = 8:132 _("“)(”“)---(”H)/O 1=t (L at) I,

v(z) = (n+1)(n+2)...(n+j) /01 N1 4 xt) I — %
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We shall prove that u(z) < 0 and v(x) <0, z > 0. Let us remark that
/ 1 =) 1 4 wt) T A > / 1 —)"(1 +at) " dt, (13)
0 0
and integration by parts yields
/1 tj_l(l _ t)n i j—1 /1 tj_2(1 . t)n—i—l »
o (L+at)yntitl™ (4 1)(x+1) Jy (1+zt)ntitt
Applying repeatedly this formula we obtain

/1 11— t)n gt (j—1)! 1
o (

: = -, 14
1 4 at)ntitl m+1)(n+2)...(n+7j) (x+ 1) (14)
Now (I3) and (1)) imply u(x) < 0.
Using again integration by parts we get
L : j—1 L :
/ N1 4 wt) I N < 7/ t172(1 + at) " dt
0 (n+j)z Jo
i —1)!
<< (j 1>' . i’
- T (n+1)(n+2)...(n+j)al
which shows that v(z) < 0.
We conclude that
(~1 T H @) <0, j=1,0>0, (15)

In particular, (I5]) shows that H, ; is concave on [0, +00); it is also non-
negative, which means that H;,; > 0. Combined with (L3]), this shows that
H, , is completely monotonic, and the proof is finished.

Remark 3.1 ([I4) can be obtained alternatively by using the change of vari-
ables y = (1 —t)/(1 + xt) and the properties of the Beta function. An
alternative proof of the inequality v(x) < 0 follows from

1 e i—1
, ; 1 (xt)?
Y+ at) T < — —_dt =
/0 (1+at) - xﬂ‘l/o (1 4 at)ntitt

1 [> ! 1 1(j—1)n!
5 Jy Ao =5 BUn U= 570




Corollary 3.1 The following inequalities are valid for x > 0 and ¢ > 0:

e}

k+1 nr+1
<D Piesle)log S < log . (16)

— ner +n

log
In particular, forc =0 and n =1,
logx < Ze‘x log (k+1) <log(z+1).

Proof We have seen that H; .(v) > 0. An application of (I]) yields

1 S k+1
H;L’c(:)s):n<log rer 5 i )

1
+ kzopn-l-c,k(x) Ogn+ck

This proves the first inequality in (I0); the second is a consequence of
Jensen’s inequality applied to the concave function logt.

3 Rényi entropy and Tsallis entropy

The following conjecture was formulated in [13]:
Conjecture 3.1 S, _; is convez on [0, 1].

Th. Neuschel [I1] proved that S, _; is decreasing on [O, %] and increasing
on [%, 1}. The conjecture and the result of Neuschel can be found also in [5].

A proof of the conjecture was given by G. Nikolov [12], who related it
with some new inequalities involving Legendre polynomials. Another proof
can be found in [4].

Using the important results of Elena Berdysheva [3], the following exten-
sion was obtained in [17]:

Theorem 4 ([17, Theorem 9]). For ¢ <0, S, is convez on [0, —1].
A stronger conjecture was formulated in [14] and [17]:

Conjecture 4.1 For c € R, S, . is logarithmically convex, i.e., log S, . is
conver.



It was validated for ¢ > 0 by U. Abel, W. Gawronski and Th. Neuschel [1],
who proved a stronger result:

Theorem 5 ([1]). For ¢ > 0, the function S, . is completely monotonic,
1.€.,

dzx

Consequently, for ¢ > 0, S, is logarithmically convez, and hence convex.

(=)™ ( d ) Sne(x) >0, x>0,m>0.

Summing up, for the Rényi entropy R, . = —log .S, . and Tsallis entropy
T,c=1—25,., we can state

Corollary 5.1 i) Let ¢ > 0. Then R, . is increasing and concave, while
T! . is completely monotonic on [0, +00).

ii) T, is concave for all c € R.
Proof
i) Apply Theorem G

ii) For ¢ < 0, apply Theorem [l For ¢ > 0, Theorem [l shows that S,, . is
convex, so that T, n,c 1S concave.

Remark 5.1 As far as we know, Conjecture[{.1] is still open for ¢ < 0, so
that the concavity of R, ., ¢ <0, remains to be investigated.
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