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Abstract. If α is a non-zero algebraic number, we let m(α) denote the Mahler measure of the minimal

polynomial of α over Z. A series of articles by Dubickas and Smyth, and later by the author, develop
a modified version of the Mahler measure called the t-metric Mahler measure, denoted mt(α). For fixed

α ∈ Q, the map t 7→ mt(α) is continuous, and moreover, is infinitely differentiable at all but finitely many

points, called exceptional points for α. It remains open to determine whether there is a sequence of elements
αn ∈ Q such that the number of exceptional points for αn tends to ∞ as n→∞.

We utilize a connection with the Fibonacci sequence to formulate a conjecture on the t-metric Mahler
measures. If the conjecture is true, we prove that it is best possible and that it implies the the existence of

rational numbers with as many exceptional points as we like. Finally, with some computational assistance,

we resolve various special cases of the conjecture that constitute improvements to earlier results.

1. Introduction

Suppose α is a non-zero algebraic number with minimal polynomial over Z given by

F (z) = a ·
d∏
i=1

(z − αi).

Under these assumptions, the (logarithmic) Mahler measure of α is defined to be

m(α) = log |a|+
d∑
i=1

log max{1, |αi|}.

It is obvious from the definition that m(α) ≥ 0 for all α ∈ Q×, and moreover, it follows from Kronecker’s
Theorem [8] that m(α) = 0 if and only if α is a root of unity. We also note that the behavior of m(α) is par-
ticularly straightforward when α ∈ Q×. Indeed, if α = r/s and gcd(r, s) = 1 then m(α) = log max{|r|, |s|}.

In attempting to construct large prime numbers, D.H. Lehmer [9] came across the problem of determining
whether there exists a sequence of non-zero algebraic numbers {αn}, not roots of unity, such that m(αn)
tends to 0 as n→∞. This problem remains unresolved, although substantial evidence suggests that no such
sequence exists (see [2, 10,16,18], for instance). This assertion is typically called Lehmer’s conjecture.

Conjecture 1.1 (Lehmer’s Conjecture). There exists c > 0 such that m(α) ≥ c whenever α ∈ Q× is not a
root of unity.

Dobrowolski [4] provided the best known lower bound on m(α) in terms of degα, while Voutier [19] later
gave a version of this result with an effective constant. Nevertheless, only little progress has been made on
Lehmer’s conjecture for an arbitrary algebraic number α.

Dubickas and Smyth [5, 6] were the first to study a modified version of the Mahler measure which gives

rise to a metric on Q×/Q×tors. A point (α1, α2, . . . , αN ) ∈ (Q×)N is called a product representation of α if

α =
∏N
n=1 αn, and we write P(α) to denote the set of all product representations of α. Dubickas and Smyth

defined the metric Mahler measure by

(1.1) m1(α) = inf

{
N∑
n=1

m(αn) : (α1, α2, . . . , αN ) ∈ P(α)

}
.

It is verified in [5] that m1 : Q× → [0,∞) satisfies the following key properties:
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(i) m1(α) = m1(ζα) for all α ∈ Q× and ζ ∈ Q×tors

(ii) m1(α) = m1(α−1) for all α ∈ Q×

(iii) m1(αβ) ≤ m1(α) +m1(β) for all α, β ∈ Q×.

These facts combine to ensure that (α, β) 7→ m1(αβ−1) is a well-defined metric on Q×/Q×tors which induces
the discrete topology if and only if Lehmer’s conjecture is true.

The author [12–14] extended the metric Mahler measure to form a parametrized family of metric Mahler
measures. If ᾱ = (α1, α2, . . . , αN ) ∈ P(α) then we define the measure function of ᾱ to be the map fᾱ :
(0,∞)→ [0,∞) given by

fᾱ(t) =

(
N∑
n=1

m(αn)t

)1/t

.

The t-metric Mahler measure of α is defined to be

mt(α) = inf {fᾱ(t) : ᾱ ∈ P(α)}
and we note that m1(α) agrees with the definition provided by Dubickas and Smyth in (1.1). Properties (i)
and (ii) continue to hold with mt in place of m1, however, the analog of (iii) is that

mt(αβ)t ≤ mt(α)t +mt(β)t

for all α, β ∈ Q× and all t > 0. As a result, (α, β) 7→ mt(αβ
−1)t defines a metric on Q×/Q×tors which induces

the discrete topology if and only if Lehmer’s conjecture is true.
The definition of mt(α) requires examining the infinite collection P(α), however, the main result of [14]

gives us hope for a dramatic simplification.

Theorem 1.2. If α is an algebraic number then there exists a finite set X ⊆ P(α) such that mt(α) =
min {fᾱ(t) : ᾱ ∈ X} for all t > 0.

Although Theorem 1.2 certainly implies that the infimum in mt(α) is attained for all t (an assertion that
the author proved earlier in [11]), its primary value is that the infimum attaining points may all be chosen
from a finite set which is independent of t. Nevertheless, we caution the reader that the proof of Theorem
1.2 provides no method for determining a particular set X which satisfies its conclusion, and in general, it
remains open to provide formula for such a set in terms of α. For further study of this vague problem, it
will be useful to provide two additional definitions.

(i) We say that a positive real number t is standard for α if there exists ᾱ ∈ P(α) and an open neighborhood
U of t such that mt(α) = fᾱ(t) for all t ∈ U .

(ii) Any point which fails to be standard for α is called exceptional for α.

Roughly speaking, the standard points are those points where the map t 7→ mt(α) matches the behavior of
a measure function, while the exceptional points are those where it differs. Since the behavior of a measure
function is easily understood (it is simply the norm of a vector with real entries), the map t 7→ mt(α) may
only exhibit unusual behavior at an exceptional point. For example, we established in [12] that t is standard
if and only if t 7→ mt(α) is infinitely differentiable at t. It follows from Theorem 1.2 that exceptional points
are rather sparse.

Corollary 1.3. Every algebraic number has finitely many exceptional points.

Corollary 1.3 comes equipped with a similar caveat as Theorem 1.2. Although we know there are finitely
many exceptional points, the proof of Corollary 1.3 provides no general strategy for listing those points,
nor does it suggest a strategy for estimating how many such points there are. This discussion leads to the
following motivating problem.

Question 1.4. For every integer k ≥ 0 does there exist an algebraic number having k exceptional points?

We shall address Question 1.4 by considering a special case of rational numbers studied in [15]. For this
purpose, let {hi}∞i=0 be the Fibonacci sequence defined so that h0 = 0 and h1 = 1. Further let N ≥ 3 be an
integer and select primes p and q such that

(1.2)
hN
hN−1

<
log q

log p
<
hN−1

hN−2
or

hN−1

hN−2
<

log q

log p
<

hN
hN−1

.
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Using the fact that [x, 2x] contains a prime for all x ≥ 1 (see [3]), it can be shown that expressions of the
form log q/ log p are dense in (0,∞), and hence, we are certain that there exist primes satisfying (1.2). Many
future definitions in this article depend on the choices of N , p and q. However, in order to prevent our
notation from becoming excessively cumbersome, we shall often suppress this dependency in that notation.
The only exception to this convention is Section 4 where we will need to be more cautious with our notation.

We define the linear transformation A : RN → R2 using the 2×N matrix

A =

(
h1 h2 · · · hN
h0 h1 · · · hN−1

)
.

It is easily verified that the rows of A are linearly independent over R, which implies that A is a surjection
and dimR(kerA) = N − 2. We also write NN0 = {(x1, x2, . . . , xN )T ∈ RN : xi ∈ Z, xi ≥ 0}, and if n is an
integer with 1 ≤ n ≤ N , then we define

(1.3) Vn =

{
x ∈ NN0 : Ax =

(
hn
hn−1

)}
.

The elements of Vn are technically column vectors, however, for ease of notation, we shall often write them
as row vectors. As we shall not discuss elements in the dual of RN in this paper, this notation will not create
any ambiguity.

Obviously Vn is finite, and if (x1, x2, . . . , xN ) ∈ Vn then xi = 0 for all n < i ≤ N . Therefore, while Vn
certainly depends on N , replacing N by different value on the right hand side of (1.3) while keeping n fixed,
we simply attach or remove a list of 0’s from the tail of each point in Vn. Still assuming that 1 ≤ n ≤ N , we
define

αn =
phn

qhn−1
.

Each point in Vn is associated to a product representation of αn via the map ω : Vn → P(αn) given by

ω((x1, x2, . . . , xn)) =

ph1

qh0
, · · · , p

h1

qh0︸ ︷︷ ︸
x1 times

,
ph2

qh1
, · · · , p

h2

qh1︸ ︷︷ ︸
x2 times

, · · · · · · , phN

qhN−1
, · · · , phN

qhN−1︸ ︷︷ ︸
xN times

 .

The measure function of a point x ∈ Vn is simply defined to be the measure function of ω(x), and moreover,
we shall write fx(t) = fω(x)(t) for all t > 0. As a result, we obtain that

fx(t) =

(
N∑
i=1

xim

(
phi

qhi−1

)t)1/t

=

(
n∑
i=1

xim

(
phi

qhi−1

)t)1/t

,

where we deduce the second equality from our observation following (1.3). The main result of [15] shows
that mt(αn) may be computed by considering only points in Vn.

Theorem 1.5. Suppose that N ≥ 3 is an integer and (p, q) is pair of primes satisfying (1.2). If 1 ≤ n ≤ N
then mt(αn) = min{fx(t) : x ∈ Vn} for all t > 0.

The significance of Theorem 1.5 is that it substantially restricts the collection of product representations
we need to search in order to evaluate mt(αn). Indeed, there are product representations of αn which use any
particular integer power. However, Theorem 1.5 shows that we need only consider those which use exponent
pairs of the form (hi, hi−1) for 1 ≤ i ≤ N .

Our goal for this article is to address Question 1.4 by counting exceptional points for αn. As part of this
process, it will be useful to be able to replace Vn in Theorem 1.5 by a significantly smaller set. In Section 2,
we pose a conjecture (Conjecture 2.3) identifying a particular set Sn which we believe satisfies

(1.4) mt(αn) = min{fx(t) : x ∈ Sn}.
We show that if Conjecture 2.3 is true then it is best possible1, and moreover, it resolves Question 1.4 in the
affirmative. We utilize Section 3 to discuss our progress in the direction of Conjecture 2.3 including various

1Best possible means that the set Sn on the right hand side of (1.4) cannot be replaced with a smaller set while still maintaining
equality. See Theorem 2.4(i) for the more rigorous version of this statement.
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computational results which resolve the conjecture for N ≤ 13. As part of that progress, we show that
Conjecture 2.3 may be reduced to the study of a particular subset of Vn. This discussion relates Question
1.4 to several problems on the behavior of the Fibonacci Sequence. Following these discussions, we provide
the proofs of all results in the subsequent three sections.

2. Conjectured Replacement for Vn.

For the purposes of this section, we remind the reader that all definitions depend on the choices of N
and (p, q) even though we shall often suppress this dependency in our notation. As noted in the previous
section, we shall define a particular subset of Vn and conjecture that this subset can replace Vn in Theorem
1.5. Before we can do so, we will need to impose an additional restriction on the pair of primes (p, q) beyond
that which appears in (1.2). This discussion begins with the following preliminary observation.

Proposition 2.1. Suppose that n ≥ 3 then there exists a unique positive real number t such that

m

(
phn

qhn−1

)t
= m

(
phn−1

qhn−2

)t
+m

(
phn−2

qhn−3

)t
,

and moreover, t ≥ 1.

We shall write tn to denote the value of t described in the conclusion of Proposition 2.1. For an integer
N ≥ 3, we say that the ordered pair of primes (p, q) is compatible with N if it satisfies (1.2) and

tN+1 < tN < tN−1 < · · · < t4 < t3.

Since this definition is rather exotic, we might be concerned that there exists N ≥ 3 for which there is no
compatible pair of primes. Luckily, our next result alleviates these concerns.

Theorem 2.2. Suppose that N ∈ Z is such that N ≥ 3. There exists δ > 0 such that if p and q are primes
satisfying ∣∣∣∣∣ log q

log p
− 1 +

√
5

2

∣∣∣∣∣ < δ

then (p, q) is compatible with N .

We recall that expressions of the form log q/ log p are dense in (0,∞). Consequently, we know that for
every N ≥ 3, there exist infinitely many pairs of primes (p, q) which are compatible with N . Moreover,
Theorem 2.2 shows that we may locate such pairs of primes by looking near the golden ratio.

We now define a new set Sn ⊆ Vn and we shall conjecture that Theorem 1.5 still holds even if Vn is
replaced by Sn in its statement. For the purposes of this discussion, if x = (x1, x2, . . . , xN ) ∈ Vn is such
that xi = 0 for all i > k, then we shall simply write x = (x1, x2, . . . , xk). In particular, we may always write
x = (x1, x2, . . . , xn). We note that that this change of notation does not create ambiguity regarding the
values of the measure functions fx(t) for any t > 0.

If i ∈ Z is such that 3 ≤ i ≤ n+ 1 we let

xn(i) = (0, 0, . . . , 0, 0︸ ︷︷ ︸
i−3 times

, hn+1−i, hn+2−i),

and for 2 ≤ n ≤ N , we define Sn = {xn(i) : 3 ≤ i ≤ n + 1}. To extend this definition to n = 1 we define
x1(2) = (1) and write S1 = {x1(2)}. It is easily verified from the definition that

xn(n+ 1) = (0, 0, . . . , 0, 0︸ ︷︷ ︸
n−1 times

, 1) ∈ Vn

for all n, and we shall call this point the trivial element of Vn. From these observations, we conclude that
that S1 ⊆ V1 and S2 ⊆ V2. By applying the the recurrence relation from the Fibonacci Sequence, we are
also able to obtain that

(2.1) xn(i) = xn−1(i) + xn−2(i) for all 3 ≤ i ≤ n− 1

and

(2.2) xn(n) = xn−1(n) + xn−2(n− 1).
4



Using induction on n, these observations combine to ensure that Sn ⊆ Vn for all 1 ≤ n ≤ N . Additionally,
we find it worth noting that #Sn = n− 1 for all n.

The definition of Sn makes this set appear more complicated than it actually is so we shall provide an
example which we believe provides clarification. Taking N = 7 and n = 5 then the vectors x5(i) are given
by

x5(3) =


2
3
0
0
0

 , x5(4) =


0
1
2
0
0

 , x5(5) =


0
0
1
1
0

 , x5(6) =


0
0
0
0
1


so that

S5 =




2
3
0
0
0

 ,


0
1
2
0
0

 ,


0
0
1
1
0

 ,


0
0
0
0
1


 .

In a similar manner we obtain that

S6 =




3
5
0
0
0
0

 ,


0
2
3
0
0
0

 ,


0
0
1
2
0
0

 ,


0
0
0
1
1
0

 ,


0
0
0
0
0
1




and

S7 =





5
8
0
0
0
0
0


,



0
3
5
0
0
0
0


,



0
0
2
3
0
0
0


,



0
0
0
1
2
0
0


,



0
0
0
0
1
1
0


,



0
0
0
0
0
0
1




.

We remind the reader that all of the above vectors are 7-dimensional since we have chosen N = 7. As our
notation permits, we have often omitted 0’s and the end of each vector. As promised, we believe that Sn
may replace Vn in Theorem 1.5.

Conjecture 2.3. Suppose that N ≥ 3 is an integer and (p, q) is pair of primes which is compatible with N .
If n is an integer with 1 ≤ n ≤ N then mt(αn) = min{fx(t) : x ∈ Sn} for all t > 0.

We shall discuss our progress in the direction of Conjecture 2.3 in Section 3. For now, we assert that if
Conjecture 2.3 is correct then it is both best possible and it resolves Question 1.4 in the affirmative.

Theorem 2.4. Suppose that N ≥ 3 is an integer and (p, q) is pair of primes compatible with N . If 1 ≤ n ≤ N
is such that mt(αn) = min{fx(t) : x ∈ Sn} for all t > 0 then the following conditions hold.

(i) If X ⊆ Vn is such that mt(αn) = min{fx(t) : x ∈ X} then Sn ⊆ X .
(ii) {t3, t4, . . . , tn−1, tn} are the exceptional points for αn. In particular, if 2 ≤ n ≤ N then αn has precisely

n− 2 exceptional points.

The second statement of Theorem 2.4 would indeed resolve Question 1.4 in the affirmative. After all, if we
wished to create a rational number having k exceptional points, we could apply Theorem 2.2 to obtain a pair
of primes (p, q) which is compatible with k + 2. Then by Theorem 2.4, under the assumption of Conjecture
2.3, we would obtain that αk+2 has k exceptional points.

5



3. Progress toward Conjecture 2.3

Since it can be easily checked that V1 = S1 and V2 = S2, Conjecture 2.3 holds in the cases where
n ∈ {1, 2}. Hence, it seems reasonable to attempt a proof by induction. As we shall see in this section, this
can be done for certain special cases of N , p and q, but there is an obstruction which prevents this method
from being further generalized. To demonstrate this progress as well as the obstruction, we must define two
relevant sets in addition to Vn and Sn defined earlier. For each of the subsequent definitions, we assume
that z = (z1, z2, . . . , zN ) ∈ Vn.

We say that z is almost consecutive-free if zjzj+1 6= 0 implies that zi = 0 for all i > j + 1. We write Cn to
denote the set of all almost consecutive-free elements in Vn. It is obvious from the definition that Sn ⊆ Cn,
but as our examples below will demonstrate, we do not have set equality.

Supposing that x1,x2, . . . ,xK ∈ ∪ni=1Vi, the K-tuple (x1,x2, . . . ,xK) is called a factorization of z if

z =

K∑
k=1

xk.

Of course, we shall treat two factorizations as equivalent if one is simply a permutation of the other. The point
xn(n+1) ∈ Vn has exactly one factorization, namely (xn(n+1)). All other elements z = (z1, z2, . . . , zN ) ∈ Vn
have at least two factorizations obtained by examining the sums

(3.1) z =

1∑
i=1

z and z =

N∑
i=1

zixi(i+ 1).

The left hand factorization in (3.1) is called the trivial factorization of z and the right hand factorization
is called the improper factorization of z. We say that the factorization (x1,x2, . . . ,xK) of z is an S-type
factorization if xk ∈ ∪ni=1Si for all 1 ≤ k ≤ K. An element is called S-restricted if all of its non-trivial
factorizations are S-type, and we write Rn to denote the set of all S-restricted elements of Cn.

Although many of our earlier definitions in the paper depended on the primes p and q, we note the sets
Cn and Rn have no such dependency. Strictly speaking, they do depend on N , however, any change in N
while keeping n fixed will simply add or remove a list of 0’s at the end of each element. We now provide an
improvement over Theorem 1.5 which enables our progress toward Conjecture 2.3.

Theorem 3.1. If n and N are positive integers such that 1 ≤ n ≤ N then

(3.2) Sn ⊆ Rn ⊆ Cn ⊆ Vn.
Moreover, if (p, q) is a pair of primes compatible with N , then the following conditions hold:

(i) mt(αn) = min{fx(t) : x ∈ Cn}
(ii) If mt(αi) = min{fx(t) : x ∈ Si} for all 1 ≤ i < n then mt(αn) = min{fx(t) : x ∈ Rn}.

Theorem 3.1 constitutes an improvement over Theorem 1.5, and moreover, it provides a further improve-
ment if we are willing to assume Conjecture 2.3 for all indices strictly smaller than n. It is worth noting
that we only rarely have Rn = Sn, and hence, Theorem 3.1 falls short of a proof of Conjecture 2.3. As of
this moment, we do not the believe that a minor improvement to the proof of Theorem 3.1 is sufficient to
obtain Conjecture 2.3. Among other things, the proof requires providing a proper non-trivial factorization
for elements of Vn \Sn, and as we shall see in the examples below, such a factorization does not always exist.

In spite of these shortcomings, Theorem 3.1 can be used to establish special cases of Conjecture 2.3. If
we can determine the points in Vn, then it is a simple computational exercise to search those points to find
those which lie in Cn. Once Cn is determined, then we may apply the following lemma to inductively list the
points in Rn.

Lemma 3.2. Suppose that n and N are positive integers such that 1 ≤ n ≤ N and z ∈ Cn \ Sn. Then
z 6∈ Rn if and only if there exist 1 ≤ i < n and x ∈ Ri \ Si such that all entries of z− x are non-negative.

In view of Lemma 3.2, we may apply the following four step process to list the points in Rn \ Sn:

(1) List the points in Vn.
(2) Test each point in Vn to see whether it satisfies the required conditions to belong to Cn.
(3) Form the sets Cn \ Sn.

6



(4) Assuming we have already found the points in Ri \ Si for all 1 ≤ i < n, use Lemma 3.2 to test each
point in Cn \ Sn for membership in Rn. This computation requires performing

#(Cn \ Sn) ·
n−1∑
i=1

#(Ri \ Si)

vector comparisons.

Since Vn can be quite large compared to n, listing its points is a non-trivial computational problem.
Nevertheless, Mathematica’s Solve command was sufficient to accomplish this goal for n ≤ 13. Using the
strategies outlined above, we have obtained complete lists of these sets when n ≤ 13. We shall provide
additional details in the discussion below, bur for now, we list their cardinalities.

n #Vn #Cn #Rn #Sn
1 1 1 1 1
2 1 1 1 1
3 2 2 2 2
4 3 3 3 3
5 6 4 4 4
6 13 5 5 5
7 38 7 7 6
8 139 11 8 7
9 695 20 10 8
10 4, 699 41 12 9
11 44, 359 104 18 10
12 589, 359 310 24 11
13 11, 197, 998 1101 44 12

One notable feature of this data is that Cn = Rn = Sn for all n ≤ 6, so we immediately obtain Conjecture
2.3 for all n ≤ 6 and all pairs of primes (p, q) which are compatible with N . As a result, we obtain rational
numbers having up to 4 exceptional points without doing any more work. If we wish to create more than
4 exceptional points using our method, we need to provide additional information regarding the sets Rn.
Specifically, we need to examine each point in z ∈ Ri \ Si, for all 1 ≤ i ≤ n, and show that

(3.3) fz(t) ≥ min{fx(t) : x ∈ Si}.
We are able to accomplish this goal for n ≤ 13 by calculating the points in Rn \Sn for all n ≤ 13 and testing
each one for inequality (3.3).

In order to abbreviate our reporting of the points in Rn \ Sn, we note that the map λ : RN → RN given
by

λ(((x1, x2, . . . , xN )) = (0, x1, x2, . . . , xN−1)

defines an injection from Vn−1 to Vn for any 2 ≤ n ≤ N . Moreover, it can be shown that

λ(Rn−1) ⊆ Rn and λ(Rn−1 \ Sn−1) ⊆ Rn \ Sn.2

Therefore, when reporting the vectors in Rn \ Sn, it is sufficient to record only the points in

∆n := (Rn \ Sn) \ λ(Rn−1 \ Sn−1).

We caution the reader that we are currently unable to prove that

fz(t) ≥ min{fx(t) : x ∈ Sn−1} =⇒ fλ(z)(t) ≥ min{fx(t) : x ∈ Sn} for all z ∈ Sn−1.

Therefore, even though we shall only report points in ∆n, we must test all points of Rn \ Sn for (3.3) at
each step rather than only those in ∆n. Our data regarding the points in ∆n are in the table below.

2These set containments are still correct when Rn−1 and Rn are replaced with Sn−1, Cn−1 or Vn−1 and Sn, Cn or Vn,
respectively.
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n ∆n

1 None
2 None
3 None
4 None
5 None
6 None
7 (1, 0, 0, 4)
8 None
9 (1, 0, 0, 3, 0, 3)
10 (1, 0, 0, 2, 0, 6)
11 (1, 0, 0, 0, 0, 11), (1, 0, 0, 1, 0, 8, 0, 1), (1, 0, 0, 1, 0, 9, 1),

(1, 0, 0, 2, 0, 5, 0, 2), (1, 0, 0, 3, 0, 2, 0, 3)
12 (1, 0, 0, 0, 0, 10, 0, 3), (1, 0, 0, 1, 0, 7, 0, 4), (1, 0, 0, 1, 0, 9, 0, 0, 2),

(1, 0, 0, 2, 0, 4, 0, 5), (1, 0, 0, 3, 0, 1, 0, 6)
13 (1, 0, 0, 0, 0, 8, 0, 8), (1, 0, 0, 0, 0, 9, 0, 5, 0, 1), (1, 0, 0, 0, 0, 9, 0, 6, 1), (1, 0, 0, 0, 0, 10, 0, 2, 0, 2),

(1, 0, 0, 1, 0, 5, 0, 9), (1, 0, 0, 1, 0, 6, 0, 6, 0, 1), (1, 0, 0, 1, 0, 6, 0, 7, 1), (1, 0, 0, 1, 0, 7, 0, 3, 0, 2),
(1, 0, 0, 1, 0, 8, 0, 0, 0, 3), (1, 0, 0, 2, 0, 2, 0, 10), (1, 0, 0, 2, 0, 3, 0, 7, 0, 1), (1, 0, 0, 2, 0, 3, 0, 8, 1),

(1, 0, 0, 2, 0, 4, 0, 4, 0, 2), (1, 0, 0, 2, 0, 5, 0, 1, 0, 3), (1, 0, 0, 3, 0, 0, 0, 8, 0, 1), (1, 0, 0, 3, 0, 0, 0, 9, 1),
(1, 0, 0, 3, 0, 0, 1, 10), (1, 0, 0, 3, 0, 1, 0, 5, 0, 2), (1, 0, 0, 3, 0, 2, 0, 2, 0, 3)

Our methods for computing Rn seem to be insufficient for n = 14. Specifically, our methods require that
we first compute Vn en route to computing Cn followed by Rn. Hence, in order to provide more data, we
would need to accomplish one of the following goals:

(1) Find a way to determine Cn or Rn without first listing the points in Vn.
(2) Find a more efficient way to compute Vn than using Mathematica’s Solve command.

Even with improved computational methods, we don’t believe the technique outlined in this section may
be used to prove Conjecture 2.3. For example, the only factorizations of (1, 0, 0, 4) ∈ R7 are the trivial
and improper factorizations, and neither such factorization provides assistance in proving (3.3). When we
provide the proofs of these results in Section 6, we shall see explicitly why these factorizations are not useful.

Nevertheless, we are able to use the data provided above to solve Conjecture 2.3 when n ≤ 13 by verifying
(3.3) for each relevant point. For the purposes of this discussion, we shall take N = 13 and (p, q) =
(1879, 198301) and we verify using Mathematica that our choice of (p, q) is compatible with 13 (In fact, it
can be shown that 21 is the largest integer with which these primes are compatible). According to Theorem
3.1(ii), to prove that mt(α7) = min{fx(t) : x ∈ S7} it remains only to show that

f(1,0,0,4)(t) ≥ min{fx(t) : x ∈ S7}.

We see the graphs of the relevant functions below. Notice that the measure function for (1, 0, 0, 4) (the
dashed curve) always lies above the minimum of the measure functions for points in S7 (the solid curves).
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As a result, we have now established that mt(α7) = min{fx(t) : x ∈ S7}, and in view of Theorem 2.4,
we know that α7 has 5 exceptional points. The above diagram shows only 4 exceptional points t7, t6, t5 and
t4 while t3 lies off the page. Since we currently know the elements of Rn \ Sn for n ≤ 13, we can perform
similar calculations when n ∈ {8, 9, 10, 11, 12, 13} which lead us to a resolution of Conjecture 2.3 in these
cases. In particular, Theorem 2.4 establishes that

α13 =
1879233

198301144

has 11 exceptional points.

4. Proofs of Proposition 2.1 and Theorem 2.2

The proof of Proposition 2.1 is very straightforward and we begin this subsection with its short proof.

Proof of Proposition 2.1. We define g : (0,∞)→ (0,∞) by

g(t) =

(
m

(
phn−1

qhn−2

)t
+m

(
phn−2

qhn−3

)t)1/t

We first observe that

lim
t→0+

g(t) =∞ and lim
t→∞

g(t) = m

(
phn−1

qhn−2

)
,

so we certainly have that

lim
t→0+

g(t) > m

(
phn

qhn−1

)
> lim
t→∞

g(t).

It can easily verified that g is strictly decreasing so that the first statement of Proposition follows. To see
the second statement, we notice that

g(1) = max{log phn−1 , log qhn−2}+ max{log phn−2 , log qhn−3}

≥ max{log phn−1 + log phn−2 , log qhn−2 + log qhn−3}

= max{log phn , log qhn−1}.
These observations yield

g(1) ≥ m
(
phn

qhn−1

)
and the result follows immediately. �
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In Sections 1 and 2, we noted that many of our definitions depended on particular choices of N , p and q.
However, we often suppressed that dependency in order to prevent the notation from becoming excessively
cumbersome. Unfortunately, the most natural proof of Theorem 2.2 studies the behavior of measure functions
as p and q are chosen so that log q/ log p approaches the golden ratio. As a result, we must employ more
robust notation than we had previously used.

In view of these observations, we shall now write tn(p, q) to denote the unique positive real number such
that

m

(
phn

qhn−1

)tn(p,q)

= m

(
phn−1

qhn−2

)tn(p,q)

+m

(
phn−2

qhn−3

)tn(p,q)

.

From Proposition 2.1 we know that tn(p, q) ≥ 1. We must now consider an analog of Proposition 2.1 which
does not depend on primes p and q. We let φ denote the golden ratio.

Lemma 4.1. If n ≥ 3 then the exists a unique positive real number t such that

max{hn, φhn−1}t = max{hn−1, φhn−2}t + max{hn−2, φhn−3}t,
and moreover, t ≥ 1.

The proof of Lemma 4.1 is extremely similar to that of Proposition 2.1 so we need not include it here.
We shall now write sn to denote the unique positive real number such that

(4.1) max{hn, φhn−1}sn = max{hn−1, φhn−2}sn + max{hn−2, φhn−3}sn ,
and note that sn ≥ 1. In order to establish Theorem 2.2, we must prove that tn(p, q) > tn+1(p, q) for all
3 ≤ n ≤ N provided that log q/ log p is sufficiently close to the golden ratio. To this end, we shall first prove
the following lemma.

Lemma 4.2. sn > sn+1 for all n ≥ 3.

Proof. We shall prove the lemma by contradiction so suppose that n ≥ 3 is such that sn ≤ sn+1 and consider
two cases.

Case 1: We assume first that n is odd so that

(4.2)
hn−1

hn−2
<
hn+1

hn
< φ <

hn
hn−1

<
hn−2

hn−3
.

where we utilize the convention that h1/h0 = ∞ so that these inequalities necessarily make sense. In this
situation, we apply the definitions of sn and sn+1 to obtain that

hsnn = (φhn−2)sn + hsnn−2 and (φhn)sn+1 = hsn+1
n + (φhn−2)sn+1 .

Then setting yn = hn/hn−2 we are lead to

φ = (ysnn − 1)
1/sn and φ =

yn
(y
sn+1
n − 1)1/sn+1

The function t 7→ (ytn − 1)1/t is easily shown to be increasing, and therefore, we conclude that

φ ≤ yn
(ysnn − 1)1/sn

=
yn
φ
.

These inequalities yield

0 = φ2 − φ− 1 ≤ yn − φ− 1 =
hn
hn−2

− 1− φ =
hn−1

hn−2
− φ.

By (4.2), the right hand side of these inequalities is negative, a contradiction.
Case 2: We must now suppose that n is even so that

hn−2

hn−3
<

hn
hn−1

< φ <
hn+1

hn
<
hn−1

hn−2
.

In this case, we must have that hn−3 > 0 so that the above inequalities make sense. As in the previous case,
we apply the definition of sn and sn+1, but in this case we obtain

(φhn−1)sn = hsnn−1 + (φhn−3)sn and h
sn+1

n+1 = (φhn−1)sn+1 + h
sn+1

n−1 .
10



Isolating hn−1/hn−3 and hn+1/hn−1 we find that

(4.3)
hn−1

hn−3
=
(
1− φ−sn

)−1/sn
and

hn+1

hn−1
= (φsn+1 + 1)

1/sn+1 .

We now note that t 7→ (φt + 1)1/t is decreasing so that

hn+1

hn−1
≤ (φsn + 1)

1/sn .

Next, we observe that hn+1 = 3hn−1 − hn−3 and deduce that

3− hn−3

hn−1
=

3hn−1 − hn−3

hn−1
=
hn+1

hn−1
≤ (φsn + 1)

1/sn .

Now using the left hand equation of (4.3), we obtain that

(4.4) 3 ≤
(
1− φ−sn

)1/sn
+ (φsn + 1)

1/sn

We can check that sn = 1 provides equality in the inequality (4.4), and moreover, the right hand side of the
inequality is strictly decreasing as a function of sn. These assertions force sn = 1 and contradict the left
hand equality of (4.3). �

Our next goal is to show that tn(p, q) is as close as we like to sn provided that log q/ log p is sufficiently
close to φ. This assertion, made rigorous in the following lemma, mostly completes the proof of Theorem
2.2.

Lemma 4.3. Let ε > 0 and n ≥ 3 be an integer. There exists δ > 0 such that if | log q/ log p− φ| < δ then
|sn − tn(p, q)| < ε.

Proof. Suppose that the assertion is false so there exists a sequence {(pk, qk)}∞k=1 of pairs of primes such
that

lim
k→∞

log qk
log pk

= φ and |sn − tn(pk, qk)| ≥ ε.

For simplicity, we shall now write r = sn and rk = tn(pk, qk) so we have that |r − rk| ≥ ε for all k ∈ N. By
definition of rk we obtain that

m

(
phn

k

q
hn−1

k

)
=

(
m

(
p
hn−1

k

q
hn−2

k

)rk
+m

(
p
hn−2

k

q
hn−3

k

)rk)1/rk

,

which simplifies to

(4.5) max

{
hn,

log qk
log pk

hn−1

}
=

(
max

{
hn−1,

log qk
log pk

hn−2

}rk
+ max

{
hn−2,

log qk
log pk

hn−3

}rk)1/rk

.

Before proceeding, we claim that {rk} is a bounded sequence. By Proposition 2.1, we have that rk ≥ 1,
so it is sufficient to show that {rk} is bounded from above. If {rk} is not bounded from above, there exists
a subsequence {rki} such that rki → ∞ as i → ∞. Assuming first that n is odd, we use the fact that
limk→∞ log qk/ log pk = φ to assume without loss of generality that

hn+1

hn
<

log qki
log pki

<
hn+2

hn+1
<

hn
hn−1

.

Now applying (4.5) we deduce that

hn = max

{
hn,

log qki
log pki

hn−1

}
≤
((

hn+2hn−2

hn+1

)rki

+ h
rki
n−2

)1/rki

.

We take the limit of both sides as i→∞ to obtain that

hn ≤ lim
i→∞

((
hn+2hn−2

hn+1

)rki

+ h
rki
n−2

)1/rki

= lim
t→∞

((
hn+2hn−2

hn+1

)t
+ htn−2

)1/t

=
hn+2hn−2

hn+1
<
hnhn−2

hn−1

11



which leads to hn−1 < hn−2, a contradiction. In case n is even, we assume that

hn
hn−1

<
log qki
log pki

<
hn+1

hn
<
hn−1

hn−2
.

Under these assumptions, we obtain that

log qki
log pki

hn−1 = max

{
hn,

log qki
log pki

hn−1

}
≤
(
h
rki
n−1 +

(
hn−1hn−3

hn−2

)rki
)1/rki

.

and taking limits of both sides as i → ∞ yields φhn−1 ≤ hn−1 another contradiction. Hence, we have now
established that {rk} is bounded.

By possibly replacing {rk} with a convergent subsequence, we may assume without loss of generality that
limk→∞ rk = r′. Moreover, since rk ≥ 1 for all k we know that r′ ≥ 1. Now define f : (0,∞)× (0,∞)→ R
by

f(x, t) =
(
max{hn−1, xhn−2}t + max{hn−2, xhn−3}t

)1/t
so that f is continuous at all points (x, t) in its domain with respect to the usual Euclidean norm. We
observe that (4.5) now becomes

(4.6) max

{
hn,

log qk
log pk

hn−1

}
= f

(
log qk
log pk

, rk

)
and using the continuity of f we get that

(4.7) lim
k→∞

f

(
log qk
log pk

, rk

)
= f

(
lim
k→∞

(
log qk
log pk

, rk

))
= f(φ, r′).

Taking limits of both sides of (4.6) as k →∞ and applying (4.7) we obtain that

max {hn, φhn−1} = lim
k→∞

max

{
hn,

log qk
log pk

hn−1

}
= lim
k→∞

f

(
log qk
log pk

, rk

)
= f(φ, r′)

which is equivalent to

max {hn, φhn−1}r
′

= max{hn−1, φhn−2}r
′
+ max{hn−2, φhn−3}r

′
.

Now using the definition of r = sn and the uniqueness established in Lemma 4.1, we conclude that r = r′ so
that limk→∞ rk = r contradicting our assumption that |rk − r| ≥ ε. �

With Lemmas 4.2 and 4.3 we have finished the majority of the proof of Theorem 2.2. We include the
remainder of that proof now.

Proof of Theorem 2.2. Let ε = min{(sn − sn+1)/2 : 3 ≤ n ≤ N} and note that Lemma 4.2 implies that
ε > 0. From Lemma 4.3 there must exist δ > 0 such that if | log q/ log p − φ| < δ then |sn − tn(p, q)| < ε.
Assuming that q and p are such that | log q/ log p− φ| < δ we obtain that

sn − tn(p, q) ≤ |sn − tn(p, q)| < ε <
1

2
(sn − sn+1)

and

tn+1(p, q)− sn+1 ≤ |sn+1 − tn+1(p, q)| < ε <
1

2
(sn − sn+1).

Adding these inequalities we find that sn− tn(p, q)+ tn+1(p, q)−sn+1 < sn−sn+1 and the result follows. �

We find it worth noting that we are aware of a more direct proof of Theorem 2.2. Specifically, there is a
proof which does not require the use of the points sn or Lemmas 4.1 and 4.2. Nevertheless, we find the above
proof to be more informative because it establishes not only that tn(p, q) satisfy the required inequalities,
but also that these points approach sn as log q/ log p → φ. As a result, in order to study the structure of
the set {t3(p, q), t4(p, q), . . . , tN (p, q)}, it may instead be possible to study {s3, s4, s5, . . .}. Our above proof
of Theorem 2.2 is an example of this strategy.
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5. Proof of Theorem 2.4

For the remainder of this article, we shall return to the notation utilized in Sections 1, 2 and 3. Specifically,
we assume that N ≥ 3 is an integer and that Vn and Sn are defined as above for 1 ≤ n ≤ N . Additionally,
we suppose that p and q are primes satisfying (1.2), and if 3 ≤ n ≤ N , we let tn be the unique positive real
number such that

m

(
phn

qhn−1

)tn
= m

(
phn−1

qhn−2

)tn
+m

(
phn−2

qhn−3

)tn
.

By Proposition 2.1 we know that tn ≥ 1. Our proof of Theorem 2.4 utilizes a result which describes
min{fx(t) : x ∈ Sn} as a piecewise function using measure functions.

Theorem 5.1. Suppose that N is a positive integer and (p, q) is a pair of primes compatible with N . If
3 ≤ n ≤ N then

min{fx(t) : x ∈ Sn} =


fxn(3)(t) if t3 ≤ t
fxn(i)(t) if ti ≤ t ≤ ti−1 for some 4 ≤ i ≤ n
fxn(n+1)(t) if t ≤ tn.

Moreover, if t 6∈ {t3, t4, . . . , tn} then there exists a unique point z ∈ Sn such that fz(t) = min{fx(t) : x ∈ Sn}.

Note that Theorem 5.1 excludes the cases where n ∈ {1, 2}. However, since S1 and S2 each contain one
element, the behavior of min{fx(t) : x ∈ Sn} is rather trivial in these cases.

The proof of Theorem 5.1 requires a lemma which describes the relationship between the points ti and
the functions fxn(i)(t).

Lemma 5.2. If 3 ≤ i ≤ n ≤ N and xn(i) then the following conditions hold.

(i) fxn(i)(ti) = fxn(i+1)(ti)
(ii) fxn(i)(t) > fxn(i+1)(t) for all t < ti

(iii) fxn(i)(t) < fxn(i+1)(t) for all t > ti

Proof. We first show that ti is the unique positive real number such that fxn(i+1)(ti) = fxn(i)(ti). Directly
applying the definition of xn(i), we obtain that

fxn(i)(t)
t = hn+1−im

(
phi−2

qhi−3

)t
+ hn+2−im

(
phi−1

qhi−2

)t
.

Also using the definition of xn(i) we find that

xn(i+ 1) = ( 0, 0, . . . , 0, 0︸ ︷︷ ︸
i−2 times

, hn−i, hn+1−i)

so that

fxn(i+1)(t)
t = hn−im

(
phi−1

qhi−2

)t
+ hn+1−im

(
phi

qhi−1

)t
.

We note immediately that the equality fxn(i)(t) = fxn(i+1)(t) is equivalent to

hn+1−im

(
phi−2

qhi−3

)t
+ hn+2−im

(
phi−1

qhi−2

)t
= hn−im

(
phi−1

qhi−2

)t
+ hn+1−im

(
phi

qhi−1

)t
which simplifies to

hn+1−im

(
phi−2

qhi−3

)t
+ (hn+2−i − hn−i)m

(
phi−1

qhi−2

)t
= hn+1−im

(
phi

qhi−1

)t
By using the recurrence relation from the Fibonacci sequence, we find this to be equivalent to

hn+1−im

(
phi−2

qhi−3

)t
+ hn+1−im

(
phi−1

qhi−2

)t
= hn+1−im

(
phi

qhi−1

)t
13



Since we have assumed that i ≤ n, we know that hn+1−i > 0. Hence, we have shown that

fxn(i)(t) = fxn(i+1)(t) ⇐⇒ m

(
phi−2

qhi−3

)t
+m

(
phi−1

qhi−2

)t
= m

(
phi

qhi−1

)t
,

and it follows from Lemma 2.1 that ti is the unique positive real number such that fxn(i)(ti) = fxn(i+1)(ti).
By a similar argument, we also obtain that

fxn(i)(t) > fxn(i+1)(t) ⇐⇒

(
m

(
phi−2

qhi−3

)t
+m

(
phi−1

qhi−2

)t)1/t

> m

(
phi

qhi−1

)
,

and

fxn(i)(t) < fxn(i+1)(t) ⇐⇒

(
m

(
phi−2

qhi−3

)t
+m

(
phi−1

qhi−2

)t)1/t

< m

(
phi

qhi−1

)
.

In both of the right hand inequalities, the expression on the right is constant and the expression on the left
is strictly decreasing as a function of t. The remaining statements of the lemma now follow immediately. �

Equipped with the previous lemma, we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. We first suppose that t ≥ t3 so that the definition of combatible means that tn <
tn−1 < · · · < t4 < t3 ≤ t. Hence, we may apply Lemma 5.2(iii) to conclude that

(5.1) fxn(3)(t) ≤ fxn(4)(t) < · · · < fxn(n)(t) < fxn(n+1)(t)

and the result follows. On the other hand, if we consider the case where t ≤ tn then we have t ≤ tn < tn−1 <
· · · < t4 < t3 and we apply Lemma 5.2(ii) to conclude that

(5.2) fxn(n+1)(t) ≤ fxn(n)(t) < · · · < fxn(4)(t) < fxn(3)(t)

and the result follows in this case as well. Finally, we suppose that 4 ≤ i ≤ n and that ti ≤ t ≤ ti−1 which
means that

tn < tn−1 < · · · ti+1 < ti ≤ t ≤ ti−1 < ti−1 < · · · < t4 < t3.

Then applying Lemma 5.2(iii) we get that

(5.3) fxn(i)(t) ≤ fxn(i+1)(t) < · · · < fxn(n)(t) < fxn(n+1)(t),

and by applying Lemma 5.2(ii) we obtain that

(5.4) fxn(i)(t) ≤ fxn(i−1)(t) < · · · < fxn(4)(t) < fxn(3)(t)

so the result follows in this case as well. The final assertion of the theorem follows from the fact that the
inequalities in (5.1), (5.2), (5.3) and (5.4) are all strict inequalities when t 6∈ {t3, t4, . . . , tn}. �

Theorem 5.1 constitutes the majority of the proof of Theorem 2.4, however, there are some additional
details that need to be sorted out.

Lemma 5.3. Suppose that 1 ≤ n ≤ N and that x,y ∈ Vn. If fx(t) = fy(t) for infinitely many values of
t ∈ (0,∞) then x = y.

Proof. Suppose that x = (x1, x2, . . . , xN ) and y = (y1, y2, . . . , yN ) so that

fx(t) =

(
N∑
i=1

xim

(
phi

qhi−1

)t)1/t

and fy(t) =

(
N∑
i=1

yim

(
phi

qhi−1

)t)1/t

.

Supposing that x 6= y then we may assume that j is the largest integer such that xj 6= yj , and we assume
without loss of generality that xj > yj . Consequently, we find that

lim
t→∞

(
fx(t)t − fy(t)t

)1/t
= m

(
phj

qhj−1

)
> 0,

and therefore, fx(t) > fy(t) for all sufficiently large t. We have now established the existence of a closed
interval I ⊆ [0,∞) such that fx(t) = fy(t) for infinitely many values of t ∈ I. Since t 7→ fx(t)t and t 7→ fy(t)t

define entire functions for t ∈ C, we conclude that fx(t) = fy(t) for all t ∈ C, a contradiction. �
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All of our previous lemmas enable the proof of Theorem 2.4.

Proof of Theorem 2.4. To prove the first assertion, we assume that X ⊆ Vn is such thatmt(αn) = min{fx(t) :
x ∈ X}. Of course, we also assume that mt(αn) = min{fx(t) : x ∈ Sn}. It is easily checked that #S1 =
#V1 = 1 and #S2 = #V2 = 1 so the assertion is trivial in the cases of n ∈ {1, 2}. Therefore, we may assume
that 3 ≤ n ≤ N and are permitted to apply Theorem 5.1.

We must now prove that xn(i) ∈ X for all 3 ≤ i ≤ n + 1. First assuming that 4 ≤ i ≤ n, Theorem 5.1
implies that mt(αn) = fxn(i)(t) for all t ∈ [ti, ti−1]. By our assumptions, for each t ∈ [ti, ti−1] there must
exist yt ∈ X such that fyt

(t) = fxn(i)(t). Since X is certainly finite, the pigeonhole principle implies the
existence of y ∈ X such that fy(t) = fxn(i)(t) for infinitely many values of t ∈ (0,∞). Then Lemma 5.3
yields that xn(i) = y ∈ X as required. A similar argument applies in the cases where i = 3 and i = n + 1
which completes the proof of the first assertion.

We must now prove that {t3, t4, . . . , tn} is the precise set of exceptional points for αn. It clearly follows
from Theorem 5.1 that all points outside of this set are standard. If ti is standard for αn then there exists
ᾱ ∈ P(α) and 0 < ε < min{ti − ti+1 : 3 ≤ i ≤ n} such that mt(αn) = fᾱ(t) for all t ∈ (ti − ε, ti + ε). Now it
follows from Theorem 5.1 that

fᾱ(t) = fxn(i+1)(t) for all t ∈ (ti − ε, ti)
and

fᾱ(t) = fxn(i)(t) for all t ∈ (ti, ti + ε).

Since t 7→ fᾱ(t)t, t 7→ fxn(i+1)(t)
t and t 7→ fxn(i)(t)

t define analytic functions for t ∈ C, we conclude that
they are all equal for t ∈ C. This forces fxn(i+1)(t) = fxn(i)(t) for all t ∈ (0,∞), and Lemma 5.3 implies
that xn(i+ 1) = xn(i), a contradiction. �

6. Proof of Theorem 3.1

The proof of the set containments (3.2) in Theorem 3.1 requires the following linear algebra lemma.

Lemma 6.1. Suppose that 1 ≤ i ≤ N and that z = (z1, z2, . . . , zN ) ∈ Vi. If there exists 2 ≤ j ≤ i such that
z` = 0 for all ` 6∈ {j − 1, j} then z = xi(j + 1). In particular, z ∈ Si.

Proof. Since z,xi(j + 1) ∈ Vi, we immediately notice that A(z − xi(j + 1)) = 0. However, both vectors z
and xi(j + 1) have 0’s in every entry except possibly in entries j − 1 and j. Therefore, it follows that

(6.1)

(
hj−1 hj
hj−2 hj−1

)((
zj−1

zj

)
−
(
hi−j
hi−j+1

))
= 0

It is a straightforward proof by induction on j that the 2 × 2 matrix on the left hand side of (6.1) has
determinant equal to (−1)j . The result now follows by multiplying both sides of (6.1) by the inverse of this
matrix. �

The proof of the set containments in (3.2) at the beginning of Theorem 3.1 can be done immediately, so
we include that proof here. The remainder of the proof of Theorem 3.1 is provided later in this section.

Proof of (3.2). It follows directly from the definitions that Rn ⊆ Cn ⊆ Vn, so it remains only to show that
Sn ⊆ Rn. Suppose that z ∈ Sn so we know that z must have the form

z = (0, 0, . . . , 0, 0︸ ︷︷ ︸
j−2 times

, zj−1, zj)

for some 1 ≤ j ≤ n (In the case j = 1, our notation should be interpreted as z = (zj)). Further suppose that
(y1,y2, . . . ,yK) is factorization of z and fix k ∈ Z such that 1 ≤ k ≤ K. We must show that there exists i
such that yk ∈ Si. To see this, we first observe that yk must have a zero in every every except possibly in
the (j − 1)th and jth entries so we may write

(6.2) yk = (0, 0, . . . , 0, 0︸ ︷︷ ︸
j−2 times

, yj−1, yj).

Moreover, we know from the definition of factorization that yk ∈ Vi for some i, and note that we must have
j ≤ i+ 1 because otherwise yk = 0 6∈ Vi. Now we consider the following three cases.
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(1) If j = 1 then Ayk = (yj , 0) forcing i = 1 and yj = 1. This means that yk = xi(2).
(2) If 2 ≤ j ≤ i then Lemma 6.1 yields that yk = xi(j + 1).
(3) If j = i+ 1 then yj = 0 and yj−1 = 1 so that yk = xi(j).

In all cases, we observe that y ∈ Si as required. �

In order to complete the proof of Theorem 3.1, we shall require several additional definitions and prelimi-
nary lemmas. We once again remind the reader that all definitions depend on the choices of N , p and q even
though our notation will not reflect these dependencies. For a point x ∈ Vn, we define define the infimum
attaining set for x to be

Ux = {t ∈ (0,∞) : mt(αn) = fx(t)}.
The following lemma establishes that we may essentially disregard any point x ∈ Vn for which Ux is finite.

Lemma 6.2. Suppose that X ⊆ Y ⊆ Vn and that Uz is finite for all z ∈ Y \X . If mt(αn) = min{fx(t) : x ∈
Y} then mt(αn) = min{fx(t) : x ∈ X}.

Proof. Suppose that y ∈ Y and that s ∈ (0,∞) are such that ms(αn) = fy(s). We need to show that there
exists x ∈ X such that ms(αn) = fx(s). To see this, let {si}∞i=1 be a sequence of distinct points in (0,∞)
converging to s. For each i, there exists a point xi ∈ Y such that msi(αn) = fxi

(si). Since Y is finite,
we apply the Pigeonhole Principle to assume without loss of generality that there exists x ∈ Y such that
msi(αn) = fx(si) for all i. This assertion clearly means that Ux is infinite, so we conclude that x ∈ X .
Moreover, by continuity of the maps t 7→ fx(t) and t 7→ mt(αn) we deduce that

fx(s) = lim
i→∞

fx(si) = lim
i→∞

msi(αn) = ms(αn)

which completes the proof of the lemma. �

Our next lemma gives us a strategy to prove that Uz is finite given a particular factorization of z.

Lemma 6.3. If z ∈ Vn and (x1,x2, . . . ,xK) is a factorization of z then

(6.3) Uz ⊆
K⋂
k=1

Uxk
.

Proof. Suppose that t ∈ Uz and assume without loss of generality that t 6∈ Ux1
. Additionally, we may assume

that x1 ∈ Vj for some 1 ≤ j ≤ n. Since t 6∈ Ux1
there must exist y ∈ Vj such that fx1

(t) > fy(t). Then
using the linearity of the map x 7→ fx(t)t and setting z′ = y + x2 + · · ·+ xK we obtain that

fz(t)t =

K∑
k=1

fxk
(t)t > fy(t) +

K∑
k=2

fxk
(t)t = fz′(t)

t.

Moreover, z′ certainly has non-negative integer entries and A(z′) = A(z). This implies that z′ ∈ Vn so we
contradict the fact that t ∈ Uz. �

The combination of Lemmas 6.2 and 6.3 suggests a strategy to prove Conjecture 2.3. If z = (z1, . . . , zn) ∈
Vn \ Sn has a factorization satisfying the hypotheses of Lemma 6.3, then we can show that Uz is finite
by showing that ∩Kk=1Uxk

is finite. Then we may apply Lemma 6.2 to eliminate each such point z from
consideration in mt(αn).

The main advantage of this approach is that it is often easier to study Uxk
than it is to study Uz. For

example, if we are attempting to prove Conjecture 2.3 by induction on n, then any non-trivial factorization
(x1,x2, . . . ,xK) will have xk ∈ Vi for some 1 ≤ i < n. Therefore, we would have the inductive hypothesis
that

mt(αi) = min{fx(t) : x ∈ Si} for all 1 ≤ i < n

to assist us in showing that ∩Kk=1Uxk
is finite.

The primary disadvantage of the above strategy is that it cannot be used with the factorizations defined
by (3.1). Indeed, the former has K = 1 and z = x1 so Lemma 6.3 provides no information, and the latter
satisfies

K⋂
k=1

Uxk
= (0, tj ],
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where j is the largest index such that zj 6= 0. Hence, we would need to obtain a more creative factorization for
z than those appearing in (3.1), and unfortunately, such a factorization does not always exist. For example,
it can be shown that the only factorizations of (1, 0, 0, 4) ∈ V7 are the trivial and improper factorizations.
As a result, this strategy cannot be used to provide a complete proof of Conjecture 2.3, although it does
lead to the remainder of our proof of Theorem 3.1.

Remainder of the Proof of Theorem 3.1. To prove (i), it is sufficient to assume that z ∈ Vn \ Cn and prove
that Uz is finite. Indeed, then Lemma 6.2 would imply the desired result. To see this, we assume that
z = (z1, z2, . . . , zN ) ∈ Vn and there exists 1 ≤ j < N − 1 satisfying the following properties:

(1) zj 6= 0 and zj+1 6= 0
(2) There exists k > j + 1 such that zk 6= 0.

By our assumptions, we surely have that j + 1 < k < n and we write

z′i =

{
zi if i 6∈ {j, j + 1, k}
zi − 1 if i ∈ {j, j + 1, k}.

From our assumptions we know that z′i ≥ 0 for all 1 ≤ i ≤ N . Now we observe that

(z1, z2, . . . , zN ) = (0, 0, . . . , 0, 0︸ ︷︷ ︸
j−1 times

, 1, 1, 0, 0, . . . , 0, 0︸ ︷︷ ︸
N−j−1 times

) + (0, 0, . . . , 0, 0︸ ︷︷ ︸
k−1 times

, 1, 0, 0, . . . , 0, 0︸ ︷︷ ︸
N−k times

) + (z′1, z
′
2, . . . , z

′
N )

= xj+2(j + 2) + xk(k + 1) +

N∑
i=1

z′ixi(i+ 1)

However, using Lemma 5.2, we conclude that

Uxj+2(j+2) ⊆ [tj+2, tj+1] and Uxk(k+1) ⊆ (0, tk].

We also know that k ≥ j + 2 so these intervals have at most one point in common. It now follows from
Lemma 6.3 that Uz is finite establishing (i).

We now complete the proof by establishing (ii). From (i), we know that mt(αn) = min{fx(t) : x ∈ Cn} so
we assume that z ∈ Cn \Rn. Again, it is sufficient to show that Uz is finite. Since z 6∈ Rn, there must exist a
nontrivial factorization (x1,x2, . . . ,xK) which is not S-restricted. We assume without loss of generality that
x1 ∈ Vi \ Si, and since z ∈ Cn, we may also assume that x1 ∈ Ci. Because (x1,x2, . . . ,xK) is a non-trivial
factorization, we know that 1 ≤ i < n, and therefore our assumption yields

fx1(t) ≥ mt(αi) = min{fx(t) : x ∈ Si} for all t > 0.

If Ux1
is infinite, then by the Pigeonhole Principle, there exists y ∈ Si such that fx1

(t) = fy(t) for infinitely
many values of t. Lemma 5.3 implies that x1 = y contradicting our assumption that x1 6∈ Si. �

Our last remaining task is to prove Lemma 3.2.

Proof of Lemma 3.2. We first assume that there x ∈ Ri \Si is such that all entries of z−x are non-negative
and write z− x = (y1, y2, . . . , yN ), where yi ≥ 0. Therefore, we conclude that

z = x + (z− x) = x +

N∑
i=1

yixi(i+ 1).

We cannot have x = z because then x ∈ Rn contradicting our assumption that x ∈ Ri for 1 ≤ i < n.
Additionally, we have assumed that x 6∈ Si so that we have identified a factorization of z which is not
S-type, as required.

To prove the other statement we must show that z ∈ Cn \ Rn implies that there exists 1 ≤ i < n and
x ∈ Ri \ Si such that the entires of z− x are non-negative. We shall prove this assertion using induction on
n and we note that the base case is vacuously correct since C1 \ R1 = ∅. For the inductive step, we assume
that for every k < n, y ∈ Ck \ Rk implies that there exists 1 ≤ i < k and x ∈ Ri \ Si such that the entires
of y − x are non-negative.
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Assuming that z ∈ Cn \ Rn we know that z must have a non-trivial factorization which is not S-type.
Therefore, we may write

(6.4) z = y +

L∑
`=1

x`,

where y ∈ Ck \ Sk and x` ∈ ∪n−1
i=1 Ci. If y ∈ Rk then we use x = y and i = k to conclude the desired result.

If y 6∈ Rk then the inductive hypothesis identifies a value j, with 1 ≤ j < k, and x ∈ Rj \Sj such that y−x
has only non-negative entries. Using these observations in (6.4), we obtain that

z− x = y − x +

L∑
`=1

x`

must have only non-negative entires, completing the proof.
�

By making a basic linear programming observation, it is possible to make an additional minor improvement
to the results of Theorem 3.1. A point z ∈ Rn is called a vertex of Rn if z cannot be written as a convex
combination of the other points in Rn. Since the map x 7→ fx(t)t is a linear map, it is well-known that
min{fx(t) : x ∈ Rn} must be attained at a vertex of Rn. In conjunction with Lemma 5.3, these observations
imply that each non-vertex of Rn may only attain the infimum in mt(αn) at finitely many points. As a
result, Lemma 6.2 enables us to remove all such points from consideration.

As an example, take n = 11 and note that some points in R11 are not vertices of R11. Specifically, we
observe that 

1
0
0
1
0
8
0
1


=

2

3
·



1
0
0
0
0
11
0
0


+

1

3
·



1
0
0
3
0
2
0
3


and



1
0
0
2
0
5
0
2


=

1

3
·



1
0
0
0
0
11
0
0


+

2

3
·



1
0
0
3
0
2
0
3


meaning that (1, 0, 0, 1, 0, 8, 0, 1) and (1, 0, 0, 2, 0, 5, 0, 2) are not vertices of R11. Consequently, we shall set

T11 =





0
0
0
0
1
0
0
4


,



0
0
1
0
0
3
0
3


,



0
1
0
0
2
0
6
0


,



1
0
0
0
0
11
0
0


,



1
0
0
1
0
9
1
0


,



1
0
0
3
0
2
0
3




.

Assuming we already know that mt(αi) = min{fx(t) : x ∈ Si} for all 1 ≤ i < 11, then we may conclude that
mt(α11) = min{fx(t) : x ∈ T11 ∪ S11}, a slight improvement over applying Theorem 3.1(ii) directly in this
case.

This strategy is not sufficient to prove Conjecture 2.3 as not all points in Rn \ Sn may be written as
a convex combination of points in Sn. Moreover, we are unaware of an efficient computational method
for determining the precise list of vertices of Rn. Hence, we don’t believe that these observations alone
contribute significantly to our work in this article. Nevertheless, they do provide some hope that Conjecture
2.3 could be solved using one of the well-known linear programming techniques (see [1, 17] for a discussion
of these methods).
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[8] L. Kronecker, Näherungsweise ganzzahlige Auflösung linearer Gleichungen, Berl. Ber. (1884), 1179–1193 and 1271–1299.

[9] D.H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. 34 (1933), 461–479.

[10] M.J. Mossinghoff, website, Lehmer’s Problem, http://www.cecm.sfu.ca/∼mjm/Lehmer.
[11] C.L. Samuels, The infimum in the metric Mahler measure, Canad. Math. Bull. 54 (2011), 739–747.

[12] C.L. Samuels, A collection of metric Mahler measures, J. Ramanujan Math. Soc. 25 (2010), no. 4, 433–456.

[13] C.L. Samuels, The parametrized family of metric Mahler measures, J. Number Theory 131 (2011), no. 6, 1070–1088.
[14] C.L. Samuels, Metric heights on an Abelian group, Rocky Mountain J. Math. 44 (2014), no. 6, 2075–2091.

[15] C.L. Samuels, Continued fraction expansions in connection with the metric Mahler measure, Monatsh. Math., to appear.

[16] A. Schinzel, On the product of the conjugates outside the unit circle of an algebraic number, Acta Arith. 24 (1973),
385–399. Addendum, ibid. 26 (1975), no. 3, 329–331.

[17] G. Sierksma and Y. Zwols, Linear and Integer Optimization: Theory and Practice (3rd edition), CRC Press, Taylor &

Francis Group, Boca Raton, FL; ISBN-13: 978-1498710169.
[18] C.J. Smyth, On the product of the conjugates outside the unit circle of an algebraic integer, Bull. London Math. Soc. 3

(1971), 169–175.
[19] P. Voutier, An effective lower bound for the height of algebraic numbers, Acta Arith. 74 (1996), 81–95.

19

http://www.cecm.sfu.ca/~mjm/Lehmer

	1. Introduction
	2. Conjectured Replacement for Vn.
	3. Progress toward Conjecture ??
	4. Proofs of Proposition ?? and Theorem ??
	5. Proof of Theorem ??
	6. Proof of Theorem ??
	References

