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Abstract

In this paper we generalize Tannakian formalism to fiber functors
over general tensor categories. We will show that (under some tech-
nical conditions) if the fiber functor has a section, then the source
category is equivalent to the category of comodules over a Hopf alge-
bra in the target category. We will also give a description of this Hopf
algebra using the notion of framed objects.
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1 Introduction

The theory of Tannakian categories (developed by Saavedra [S], Deligne
[DM], [D] and others) gives a description of tensor categories C (over a field
k), equipped with a fiber functor F (i.e. an exact faithful k-linear tensor
functor) to the category Vectk of finite dimensional vector spaces over k.
These categories are called “neutral Tannakian categories” and this theory
gives a tensor equivalence between C and the category coMod(A) of finite
dimensional (over k) comodules over the Hopf algebra A = End(F )∗. In
this paper we consider a more general case of fiber functors F : C → D be-
tween two general tensor categories over k, and we will give simple criterions
for having a Hopf algebra A in D, such that F becomes equivalent to the
forgetful functor from the category coMod(A) of comodules over A in D to
D.

For a Hopf algebra A in D, the category coMod(A) contains a full subcat-
egory of trivial comodules which is equivalent under the forgetful functor to
D. This gives a trivial condition for the existence of A: that is the existence
of a “section” for F , i.e. a tensor functor s : D → C with a tensor equivalence
F ◦ s ≃ idD. In fact we will see that under some other technical conditions,
the existence of a section is also a sufficient condition for the existence of A.
But an important point is that A is not simply the dual of End(F ) (inner en-
domorphism object of F in D), but it is a quotient of this dual object which
depends on the given section s. For doing this, we present two approaches:

In the first approach, the fiber functor takes values instead of D, in the
category of finitely generated S-modules in a semisimple tensor category P,
where S is a commutative ring in P, which replaces V ectk in the classical
theory. The main idea comes from a simple observation that in the above
context, s defines an action of D on C via (D,C) 7→ s(D) ⊗ C for D ∈
D, C ∈ C. This action defines a D-module category structure on C and F
becomes a D-module functor from C to D (or Mod(S) for a commutative
algebra S in D). Focusing on this structure, we start in section 2 by some
fundamental definitions and results on module categories over a semisimple
rigid monoidal category P. In the next section we consider P-module functors
ω from a P-module category M to the category of dualizable modules over
an algebra S in P. Here we associate a coalgebroid L(ω) over S to such
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functors (which is the dual of the P-module inner endomorphism object of
ω) and in subsection 3.3 we show that if ω is exact and faithful, then (under
some extra conditions) M is equivalent to the category of finitely generated
S-modules with a comodule structure over L(ω). Now if we add a symmetric
monoidal structure to M and assume that ω is also symmetric monoidal
(with respect to tensor product of modules over a commutative algebra S in
a symmetric monoidal category P), this induces a Hopf algebroid structure
over S on L(ω) and finally in Theorem 4.4 we show that M is equivalent (as
a monoidal and P-module category) to coMod(L(ω)).

In our second approach (section 5), we consider general tensor categories
D and fiber functors F : C → D. Here we use Deligne’s results in [D] on the
fundamental groups of tensor categories, and finally in the Corollary 5.3, we
show that (under some technical conditions) if there is a section s : D → C,
then C is equivalent to the category RepD(G) of representations in D of an
“affine group scheme” G over D (or a D-group) and F corresponds under this
equivalence to the forgetful functor RepD(G) → D. G itself can be described
as “k-tensor automorphisms” of F which act as identity on F (s(X)) for
every X ∈ D. This shows the dependence of G on s, and in fact there are
simple examples (Remark 5.5) where two different sections for F give two
nonisomorphic D-groups. The Hopf algebra which corresponds to G is the
same as the Hopf algebra associated to F as a D-module functor in previous
sections.

Fiber functors to tensor categories (besides the category of vector spaces)
arise naturally in several places in algebraic geometry. Here we give two
typical examples:

• Let X be an smooth variety over C and C be the category of admissible
(or unipotent, etc.) variations of mixed (or pure) Hodge structures on
X and F be the fiber functor to the category D of variations of the
same kind over the point (i.e. mixed or pure Hodge structures), which
is defined on C by the restriction functor to a fixed point x ∈ X . Then
constant variations define a natural section for F and so we have a
tensor equivalence between C and the category of representations of a
D-group in D.

In the second section of [A], D. Arapura develops a general theory of an
“enriched local systems” E over smooth complex varieties generalizing
above examples. He associates to every smooth variety X and a point
x ∈ X , a “E-fundamental group” πE1 (X, x) which is a E(pt)-group.
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Then he shows that there is an equivalence between E(X) (enriched
local systems over X) and RepE(pt)(π

E
1 (X, x)). Arapura’s construction

of the fundamental group coincides with our construction of the asso-
ciated D-group in Corollary 5.3.

• LetM be some nice “mixed category” (such as mixed Hodge structures,
(hypothetical) mixed motives, mixed Tate motives or (hypothetical)
mixed elliptic motives, etc.) and F be the fiber functor defined by
the sum of graded quotients to the semisimple tensor subcategory P
of pure objects in M. In this case, the containment of P in M is an
evident section for F and our results give a description of M as the
category of P-objects with a comodule structure over a Hopf algebra
in P.

In section 3 of [G], A. Goncharov considers a general “mixed category”
MP over a semisimple tensor category P (this means that MP is a
tensor category containing P, with a “nice” filtrationW on every object
such that the graded quotients belong to P). Then he defines the
functor:

Ψ : MP → P, M 7→ ⊕n∈Zgr
W
n M,

and H(MP) := End(Ψ). He claims that MP is equivalent to category
of H(MP)-modules in P and then he gives a description of the dual
of H(MP) by using “framed objects”.1 (theorem 3.3 in [G], the object
defined by framed objects is denoted by H ′(MP)) As we mentioned
above, H(MP) is not the right Hopf algebra to consider, (it can be
easily seen in the trivial case MP = P which H(MP) is a nontrivial
Hopf algebra in general) but a certain subalgebra of it is the appropriate
Hopf algebra, which we call it the dual of the “associated coalgebra”.

We will generalize Goncharov’s notion of framed objects in section 3 to
general module functors, and in Proposition 3.11, we will show that this
gives a similar formula for the description of the associated coalgebras
(or coalgebroids in general). So the Hopf algebra H ′(MP) is the right
object to consider and Goncharov’s mistake in proving theorem 3.3 is
essentially only to consider that “MP is equivalent to the category of
End(Ψ)-modules” as a consequence of Tannakian formalism for fiber
functors over semisimple categories.

1The notion of framed objects appeared first in [BGSV].
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It is also worth to mention that there are some connections between the
results in this paper and Day’s work in [Day] on the reconstruction of a
coalgebra or a Hopf algebra from its category of comdules and the fiber
functor which forgets the comodule structure. But our main problem as
discussed above is different, because our main interest is to find sufficient
conditions for a category (with a fiber functor and extra structures) to be
equivalent to a category of comdules for some coalgebra (or Hopf algebra)
and finding formulas for the corresponding coalgebra in such cases. Another
difference is that in working with the general case of fiber functors over a
general monoidal category, we used the notions of module categories and
functors rather than the notions of enriched categories and functors. This
mostly due to the fact that (at least in the cases we studied) the module
conditions are more restrictive than the enriched conditions, which we think
are necessary for our purposes. For a more detailed discussion, see Remark
2.8.

2 Module categories

Throughout this paper k is an arbitrary field, and all categories and functors
are k-linear additive and all categories are essentially small. For two such
categories C and D, C ⊗ D denotes the category whose objects are pairs of
objects in C and D and the set of morphisms between (X, Y ) and (X ′, Y ′) is
HomC(X,X

′)⊗k HomD(Y, Y
′).

Gabber’s theorem on the characterization of locally finite and finitely
generated k-linear categories as a category of modules over an algebra (cf.
[D], 2.14), can be viewed as a result about module categories over the category
Vectk of finite dimensional vector spaces over k. In this section we will try to
give a generalized version of this theorem for module categories over a general
k-linear semisimple abelian rigid monoidal category. In the following basic
definitions, we follow two main references [O] and [E] with minor changes for
restricting to the case of k-linear categories.

Definition 2.1. A monoidal category consists of the following data: a cat-
egory C, a functor ⊗ : C ⊗ C → C, functorial isomorphisms aX,Y,Z : (X ⊗
Y ) ⊗ Z → X ⊗ (Y ⊗ Z), a unit object 1 ∈ C, functorial isomorphisms
rX : X ⊗ 1 → X and lX : 1⊗X → X subject to the following axioms:
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1) Pentagon axiom: the diagram

((X ⊗ Y )⊗ Z)⊗ T
aX,Y,Z⊗id

tt✐✐✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐ aX⊗Y,Z,T

**❯❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯

(X ⊗ (Y ⊗ Z))⊗ T

aX,Y ⊗Z,T

��

(X ⊗ Y )⊗ (Z ⊗ T )

aX,Y,Z⊗T

��

X ⊗ ((Y ⊗ Z)⊗ T )
id⊗aY,Z,T

// X ⊗ (Y ⊗ (Z ⊗ T ))

commutes.
2) Triangle axiom: the diagram

(X ⊗ 1)⊗ Y
aX,1,Y

//

rX⊗id

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

X ⊗ (1⊗ Y )
id⊗lY

ww♦♦♦
♦♦
♦♦
♦♦
♦♦

X ⊗ Y

commutes.

Definition 2.2. (i) Let C be a monoidal category and X be an object in C.
A right dual to X is an object X∗ with two morphisms

eX : X∗ ⊗X → 1, iX : 1 → X ⊗X∗

such that the compositions

X
iX⊗id
−→ X ⊗X∗ ⊗X

id⊗eX−→ X

X∗ id⊗iX−→ X∗ ⊗X ⊗X∗ eX⊗id
−→ X∗

are equal to the identity morphisms.
(ii) A left dual to X is an object ∗X with two morphisms

e′X : X ⊗ ∗X → 1, i′X : 1 → ∗X ⊗X

such that the compositions

X
id⊗i′X−→ X ⊗ ∗X ⊗X

e′X⊗id
−→ X

∗X
i′X⊗id
−→ ∗X ⊗X ⊗ ∗X

id⊗e′X−→ ∗X

are equal to the identity morphisms.
(iii) A monoidal category C is called rigid if every object in C has right

and left duals.
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Definition 2.3. A module category over a monoidal category C is a category
M together with a functor ⊗ : C⊗M → M and functorial associativity and
unit isomorphisms mX,Y,M : (X⊗Y )⊗M → X⊗ (Y ⊗M), lM : 1⊗M →M
for any X, Y ∈ C, M ∈ M such that the diagrams

((X ⊗ Y )⊗ Z)⊗M
aX,Y,Z⊗id

tt✐✐✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐

mX⊗Y,Z,M

**❯❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

(X ⊗ (Y ⊗ Z))⊗M

mX,Y ⊗Z,M

��

(X ⊗ Y )⊗ (Z ⊗M)

mX,Y,Z⊗M

��

X ⊗ ((Y ⊗ Z)⊗M)
id⊗mY,Z,M

// X ⊗ (Y ⊗ (Z ⊗M))

and

(X ⊗ 1)⊗M
mX,1,Y

//

rX⊗id

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

X ⊗ (1⊗M)
id⊗lM

ww♦♦♦
♦♦
♦♦
♦♦
♦♦

X ⊗M

commute.

Remark 2.4. (i) For any objects M1,M2 in a C-module category M and
X ∈ C there are natural equivalences:

Hom(X ⊗M1,M2) ≃ Hom(M1,
∗X ⊗M2),

Hom(M1, X ⊗M2) ≃ Hom(X∗ ⊗M1,M2).

(ii) X ⊗− is an exact functor M → M.

Definition 2.5. (i) LetM1 andM2 be two module categories over a monoidal
category C. A module functor from M1 to M2 is a functor F : M1 → M2

together with functorial isomorphisms cX,M : F (X ⊗M) → X ⊗ F (M) for
any X ∈ C, M ∈ M1 such that the diagrams

F ((X ⊗ Y )⊗M)
FmX,Y,M

uu❥❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥ cX⊗Y

))❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚

F (X ⊗ (Y ⊗M))

cX,Y⊗M

��

(X ⊗ Y )⊗ F (M)

mX,Y,F (M)

��

X ⊗ F (Y ⊗M)
id⊗cY,M

// X ⊗ (Y ⊗ F (M))
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and

F (1⊗M)
F lM //

c1,M

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

F (M)

1⊗ F (M)

lF (M)
88rrrrrrrrrr

are commutative.
(ii) Two module categories M1 and M2 over C are equivalent if there

exists a module functor fromM1 toM2 which is an equivalence of categories.
(iii) A morphism of C-module functors from (F, c) to (G, d) : M1 → M2 is

a natural transformation ν between F and G such that the following diagram
commutes for any X ∈ C and M ∈ M1:

F (X ⊗M)
cX,M

//

νX⊗M

��

X ⊗ F (M)

id⊗νM
��

G(X ⊗M)
dX,M

// X ⊗G(M).

We denote the set of C-module morphisms between F and G by HomC(F,G).

Throughout this paper P is a k-linear semisimple abelian rigid monoidal
category with finite dimensional Hom-spaces.

Definition 2.6. Let M be a module category over P and M1 and M2 be
two objects of M. Their internal hom is an ind-object Hom(M1,M2) of P
representing functor X 7→ Hom(X ⊗M1,M2).

Definition 2.7. An abelian module categoryM over P is called locally finite
over P if

(i) The internal hom’s of every two object in M are objects in P, and

(ii) All objects have finite length.

If M be a locally finite module category over P, then for every two
objects X, Y ∈ M, we have HomM(X, Y ) ≃ HomP(1,Hom(X, Y )) and so
HomM(X, Y ) is finite dimensional over k. Here we used the term “locally
finite over P” to indicate that it is a generalization of the notion of locally
finiteness for k-linear categories (cf. [E], 1.8) which are module categories
over Vectk.
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Remark 2.8. If all of the internal hom’s of a P-module category M belong
to P, then these internal hom’s give a structure of an enriched category over
P on M. In this case the P-module category M is usually called a tensored
P-category, (cf. [B], 6.5) which can also be defined starting from an enriched
category M over P and assuming the existence of a tensor product P ⊗M
for every P ∈ P and M ∈ M together with natural isomorphisms:

HomM(P ⊗M,−) ≃ HomP(P,Hom(M,−)).

The module categories we consider are usually tensored and hence enriched
categories, but we focus on the module notion because our main Theorems
3.13 and 4.4 are valid for module functors and not for every enriched functor.

In fact every module functor between tensored categories is an enriched
functor but the converse is not true. For a very simple example, consider
M = Vectk and P = Vect•k (the category of finite direct sums of finite
dimensional vector spaces graded by integers) with their standard monoidal
structure. Then M (considered as the category of graded vector spaces
concentrated in grade 0) is a monoidal subcategory of P and so is evidently
enriched over P and this induces a module structure over P for which the
tensor product of V • = ⊕nV

n ∈ P and W ∈ M is given by V 0 ⊗W ∈ M.
Now it can be easily checked that the inclusion functor ω : M →֒ P is
an enriched functor and does not satisfy the module condition. It is also
interesting that M,P and ω satisfy all of the conditions of Theorem 3.13
except the module condition on ω. Then one can show easily that M is not
equivalent to a category of comdules over any coalgebra over P, which shows
the necessity of the module condition on ω.

Definition 2.9. An abelian module category M over P is finitely generated
over P if there exists an object M in M such that every object of M is a
subquotient of P ⊗M for some object P in P.

Definition 2.10. A module category M over P is said to have Chevalley
property if for every two simple objects P in P and M in M, P ⊗ M is
semisimple. (This is a natural extension of the definition of Chevalley prop-
erty for tensor categories, cf. [E], 4.12)

Remark 2.11. Chevalley’s theorem for the tensor product of semisimple rep-
resentations of algebraic groups in characteristic 0,(cf. [E], Theorem 4.12.1)
implies that if char(k) = 0, the tensor product of any two semisimple objects

9



in a neutral Tannakian categery over k is also semisimple. Now for every
Tannakian category T over k,2 the category Tk̄ constructed from T by the
extension of scalars to an algebraic closure k̄ of k, is neutral Tannakian over
k̄.3 So Tk̄ has the Chevalley property and by Corollary 4.11 in [D2], T also
has this property.

Now supposeM be a Tannakian category over a field k with characteristic
0, and P be a tensor subcategory of the subcategory of semisimple objects
in M. Then P has an action defined by the tensor product of M, on M and
M has the Chevalley property as a module category over P.

Definition 2.12. Let R be an algebra in a monoidal category P (it means
thatR is an ind-object equipped with an associative product and a unit, when
R is an object of P we say that R is finite) and M be a right R-module in
P. Then M is called finitely generated R-module if there is an epimorphism
of right R-modules, A ⊗ R → M for some A ∈ P. The category of finitely
generated R-modules is denoted by Mod(R) and is a module category over
P.

Remark 2.13. i) A module over a finite algebra is finitely generated if and
only if it is an object in P.

ii) The category of all right R-modules over an algebra R is equivalent to
the ind-category of the category of finitely generated R-modules.

The following theorem is a generalization of Gabber’s theorem ([D], 2.14).
An special case of this theorem is proved in Ostrik’s paper[O] when M is
semisimple and P has finitely many equivalence classes of simple objects.

Theorem 2.14. Let M be an abelian locally finite module category over P.
Suppose further that M is finitely generated over P and has the Chevalley
property. Then M is equivalent to the category of finitely generated right
modules over a finite algebra R in P.

The main idea of the proof is to show the existence of a projective gener-
ator in M. We recall some definitions from [D]. An epimorphism M → N in
an abelian category is called essential if there is no proper subobjectM ′ ⊂M
such that the composite M ′ → M → N is an epimorphism. We also denote
the number of composition factors of M which are isomorphic to a simple
object S by ℓS(Y ).

2For definition of Tannakian categories, see section 5.
3For definition and basic properties of extension of scalars in Tannakian categories, see

[D2], §4.

10



Lemma 2.15. [D] Suppose M is a k-linear abelian category with finite di-
mensional Hom-spaces and all objects have finite length. If Q → S is an
essential surjection to a simple object S in M then for every object Y ,

dimkHom(Q, Y ) ≤ ℓS(Y ) · dimkEnd(S).

The equality holds for every Y if and only if it holds for a set of generators
(over k) if and only if Q is projective. Moreover if M is finitely generated
(over k), for every simple object S there is an essential surjection Q → S
from a projective object Q.

Proof of 2.14. Let S and T be two simple objects in M. Then for every
simple object A ∈ P, we have

Hom(A⊗ S, T ) = Hom(A,Hom(S, T )).

Now Hom(S, T ) is in P and so there are finitely many equivalence classes of
simple objects A ∈ P such that Hom(A⊗S, T ) is nonzero. By the Chevalley
condition A ⊗ S is semisimple and so there are finitely many equivalence
classes of simple objects A ∈ P such that ℓT (A ⊗ S) > 0. Decomposing an
arbitrary object to simples shows that this result is true even when S is not
simple.

Now let S1, . . . , Sk be all of composition factors for a generator X of M
over P, and A1, . . . , Am be a complete set of representatives for equivalence
classes of simple objects A in P such that Si appears in the composition
factors of A⊗X . Now define A = 1⊕ A1 ⊕ · · · ⊕ Am and let N be the full
subcategory of subquotients of (A ⊗ X)n in M. Then N contains X and
satisfies the conditions of Lemma 2.15, so for each 1 ≤ i ≤ k there exists
some essential surjection Qi → Si in N such that every Qi is projective in
N .

We claim that Qi is also projective in M. Again by lemma it is suffices
to show that for every simple object B ∈ P,

dimkHom(Qi, B ⊗X) = ℓSi
(B ⊗X) · dimkEnd(Si).

There are two cases: 1) If B is isomorphic to one of A1, . . . , Am, then B⊗X
lies in N and the equality holds because Qi is projective in N . 2) If B is not
isomorphic to one of Ai’s then ℓSi

(B ⊗X) = 0 and so two sides are equal to
zero. This justifies our claim and so Qi’s are projective in M.

11



Now define Q = Q1 ⊕ · · · ⊕Qk and R = End(Q). Then Q is a projective
object in M and the functor

Y 7→ Hom(Q, Y )

defines a module functor F from M to the category of right R-modules. The
locally finiteness of M over P implies that the internal Homs are in P and
so F (Y ) is finitely generated R-module for every Y ∈ M. We claim that
F : M → Mod(R) is an equivalence of module categories over P.

First we show that F is exact and faithful. Because P is semisimple,
for the exactness it suffices to show that for every Z ∈ P, Hom(Z, F (−)) is
exact. But we have

Hom(Z, F (M)) = Hom(Z,Hom(Q,M)) = Hom(Q, ∗Z ⊗M).

And Hom(Q, ∗Z ⊗−) is exact by exactness of ∗Z ⊗− and projectivity of Q.
Now let M be a nonzero object in M and S a simple subobject of M .

Then S is a subquotient of C ⊗ X for some object C ∈ P and so it is a
subquotient ofD⊗Si for some simple object D ∈ P and 1 ≤ i ≤ k. Therefore
by the Chevalley property, D ⊗ Si is semisimple and there is a surjection
D ⊗ Si → S. Combining this morphism with a surjection D ⊗ Q → D ⊗ Si
and the inclusion S →֒ M , yields a nonzero morphism D ⊗Q→M . So

Hom(D,F (M)) = Hom(D,Hom(Q,M)) ≃ Hom(D ⊗Q,M) 6= 0,

and F (M) 6= 0. So F is an exact functor which sends every nonzero object
to a nonzero object and therefore F is faithful.

It remains to show that F is full and essentially surjective. We have

HomM(C ⊗Q,M) ≃ HomP(C,Hom(Q,M)) ≃

HomR(C ⊗R,F (M)) ≃ HomR(F (C ⊗Q), F (M)).

Every object N ∈ M is a quotient of C⊗Q for some C ∈ P (it is because
every simple object in the composition series of N has this property and all of
C ⊗Q’s are projective) and the kernel of this epimorphism is also a quotient
of D ⊗Q,D ∈ P. So there is an exact sequence:

D ⊗Q→ C ⊗Q→ N → 0.

12



Applying Hom(−,M) to this sequence and exactness of F , implies that

HomM(N,M) ≃ HomR(F (N), F (M)).

Now for proving the essential surjectivity, consider an arbitrary finitely
generated module Y over R. Then there is a natural exact sequence in
Mod(R): (Y, Y ⊗ R ∈ P)

Y ⊗ R⊗ R
f
→ Y ⊗ R→ Y → 0.

Now let f̃ : (Y ⊗ R) ⊗ Q → Y ⊗ Q be a morphism in M which maps to f
under F . If M be the cokernel of this morphism, then F (M) ≃ Y and so F
is essentially surjective.

Lemma 2.16. With assumptions of Theorem 2.14, if N is a full P-module
subcategory of M, then there is a two sided ideal I of R such that the inclusion
of N in M is equivalent to the inclusion of Mod(R/I) in Mod(R).

Proof. The proof is completely similar to a corresponding result for k-linear
categories (cf. [D], 2.18). The idea is that for a finite algebra R and a full
P-module subcategory C ⊂ Mod(R), there is a maximal quotient R/I of R
which lies in C, I is a two sided ideal and R/I is a projective P-generator for
C.

3 Module functors and coalgebroids

3.1 Associated coalgebroid of a module functor

Definition 3.1. Let S be an algebra in P, then a right S-module M is said
to be dualizable if there is a left S-module M∗ with a natural equivalence:

HomS(A⊗M,N) ≃ HomP(A,N ⊗S M
∗),

for any A ∈ P and any right S-module N .

This definition is equivalent to have two morphisms:

eM :M∗ ⊗M → S, iM : 1 →M ⊗S M
∗,

with the properties that the composition of the following morphisms are
identity:

M
iM⊗id
−→ M ⊗S M

∗ ⊗M
id⊗eM−→ M,

M∗ id⊗iM−→ M∗ ⊗M ⊗S M
∗ eM⊗id
−→ M∗.
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Remark 3.2. (i) Let R, S be two algebras in P and M a (R, S)-bimodule
which is a dualizable right S-module, then M∗ has a natural structure of a
right R-module and for every right R-module X and right S-module Y :

HomS(X ⊗R M,Y ) ≃ HomR(X, Y ⊗S M
∗).

So there are two bimodule morphisms:

eRM :M∗ ⊗RM → S, iRM : R→ M ⊗S M
∗,

satisfying properties similar to (eM , iM).
(ii)Let R, S be two algebras in P and M a dualizable right S-module,

then for every right R-module X and (S,R)-bimodule Y :

HomR(X,M ⊗S Y ) ≃ Hom(S,R)(M
∗ ⊗X, Y ).

(iii) For a dualizable right module M and A ∈ P, (A ⊗ M)∗ is naturally
equivalent to M∗ ⊗A∗.

The following lemma is an extension of Morita’s lemma in the classical
categories of modules:

Lemma 3.3. Let R and S be two algebras in P and ω : Mod(R) → Mod(S)
be a right exact P-module functor, then there exists a (R, S)-bimodule M
such that ω is P-module isomorphic to − ⊗R M . Moreover for any two
(R, S)-bimodules M1,M2 there is natural isomorphism:

HomP(−⊗R M1,−⊗RM2) ≃ Hom(R,S)(M1,M2).

Proof. Let M = ω(R). Then M is a finitely generated right S-module. Now
the multiplication morphism p : R ⊗ R → R can be considered as a R-
module morphism, which induces a S-morphism ω(p) : R ⊗M → M . (We
can extend ω to ind-objects of Mod(R) which are arbitrary right R-modules
and the resulting functor is an ind(P)-module functor also denoted by ω.)
By the associativity of p and unit morphism of R, ω(p) satisfies the axioms
for a left R-module which is compatible with the S-module structure of M .
So M is a (R, S)-bimodule.

Now let X be an arbitrary right R-module with structure morphism m :
X ⊗R → X . Then there is a natural exact sequence:

X ⊗R ⊗R
id⊗p−m⊗id
−−−−−−−→ X ⊗R

m
−→ X,

14



applying the exact module functor ω to this sequence implies that ω(X) is
naturally isomorphic to X ⊗RM .

For the second part, define ωi = −⊗R Mi, i = 1, 2. Then a P-morphism
ν : ω1 → ω2 gives a S-module morphism νR : M1 → M2. By the previous
part the R-module structure of Mi can also be reconstructed from the mod-
ule functor ωi for i = 1, 2. This implies that νR is also a (R, S)-bimodule
morphism. On the other hand a (R, S)-bimodule morphism M1 →M2 gives
rise to a natural P-morphism ω1 → ω2 and this is inverse to the previous
construction.

Lemma 3.4. A right S-module is dualizable if and only if it is finitely gen-
erated and projective.

Proof. First note that for every P,A ∈ P and left S-module N , we have:

HomS(A⊗ (P ⊗ S), N) ≃ Hom(A⊗ P,N) ≃ Hom(A,N ⊗ P ∗)

≃ Hom(A,N ⊗S (S ⊗ P ∗)).

So P⊗S has S⊗P ∗ as its dual and is dualizable. Also every finitely generated
projective S-module is a direct summand of P ⊗ S for some P ∈ P, and has
a dual which is a direct summand of S ⊗ P ∗.

Now let M be a dualizable right S-module with dual (M∗, eM , iM). Then
if we consider the morphism iM , compactness of 1 implies the existence of a
finitely generated submodule N ⊂M such that iM factors through N⊗SM

∗.
Then the first axiom for (eM , iM) shows that there is a surjective morphism
N →M and M is also finitely generated.

On the other hand, by the definition of the dual module, we have:

HomS(M,−) ≃ HomS(1⊗M,−) ≃ Hom(1,−⊗S M
∗).

But P is semisimple and Hom(−,−) is exact in each variable. So HomS(M,−)
is right exact and M is projective.

Every k-linear additive category M has a canonical structure of a module
category over Vectk. We denote this structure by (V,M) 7→ V ⊗k M , (for
V ∈ Vectk,M ∈ M) which is defined by the property:

HomM(M1, V ⊗k M2) ≃ V ⊗k HomM(M1,M2).

15



Also if V is infinite dimensional, V ⊗k M can be defined by the inductive
limit of V ′⊗kM over finite dimensional subspaces V ′ of V , and it is an object
in ind(M).

The following lemma is a restatement of Yoneda’s lemma:

Lemma 3.5. Let C and D be two k-linear categories and F : C → D, G :
Cop → D be two k-linear additive functors. Then for every A ∈ ind(calC)
there are two natural isomorphisms:

∫ X∈C

HomC(X,A)⊗k F (X) ≃ F (A),

∫ X∈C

HomC(A,X)⊗k G(X) ≃ G(A).

(Our notation for coend is taken from Mac Lane, [M], IX.6)

Proof. Let B be an arbitrary object in D. Giving a morphism
∫ C

HomC(X,A)⊗k F (X) → B

is equivalent to give a natural morphism HomC(−, A) → HomD(F (−), B),
which by Yoneda’s lemma corresponds to an element in HomD(F (A), B). So
another use of Yoneda’s lemma implies the first isomorphism. The second
isomorphism is similar.

Definition 3.6. Let S be an algebra in P. A coalgebroid L over S is a
(S, S)-bimodule with two (S, S)-bimodule morphisms:

∆ : L→ L⊗S L, ǫ : L→ S,

such that

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆, id = (ǫ⊗ id) ◦∆ = (id⊗ ǫ) ◦∆.

A comodule over L is a right moduleM over S with a morphism of S-modules:

ρ :M → M ⊗S L,

such that
(1⊗ ǫ) ◦ ρ = 1, (ρ⊗ 1) ◦ ρ = (1⊗∆)⊗ ρ.

The category of comodules over L which are finitely generated over S is
denoted by coMod(L).

16



Definition 3.7. Let M be a P-module category and ω a P-module functor
from M to the category of dualizable right modules over a ring S in P. Then
we define:

L(ω) :=

∫ M∈M

HomS(ω(M), S)⊗k ω(M).

We will show that L(ω) has a natural structure of a coalgebroid over S and
we call it the associated coalgebroid of ω.

L(ω) has an evident right S-module structure. It has also a natural left
S-module structure. For showing this, first note that by Lemma 3.5, S can
be written as follows:

S ≃

∫ P∈P

Hom(P, S)⊗k P.

Now the action of a general term in this coend on the general term in the
coend defining L(ω) is given by:

(Hom(P, S)⊗k P )⊗ (HomS(ω(M), S)⊗k ω(M)) ≃

(Hom(P, S)⊗k HomS(ω(M), S))⊗k ω(P ⊗M) −→

HomS(P ⊗ ω(M), S ⊗ S)⊗k ω(P ⊗M) −→

HomS(P ⊗ ω(M), S)⊗k ω(P ⊗M),

where the first arrow is simply the product of morphisms and the second
is induced by the multiplication morphisms of S. it is easy to see that the
above action induce a well defined action of coends which gives a left S-
module structure on L(ω).

Proposition 3.8. Let M be a P module category and ω : M → Mod(S) be
a P-module functor such that for any M ∈ M, ω(M) is dualizable. Then
there is a universal P-modue morphism ν : ω → ω ⊗S L(ω) which induces a
natural isomorphism

Hom(S,S)(L(ω), L) ≃ HomP(ω, ω ⊗S L),

for any (S, S)-bimodule L.
The morphisms corresponding to id : ω → ω ⊗S S and (ν ⊗ id) ◦ ν : ω →

ω ⊗S (L(ω)⊗S L(ω)) give two morphisms

ǫ : L(ω) → S, ∆ : L(ω) → L(ω)⊗S L(ω),
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which induce a structure of a S-coalgebroid on L(ω). Furthermore for every
M , νM is a comodule structure on ω(M) which induces a functor ω̃ that
makes the following diagram commutative: (F is the forgetful functor)

M ω̃ //

ω
&&▲

▲▲
▲▲

▲▲
▲▲

▲▲
coMod(L(ω))

F
��

Mod(S)

Proof. Let L be a (S, S)-bimodule and α : ω → ω ⊗S L be a P-module
morphism. Then for every M ∈ M, we have a natural morphism of right
S-modules: αM : ω(M) → ω(M) ⊗S L, which induces a (S, S)-bimodule
morphism:

jM : ω(M)∗ ⊗ ω(M) → L.

On the other hand, α is P-module which means that for every M ∈ M and
P ∈ P, the following diagram is commutative: (where c is the P-module
constraint of ω)

ω(P ⊗M)
αP⊗M

//

cP,M

��

ω(P ⊗M)⊗S L

cP,M⊗id

��

P ⊗ ω(M)
id⊗αM// P ⊗ ω(M)⊗S L

which in turn is equivalent to the commutativity of the following diagram:

ω(M)∗ ⊗ P ∗ ⊗ P ⊗ ω(M)
id⊗eP⊗id

//

c∗
P,M

⊗c−1
P,M

��

ω(M)∗ ⊗ ω(M)

jM
��

ω(P ⊗M)∗ ⊗ ω(P ⊗M)
jP⊗M

// L

This puts another condition on the morphisms jM besides naturality.
Now let us define λ :

∫M
ω(M)∗ ⊗ ω(M) → Λ to be the coequalizer of

the following diagram:
∫ P∈P ∫ M∈M

ω(M)∗⊗P ∗⊗P ⊗ω(M)
φ

//

ψ
//

∫ M∈M

ω(M)∗⊗ω(M), (3.1)

where the morphisms φ and ψ are induced by the following morphisms re-
spectively:

ω(M)∗ ⊗ P ∗ ⊗ P ⊗ ω(M)
id⊗eP⊗id
−−−−−→ ω(M)∗ ⊗ ω(M),
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ω(M)∗ ⊗ P ∗ ⊗ P ⊗ ω(M)
c∗
P,M

⊗c−1
P,M

−−−−−−→ ω(P ⊗M)∗ ⊗ ω(P ⊗M).

Then Λ is a (S, S)-bimodule and the structure morphisms iM : ω(M)∗ ⊗
ω(M) → Λ induce a P-module morphism µ : ω → ω ⊗S Λ. Furthermore
µ is universal and Λ represents the functor HomP(ω, ω ⊗S −). Thus Λ also
satisfies all of the claimed properties of L(ω) and it only remains to show
that Λ ≃ L(ω).

For doing this we construct an inverse pair of (S, S)-bimodule morphisms
f : L(ω) → Λ, g : Λ → L(ω).

f is defined by the composition of following morphisms:

L(ω) =

∫ M

HomS(ω(M), S)⊗k ω(M)

≃

∫ M

(Hom(1, ω(M)∗)⊗k 1)⊗ ω(M)

−→

∫ M

ω(M)∗ ⊗ ω(M)
λ
−→ Λ.

Now consider the following sequence of morphisms: (The first isomor-
phism is by Lemma 3.5 and the third is induced by cA,M)

ω(M)∗ ⊗ ω(M) ≃

∫ A∈P

Hom(A, ω(M)∗)⊗k A⊗ ω(M)

≃

∫ A∈P

HomS(A⊗ ω(M), S)⊗k A⊗ ω(M)

≃

∫ A∈P

HomS(ω(A⊗M), S)⊗k ω(A⊗M)

−→

∫ X∈M

HomS(ω(X), S)⊗k ω(X) = L(ω).

If we denote the composition of above morphisms by kM , then it is easy
to see that kM ’s induces a morphism g̃ :

∫M
ω(M)∗ ⊗ ω(M) → L(ω) and

g̃ ◦ φ = g̃ ◦ ψ, so g̃ induces a morphism g : Λ → L(ω).
it is also straightforward to check that f and g are bimodule morphisms,

f ◦ g = id and g ◦ f = id which finishes the proof.
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By a complete similar proof, one can show that with the conditions of the
above proposition,

∫M∈M
HomS(S, ω(M))⊗k ω(M)∗ also satisfies the univer-

sal propery of L(ω) and this gives another formula for the associated coalge-
broid of ω:

L(ω) ≃

∫ M∈M

HomS(S, ω(M))⊗k ω(M)∗. (3.2)

Remark 3.9. In this subsection the semisimplicity of P is only used in Lemma
3.4 for the characterization of dualizable objects.

3.2 Framed objects

In this subsection we give a general definition of framed objects. Our moti-
vation is the framed mixed Hodge structures considered first by Beilinson et
al. in [BGSV].

Definition 3.10. Let F : C → D be a functor from a category C to a k-linear
category D. The functor of framed objects,

H : Dop ×D → ind(Vectk)

is defined by

H(A,B) =

∫ X∈C

HomD(A, F (X))⊗k HomD(F (X), B).

i.e. informally one thinks of elements of H(A,B) as an object X of C
together with framings ν : A → F (X) and ν̂ : F (X) → B. The commu-
tativity diagram for defining the coend means that two such framed objects
(X, ν, ν̂) and (X ′, ν ′, ν̂ ′) should be considered equivalent if there is a mor-
phism X → X ′ that respects the frames.

Proposition 3.11. For a P-module category M and a P-module functor
ω : M → Mod(S), we have:

L(ω) ≃

∫ A∈Mod(S)

H(A, S)⊗k A.

Also if S is semisimple (i.e. Mod(S) is a semisimple category), then

L(ω) ≃

∫ A∈Mod(S)

H(S,A)⊗k A
∗.
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Proof. For the first part:
∫ Mod(S)

H(A, S)⊗k A

≃

∫ Mod(S) ∫ M∈M

HomS(ω(M), S)⊗k HomS(A, ω(M)) ⊗k A

≃

∫ M

HomS(ω(M), S)⊗k

(

∫ Mod(S)

HomS(A, ω(M))⊗k A

)

≃

∫ M

HomS(ω(M), S)⊗k ω(M) = L(ω).

The second isomorphism is valid by the exactness of ⊗k and the third by
Lemma 3.5.

For the second part, because every object in Mod(S) is semisimple, every
object is dualizable and the claimed isomorphism can obtained similarly using
(3.2).

Corollary 3.12. With the notations of the previous proposition, if S is
semisimple and S be a set of representatives for the equivalence classes of
simple objects in Mod(S), then

L(ω) ≃
⊕

A∈S

H(A, S)⊗End(A) A ≃
⊕

A∈S

H(S,A)⊗End(A) A
∗,

where H(A, S)⊗End(A) A is defined by

H(A, S)⊗End(A) A :=

∫ {A}

H(A, S)⊗k A,

where we take the coend over the full subcategory with single object A.
H(S,A)⊗End(A) A

∗ is defined similarly.

This in particular gives a correct version of theorem 3.3.(a) in [G]. One
should replaceA(Q(0), B)⊠B∨ withA(Q(0), B)⊠End(B)B

∨ in loc.cit. and the
result is the dual of P-module endomorphims of Ψ, not all of endomorphisms.

3.3 Exact faithful module functors

In the following theorem we present some reasonable conditions on P-module
functors ω in Proposition 3.8, such that the functor ω̃ in the proposition,
becomes equivalence:
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Theorem 3.13. Let M be an abelian locally finite module category over P
satisfying the Chevalley condition. Let S be an algebra in P and ω : M →
Mod(S) be an exact faithful P-module functor and for every M ∈ M, ω(M)
is dualizable. Then the functor ω̃ in Proposition 3.8 is an equivalence of
P-module categories between M and coMod(L(ω)).

The main ingredient of the proof is a consequence of the Barr-Beck the-
orem for abelian categories, which is stated in [D], 4.1:

Let (T, U) be a pair of adjoint functors T : A → B and
U : B → A between abelian categories A and B. Then if T is
exact and faithful, T induces an equivalence between A and the
category of objects of B equipped with a coaction of the comonad
TU .

Proof. First we assume M is finitely generated over P. Then By Theorem
2.14, we can assumeM = Mod(R) for a finite algebra R in P. LetM = ω(R),
then by Lemma 3.3, M is a (R, S)-bimodule and we can assume ω(−) =
−⊗R M .

Now M is dualizable over S and so there is a natural isomorphism:

HomS(X ⊗RM,Y ) ≃ HomR(X, Y ⊗S M
∗)

for every X ∈ Mod(R). So ω has a right adjoint (denoted by α), but ω is
also exact and faithful, so by a consequence of the Barr-Beck theorem, ω
induces an equivalence between M and right S-modules with a coaction of
the comonad ω ◦ α.

Now if we define L =M∗ ⊗RM , then ω ◦α(−) = −⊗S L and the comul-
tiplication and counit morphisms of ω ◦ α induce corresponding morphisms
on L which satisfy the axioms for a coalgebroid over S. These morphisms
can be explicitly written in terms of iM and eM :

L
∆

−→ L⊗S L =M∗ ⊗RM
id⊗iRM⊗id
−−−−−−→ M∗ ⊗RM ⊗S M

∗ ⊗RM,

L
ǫ

−→ S =M∗ ⊗RM
eR
M−→ S.

Also a coalgebra over ω ◦ α corresponds to a comodule over L.
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We claim L ≃ L(ω). Let L′ be an arbitrary (S, S)-bimodule, then by
Lemma 3.3:

HomP(ω, ω ⊗S L
′) ≃ HomP(−⊗R M,−⊗R (M ⊗S L

′))

≃ Hom(R,S)(M,M ⊗S L
′)

≃ Hom(S,S)(M
∗ ⊗RM,L′) = Hom(S,S)(L, L

′).

And the universal property of L(ω) implies the claim. Therefore for finitely
generated M, ω induces an equivalence between M and comodules over
L(ω).

Now consider the general case of not finitely generated M. For an object
X ∈ M, let us denote the full subcategory of subquotients of A⊗X, (A ∈ P)
by 〈X〉. Then 〈X〉’s constitute a class of finitely generated P-subcategories
of M and M is the directed union of these subcategories. We claim L(ω) is
also a directed union of L(ω|〈X〉)’s. The only thing should be checked is that
for two X1, X2 ∈ M with 〈X1〉 ⊂ 〈X2〉 the induced morphism L(ω|〈X1〉) →
L(ω|〈X2〉) is injective. The proof is very similar to ([D], 6.1).

By Lemma 2.16, the inclusion 〈X1〉 ⊂ 〈X2〉 is equivalent to an inclusion
Mod(R/I) ⊂ Mod(R). If ω|〈X2〉 be isomorphic to −⊗RM , we have ω|〈X1〉 ≃
−⊗R/I (R/I ⊗RM). Therefore

L(ω|〈X1〉) ≃ (R/I ⊗RM)∗ ⊗R/I (R/I ⊗RM)

≃ (R/I ⊗RM)∗ ⊗RM →֒ M∗ ⊗RM ≃ L(ω|〈X2〉).

(R/I ⊗R M is projective over S and so it is a direct summand of M) and
the composition of above morphisms is the natural morphism L(ω|〈X1〉) →
L(ω|〈X2〉).

So L(ω) is the directed union of L(ω|〈X〉)’s and coMod(L(ω)) is also the
union of coMod(L(ω|〈X〉))’s. This fact completes the proof that ω̃ is an
equivalence on the whole of M.

4 Monoidal module categories

4.1 Tensor product of module categories

In this subsection we construct a notion of tensor product of module cate-
gories which will be used in the proof of the main Theorem 4.4.
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Definition 4.1. Let (M, m, r) be a right P-module category and (N , n, l)
a left P category and C an arbitrary (k-linear) category. By a P-balanced
functor (F, b) : M⊗N → C, we mean a functor F : M⊗N → C together
with natural isomorphisms bM,P,N : F ((M ⊗ P ), N) → F (M, (P ⊗ N)) for
every M ∈ M, P ∈ P, N ∈ N , such that the diagrams:

F (M ⊗ (P ⊗Q), N)
bM,(P⊗Q),N

//

mM,P,Q

��

F (M, (P ⊗Q)⊗N)

nP,Q,N

��

F ((M ⊗ P )⊗Q,N)

bM⊗P,Q,N **❯❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯

F (M,P ⊗ (Q⊗N))

F (M ⊗ P,Q⊗N)

bM,P,Q⊗N

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

and

F (M ⊗ 1, N)

rM
''PP

PP
PP

PP
PP

PP

bM,1,N
// F (M, 1⊗N)

lNww♥♥♥
♥♥
♥♥
♥♥
♥♥

F (M,N)

commute.

Now for M,N ,P as in the definition, M⊗P N is a (k-linear) category
together with a universal P-balanced functor: (G, g) : M⊗N → M⊗P N .
Which by universality of (G, g) we mean that for every P-balanced functor
(F, b) : M⊗N → C, there is a unique functor F̃ : M⊗P N → C such that
F = F̃ ◦G and b = F̃ (g).

Such a universal category always exists and can be constructed as follows:
M ⊗P N is the k-linear category obtained from M ⊗ N by adding new
invertible morphisms

gM,P,N : (M ⊗ P,N) → (M,P ⊗N),

for every M ∈ M, N ∈ N , P ∈ P and relations corresponding to commu-
tativity of the diagrams: (f1 : M → M ′, f2 : P → P ′, f3 : N → N ′ are
morphisms)
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(M ⊗ P,N)
gM,P,N

//

(f1⊗f2,f3)
��

(M,P ⊗N)

(f1,f2⊗f3)
��

(M ′ ⊗ P ′, N ′)
gM′,P ′,N′

// (M ′, P ′ ⊗N ′)

and

(M ⊗ (P ⊗Q), N)
gM,(P⊗Q),N

//

mM,P,Q

��

(M, (P ⊗Q)⊗N)

nP,Q,N

��

((M ⊗ P )⊗Q,N)

gM⊗P,Q,N
))❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚
(M,P ⊗ (Q⊗N))

(M ⊗ P,Q⊗N)

gM,P,Q⊗N

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

and

(M ⊗ 1, N)

rM
&&◆◆

◆◆
◆◆

◆◆
◆◆

◆

gM,1,N
// (M, 1⊗N)

lNxx♣♣♣
♣♣
♣♣
♣♣
♣♣

(M,N)

Now it is evident that the extension functor G : M ⊗ N → M ⊗P N
together with natural isomorphism g is a universal P-balanced functor.

When M is a (Q,P)-bimodule category with middle associativity con-
straints

dQ,M,P : (Q⊗M)⊗ P
≃
−→ Q⊗ (M ⊗ P ),

(for the definition of bimodule categories, cf. [E], 7.1), then M⊗P N is a left
Q-module category. This structure is induced by the left Q-module structure
of M⊗N and the action of Q on gM,P,N ’s which is given by: (Q ∈ Q)

Q⊗ gM,P,N : (Q⊗ (M ⊗P ), N) → (Q⊗M,P ⊗N) := gQ⊗M,P,N ◦ (d−1
Q,M,P , 1).

A similar structure holds when N is a bimodule category.
Especially in the case where P is symmetric, every left module category

over P can also be considered as a right module category and therefore a
(P,P)-bimodule category. So for every two left P-module categories M and
N , M⊗PN has a well defined structure of a left P-module category induced
by the left action of P on M, and a right P-module structure induced by
the right action of P on N , and these two P-module structures are naturally
isomorphic.
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Remark 4.2. In [Gre], J. Greenough introduces a notion of “tensor product”
of k-linear abelian module categories over P, denoted by ⊠P , which is a
generalization of Deligne’s construction in [D] of tensor products of abelian
categories. But here we only need a notion of tensor product which is a
k-linear additive category and so our construction is simpler.

4.2 The main theorem

In this section we assume further that P is symmetric.
For every (S, S)-bimodule L over a commutative algebra S, we denote by

Lop the (S, S)-bimodule which its underlying object is equal to L, but the left
action of S on it is given by the right action of S on L and the right action
is given by the left action of S on L. In the case where L is a coalgebroid
over S, Lop has also a structure of a coalgebroid with the same counit and
comultiplication defined by the composition of the comultiplication of L with
a switch L⊗S L→ Lop ⊗S L

op.
If we denote the product and unit morphisms of S by m̃ and ũ, then there

is a natural coalgebroid structure on S⊗S over S, with its evident bimodule
structure over S. The counit is given by m̃ and the coproduct is given by:

id⊗ ũ⊗ id : S ⊗ S → S ⊗ S ⊗ S = (S ⊗ S)⊗S (S ⊗ S).

Definition 4.3. Let (S, m̃, ũ) be a commutative algebra in P, a commutative
Hopf algebroid over S, is a coalgebroid (L,∆, ǫ) over S equipped with unit
and multiplication morphisms of coalgebroids over S:

u : S ⊗ S → L, m : L⊗S⊗S L→ L,

such that m is associative and commutative and u is a unit for m. Further-
more there is a coalgebroid morphism

T : Lop → L,

called antipode with the following property:

L
∆
−→ L⊗S L −→ Lop ⊗S⊗S L

T⊗id
−−−→ L⊗S⊗S L

m
−→ L =

L
ǫ
−→ S

ũ⊗−
−−→ S ⊗ S

u
−→ L.

In the special case S = 1, a Hopf algebroid is called a Hopf algebra.

26



As in the case of commutative Hopf algebras over fields, the category of
comodules over a Hopf algebroid L over S which are dualizable S-modules,
is a rigid symmetric monoidal category, which is not necessarily abelian.

Our main theorem that generalizes classical the fundamental theorem of
classical Tannakian categories (cf. [D], 1.12), is the following:

Theorem 4.4. Let M be an abelian k-linear rigid symmetric monoidal cate-
gory, and s : P → M a k-linear symmetric monoidal functor. Then s defines
a P-module structure on M. Assume that M is locally finite over P and
satisfies the Chevalley property as a module category over P. Let S be a com-
mutative algebra in P and i : P → Mod(S) is defined by i(−) = −⊗S. Sup-
pose ω : M → Mod(S) be a k-linear exact faithful and symmetric monoidal
functor such that there is a symmetric monoidal isomorphism ν : ω ◦ s → i
(which implies that ω is a P-module functor). Then L(ω) has a structure
of a Hopf algebroid over S and ω induces a P-module symmetric monoidal
equivalence between M and coMod(L(ω)).

The opposite category of every P-module category M is also a P-module
category with the module structure (P,M) 7→ P ∗ ⊗M .

Lemma 4.5. Let M be a module category over P, S a commutative algebra
in P and ω a P-module functor from M to the category of dualizable S-
modules.

(i) Let i : P → Mod(S) be defined by i(−) = −⊗ S, then L(i) ≃ S ⊗ S.

(ii) Define ω∗ : Mop → Mod(S) by ω∗(M) = ω(M)∗. Then L(ω∗) ≃
L(ω)op.

(iii) By the universal property of M ⊗P M, composition of ω ⊗ ω : M ⊗
M → Mod(S)⊗Mod(S) with tensor product over S induces a P-module
functor:

ω ⊗S ω : M⊗P M → Mod(S), (X, Y ) 7→ ω(X)⊗S ω(Y ),

and L(ω ⊗S ω) ≃ L(ω)⊗S⊗S L(ω).

Proof. (i) By the definition of associated coalgebroid and Yoneda’s lemma,
we have:

L(i) =

∫ P

HomS(P ⊗ S, S)⊗k (P ⊗ S)

≃

(
∫ P

Hom(P, S)⊗k P

)

⊗ S ≃ S ⊗ S.
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it is easy to see that this isomorphism is an equivalence of coalgebroids over
S.

(ii) In the proof of Proposition 3.8, we showed that L(ω) is naturally
equivalent to the coequalizer of two morphisms φ and ψ in (3.1). Writing
the similar diagram for ω∗, we have

L(ω∗) ≃ coeq

(
∫ P∈P ∫ M∈M

ω(M)⊗ P ∗ ⊗ P ⊗ ω(M)∗
φ′

//

ψ′

//

∫ M∈M

ω(M)⊗ ω(M)∗
)

,

with similar definitions for φ′ and ψ′. Thus there is an evident isomorphism
between L(ω∗) and L(ω), but this isomorphism changes the directions of the
actions of S and is an isomorphism to L(ω)op as a coalgebroid over S.

(iii) Let α : M ⊗ M → Mod(S) be the functor defined by α(M,N) =
ω(M) ⊗S ω(N). Then by considering the action of P on the first factor of
M⊗M, α is a P-module functor and for the structure functor G : M⊗M →
M⊗P M, we have α = (ω ⊗S ω) ◦G.

Now again by using the expression (3.1) for associated coalgebroid and
right exactness of tensor product over S, we see that L(α) is the quotient of

L :=

∫ (M,N)∈M⊗M

ω(N)∗ ⊗S ω(M)∗ ⊗ ω(M)⊗S ω(N) ≃

(
∫ M

ω(M)∗ ⊗ ω(M)

)

⊗S⊗S

(
∫ M

ω(M)∗ ⊗ ω(M)

)

obtaind by equalizing two morphisms:

ω(N)∗ ⊗S ω(M)∗ ⊗ P ∗ ⊗ P ⊗ ω(M)⊗S ω(N)
id⊗ev⊗id
−−−−−→

ω(N)∗ ⊗S ω(M)∗ ⊗ ω(M)⊗S ω(N) → L, (4.1)

and

ω(N)∗ ⊗S ω(M)∗ ⊗ P ∗ ⊗ P ⊗ ω(M)⊗S ω(N)
≃
−→

ω(N)∗ ⊗S ω(P ⊗M)∗ ⊗ ω(P ⊗M)⊗S ω(N) → L, (4.2)

for every M,N ∈ M and P ∈ P. For the computation of L(ω⊗S ω) we have
the same construction but we only need to compute the above coend over
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M⊗P M which is obtained by adding isomorphisms gM,P,N to M⊗M. So
L(ω ⊗S ω) is the quotient of L(α) obtained by equalizing two morphisms

ω(N)∗ ⊗S ω(P ⊗M)∗ ⊗ ω(P ⊗M)⊗S ω(N) → L(α),

and

ω(N)∗ ⊗S ω(P ⊗M)∗ ⊗ ω(P ⊗M)⊗S ω(N)
≃
−→

ω(P ⊗N)∗ ⊗S ω(M)∗ ⊗ ω(M)⊗S ω(P ⊗N) → L(α),

for every M,N, P .
So L(ω ⊗S ω) can be viewed as the coequalizer of morphisms (4.1) and

(4.2) and

ω(N)∗ ⊗S ω(M)∗ ⊗ P ∗ ⊗ P ⊗ ω(M)⊗S ω(N)
≃
−→

ω(P ⊗N)∗ ⊗S ω(M)∗ ⊗ ω(M)⊗S ω(P ⊗N) → L, (4.3)

and therefore by right exactness of ⊗S,

L(ω ⊗S ω) ≃ L(ω)⊗S⊗S L(ω),

which is also an isomorphism of coalgebroids.

Proof of 4.4. First we note that if we define the action of P on M using the
monoidal functor s : P → M and the tensor product of M, the monoidal
isomorphism ω ◦ s ≃ i shows that ω is a P-module functor. On the other
hand, ω is monoidal and sends every object of M (which is dualizable) to a
dualizable object in Mod(S). So ω : M → Mod(S) satisfies all of conditions
of Theorem 3.13, and if we write L = L(ω), we have M ≃ coMod(L). It
remains to show that extra structures on M and ω, induces a structure
of Hopf algebroid on L and M is equivalent as a monoidal category with
coMod(L).

For this note that by the conditions on ω, we have the following diagrams
which are commutative up to natural P-module equivalences:

M⊗P M
⊗

//

ω⊗ω
��

M

ω
��

Mod(S)⊗P Mod(S)
⊗S // Mod(S)
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and

Mop (−)∗
//

ω∗

%%❏
❏❏

❏❏
❏❏

❏❏
❏

M

ω
��

Mod(S)

P s //

i ##❍
❍
❍
❍
❍
❍
❍
❍
❍ M

ω
��

Mod(S)

By the first diagram we have an equivalence ω ⊗S ω ≃ ω(− ⊗ −). So
the universal P-module morphism ω → ω⊗S L, gives a P-module morphism
ω ⊗S ω → (ω ⊗S ω) ⊗S L and so there is a corresponding morphism of
coalgebroids:

m : L(ω ⊗S ω) ≃ L⊗S⊗S L→ L.

Similarly the second and third diagrams induce corresponding morphisms:

T : L(ω∗) ≃ Lop → L, u : L(i) ≃ S ⊗ S → L.

These morphisms satisfy the required conditions for a Hopf algebroid
because of the conditions on the monoidal structure of M and ω. The proofs
of these facts are completely parallel to the proofs of similar results in the
characterization of Tannakian categories (cf. [D], §6).

Trying to obtain a converse statement for the above theorem, leads nat-
urally to the following question:

Question 4.6. Let S be an algebra in P and L a commutative Hopf algebroid
over S and define ω : coMod(L) → Mod(S) to be the forgetful functor. For
which classes of Hopf algebroids L, coMod(L) is rigid (or equivalently, the
image of ω lies in the subcategory of dualizable S-modules) and the morphism
L(ω) → L (corresponding to the universal property of L(ω)) is isomorphism?

In the classical case, P = Vectk, the answer of the above question is the
class of all commutative Hopf algebroids L over S, which are faithfully flat
over S ⊗ S (cf. [D], Theorem 1.12, (iii)). An easy argument shows that the
same thing holds for a general neutral Tannakian category P, but we do not
know the answer in general.

Remark 4.7. In the special case S = 1, Mod(S) = P and so the set of
morphisms between every two object in Mod(S) is finite dimensional over k
and all objects have finite length. So if ω : M → P be a faithful P-module
functor, M has also this properties. Furthermore the inclusions

HomM(P ⊗M,N) →֒ HomP(P ⊗ ω(M), ω(N)), (M,N ∈ M, P ∈ P)
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induces an inclusion

HomM(M,N) →֒ HomP(ω(M), ω(N)) ≃ ω(M)∗ ⊗ ω(N),

and so the internal hom’s of objects in M are in P and M is locally finite
over P. So in the special case S = 1, we can remove the locally finiteness
condition of above theorem and M will be equivalent to the category of
comodules over a Hopf algebra in P (or equivalently “finite representations
of an affine group scheme in P”). This result (with small modifications) can
be obtained also by Deligne’s notion of the “fundamental group” of a tensor
category, which we will discuss in the next section.

5 Fundamental group of tensor categories

Recall that a k-tensor category ([D], 2.1) is a k-linear abelian rigid sym-
metric monoidal category with further condition, End(1) = k. A Tannakian
category is a k-tensor category together with a fiber functor (i.e. k-linear ex-
act symmetric monoidal functor) to the category of S-modules for a nonzero
commutative k-algebra S.

For every two locally finite k-linear abelian categories A1,A2, there is a
k-linear abelian category4 A1 ⊗D A2 with a bilinear functor ⊗ : A1 ×A2 →
A1⊗DA2 which is right exact in each variable, and for every bilinear functor
F : A1 ×A2 → C to a k-linear abelian category which is right exact in each
variable, there exists a k-linear right exact functor F̃ : A1 ⊗D A2 → C such
that F = F̃ ◦ ⊗ and F̃ is unique up to equivalence. (cf. [D], §5)

If T is a locally finite k-tensor category, then there is an induced monoidal
structure on T ⊗D T and T ⊗D T is a k-tensor category if k is perfect or T
is Tannakian. ([D], 8.1)

If ω : A → T is a functor between a k-linear category A and a k-tensor
category T , define:

Λ(ω) :=

∫ A∈A

ω(A)∗ ⊗ ω(A),

it is an object of ind(T ) and there is a universal morphism ω → ω ⊗ Λ(ω)
such that for every Λ ∈ ind(calT ) induces an isomorphism: ([D], 8.4)

Hom(ω, ω ⊗ Λ) ≃ Hom(Λ(ω),Λ).

4We used this notation to distinguish it from our notation ⊗ for product of categories.
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In the case ω : T1 → T2 be a exact tensor functor (i.e. symmetric
monoidal) between k-tensor categories, Λ(ω) is equipped with a structure
of a Hopf algebra in T2 and there is a corresponding “affine group scheme” 5

in T2 (or a T2-group):
π(ω) := Sp(Λ(ω)).

By definition this group represents the functor

Sp(R) 7→ Isom⊗(ω ⊗ R, ω ⊗ R),

for commutative algebras R in T2. ([D], 8.12-8.15)
In the special case ω = idT for a k-tensor category T , we denote π(idT )

by π(T ) and call it the fundamental group of T . So every object of T has
an action of π(T ) which is called the natural action.6 ([D], 8.12, 8.13) The
natural action of π(T ) on itself is equal to the conjugation action, this is a
special case of Lemma 5.1 below.

For a general exact tensor functor ω : T1 → T2 between k-tensor cate-
gories, the exactness and monoidal properties of ω immediately shows that

π(ω) ≃ ω(π(T1)),

and the universal property of Λ(ω) gives a morphism:

Λ(ω) = Λ(idT2 ◦ ω) → Λ(idT2),

which induces a morphism of T2-groups: ([D], 8.15)

ν : π(T2) → ω(π(T1)). (5.1)

Lemma 5.1. With above notations, the natural action of π(T2) on ω(π(T1))
(as an affine scheme in T2) is equal to the conjugation action of π(T2) by ν
on ω(π(T1)).

Proof. The application of ω to the natural action of π(T1) on each X ∈ T1,
gives an action of ω(π(T1)) on every ω(X) (denoted by ρX) and by definition
of ν the natural action of π(T2) on ω(X) is the composition of this action with

5For basic algebraic geometry notions in tensor categories, see [D], 7.8
6The fundamental group has also a natural action on every algebra in the category and

because the category of affine schemes is the opposite category of the category of algebras,
it has also a right action on every affine scheme. But we use the word “natural action” in
the case of affine schemes for the inverse of this action which is also an action from left.
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ν (denoted by σX). We also denote the natural action of π(T2) on ω(π(T2))
by σ.

Let R be an algebra in T2 and X ∈ T1. Now for arbitrary g ∈ π(T2)(R),
the following diagram is commutative: (it is because all morphisms in T2

respect the natural action)

ω(π(T1))(R)× (ω(X)⊗ R)
ρX

//

σ(g)×σX (g)
��

ω(X)⊗ R

σX(g)
��

ω(π(T1))(R)× (ω(X)⊗ R)
ρX

// ω(X)⊗ R

So for every h ∈ ω(π(T1))(R), we have

ρX(σ(g)(h)) = σX(g) ◦ ρX(h) ◦ σX(g
−1)

= ρX(ν(g)) ◦ ρX(h) ◦ ρX(ν(g
−1)) = ρX(ν(g)h ν(g)

−1).

Now
ω(π(T1))(R) ≃ π(ω)(R) ≃ Isom⊗(ω ⊗R, ω ⊗R),

so every element of ω(π(T1))(R) is determined by its action on ω(X)⊗R’s. So
above equation shows that σ(g)(h) = ν(g)hν(g)−1 and the proof is complete.

Theorem 5.2 ([D], 8.17). Suppose T1 and T2 be two locally finite k-tensor
categories and ω an exact tensor functor from T1 to T2. Suppose also that
T2 ⊗D T2 is a tensor category over k. Then the tensor functor from T1 to the
category of objects of T2 with an action of ω(π(T1)) such that the composition
of this action with the morphism ν : π(T2) → ω(π(T1)) (in (5.1)) is the
natural action, is equivalence.

We use the above theorem to prove the following corollary, which is a
variant to the special case S = 1 of 4.4.

Corollary 5.3. Suppose T1 and T2 be two locally finite k-tensor categories
and ω an exact tensor functor from T1 to T2. Suppose also that T2 ⊗D T2

is a tensor category over k. Then if there exists an exact tensor functor
s : T2 → T1 with tensor isomorphism α : ω ◦ s → idT2, then there is a T2-
group G such that T1 is tensor equivalent to RepT2(G) and ω is equal to the
forgetful functor RepT2(G) → T2 under this equivalence.

Note that here we do not assume T2 is semisimple.
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Proof. Let ν1 : π(T2) → ω(π(T1)) and ν2 : π(T1) → s(π(T2)) be the mor-
phisms induced by ω and s. Then the morphism π(T2) → ω ◦ s(π(T2)) corre-
sponding to ω◦s is equal to the composition ω(ν2)◦ν1 and is an isomorphism
because of the commutativity of the diagram:

π(T2)
ω(ν2)◦ν1

//

id
))❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
ω ◦ s(π(T2))

α≃

��

π(T2)

So if we let the T2-groupG = Sp(L) to be the kernel of ω(ν2), then ω(π(T1)) ≃
π(T2) ⋉ G and the conjugation action of π(T2) on G is the restriction of its
conjugation action on ω(π(T1)), which is the natural action. So this action
is also the natural action. Now by Theorem 5.2, T1 is equivalent to the
category of objects of T2 together with an action ρ of π(T2) ⋉ G such that
the restriction of ρ to π(T2) is the natural action.

But an arbitrary action ρ of π(T2) ⋉ G on an object is given by two
actions ρ1 and ρ2 of π(T2) and G, with the property that for every g ∈
π(T2)(R), h ∈ G(R) (R an algebra), ρ2(ghg

−1) = ρ1(g)ρ2(h)ρ1(g)
−1 or equiv-

alently ρ2(ghg
−1)ρ1(g) = ρ1(g)ρ2(h). But in the case ρ1 is the natural ac-

tion, this condition is always satisfied, because the conjugation action of
π(T2) on G is equal to the natural action and ρ2 respects the natural action.
This shows that T2 is equivalent to the category of representations of G and
ω corresponds under this equivalence to the forgetful functor coMod(L) =
RepT2(G) → T2.

Remark 5.4. It is easy to see that for every commutative algebra R in T2,
G(R) is equal to the group of tensor isomorphisms of ω ⊗ R which trivially
act on ω(s(T2)). Viewing T1 as a T2-module category by s, shows that G(R)
is also equal to the T2-module endomorphisms of ω which respect the tensor
structure of ω ⊗ R (Every tensor endomorphism of a functor from a rigid
category is an isomorophism). Thus L = O(G) (the ring of regular functions
on G) represents the functor:

X ∈ T2 7→ HomT2(ω, ω ⊗X),

and so L is isomorphic to the associated coalgebra of ω, defined in previous
sections. So the above corollary is very similar to the special case S = 1 of
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Theorem 4.4, and the deference is only on the conditions assumed on T1 = M
and T2 = P.

In fact, with the assumtions in the above corollary, ω is faithful (cf. [D],
Corollary 2.10) and therefore s is a faithful embedding. Also by exactness
of s, s has a right adjoint t, and so for every two objects M1,M2 in T1 and
every X ∈ T2, we have:

HomT1(s(X)⊗M1,M2) ≃ HomT1(s(X),M2⊗M
∗
1 ) ≃ HomT2(X, t(M2⊗M

∗
1 )),

and so T1 is locally finite as a module category over T2. So if we define M :=
T1, P := T2 and S = 1, we only need two conditions for applying Theorem
4.4, the first is the semisimplicity of T1 and the second is the Chevalley
property. Again using Remark 2.11, we see that the second condition is also
satisfied in the case of Tannakian categories in characteristic 0. So in this
case, the above corollary for semisimple tensor categories T2, can also be
proved using Theorem 4.4.

Remark 5.5. In this remark we show that the T2-group G defined in the proof
of the above corollary depends on the section s and it can not be determined
only by ω. For this consider a finite group K with a subgroup i : H →֒ K,
with two morphisms s1, s2 : K → H such that s1 ◦ i = s2 ◦ i = idH and
the kernels Gi = Ker(si), i = 1, 2 are not isomorphic. (We give an example
below)

let us define T1 = Repk(K) and T2 = Repk(H). Then the morphism
i : H → K induces an exact tensor functor ω : T1 → T2 and the induced
functors s̃1, s̃2 corresponding to s1 and s2 give sections for ω. Now if we forget
the T2 structures, π(T2) ≃ H and ω(π(T1)) ≃ K and so for s = s̃i, i = 1, 2
the kernel of ω(ν2) = si is equal to Gi. So different sections s̃1, s̃2 give to
nonisomorphic groups for G.

For an example of K and H satisfying above conditions consider

G = 〈x, y, z|x3 = y2 = z2 = [x, y] = [y, z] = (xz)2 = 1〉, H = 〈z〉.

We can define two retractions s1 and s2 by

s1(x) = s2(x) = 1, s1(y) = 1, s2(y) = z, s3(z) = s3(z) = z.

Then it can be easily verified that

Ker(s1) = 〈x, y〉 ≃ Z/6Z, Ker(s2) = 〈x, yz〉 ≃ S3,
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and so G1 6≃ G2.
7
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