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Abstract The statement of Proposition 4.3 in the published paper is not correct. Here we
change the statement and give a complete proof.

Erratum to: Period Math Hung (2015) 71:11–23
https://doi.org/10.1007/s10998-014-0079-3

1 Replacement of [3, Proposition 4.3]

We first illustrate a counter-example for [3, Proposition 4.3]. Take m = 273 = 3 × 7 ×
13. Using the notation in [3, Proposition 4.3], we have d = 3 and d ′ = 1. That is, the
homomorphism φm defined there is surjective. However, for any positive integer a coprime
to m, Cm(a) is divisible by 3, because 6 | λ(m) and then 9 | aλ(m) − 1. This leads to a
contradiction.

Proposition 4.3 and its proof in [3] should be replaced by Proposition 1.1 below. Fortu-
nately, this does not affect other results and arguments in [3], although Proposition 4.3 in [3]
was quoted several times there.

Assume that positive integer m has the prime factorization m = pr11 · · · prkk . In [1, Propo-
sition 4.4], the Euler quotient has been used to define a homomorphism from (Z/m2

Z)∗ to
(Z/mZ,+), whose image is dZ/mZ, where

d =
k∏

i=1

di and di =
{
gcd(prii , 2ϕ(m)/ϕ(prii )) if pi = 2 and ri ≥ 2,
gcd(prii , ϕ(m)/ϕ(prii )) otherwise.

(1.1)

In fact, the above d, di are equivalent to those d, di defined in [3], respectively.
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By [3, Proposition 2.2 (2)], the Carmichael quotient Cm(x) induces a homomorphism

φm : (Z/m2
Z)∗ → (Z/mZ,+), x �→ Cm(x),

where Cm(x) = (xλ(m) − 1)/m and λ(m) is the Carmichael function.

Proposition 1.1 Let m = pr11 · · · prkk be the prime factorization of m ≥ 2. For 1 ≤ i ≤ k,
put

d ′
i =

{
gcd(prii , 2λ(m)/λ(prii )) if pi = 2 and ri = 2,
gcd(prii , λ(m)/λ(prii )) otherwise.

Let d ′ = ∏k
i=1 d

′
i . Then the image of the homomorphism φm is d ′

Z/mZ.

Proof We show the desired result case by case.

(I) First we prove the result for the case k = 1, that is m = pr , where p is a prime and r
is a positive integer.

Suppose that p = 2. If r = 2, then Cm(3) = 2, and for any positive integer n we have
Cm(2n + 1) = n(n + 1), which is even, so the image of φm is 2Z/mZ. On the other hand,
if r = 1 or r ≥ 3, since C2(3) = 1 and C8(3) = 1, by using [3, Proposition 2.8] we see that
Cm(3) is an odd integer, so the image of φm is Z/mZ.

Now, assume that p > 2. Note that Cp(p + 1) ≡ −1 (mod p), by [3, Proposition 2.8]
we have Cm(p + 1) ≡ −1 (mod p), which implies that p � Cm(p + 1). Thus, there exists
a positive integer n such that nCm(p + 1) ≡ 1 (mod m). Then, by [3, Proposition 2.2 (1)]
we deduce that Cm((p + 1)n) ≡ 1 (mod m). So, the image of φm is Z/mZ.

(II) To complete the proof, we prove the result when k ≥ 2.
For simplicity, denote mi = m/prii and ni = λ(m)/λ(prii ) for each 1 ≤ i ≤ k, and then

let m′
i be an integer such that m2

i m
′
i ≡ 1 (mod prii ). By [3, Proposition 2.7], we have

Cm(a) ≡
k∑

i=1

mim
′
i niCp

ri
i
(a) (mod m). (1.2)

So, for each 1 ≤ i ≤ k, Cm(a) ≡ mim′
i niCp

ri
i
(a) (mod prii ). If pi = 2 and ri = 2, note

that for any odd integer a > 1, C4(a) is even, then we see that d ′
i | niCp

ri
i
(a), and thus

d ′
i | Cm(a). Otherwise if pi > 2 or ri 	= 2, then d ′

i | ni , and so d ′
i | Cm(a). Hence, we have

d ′ | Cm(a) for any integer a coprime to m.
Let b = gcd(m,m1m′

1n1, . . . ,mkm′
knk). Then, there exist integers X1, . . . , Xk such that

b ≡
k∑

i=1

mim
′
i ni Xi (mod m). (1.3)

If we denote bi = gcd(prii ,mim′
i ni ) for each 1 ≤ i ≤ k, then b = ∏k

i=1 bi ; here, we remark
that bi = gcd(prii , ni ). It is easy to see that for each 1 ≤ i ≤ k, if pi > 2 or ri 	= 2, we
have d ′

i = bi . Further, when pi = 2 and ri = 2, d ′
i = 2bi if 8 � λ(2p1 . . . pk), and d ′

i = bi
otherwise.

We now have three cases for m:

(i) There exists 1 ≤ j ≤ k such that p j = 2, r j = 2 and

8 � λ(2p1 . . . pk).

123



Correction to: The arithmetic of Carmichael quotients 273

(ii) There exists 1 ≤ j ≤ k such that p j = 2, r j = 2 and

8 | λ(2p1 . . . pk).

(iii) All the other cases.

Clearly, in Cases (ii) and (iii) we have d ′ = b, and in Case (i) d ′ = 2b.
According to (I), there exist integers ai with pi � ai for 1 ≤ i ≤ k defined by

Cp
ri
i
(ai ) ≡

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2Xi in Case (i),
Xi in Case (iii),

(mod prii )

Xi in Case (ii) and i 	= j,
0 in Case (ii) and i = j.

By the Chinese Remainder Theorem, we can choose a positive integer a such that a ≡ ai
(mod p2rii ). So, by [3, Proposition 2.2 (2)] we have Cp

ri
i
(a) ≡ Cp

ri
i
(ai ) (mod prii ). Then,

combining with (1.3) and the relation between b and d ′, we obtain mim′
i niCp

ri
i
(a) ≡ d ′

(mod prii ) for each 1 ≤ i ≤ k in all the three cases. Finally, using (1.2) we have Cm(a) ≡ d ′
(mod m), which completes the proof. 
�

Comparing (1.1) with Proposition 1.1, we have d ′ | d . Moreover, by [3, Proposition 2.1]
we get

ϕ(m)

λ(m)
d ′

Z/mZ = dZ/mZ,

which implies that gcd( ϕ(m)
λ(m)

d ′,m) = d .

2 Another error

We take this opportunity to correct another error. In the proof of [3, Lemma 3.4], the last
identity “≡ �n−12r−2” may be not true, and it should be deleted. Because by using n2

r−2 ≡ 1
(mod 2r ), we only know that (n2

r−2 + 1)/2 is an odd integer, which may be not congruent
to 1 modulo 2r . Clearly, this error does not change the result there.

Acknowledgements The author wants to thank the anonymous referee of his joint paper [2] for pointing out
the error in [3, Proposition 4.3] and giving the counter-example.
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