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ON THE ALGEBRAIC AND ARITHMETIC STRUCTURE

OF THE MONOID OF PRODUCT-ONE SEQUENCES II

JUN SEOK OH

Abstract. Let G be a finite group and G′ its commutator subgroup. By a sequence over G, we mean a
finite unordered sequence of terms from G, where repetition is allowed, and we say that it is a product-
one sequence if its terms can be ordered such that their product equals the identity element of G. The
monoid B(G) of all product-one sequences over G is a finitely generated C-monoid whence it has a finite
commutative class semigroup. It is well-known that the class semigroup is a group if and only if G is
abelian (equivalently, B(G) is Krull). In the present paper we show that the class semigroup is Clifford

(i.e., a union of groups) if and only if |G′| ≤ 2 if and only if B(G) is seminormal, and we study sets of
lengths in B(G).

1. Introduction

Let G be a finite group and G′ its commutator subgroup. A sequence S over G means a finite sequence
of terms from G which is unordered and repetition of terms is allowed. We say that S is a product-one
sequence if its terms can be ordered such that their product equals the identity element of the group.
Clearly juxtaposition of sequences is a commutative operation on the set of sequences. As usual we
consider sequences as elements of the free abelian monoid F(G) with basis G, and clearly the subset
B(G) ⊂ F(G) of all product-one sequences is a submonoid. The focus on the present paper is on non-
abelian finite groups. Sequences over general (not necessarily abelian) finite groups have been studied in
combinatorics since the work of Olson ([30] for an upper bound on the small Davenport constant) and
there has been renewed interest ([2, 13, 12, 27, 15, 26, 4]), partly motivated by connections to invariant
theory ([9, 6, 8, 7, 10]).

In the present paper we continue the work started in [29]. The monoid B(G) is a finitely generated
C-monoid whence, by definition of a C-monoid, its class semigroup is finite. A large class of Mori domains
(so-called C-domains, see [16] for basics, and [31, 19, 17, 28]) are known to have finite class semigroup,
and this allow one to derive arithmetical finiteness results. However, the algebraic structure of their class
semigroups is unknown and monoids of product-one sequences, being combinatorial C-monoids, represent
the first class of C-monoids for which we have some first insight into their structure. Among others, it
was shown in [29] that the class semigroup of B(G) is a group if and only if B(G) is Krull (resp., root
closed) if and only if G is abelian (Theorem 3.1). In the present paper we provide a characterization
of idempotent elements in the class semigroup (Proposition 3.3) which allows us to show that the class
semigroup of B(G) is Clifford (i.e., a union of groups) if and only if B(G) is seminormal if and only if
|G′| ≤ 2 (Theorme 3.6, 3.11, and Corollary 3.12).

Let H be a transfer Krull monoid over a finite abelian group G (this includes commutative Krull
monoids with class group G having prime divisors in all classes). Then the arithmetic of H and of B(G)
are closely connected and their systems of all sets of lengths coincide. This is the reason why the study of
sets of lengths in B(G) (for finite abelian groups G) is a central topic in factorization theory. In Section
4 we take first steps towards studying sets of lengths in B(G) for non-abelian groups. Among others, we
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show that over the dihedral group and over non-abelian groups with small Davenport constant, sets of
lengths are different from sets of lengths over any abelian group (Theorems 4.4 and 4.7). At the beginning
of Section 4 we provide a detailed discussion of the involved topics.

2. Background on product-one sequences and their class semigroups

Our notation and terminology are consistent with the first part [29] and also with [15, 9]. We briefly
gather the key notions. To begin with, by N we mean the set of positive integers, and for integers a, b ∈ Z,
[a, b] = {x ∈ Z | a ≤ x ≤ b} is the discrete interval.

Groups. Let G be a multiplicatively written, finite group. For an element g ∈ G, ord(g) ∈ N is its order,
and for a subset G0 ⊂ G, 〈G0〉 ⊂ G denotes the subgroup generated by G0. Furthermore,

• Z(G) = {g ∈ G | gx = xg for all x ∈ G} ⊳ G is the center of G,
• [x, y] = xyx−1y−1 ∈ G is the commutator of the elements x, y ∈ G, and
• G′ = [G,G] = 〈[x, y] | x, y ∈ G〉 ⊳ G is the commutator subgroup of G.

For every n ∈ N, we denote

• by Cn a cyclic group of order n,
• by D2n = {1G, a, . . . , an−1, b, ab, . . . , an−1b} a dihedral group of order 2n,
• by Dic4n = 〈a, b | a2n = 1G, b

2 = an and ba = a−1b〉 a dicyclic group of order 4n,
• by An an alternating group of degree n, and
• by Q8 = {E, I, J,K,−E,−I,−J,−K} the quaternion group.

Semigroups. All our semigroups are commutative and have an identity element. Let S be a semigroup.
We denote by S× its group of invertible elements and by E(S) the set of all idempotents of S, endowed
with the Rees order ≤, defined by e ≤ f if ef = e. Clearly, ef ≤ e and ef ≤ f for all e, f ∈ E(S). If
E ⊂ E(S) is a finite subsemigroup, then E has a smallest element. If S is finite, then for each a ∈ S, there
exists an n ∈ N such that an ∈ E(S). For subsets A,B ⊂ S and a ∈ S, we set

AB = {ab | a ∈ A, b ∈ B} and aB = {ab | b ∈ B} .

A subset I ⊂ S is called an ideal if SI ⊂ I. If I ⊂ S is an ideal, we define the Rees quotient to be the
semigroup S/I = (S \ I) ∪ {0}, where 0 is a zero element, the product ab is defined as in S if a, b and ab
all belong to S \ I, and ab = 0 otherwise.

By a monoid, we mean a semigroup which satisfies the cancellation laws. Let H be a monoid. Then
q(H) denotes the quotient group of H and A(H) the set of irreducibles (atoms) of H . The monoid H is
called atomic if every non-unit of H can be written as a finite product of atoms. We say that H is reduced
if H× = {1}, and we denote by Hred = H/H× = {aH× | a ∈ H} the associated reduced monoid of H . A
monoid F is called free abelian with basis P ⊂ F if every a ∈ F has a unique representation of the form

a =
∏

p∈P

pvp(a) with vp(a) = 0 for almost all p ∈ P .

If F is free abelian with basis P , then P is the set of primes of F , we set F = F(P ), and denote by

• |a| =
∑

p∈P vp(a) the length of a, and by

• supp(a) = {p ∈ P | vp(a) > 0} the support of a.

A monoid F is factorial if and only if Fred is free abelian if and only if F is atomic and every atom is a
prime. We denote by

• H ′ = {x ∈ q(H) | there is an N ∈ N such that xn ∈ H for all n ≥ N} the seminormalization of
H , by

• H̃ = {x ∈ q(H) | xN ∈ H for some N ∈ N} the root closure of H , and by

• Ĥ = {x ∈ q(H) | there is a c ∈ H such that cxn ∈ H for all n ∈ N} the complete integral closure

of H ,
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and observe that H ⊂ H ′ ⊂ H̃ ⊂ Ĥ ⊂ q(H). Then the monoid H is called

• seminormal if H = H ′ (equivalently, if x ∈ q(H) and x2, x3 ∈ H , then x ∈ H),

• root closed if H = H̃,

• completely integrally closed if H = Ĥ .

A monoid homomorphism ϕ : H → D is said to be

• a divisor homomorphism if a, b ∈ H and ϕ(a) | ϕ(b) implies that a | b.
• a divisor theory if D is free abelian, ϕ is a divisor homomorphism, and for all α ∈ D there are
a1, . . . , am ∈ H such that α = gcd

(
ϕ(a1), . . . , ϕ(am)

)
.

A monoid H is said to be a Krull monoid if it satisfies one of the following equivalent conditions (see [16,
Theorem 2.4.8]) :

(a) H is completely integrally closed and satisfies the ACC on divisorial ideals.

(b) H has a divisor theory.

Class semigroups and C-monoids. (a detailed presentation can be found in [16, Chapter 2]). Let F
be a monoid and H ⊂ F a submonoid. For any two elements y, y′ ∈ F , we define H-equivalence ∼H by

(2.1) y ∼H y′ if y−1H ∩ F = y′
−1

H ∩ F .

Then H-equivalence is a congruence relation on F . For y ∈ F , let [y]FH denote the congruence class of y,
and let

C(H,F ) =
{
[y]FH | y ∈ F

}
and C∗(H,F ) =

{
[y]FH | y ∈ (F \ F×) ∪ {1}

}
.

Then C(H,F ) is a commutative semigroup with unit element [1]FH (called the class semigroup of H in F )
and C∗(H,F ) ⊂ C(H,F ) is a subsemigroup (called the reduced class semigroup of H in F ). As usual, class
groups and class semigroups will both be written additively.

A monoid H is called a C-monoid if H is a submonoid of a factorial monoid F such that H ∩F× = H×

and C∗(H,F ) is finite. A Krull monoid is a C-monoid if and only if it has finite class group. We refer to
[16, 19, 31, 28] for more on C-monoids.

Sequences over groups. Let G be a finite group with identity element 1G and G0 ⊂ G a subset. The
elements of the free abelian monoid F(G0) will be called sequences over G0. This terminology goes back to
Combinatorial Number Theory. Indeed, a sequence over G0 can be viewed as a finite unordered sequence
of terms from G0, where the repetition of elements is allowed. In order to avoid confusion between
multiplication in G and multiplication in F(G0), we denote multiplication in F(G0) by the boldsymbol ·
and we use brackets for all exponentiation in F(G0). In particular, a sequence S ∈ F(G0) has the form

(2.2) S = g1 · . . . · gℓ = •
i∈[1,ℓ]

gi = •
g∈G0

g[vg(S)] ∈ F(G0),

where g1, . . . , gℓ ∈ G0 are the terms of S. Moreover, if S1, S2 ∈ F(G0) and g1, g2 ∈ G0, then S1·S2 ∈ F(G0)
has length |S1|+ |S2|, S1 ·g1 ∈ F(G0) has length |S1|+1, g1g2 ∈ G is an element of G, but g1 ·g2 ∈ F(G0)
is a sequence of length 2. If g ∈ G0, T ∈ F(G0), and k ∈ N0, then

g[k] = g · . . . · g︸ ︷︷ ︸
k

∈ F(G0) and T [k] = T · . . . · T︸ ︷︷ ︸
k

∈ F(G0) .

Let S ∈ F(G0) be a sequence as in (2.2). Then we denote by

π(S) = {gτ(1) . . . gτ(ℓ) ∈ G | τ a permutation of [1, ℓ]} ⊂ G and Π(S) =
⋃

T |S

|T |≥1

π(T ) ⊂ G ,

the set of products and subsequence products of S, and it can easily be seen that π(S) is contained in
a G′-coset. Note that |S| = 0 if and only if S = 1F(G), and in that case we use the convention that
π(S) = {1G}. The sequence S is called

• a product-one sequence if 1G ∈ π(S), and
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• product-one free if 1G /∈ Π(S).

If S = g1 · . . . · gℓ ∈ B(G) is a product-one sequence with 1G = g1 . . . gℓ, then 1G = gi . . . gℓg1 . . . gi−1 for
every i ∈ [1, ℓ]. Every map of groups θ : G → H extends to a monoid homomorphism θ : F(G) → F(H),
where θ(S) = θ(g1) · . . . · θ(gℓ). If θ is a group homomorphism, then θ(S) is a product-one sequence if and
only if π(S) ∩ ker(θ) 6= ∅.

Definition 2.1. Let G0 ⊂ G be a subset.

1. The submonoid
B(G0) = {S ∈ F(G0) | 1G ∈ π(S)} ⊂ F(G0)

is called the monoid of product-one sequences, and A(G0) := A
(
B(G0)

)
is its set of atoms.

2. We call
D(G0) = sup{|S| | S ∈ A(G0)} ∈ N ∪ {∞}

the large Davenport constant of G0 and

d(G0) = sup{|S| | S ∈ F(G0) is product-one free} ∈ N0 ∪ {∞}

the small Davenport constant of G0.

The following elementary lemma will be used without further mention (see [9, Lemma 3.1]).

Lemma 2.2. Let G0 ⊂ G be a subset.

1. B(G0) is a reduced finitely generated C-monoid in F(G), A(G0) is finite, and D(G0) ≤ |G|.

2. Let S ∈ F(G) be product-one free.

(a) If g0 ∈ π(S), then g−1
0 · S ∈ A(G). In particular, d(G) + 1 ≤ D(G).

(b) If |S| = d(G), then Π(S) = G \ {1G} and hence

d(G) = max
{
|S| | S ∈ F(G) with Π(S) = G \ {1G}

}
.

3. If G is cyclic, then d(G) + 1 = D(G) = |G|.

3. On the structure of class semigroups

Throughout this section, let G be a finite group with identity 1G ∈ G and commutator group G′.

Our starting point is the following characterization ([9, Theorem 3.2] and [29, Proposition 3.4]).

Theorem 3.1. The following statements are equivalent :

(a) G is abelian.

(b) The embedding B(G) →֒ F(G) is a divisor homomorphism.

(c) B(G) is root closed.

(d) B(G) is a Krull monoid.

(e) B(G) is a transfer Krull monoid.

(f) C
(
B(G),F(G)

)
is a group.

If this is the case, then C
(
B(G),F(G)

)
∼= G.

The main goal of this section is to characterize when the class semigroup C
(
B(G),F(G)

)
is the union

of groups. Let C be an additively written semigroup. For a, b ∈ C, we define Green’s relation H by

aHb if a ∈ b+ C and b ∈ a+ C (equivalently, a+ C = b+ C) .

Then H is a congruence relation on C, and for a ∈ C, we denote by H(a) the congruence class of a.
The following lemma describes a relation between idempotent elements and maximal subgroups (see [25,
Proposition I.4.3 and Corollary I.4.5]).
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Lemma 3.2. Let C be a semigroup and H Green’s relation on C.

1. An H-class is a subgroup of C if and only if it contains an idempotent element of C. In particular,

if H(e) is a group, then e is the identity element and the unique idempotent element.

2.
{
H(e) | e ∈ E(C)

}
is the set of all maximal subgroups of C, and they are pairwise disjoint.

An element a ∈ C is called regular if a lies in a subgroup of C. Clearly a ∈ C is regular if and only if
there is an e ∈ E(C) such that a ∈ H(e). A semigroup C is called a Clifford semigroup if every element of
C is regular. Thus C is a Clifford semigroup if and only if C is the union of H(e) for all e ∈ E(C).

Applying (2.1) to the inclusion B(G) ⊂ F(G), we say that two sequences S, S′ ∈ F(G) are B(G)-
equivalent if one of the following equivalent conditions hold :

• For all T ∈ F(G), we have S · T ∈ B(G) if and only if S′
· T ∈ B(G).

• For all T ∈ F(G), we have 1G ∈ π(S · T ) if and only if 1G ∈ π(S′
· T ).

We write ∼ instead of ∼B(G) and set [S] = [S]
F(G)
B(G) . If S, S′ ∈ F(G) are sequences with S ∼ S′, then

π(S) = π(S′) (see [29, Lemma 3.6]). We will use this simple fact without further mention.

Proposition 3.3. Let H ⊂ G′ be a subset. Then the following statements are equivalent :

(a) H = π(S) for some sequence S ∈ F(G) with [S] ∈ E
(
C
(
B(G),F(G)

))
.

(b) H = G′
0 for a subgroup G0 ⊂ G.

If (a) holds, then 〈supp(S)〉 is the desired subgroup.

Proof. (a) ⇒ (b) Let S = g1 · . . . · gℓ ∈ F(G) be such that π(S) = H and [S] is idempotent. Then
π(S) = π(S[n]) for all n ∈ N, and H = π(S) ⊂ G′ is a subgroup by [29, Lemma 3.7.1]. We set
G0 = 〈g1, . . . , gℓ〉 and assert that π(S) = G′

0. Clearly we have π(S) ⊂ G′
0.

Conversely, we first show that [gi, gj] ∈ π(S) for all i, j ∈ [1, ℓ]. Let i, j ∈ [1, ℓ] and consider the

commutator [gi, gj] = gigjg
−1
i g−1

j . We may assume that i 6= j, otherwise [gi, gj] = 1G ∈ π(S). Then we

can take product-one equations, in π(S), with gi and gj being the first elements, say

gign1
. . . gni−1

gni+1
. . . gnℓ

= 1G and gjgm1
. . . gmj−1

gmj+1
. . . gmℓ

= 1G .

It follows that

g−1
i = gn1

. . . gni−1
gni+1

. . . gnℓ
and g−1

j = gm1
. . . gmj−1

gmj+1
. . . gmℓ

,

and hence [gi, gj ] = gigj(gn1
. . . gni−1

gni+1
. . . gnℓ

)(gm1
. . . gmj−1

gmj+1
. . . gmℓ

) ∈ π(S[2]) = π(S). Now let

g, h ∈ G0 and consider its commutator [g, h] = ghg−1h−1. Since G0 = 〈g1, . . . , gℓ〉, g and h have the form

g = g
ni1

i1
. . . g

nit

it
and h = g

mj1

j1
. . . g

mjk

jk
,

where t, k ∈ N, ni1 , . . . , nit ,mj1 , . . . ,mjk ∈ N0, and gi1 , . . . , git , gj1 , . . . , gjk ∈ supp(S). For each generator
of G0, we can express its inverse as a product of all other generators of G0 from the product-one equation
in π(S). Let M = ni1 + . . .+ nit +mj1 + . . .+mjk ∈ N. As at the start of the proof, we obtain that

[g, h] = g
ni1

i1
. . . g

nit

it
g
mj1

j1
. . . g

mjk

jk

(
(g−1

it
)nit . . . (g−1

i1
)ni1

)(
(g−1

jk
)mjk . . . (g−1

j1
)mj1

)
∈ π

(
S[M ]

)
= π(S) .

It follows that all generators of G′
0 belong to π(S), whence G′

0 ⊂ π(S).

(b) ⇒ (a) Let G0 ⊂ G be a subgroup with G′
0 = H . By [29, Lemma 3.7.3], there exists a sequence

S ∈ F(G0) such that [S]
F(G0)
B(G0)

∈ E
(
C
(
B(G0),F(G0)

))
and π(S) = G′

0. It follows that π(S) = π
(
S[n]

)

for all n ∈ N, and since C
(
B(G),F(G)

)
is finite by Lemma 2.2.1, there is an m ∈ N such that

[
S[m]

]
∈

E
(
C
(
B(G),F(G)

))
. Thus

[
S[m]

]
has the required property. �
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Lemma 3.4. Let S ∈ F(G) be a sequence with [S] ∈ E
(
C
(
B(G),F(G)

))
. Then there is a S0 ∈ B(G)

such that [S0] = [S] and

〈supp(S′)〉 ⊂ 〈supp(S0)〉 for all S′ ∈ B(G) with [S′] = [S] .

Proof. If m = lcm{ord(g) | ∈ supp(S)}, then S[m] ∈ B(G) and
[
S[m]

]
= [S]. We set

X =
⋃{

supp(S′) |S′ ∈ B(G), [S′] = [S]
}
⊂ G ,

say X = {g1, . . . , gℓ} with ℓ ∈ N. Then for each i ∈ [1, ℓ], we set

Si ∈ B(G) such that [Si] = [S] and gi ∈ supp(Si) ,

and we define S0 = S1 · . . . · Sℓ ∈ B(G). Since [S] is idempotent element, we have [S0] = [S], and if
S′ ∈ B(G) such that [S′] = [S], then supp(S′) ⊂ X = supp(S0). Thus S0 = S1 · . . . · Sℓ has the required
properties. �

Proposition 3.5. Let S ∈ F(G) be a sequence with [S] ∈ E
(
C
(
B(G),F(G)

))
. Then there exist a

subgroup G0 ⊂ G and a homomorphism ϕ[S] : H
(
[S]

)
→ G0/G

′
0 such that π(T ) is a G′

0-coset for every

sequence T ∈ F(G) with [T ] ∈ H
(
[S]

)
. In particular, we have the following special cases :

1. If [S] is the smallest idempotent, then G0 = G and ϕ[S] is an isomorphism.

2. If [S] is the greatest idempotent, then G0 = Z(G) and ϕ[S] is an isomorphism.

Proof. We may suppose that S satisfies the conditions given in Lemma 3.4. Then, by Proposition 3.3, we
obtain that G0 = 〈supp(S)〉 ⊂ G is a subgroup with G′

0 = π(S).
Let T ∈ F(G) be a sequence with [T ] ∈ H

(
[S]

)
. Since H

(
[S]

)
is finite group by Lemma 3.2.1 and

Lemma 2.2.1, it follows that there is an n ∈ N such that
[
T [n]

]
= [S]. From the choice of S, we have that

〈supp(T )〉 = 〈supp(T [n])〉 ⊂ 〈supp(S)〉 = G0 .

It follows that T ∈ F(G0) and hence π(T ) is contained in a G′
0-coset. Since [T ] ∈ H

(
[S]

)
and 1G ∈ π(S),

[T ] = [T · S] implies that π(T ) ⊂ π(T )π(S) ⊂ π(T · S) = π(T ) ,

whence π(T ) = π(T )π(S). Thus we obtain that π(T ) = gG′
0 for some g ∈ π(T ) ⊂ G0, and therefore the

map

ϕ[S] : H
(
[S]

)
→ G0/G

′
0

[T ] 7→ π(T ) = gG′
0

is the desired homomorphism. Indeed, if [T ], [T ′] ∈ H
(
[S]

)
, then π(T ·T ′) = (gg′)G′

0, where g ∈ π(T ) and
g′ ∈ π(T ′), whence

ϕ[S]

(
[T ] + [T ′]

)
= ϕ[S]

(
[T · T ′]

)
= (gg′)G′

0 = (gG′
0)(g

′G′
0) = ϕ[S]

(
[T ]

)
ϕ[S]

(
[T ′]

)
.

1. Let [S] be the smallest idempotent. We show that 〈supp(S)〉 = G. If g ∈ G, then g · S ∈ F(G) with
π(g · S) = gG′ by [29, Lemma 3.7.3]. Then there is an n ∈ N such that π(g[n] · S) = G′. It follows that
g[n] · S ∼ S, and thus 〈supp(g · S)〉 = 〈supp(g[n] · S)〉 ⊂ 〈supp(S)〉, where the last inclusion follows from
the maximality property in Lemma 3.4. Therefore we obtain that g ∈ 〈supp(S)〉 whence 〈supp(S)〉 = G.
Thus Lemma 3.2 and [29, Theorem 3.8.1] imply that H

(
[S]

)
is isomorphic to G/G′.

2. Since [1F(G)] is the greatest idempotent, we have [S] = [1F(G)]. We show that 〈supp(S)〉 = Z(G).

Since [1F(G)] = B
(
Z(G)

)
by [29, Lemma 3.7.2], it follows that 〈supp(S)〉 ⊂ Z(G). If g ∈ Z(G), then

g · g−1 ∈ B
(
Z(G)

)
. It follows that g · g−1 ∼ S, and hence the maximality property in Lemma 3.4 implies

〈g, g−1〉 ⊂ 〈supp(S)〉. Therefore we obtain that g ∈ 〈supp(S)〉 whence 〈supp(S)〉 = Z(G). Thus Lemma
3.2 and [29, Theorem 3.8.2] imply that H

(
[1F(G)]

)
is isomorphic to Z(G). �
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Let C = C
(
B(G),F(G)

)
, and let S ∈ F(G) be a sequence with [S] ∈ E(C). Since [S] is idempotent, it

follows that [S] + C is a subsemigroup of C with identity element [S]. Now we state the first part of our
main result, namely that B(G) is seminormal if and only if its class semigroup is Clifford.

Theorem 3.6. Let C = C
(
B(G),F(G)

)
. Then the following statements are equivalent :

(a) C is a Clifford semigroup.

(b) B(G) is a seminormal monoid.

Suppose that C is a Clifford semigroup. Let S1, . . . , Sn ∈ F(G) be such that E(C) =
{
[S1], . . . , [Sn]

}
, and

let Ci = [Si] + C for all i ∈ [1, n]. Then the map

ϕ : C → C∗ =
{(

[T · S1], . . . , [T · Sn]
)
|T ∈ F(G)

}
⊂

n∏

i=1

Ci ,

defined by ϕ
(
[T ]

)
=

(
[T · S1], . . . , [T · Sn]

)
for all T ∈ F(G), is an isomorphism with the following

properties :

1. If i, j ∈ [1, n] and T ∈ F(G) is a sequence with [T ] ∈ H
(
[Si]

)
, then

[Sj ] ≤ [Si] if and only if [T · Sj] ∈ H
(
[Sj ]

)
.

In particular, C∗ has no zero element.

2. For every i ∈ [1, n],

Ci =
⋃

H
(
[Sj ]

)
,

where the union is taken over those j ∈ [1, n] with [Sj ] ≤ [Si].

3. For every i ∈ [1, n], the restriction of the projection pi
∣∣
C∗

: C∗ → Ci
/
(Ci \ C

×
i ) is surjective.

4. B(G) =
⋃n

i=1{T ∈ F(G) | [T ] ∈ ker(ϕ[Si])}, where ϕ[Si] is the homomorphism defined in Prop. 3.5.

Proof. (a) ⇒ (b) Let T ∈ q(B(G)) ⊂ q(F(G)) be such that T [2], T [3] ∈ B(G). Since F(G) is free abelian,
it is seminormal whence T ∈ F(G). We have to show that 1G ∈ π(T ). Since C is Clifford, there is a
S ∈ F(G) such that [S] ∈ E(C) and [T ] ∈ H

(
[S]

)
. Then, by Lemma 3.4 and Proposition 3.5, we obtain

that π(T ) = gG′
0, where G0 = 〈supp(S)〉 with π(S) = G′

0 and g ∈ G0. Since T [2], T [3] ∈ B(G), we have
that g2, g3 ∈ G′

0, and it follows that g ∈ G′
0. Thus 1G ∈ G′

0 = π(T ).

(b) ⇒ (a) Let T ∈ F(G) be a sequence. Since C is finite by Lemma 2.1.1, there is an n ∈ N such that[
T [n]

]
∈ E(C). It suffices to show that T [n+1] ∼ T . Indeed, if this holds true, then [T ] generates a cyclic

subgroup and hence C is Clifford. Let Z ∈ F(G) be any sequence. If Z ·T ∈ B(G), then Z ·T [n+1] ∈ B(G)
because

[
T [n]

]
∈ E(C) implies T [n] ∈ B(G) by Proposition 3.3.

Conversely, we suppose that Z · T [n+1] ∈ B(G) and have to verify that Z · T ∈ B(G). We assert that

(3.1) (Z · T )[m]
· T [n] ∈ B(G) for all m ∈ N0 ,

and we proceed by induction on m. It holds for m = 0 by Proposition 3.3. If it holds for m ∈ N0, then
we infer by the induction hypothesis with the equivalence T [n]

· T [n] ∼ T [n] that

(Z · T )[m+1]
· T [n] ∼ (Z · T )[m]

· T [n]
· Z · T [n+1] ∈ B(G)

whence (Z · T )[m+1]
· T [n] ∈ B(G). Using Equation (3.1) with m = n we infer that

(Z · T )[n] ∼ (Z · T )[n] · T [n] ∈ B(G)

whence (Z · T )[n] ∈ B(G). Furthermore,

(Z · T )[n+1] ∼ (Z · T )[n] · Z · T [n+1] ∈ B(G)

whence (Z · T )[n+1] ∈ B(G). Thus there exists an N ∈ N such that any integer ℓ ≥ N can be written as
a non-negetive linear combination of the integers n and n + 1. It follows that (Z · T )[ℓ] ∈ B(G) for all
ℓ ≥ N . Since B(G) is seminormal, we obtain that Z · T ∈ B(G).
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Suppose now that C is a Clifford semigroup. First we show the statements 1. - 4., and then we prove
that ϕ is an isomorphism.

1. Let i, j ∈ [1, n], and let T ∈ F(G) be a sequence with [T ] ∈ H
(
[Si]

)
. Since H

(
[Si]

)
is a group by

Lemma 3.2.1, it follows that there is a sequence T ′ ∈ F(G) such that [T ′] is the inverse of [T ] in H
(
[Si]

)
.

If [Sj ] ≤ [Si], then

[T · Sj ] = [T · Sj ] + [Sj ] and [T · Sj ] + [T ′
· Sj ] = [Si · Sj] = [Sj ] ,

and it follows that [T ·Sj ] ∈ H
(
[Sj ]

)
. For the converse, we assume [T ·Sj ] ∈ H

(
[Sj ]

)
. Since [T ] ∈ H

(
[Si]

)
,

we have [T ] = [T · Si]. Since [Sj ] ∈ E(C), it follows that

[T · Sj ] = [T · Sj ] + [Si · Sj ] and [T · Sj ] + [T ′
· Si · Sj ] = [Si · Sj ] ,

whence [T ·Sj ] ∈ H
(
[Sj ]

)
∩H

(
[Si ·Sj]

)
. Thus Lemma 3.2.2 implies [Si ·Sj ] = [Sj ], equivalently [Sj ] ≤ [Si].

In particular, if [Sn] ≤ [Si] for all i ∈ [1, n], then Cn = C×
n = H

(
[Sn]

)
by [29, Theorem 3.8.1], and it

follows that C∗ has no zero element.

2. Observe that, for every i ∈ [1, n], the map C → Ci, given by [T ] 7→ [T · Si] for T ∈ F(G), is an
epimorphism, and thus Ci is Clifford because the epimomorphic image of Clifford semigroups are Clifford.

Let i ∈ [1, n] be given, and let T ∈ F(G) be a sequence with [T ] ∈ Ci. Since Ci is Clifford, there is a
subgroup G0 of Ci containing [T ]. If we denote by [S0] the identity element of G0, then [S0] is idempotent
in C. Since [S0] ∈ Ci, we have that [S0] = [Z · Si] for some sequence Z ∈ F(G). Since [Si] ∈ E(C), it
follows that

[S0 · Si] = [Z · Si · Si] = [Z · Si] = [S0] ,

whence [S0] = [Sj ] for some j ∈ [1, n] with [Sj ] ≤ [Si]. Thus [T ] ∈ H
(
[Sj ]

)
because C is Clifford, and hence

Ci ⊂
⋃
H
(
[Sj ]

)
, where the union is taken over those j ∈ [1, n] with [Sj ] ≤ [Si]. Conversely, if j ∈ [1, n]

with [Sj ] ≤ [Si] and T ∈ F(G) such that [T ] ∈ H
(
[Sj ]

)
, then

[T ] = [T · Sj ] = [T · (Sj · Si)] = [(T · Sj) · Si] = [T · Si] ∈ Ci whence H
(
[Sj ]

)
⊂ Ci .

3. It follows from the very definition of the Rees quotient of Ci by its ideal Ci \ C
×
i for i ∈ [1, n].

4. Let T ∈ B(G) be a product-one sequence. Since C is Clifford, there exists an i ∈ [1, n] such that
[T ] ∈ H

(
[Si]

)
. By Proposition 3.5, π(T ) is a G′

0-coset with G′
0 = π(Si). Since 1G ∈ π(T ), it follows that

π(T ) = G′
0 whence [T ] ∈ ker(ϕ[Si]). The reverse inclusion runs along the same lines.

Having established 1. - 4. we show that the map

ϕ : C → C∗

[T ] 7→
(
[T · S1], . . . , [T · Sn]

)

is an isomorphism. Observe that, for each sequence T ∈ F(G),

ϕ
(
[T ]

)
=

(
[T · S1], . . . , [T · Sn]

)
=

(
ϕ1

(
[T ]

)
, . . . , ϕn

(
[T ]

))
,

where for each i ∈ [1, n], ϕi : C → Ci is an epimorphism. Then it suffices to show that ϕ is injective.
To do so, we assume that ϕ

(
[T ]

)
= ϕ

(
[W ]

)
for T,W ∈ F(G). Since C is Clifford, there exist i, j ∈ [1, n]

such that [T ] ∈ H
(
[Si]

)
and [W ] ∈ H

(
[Sj ]

)
. It suffices to show that [Si] = [Sj ]. Indeed, if this holds true,

then we obtain that

[T ] = [T · Si] = [W · Si] = [W · Sj ] = [W ] .

CASE 1 : [Si] = [1F(G)] or [Sj ] = [1F(G)].
Without loss of generality, we may assume that [Si] = [1F(G)]. Then we have [T ] = [T ] + [Si] =

[W ] + [Si] = [W ], whence [W ] = [T ] ∈ H
(
[Si]

)
. Thus [Sj ] = [Si] by Lemma 3.2.2.

CASE 2 : [Si] 6= [1F(G)] and [Sj ] 6= [1F(G)].
Consider the idempotent element [Si · Sj ]. We assert that [Si · Sj ] = [Si]. Assume to the contrary that

[Si · Sj] 6= [Si]. Then, since [Si · Sj ] ≤ [Sj ], Item 1. implies [W · Si · Sj ] ∈ H
(
[Si · Sj ]

)
. However, since
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[Si · Sj ] 6= [Si], it follows that [W · Si · Sj] /∈ H
(
[Si]

)
by Lemma 3.2.2. Hence [T ] = [T · Si] = [W · Si] =

[W ·Sj ·Si] /∈ H
(
[Si]

)
, a contradiction. Thus [Si ·Sj ] = [Si]. By symmetry, we obtain that [Si ·Sj ] = [Sj]

whence [Si] = [Sj ]. �

Remark 3.7.

Every finite commutative semigroup has a Ponizovsky decomposition (see [25, Chapter IV.4]). We
outline here that the isomorphic image C∗ given in Theorem 3.6 is an explicit description of the Ponizovsky
decomposition of C. Let all notation and assumption be as in Theorem 3.6.

1. Let i ∈ [1, n]. Since every element [T ] ∈ H
(
[Si]

)
has the form [T ] = [T ] + [Si] and H

(
[Si]

)
is a

group with identity [Si], it follows that H
(
[Si]

)
⊂ C×

i . Since Ci ⊂ C is a subsemigroup and H
(
[Si]

)

is a maximal subgroup of C, we obtain that H
(
[Si]

)
= C×

i .

2. By item 2 in Theorem 3.6, it is easy to show that, for each i ∈ [1, n], Ci \ C×
i =

⋃
Cj , where the

union is taken over those j ∈ [1, n] with [Sj ] < [Si]. By the definition of the Ponizovsky factor in
[25], one can obtain that for each i ∈ [1, n]

P[Si] = Ci
/
(Ci \ C

×
i ) = H

(
[Si]

)
∪ {0[Si]} ,

where 0[Si] is the zero element in Rees quotient. Combining [25, Proposition IV.4.8] and item 1 in
Theorem 3.6, we can see that C∗ is the Ponizovsky decomposition.

Corollary 3.8. Let N ⊂ G be a normal subgroup.

1. There is an epimorphism θ : C
(
B(G),F(G)

)
→ C

(
B(G/N),F(G/N)

)
.

2. If B(G) is seminormal, then B(N) and B(G/N) are seminormal and their class semigroups are

Clifford.

Proof. 1. Let θ : F(G) → F(G/N) be the homomorphism extended from the canonical epimorphism
G → G/N . We define

θ̄ : C
(
B(G),F(G)

)
→ C

(
B(G/N),F(G/N)

)

[S] 7→
[
θ(S)

]

In order to verify that θ̄ is well-defined, let S, S′ ∈ F(G) be sequences with S ∼B(G) S
′. We have to show

that

θ(S) ∼B(G/N) θ(S
′) .

Let T ∈ F(G/N) be a sequence with T · θ(S) ∈ B(G/N). Since θ is surjective, there is a T1 ∈ F(G) such
that θ(T1) = T , and hence θ(T1 · S) = T · θ(S) ∈ B(G/N). It follows that

π(T1 · S) ∩N 6= ∅ , and say h ∈ π(T1 · S) ∩N .

Since S ∼B(G) S
′,

1G ∈ π(h−1
· T1 · S) implies that 1G ∈ π(h−1

· T1 · S
′) ,

whence π(T1 · S
′) ∩N 6= ∅. It follows that T · θ(S′) = θ(T1 · S

′) ∈ B(G/N).
Thus θ̄ is well-defined. Clearly it is surjective and for any sequences S, S′ ∈ F(G) we have

θ̄
(
[S] + [S′]

)
= θ̄

(
[S · S′]

)
=

[
θ(S · S′)

]
=

[
θ(S)

]
+
[
θ(S′)

]
= θ̄

(
[S]

)
+ θ̄

(
[S′]

)
.

2. Suppose that B(G) is seminormal. Since the inclusion B(N) →֒ B(G) is a divisor homomorphism,
B(N) is seminormal by [18, Lemma 3.2.4]. Since epimorphic images of Clifford semigroups are Clifford,
the remaining statements follows from 1. and from Theorem 3.6. �
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In our next result we study product-one sequences over the direct product of G with a finite abelian
group. Let H be a finite abelian group. For any S = (g1, h1) · . . . · (gℓ, hℓ) ∈ F(G×H), we have

π(S) =
{
(g, h)

∣∣ g ∈ π(g1 · . . . · gℓ) and {h} = π(h1 · . . . · hℓ)
}
.

In particular, S ∈ B(G×H) if and only if S′ = (g1, hσ(1)) · . . . · (gℓ, hσ(ℓ)) ∈ B(G×H) for any permutation
σ on [1, ℓ].

Theorem 3.9. Let H be an abelian group.

1. The map

C
(
B(G×H),F(G×H)

)
→ C

(
B(G),F(G)

)
× C

(
B(H),F(H)

)
[
(g1, h1) · . . . · (gℓ, hℓ)

]
7→

(
[g1 · . . . · gℓ], [h1 · . . . · hℓ]

)

is a semigroup isomorphism.

2. The following statements are equivalent :

(a) B(G) is a seminormal monoid.

(b) C
(
B(G),F(G)

)
is a Clifford semigroup.

(c) C
(
B(G×H),F(G×H)

)
is a Clifford semigroup.

(d) B(G×H) is a seminormal monoid.

Proof. 1. Suppose that [(g1, h1)·. . .·(gℓ, hℓ)] = [(g′1, h
′
1)·. . .·(g

′
k, h

′
k)]. Let T = t1·. . .·tn ∈ F(G) and T ′ =

t′1 · . . . · t
′
m ∈ F(H) be sequences with

g1 · . . . · gℓ · T ∈ B(G) and h1 · . . . · hℓ · T
′ ∈ B(H) .

We can assume n ≥ m. Accordingly, we consider the sequence (t1, t
′
1) · . . . · (tm, t′m) · (tm+1, 1H) · . . . ·

(tn, 1H) ∈ F(G×H). Then we have

(g1, h1) · . . . · (gℓ, hℓ) · (t1, t
′
1) · . . . · (tm, t′m) · (tm+1, 1H) · . . . · (tn, 1H) ∈ B(G×H) .

It follows that

(g′1, h
′
1) · . . . · (g

′
k, h

′
k) · (t1, t

′
1) · . . . · (tm, t′m) · (tm+1, 1H) · . . . · (tn, 1H) ∈ B(G×H) ,

and hence g′1 · . . . ·g
′
k ·T ∈ B(G) and h′

1 · . . . ·h
′
k ·T

′ ∈ B(H). By symmetry, the given map is well-defined
semigroup homomorphism.

To show surjectivity, let
(
[g1 · . . . · gℓ], [h1 · . . . · hk]

)
∈ C

(
B(G),F(G)

)
× C

(
B(H),F(H)

)
. If ℓ > k, then

the image of the sequence

(g1, h1) · . . . · (gk, hk) · (gk+1, 1H) · . . . · (gℓ, 1H) ∈ F(G×H)

is
(
[g1 · . . . · gℓ], [h1 · . . . · hk · 1H · . . . · 1H ]

)
=

(
[g1 · . . . · gℓ], [h1 · . . . · hk]

)
by [29, Lemma 3.6.4]. If ℓ < k,

then the image of the sequence

(g1, h1) · . . . · (gℓ, hℓ) · (1G, hℓ+1) · . . . · (1G, hk) ∈ F(G×H)

is
(
[g1 · . . . · gℓ · 1G · . . . · 1G], [h1 · . . . · hk]

)
=

(
[g1 · . . . · gℓ], [h1 · . . . · hk]

)
by [29, Lemma 3.6.4]. It follows

that the given map is surjective.
To show injectivity, let

(g1, h1) · . . . · (gℓ, hℓ) and (g′1, h
′
1) · . . . · (g

′
k, h

′
k) ∈ F(G×H)

such that [g1·. . .·gℓ] = [g′1·. . .·g
′
k] and [h1·. . .·hℓ] = [h′

1·. . .·h
′
k]. If (g1, h1)·. . .·(gℓ, hℓ)·(t1, t

′
1)·. . .·(tn, t

′
n) ∈

B(G×H), then we have that

g1 · . . . · gℓ · t1 · . . . · tn ∈ B(G) and h1 · . . . · hℓ · t
′
1 · . . . · t

′
n ∈ B(H) .

It follows that

g′1 · . . . · g
′
k · t1 · . . . · tn ∈ B(G) and h′

1 · . . . · h
′
k · t′1 · . . . · t

′
n ∈ B(H) ,



PRODUCT-ONE SEQUENCES 11

and thus (g′1, h
′
1) · . . . · (g

′
k, h

′
k) · (t1, t

′
1) · . . . · (tn, t

′
n) ∈ B(G×H). By symmetry, we obtain that the given

map is injective.

2. By Theorem 3.1, we have C
(
B(H),F(H)

)
∼= H . Thus isomorphism from 1. shows that C

(
B(G ×

H),F(G×H)
)
is a Clifford semigroup if and only if C

(
B(G),F(G)

)
is a Clifford semigroup. The remaining

equivalences follow from Theorem 3.6. �

Now we state the second part of our main result, namely |G′| ≤ 2 if and only if C
(
B(G),F(G)

)
is

Clifford. Recall that if G is a finite group with |G′| ≤ 2, then its class semigroup is a Clifford (see [29,
Theorem 3.10]). To show the converse, we start with the following simple observation.

Lemma 3.10. Let C = C
(
B(G),F(G)

)
. If C is a Clifford semigroup, then for every S ∈ F(G), we have

|π(S)|
∣∣ |G′|, in particular, |G′| is divided by 2 if G is non-abelian.

Proof. Let S ∈ F(G) be a sequence. Since C is Clifford, there is a S′ ∈ F(G) such that [S′] ∈ E(C) and
[S] ∈ H

(
[S′]

)
. By Proposition 3.3 and 3.5, we have that |π(S)| = |π(S′)| and it divides the order of G′.

In particular, if G is non-abelian, then there are g, h ∈ G such that gh 6= hg and thus |π(g · h)| = 2. �

Theorem 3.11. Let C = C
(
B(G),F(G)

)
. If C is a Clifford semigroup, then |G′| ≤ 2.

Proof. Assume to the contrary that |G′| ≥ 3.

A1. For every sequence S ∈ F(G), we may suppose that

|π(S)| ∈
{
1, 2, |G′|

}
.

Proof of A1. Since G is non-abelian, we first observe that the existence of a sequence S satisfying the
statement follow by Lemma 3.10 and [29, Lemma 3.6.5 and 3.7.3]. If there is a sequence S ∈ F(G) with
2 < |π(S)| < |G′|, then, since C is Clifford, it follows that there is a S′ ∈ F(G) such that [S′] ∈ E(C)
satisfying the condition given in Lemma 3.4, and hence |G′

0| = |π(S′)| = |π(S)| by Proposition 3.5,
where G0 = 〈supp(S′)〉 is a subgroup of G. Since B(G) is seminormal by Theorem 3.6 and the inclusion
B(G0) →֒ B(G) is a divisor homomorphism (see, [29, Lemma 3.3]), B(G0) is also seminormal by [18,
Lemma 3.2.4]. It follows that C

(
B(G0),F(G0)

)
is Clifford by Theorem 3.6 with |G′

0| = |π(S)| ≥ 3, and
thus we can replace G with G0. Since G is finite, we obtain the assertion in finite step of this process. �

A2. For every g ∈ G, we have g2 ∈ Z(G).

Proof of A2. Let h ∈ G. If gh = hg, then g2h = hg2. Suppose that gh 6= hg, We need to show that
g2h = hg2. Assume to the contrary that g2h 6= hg2. Then

π(g · g · h) = {ggh, ghg, hgg} , whence |π(g · g · h)| = 3 .

Then A1 implies |G′| = 3, a contradiction to Lemma 3.10. Thus |π(g · g · h)| = 2 and g2h = hg2. �

A3. For every g, h ∈ G with gh 6= hg, its commutator [g, h] has order 2. In particular, we have that

[g, h] = [g−1, h−1] = [h, g] = [h−1, g−1] = [h, g−1] = [h−1, g] = [g−1, h] = [g, h−1] .

Proof of A3. Let g, h ∈ G with gh 6= hg and let S = g · h · g−1h−1 ∈ F(G). Note that, by A2,

hg = hg ⇔ hg2g−1 = h−1h2g

⇔ g2hg−1 = h−1gh2

⇔ ghg−1h−1 = g−1h−1gh ,

and it follows that π(S) = {ghg−1h1, hg−1h−1g, 1G}. Since h−1g2 = g2h−1 by A2, it follows that
hg−1h−1g = hgh−1g−1. Thus, by A1,

π(S) = {ghg−1h−1, hgh−1g−1, 1G} , whence [g, h] = [g, h]−1 = [h, g] .
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Moreover, we obtain that [g−1, h−1] = [g, h] = [h, g] = [h, g−1]. By swiping the role between g and h, we
have that

[h−1, g−1] = [h, g] = [g, h] = [g, h−1] .

Since g2h = hg2 and h2g = gh2 by A2, we also obtain that

[h−1, g] = [h−1, g−1] and [g−1, h] = [g−1, h−1] .

Therefore, [g, h] = [g−1, h−1] = [h, g] = [h−1, g−1] = [h, g−1] = [h−1, g] = [g−1, h] = [g, h−1]. �

A4. G is finite group of nilpotency class 2.

Proof of A4. It is well known that a group G has nilpotency class 2 if and only if G′ ⊂ Z(G) (see [11,
Theorem 6.1.8]). Hence it is sufficient to show G′ ⊂ Z(G). Let H = 〈g2 | g ∈ G〉 be a subgroup of G.
Then H ⊂ Z(G) by A2, and hence H is normal subgroup of G. Since every elements in G/H has order
at most 2, G/H is an abelian group. It follows that G′ ⊂ H ⊂ Z(G). �

A5. There is a 2-subgroup G ⊂ G such that C
(
B(G),F(G)

)
is Clifford, G ′ is not cyclic with |G ′| ≥ 3,

and each proper subgroup H of G has a cyclic commutator subgroup H ′.

Proof of A5. Since G is finite nilpotent group byA4, G is a direct product of its Sylow subgroups (see [11,
Theorem 6.1.3]). For a prime number p, we denote by Sylp(G) a Sylow p-subgroup of G. Then Lemma
3.10 implies that Sylp(G) is abelian for every odd prime p, and it follows that |Syl2(G)′| = |G′| ≥ 3
because the commutator subgroup of direct product is the direct product of each commutator subgroups.
Then Theorem 3.9.2 implies that we can replace G with G0 = Syl2(G) so that C

(
B(G0),F(G0)

)
is Clifford

and G0 satisfies A1 - A4. Let Ω = {G | G ⊂ G0 is a subgroup with G ′ = G′
0}. Since G0 is finite, there

is a minimal element G in Ω. By replacing G0 with G, we can assume that G is a 2-group with |G ′| ≥ 3
such that C

(
B(G),F(G)

)
is Clifford and G satisfies A1 - A4. Since G ′ is abelian group generated by

order 2 elements by A3 and |G ′| ≥ 3, we have that G ′ is not cyclic. By the minimality of G, we obtain
that, for each proper subgroup H , H ′ is cyclic (indeed, A1 implies |H ′| ≤ 2). �

For simplicity of notation, we set G = G and suppose that G has all properties listed in A5. Then
[3, Theorem 139.A] implies that G = 〈g1, g2, g3〉, and G′ ∼= C2 ⊕ C2 ⊕ C2 or C2 ⊕ C2. Note that
G′ =

〈
[g1, g2], [g1, g3], [g2, g3]

〉
, and if x, y, z ∈ G are any elements, then since G′ ⊂ Z(G), we obtain that

(3.2) [x, y][x, z] = (xyx−1y−1)[x, z] = xyx−1[x, z]y−1 = x(yz)x−1(yz)−1 = [x, yz] .

CASE 1 : G′ ∼= C2 ⊕ C2 ⊕ C2.
Then [gi, gj] are non-trivial distinct elements of order 2 for all i, j ∈ [1, 3] with i 6= j. We assert that

the elements in the set
{g2g1g3, g2g3g1, g3g2g1}

are all distinct. Since [g1, g3] and [g2, g3] are non-trivial, it follows that

g2g1g3 6= g2g3g1, and g2g3g1 6= g3g2g1 .

If g2g1g3 = g3g2g1, then it follows by (3.2) that

1G = (g2g1)g3(g
−1
1 g−1

2 )g−1
3 = [g2g1, g3] = [g2, g3][g1, g3] ,

and thus [g2, g3] = [g1, g3] by A3, a contradiction. Hence we have g2g1g3 6= g3g2g1, and it follows that
3 ≤ |π(g1 · g2 · g3)| ≤ 6, a contradiction to A1.

CASE 2 : G′ ∼= C2 ⊕ C2.
Without loss of generality, we can assume that [g1, g2], [g1, g3] are non-trivial distinct elements of order

2. Then we assert that there is a sequence S ∈ F(G) with |π(S)| = 3, a contradiction to A1.

CASE 2.1 : [g2, g3] = 1G.



PRODUCT-ONE SEQUENCES 13

Let S = g1 · g2g1 · g3g1 ∈ F(G). Then g2g1 6= 1G and g3g1 6= 1G, otherwise [g1, g2] = [g1, g3] = 1G.
Since [g1, g2] is non-trivial, it follows that g1(g2g1)(g3g1) 6= (g2g1)g1(g3g1).

If g1(g2g1)(g3g1) = g1(g3g1)(g2g1), then we have g2g1g3 = g3g1g2, and since [g2, g3] = 1G, it follows
that

1G = (g2g1g3)(g
−1
2 g−1

1 g−1
3 ) = g2g1(g

−1
2 g3)g

−1
1 g−1

3 = [g2, g1][g1, g3] ,

whence [g1, g3] = [g2, g1] = [g1, g2] by A3, a contradiction. Thus g1(g2g1)(g3g1) 6= g1(g3g1)(g2g1).
If g1(g3g1)(g2g1) = (g2g1)g1(g3g1), then we have g3g1g2 = g1g2g3 because g21 ∈ Z(G) by A2, and since

[g2, g3] = 1G, it follows that g3g1 = g1g3, a contradiction. Thus g1(g3g1)(g2g1) 6= (g2g1)g1(g3g1).
Since [g2, g3] = 1G, by (3.2),

[g1, g3] = [g3, g1] ⇔ [g1, g3] = [g3, g1][g3, g2] = [g3, g1g2]

⇔ g1g2[g1, g3] = [g1, g3]g1g2 = g3(g1g2)g
−1
3

⇔ g1g2(g1g3g
−1
1 g−1

3 ) = g3g1g2g
−1
3

⇔ g1g2g1g3 = g3g1g2g1

⇔ g1(g2g1)(g3g1) = (g3g1)(g2g1)g1 ,

and
[g1, g2] = [g2, g1] ⇔ [g3g1, g2] = [g3, g2][g1, g2] = [g2, g1]

⇔ g1[g3g1, g2] = [g3g1, g2]g1 = g2g1g
−1
2

⇔ g1(g3g1)g2(g
−1
1 g−1

3 )g−1
2 = g2g1g

−1
2

⇔ g1(g3g1)(g2g1) = (g2g1)(g3g1)g1 .

Since g2g3 = g3g2 and g21 ∈ Z(G) by A2, it follows that (g2g1)g1(g3g1) = (g3g1)g1(g2g1). Thus we obtain

π(S) = {g1(g2g1)(g3g1), g1(g3g1)(g2g1), (g2g1)g1(g3g1)} .

CASE 2.2 : [g2, g3] = [g1, g2].
By changing a generator of G, we can assume G = 〈g1, g2, x〉, where x = g3g

−1
1 . Then, by (3.2),

[g1, x] = [g1, g3g
−1
1 ] = [g1, g3][g1, g

−1
1 ] = [g1, g3] ,

and by A3, we also have that

[g2, x] = [g2, g3g
−1
1 ] = [g2, g3][g2, g

−1
1 ] = [g1, g2][g1, g2] = 1G .

Thus CASE 2.1 implies that S = g1 · g2g1 · xg1 ∈ F(G) is the desired sequence.

CASE 2.3 : [g2, g3] = [g1, g3].
Similarly, we can assume G = 〈g1, x, g3〉 ,where x = g2g

−1
1 . Then, by (3.2),

[g1, x] = [g1, g2g
−1
1 ] = [g1, g2][g1, g

−1
1 ] = [g1, g2] ,

and by A3, we also have that

[x, g3] = [g2g
−1
1 , g3] = [g2, g3][g

−1
1 , g3] = [g1, g3][g1, g3] = 1G .

Thus CASE 2.1 implies that S = g1 · xg1 · g3g1 ∈ F(G) is the desired sequence.

CASE 2.4 : [g2, g3] = [g1, g2g3].
Similarly, we can assume G = 〈g1, x, y〉, where x = g2g

−1
1 , y = g3g

−1
1 . Then, by (3.2),

[g1, x] = [g1, g2g
−1
1 ] = [g1, g2][g1, g

−1
1 ] = [g1, g2] and

[g1, y] = [g1, g3g
−1
1 ] = [g1, g3][g1, g

−1
1 ] = [g1, g3] ,

and by A3, we also have that

[x, y] = [x, g3g
−1
1 ] = [x, g3][x, g

−1
1 ] = [g2g

−1
1 , g3][g2g

−1
1 , g1] = [g2, g3][g

−1
1 , g3][g2, g1] = 1G .

Thus CASE 2.1 implies that S = g1 · xg1 · yg1 ∈ F(G) is the desired sequence. �
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Now we state our main result, which is the generalization of Theorem 3.1, to sum up Theorem 3.6 and
3.11.

Corollary 3.12. The following statements are equivalent :

(a) |G′| ≤ 2.

(b) B(G) is a seminormal monoid.

(c) C = C
(
B(G),F(G)

)
is a Clifford semigroup.

If this is the case, then B(G) =
{
S ∈ F(G) | [S] ∈ E(C)

}
.

Proof. (b) ⇔ (c) follows by Theorem 3.6, and (a) ⇔ (c) follows by [29, Theorem 3.10.2] and Theorem
3.11. If this is the case, then [29, Theorem 3.10.2] and item 4 in Theorem 3.6 imply the assertion. �

Remark 3.13.

1. Suppose that G1, G2 are finite groups with |G′
1| = |G′

2| = 2. Then, for each i ∈ [1, 2], we have that
C
(
B(Gi),F(Gi)

)
is Clifford by Corollary 3.12. However, since (G1 × G2)

′ = G′
1 × G′

2, Corollary

3.12 implies that C
(
B(G1 ×G2),F(G1 ×G2)

)
is not Clifford (cf. Theorem 3.9).

2. In general, the converse of Corollary 3.8.2 does not hold, for example let G = G1×G2 and N = G′

where each Gi is a finite group with |G′
i| = 2.

Lemma 3.14. Suppose that |G′| = 2. Let g, h ∈ G be the elements with n = ord(g) and m = ord(h).

1. If n is odd, then g ∈ Z(G).

2. We have g · g−1 ∼ g[n].

3. If gh = hg, then
[
g[n]

]
and

[
h[m]

]
are comparable with respect to the Rees order ≤, and the

following conditions are equivalent :
(a) g[n] ∼ h[m].

(b) For any x ∈ G, we have that xg 6= gx if and only if xh 6= hx.

(c) gh ∈ Z(G).

Proof. 1. Since G′ is a normal subgroup, it follows that, for every x ∈ G, we have xG′ = G′x. Then, since
|G′| = 2, we obtain that G′ ⊂ Z(G), and it follows that any even power of the elements in G is central
(see (3.2)). Since n is odd, it follows that gn−1 ∈ Z(G), whence gn−1

·g ∼ gn by [29, Lemma 3.6.4]. Since
gn = 1G and 1G ∼ 1F(G), [29, Lemma 3.7.2] implies that gn−1

· g ∈ B
(
Z(G)

)
whence g ∈ Z(G).

2. Observe that if g ∈ Z(G), then the assertion follows by [29, Lemma 3.7.2]. Suppose that g /∈ Z(G).
Then item 1 implies that n is even, and hence it is sufficient to show that gn−1 /∈ Z(G). Indeed, if this
holds true, then the assertion follows by [29, Lemma 3.9.2]. Assume to the contrary that gn−1 ∈ Z(G).
As at the proof of item 1, we conclude that g ∈ Z(G), a contradiction.

3. By Corollary 3.12,
[
g[n]

]
,
[
h[m]

]
∈ E(C). We need to show either g[n] ·h[m] ∼ g[n] or g[n] ·h[m] ∼ h[m].

Clearly if T ∈ F(G) is such that either T ·g[n] ∈ B(G) or T ·h[m] ∈ B(G), then we have T ·g[n] ·h[m] ∈ B(G).
For the converse, let T ∈ F(G) be a sequence with T · g[n] · h[m] ∈ B(G). If π(T · g[n] · h[m]) = {1G}, then
T ∈ B(G) and hence we have that T · g[n] and T · h[m] ∈ B(G). If π

(
T · g[n] · h[m]

)
= G′, then there are

following cases.

CASE 1 : |π(T )| = 2.
Since π(T ) ⊂ π

(
T ·g[n] ·h[m]

)
= G′, it follows that 1G ∈ G′ = π(T ) whence T ·g[n] and T ·h[m] ∈ B(G).

CASE 2 : |π(T )| = 1 and there is an t ∈ supp(T ) such that either tg 6= gt or th 6= ht.
If tg 6= gt, then |π

(
T · g[n]

)
| = 2, and since π

(
T · g[n]

)
⊂ π

(
T · g[n] · h[m]

)
= G′, it follows that

1G ∈ G′ = π
(
T · g[n]

)
whence T · g[n] ∈ B(G). By symmetry, if th 6= ht, then T · h[m] ∈ B(G).

Thus, in any cases, we obtain either T · g[n] ∈ B(G) or T · h[m] ∈ B(G).
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Now we show the equivalent conditions.

(a) ⇒ (b) For any x ∈ G, (a) implies that x · g[n] ∼ x · h[m] and hence the assertion follows.

(b) ⇒ (a) According to the proof of the main part, we obtain that g[n] ∼ g[n] · h[m] ∼ h[m].

(b) ⇔ (c) It follows by the equation [x, gh] = [x, g][x, h] because G′ ⊂ Z(G) (see (3.2)). �

When G satisfies the equivalent condition given in Corollary 3.12, we can obtain more precise structural
information of the maximal subgroups of the class semigroup as following (cf. Proposition 3.5).

Proposition 3.15. Suppose that |G′| = 2, and we set C = C
(
B(G),F(G)

)
. If S ∈ F(G) is a sequence

with [S] ∈ E(C) satisfying the condition given in Lemma 3.4, then there is an isomorphism from H
(
[S]

)

to G0/G
′
0, where G0 = 〈supp(S)〉 ⊂ G is a subgroup. In particular, we have the following cases :

1. If π(S) = G′, then H
(
[S]

)
is isomorphic to G/G′.

2. If [S] = [1F(G)], then H
(
[S]

)
is isomorphic to Z(G).

3. If π(S) = {1G} with [S] 6= [1F(G)], then H
(
[S]

)
is isomorphic to an abelian subgroup G0 of G.

Moreover, if there is no h ∈ G such that h commute with all elements in supp(S) and hg /∈ Z(G)
for every g ∈ supp(S), then G0 is a maximal among the abelian subgroups of G.

Proof. 1. and 2. This follows from Proposition 3.5.

3. Let S = g1 · . . . · gℓ ∈ F(G) be such that π(S) = {1G} and [S] 6= [1F(G)]. Then, by Proposition
3.3, G0 = 〈supp(S)〉 = 〈g1, . . . , gℓ〉 ⊂ G is a subgroup with G′

0 = π(S) = {1G}, whence it is abelian. Let
ni = ord(gi) for i ∈ [1, ℓ] and let m = lcm{ni | i ∈ [1, ℓ]}. Then, by Proposition 3.5, the map

ϕ[S] : H
(
[S]

)
→ G0

[T ] 7→ π(T )

is a group homomorphism. We assert that this map is bijective. To show injectivity, let T ∈ F(G) be
a sequence with [T ] ∈ ker(ϕ[S]). Then π(T ) = {1G} whence T ∈ B(G). By Corollary 3.12, we have

[T ] ∈ E(C), and it follows that [T ] = [S] by Lemma 3.2.1. Since [S] ∈ H
(
[S]

)
is identity element by

Lemma 3.2.1, we obtain that ϕ[S] has the trivial kernel whence it is injective. To show surjectivity, it is

sufficient to show that for every g ∈ G there is a T ∈ F(G) such that [T ] ∈ H
(
[S]

)
with π(T ) = {g}. Let

g ∈ G0 so that g = gr11 . . . grℓℓ , where r1, . . . , rℓ ∈ N0 with ri ∈ [1, ni] for i ∈ [1, ℓ]. Then we consider a
sequence

T = S · g
[r1]
1 · g

[r2]
2 · . . . · g

[rℓ]
ℓ ∈ F(G) .

Since [S] ∈ E(C),

[T ] + [S] = [T ] and [T ] +
[
g
[m−r1]
1 · . . . · g

[m−rℓ]
ℓ

]
=

[
S · g

[m]
1 · . . . · g

[m]
ℓ

]
=

[
S[m+1]

]
= [S] ,

whence [T ] ∈ H
(
[S]

)
and π(T ) = {g} by the construction. Thus T ∈ F(G) is the desired sequence and

hence ϕ[S] is surjective.
Suppose in addition that there are no such elements stated in 3. Since G0 = 〈supp(S)〉 is abelian,

Lemma 3.14.3 implies that the subset
{[
g
[ni]
i

]
| i ∈ [1, ℓ]

}
⊂ E(C) is totally ordered, and hence after

renumbering if necessary, we can assume that
[
g
[n1]
1

]
≤ . . . ≤

[
g
[nℓ]
ℓ

]
.

Since S = g1 · . . . · gℓ with [S] ∈ E(C), it follows that

S ∼ S[m] ∼ g
[n1]
1 · . . . · g

[nℓ]
ℓ ∼ g

[n1]
1 .

Now let H ⊂ G be an abelian subgroup containing G0, and let h ∈ H with k = ord(h). Then, by

assumption, there is an i ∈ [1, ℓ] such that hgi ∈ Z(G). Hence Lemma 3.14.3 implies that h[k] ∼ g
[ni]
i . Since

S ∼ g
[n1]
1 and

[
g
[n1]
1

]
≤

[
g
[nj]
j

]
for all j ∈ [1, ℓ], it follows that h[k]

· S ∼ S, and hence h ∈ 〈supp(S)〉 = G0

by Lemma 3.4. Thus we obtain that G0 = H whence G0 is a maximal abelian subgroup of G. �
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4. Arithmetic of the monoid of product-one sequences

Transfer Krull monoids over finite abelian groups include commutative Krull monoids with finite class
group having prime divisors in all classes (including, in particular, commutative Krull and Dedekind
domains) but they also include wide classes of non-commutative Dedekind domains (see [34, 1, 33] for
original work and [14] for a survey and extended list of examples). Let H be a transfer Krull monoid
and θ : H → B(G) a (weak) transfer homomorphism to the monoid of product-one sequences over a finite
abelian group G. Then sets of lengths of H and of B(G) coincide and because of this connection the study
of sets of lengths of B(G) is a central topic in factorization theory. The Characterization Problem is one
of the most important problems in this area. It asks whether for each two transfer Krull monoids H and
H ′ over groups G and G′ their system of sets of lengths coincide if and only if G and G′ are isomorphic.
The standing conjecture is that this holds true for all finite abelian groups G (apart from two trivial
exceptional pairings) and we refer to [20, 24, 36, 35] for recent progress in this direction.

In this section we study sets of lengths of B(G) for non-abelian groups. Our goal is to understand if
and to what extent their sets of lengths differ from sets of lengths of B(G) over finite abelian groups. We
briefly gather terminology and notation.

Let H be an atomic monoid and a, b ∈ H . If a = u1 · . . . · uk, where k ∈ N and u1, . . . , uk ∈ A(H),
then k is called the length of the factorization and L(a) = {k ∈ N | a has a factorization of length k} ⊂ N
is the set of lengths of a. As usual we set L(a) = {0} if a ∈ H×, and then

L(H) = {L(a) | a ∈ H}

denotes the system of sets of lengths of H . If k ∈ N and H 6= H×, then

Uk(H) =
⋃

k∈L,L∈L(H)

L ⊂ N

denotes the union of sets of lengths containing k, and we set ρk(H) = supUk(H). If L = {m1, . . . ,mk} ⊂ Z
is a finite subset of the integers, where k ∈ N andm1 < . . . < mk, then ∆(L) = {mi−mi−1 | i ∈ [2, k]} ⊂ N
is the set of distances of L. If all sets of lengths are finite, then

∆(H) =
⋃

L∈L(H)

∆(L)

is the set of distances of H . Let G be a finite group. As usual, we set

∆(G) = ∆
(
B(G)

)
,L(G) = L

(
B(G)

)
, and ρk(G) = ρk

(
B(G)

)
for every k ∈ N .

Since B(G) is finitely generated, it is easy to see that ∆(G) and all Uk(G) are finite (see [16, Theorem
3.1.4]). Furthermore, we have Uk(G) = {k} for all k ∈ N (equivalently, ∆(G) = ∅) if and only if |G| ≤ 2
(see [9, Theorem 3.2.4]). Thus, whenever convenient, we will assume that |G| ≥ 3.

Along the lines of the proofs in the abelian setting we showed in [29, Theorem 5.5] that Uk(G) is
a finite interval for all k ∈ N and, under a mild additional hypothesis, that ∆(G) is a finite interval.
However, there are also striking differences between the abelian and the non-abelian setting and they all
have their origin in the fact that, in non-abelian case, the embedding B(G) →֒ F(G) is not a divisor
homomorphism (see Theorem 3.1). Thus there exist U, V ∈ B(G) such that U divides V in F(G), but not
in B(G). Moreover, U and V can be atoms (e.g., if G is the quaternion group, then U = I [4] ∈ A(G) and
V = I [4] · J [2] ∈ A(G) have this property [29, Example 4.1]).

Suppose that G is abelian. The Characterization Problem asks whether for any finite abelian group G∗,
L(G) = L(G∗) implies that G and G∗ are isomorphic. The only exceptional cases known so far are groups
with small Davenport constant. Indeed, we have L(C1) = L(C2) and L(C3) = L(C2 ⊕ C2) (note that
these four groups are precisely the groups having Davenport constant at most three). All groups having
Davenport constant at most five are abelian. In Theorem 4.7, we show that if G is a finite group with
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Davenport constant six and G∗ is any finite group with L(G) = L(G∗), then G and G∗ are isomorphic.
Results of the same flavor are established in Theorem 4.4.

Before finding sets of lengths which are characteristic for a given group, we determine those sets of
non-negative integers which are sets of lengths over all finite groups. It turns out that this is a simple
consequence of the associated result in the abelian setting (sets which are sets of lengths in all numerical
monoids are determined in [22]).

Lemma 4.1. We have ⋂
L(G) = {y + 2k + [0, k] | y, k ∈ N0} ,

where the intersection is taken over all finite groups G with |G| ≥ 3.

Proof. From [21, Theorem 3.6], we obtain that
⋂

(1)

L(G) ⊂
⋂

(2)

L(G)
(a)
= {y + 2k + [0, k] | y, k ∈ N0} ,

where the intersection (1) is taken over all finite groups with |G| ≥ 3 and the intersection (2) is taken
over all finite abelian groups G with |G| ≥ 3. Hence it suffices to show that for every finite group G with
|G| ≥ 3 we have

{y + 2k + [0, k] | y, k ∈ N0} ⊂ L(G) .

Let G be a finite group with |G| ≥ 3. Then G contains an element g ∈ G with ord(g) = n ≥ 3 or G
contains two distinct elements of order two that commute with each other. Then Equation (a) implies
that

{y + 2k + [0, k] | y, k ∈ N0} ⊂ L(Cn) ∩ L(C2 ⊕ C2) ⊂ L(G) . �

For a sequence S = g1 · . . . · gℓ ∈ F(G), we use the following notation :

S−1 = g−1
1 · . . . · g−1

ℓ ∈ F(G) .

Lemma 4.2. Let G be a finite group with |G| ≥ 3.

1. The following statements are equivalent :
(a) G is non-abelian.

(b) Every sequence S ∈ F(G) of length D(G) has a non-trivial proper product-one subsequence

(i.e., there is a sequence T ∈ B(G) with 1F(G) 6= T 6= S and T |S).

2. We have D(G/G′) ≤ D(G).

3. For every S ∈ B(G) the following statements are equivalent :
(a) {2,D(G)} ⊂ L(S).

(b) S = U · U−1 for some U ∈ A(G) with |U | = D(G).

Proof. 1. (a) ⇒ (b) Assume to the contrary that there exists a S ∈ F(G) of length D(G) such that S has
no non-trivial proper product-one subsequence. If S is not a product-one sequence, then S is product-one
free whence D(G) = |S| ≤ d(G) < D(G), a contradiction. Thus S is a product-one sequence and hence
it is an atom. If we set S = g1 · . . . · gD(G), then T = g1 · . . . · gD(G)−1 is product-one free of length
|T | = D(G) − 1. Since d(G) + 1 ≤ D(G), we have that D(G) = d(G) + 1 and |T | = d(G), and hence
〈supp(S)〉 = G by Lemma 2.2.2.

We now assert that π(S) = {1G}. If there exists an h ∈ π(S) \ {1G}, then h−1
· S ∈ B(G) has length

D(G) + 1 whence it has a factorization into at least two atoms, say

h−1
· S = U1 · . . . · Uk , where k ≥ 2, U1, · · · , Uk ∈ A(G) and h−1 ∈ supp(U1) .

Since h 6= 1G, we have that |U1| ≥ 2 and that S has a proper product-one subsequence, a contradiction.
Thus we obtain that π(S) = {1G}. Thus each two elements in supp(S) commute whence 〈supp(S)〉 = G
is abelian, a contradiction.
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(b) ⇒ (a) If G is abelian, then an atom of length D(G) does not have a proper non-trivial product-one
subsequence.

2. If G is abelian, then |G′| = 1 and G/G′ ∼= G. Suppose that G is non-abelian and consider a sequence
T = g1G

′
· . . . · gℓG

′ ∈ F(G/G′) with ℓ = D(G) and g1, . . . , gℓ ∈ G. By 1., the sequence

S = g1 · . . . · gℓ ∈ F(G)

has a proper product-one subsequence whence T has a proper product-one subsequence. Thus we obtain
that

D(G/G′) = d(G/G′) + 1 ≤ |T | = D(G) .

3. If S has the form given in (b), then clearly {2,D(G)} ⊂ L(S). Conversely, suppose that {2,D(G)} ⊂
L(S). Then there are U1, U2, V1, . . . , VD(G) ∈ A(G) such that

S = U1 · U2 = V1 · . . . · VD(G) .

If 1G |S, then after renumbering if necessary it follows that U1 = 1G = V1 whence D(G) = 2, a con-
tradiction to |G| ≥ 3. Therefore, 1G ∤ S and hence |Vk| ≥ 2 for all k ∈ [1,D(G)]. Then we obtain
that

2D(G) ≤ |V1 · . . . · VD(G)| = |S| = |U1 · U2| ≤ 2D(G) ,

and it follows that |S| = 2D(G). Thus |Vk| = 2 for all k ∈ [1,D(G)], |U1| = |U2| = D(G), and hence
U2 = U−1

1 . �

We need the following result for finite abelian groups (see [16, Theorem 6.6.3]).

Lemma 4.3. For a finite abelian groups G∗ with |G∗| ≥ 3 the following statements are equivalent :

(a) Every L ∈ L(G∗) with {2,D(G∗)} ⊂ L satisfies L = {2,D(G∗)}.

(b) {2,D(G∗)} ∈ L(G∗).

(c) G∗ is either cyclic or an elementary 2-group.

Theorem 4.4. Let G and G∗ be finite groups and n ∈ N≥3 be odd.

1. If |G| is odd, then {2,D(G)} ∈ L(G) if and only if G ∼= CD(G).

2. If |G| is odd and G∗ is cyclic such that L(G∗) = L(G), then G∗ ∼= G.

3. If G = D2n, then {2,D(G)} ∈ L(G) and there is an L ∈ L(G) with {2,D(G)} ( L.

4. If G∗ is abelian, then L(G∗) 6= L(D2n).

Proof. 1. By Lemma 4.3 it suffices to show that {2,D(G)} /∈ L(G) for non-abelian group G of odd order.
Let G be a non-abelian group of odd order, and assume to the contrary that {2,D(G)} ∈ L(G). Then
there is a S ∈ F(G) such that L(S) = {2,D(G)}. Then Lemma 4.2.3 implies that S = U · U−1 for some
U ∈ A(G) of length D(G). By Lemma 4.2.1, U has a non-trivial proper product-one subsequence, in
particular an atom V . If |V | ≥ 3, then there exists an k = D(G) − |V | + 2 ∈ [3,D(G) − 1] such that
k ∈ L(S), a contradiction. Thus |V | = 2, and it follows that any proper product-one subsequence dividing
U is a product of atoms of length 2.

Since |G| is odd, it follows that there is no element g ∈ supp(U) with ord(g) = 2 such that g · g |U .
Then we set

U = g
[r1]
1 · (g−1

1 )[r
′

1]
· . . . · g

[rℓ]
ℓ · (g−1

ℓ )[r
′

ℓ]
· T ,

where r1, r
′
1, . . . , rℓ, r

′
ℓ ∈ N, g1, . . . , gℓ are distinct, and T ∈ F(G) is product-one free such that gi, g

−1
i /∈

supp(T ) for each i ∈ [1, ℓ]. We may assume that r1, r
′
1, . . . , rℓ, r

′
ℓ are maximal with respect to such

expression. Consider the sequence

W = g
[r1+r′1]
1 · . . . · g

[rℓ+r′ℓ]
ℓ · T and W−1 = (g−1

1 )[r1+r′1]
· . . . · (g−1

ℓ )[rℓ+r′ℓ]
· T−1
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of length D(G), and hence U ·U−1 = W ·W−1. Applying again Lemma 4.2.1, W has a non-trivial proper
product-one subsequence, in particular an atom W ′. As at the start of the proof, we obtain |W ′| = 2,
and it follows that there are i, j ∈ [1, ℓ] with i 6= j such that gi = g−1

j , a contradiction to the maximality

of r1, r
′
1, . . . , rℓ, r

′
ℓ.

2. Let |G| be odd and G∗ be cyclic with L(G∗) = L(G). Then, by [29, Proposition 5.6],

D(G∗) = ρ2(G
∗) = ρ2(G) = D(G) ,

whence 1. and Lemma 4.3 imply the assertion.

3. We have D(G) = 2n by [15, Theorem 1.1]. We set G0 = {b, ab} and assert that A(G0) =
{b[2], (ab)[2], S = b[n] · (ab)[n]}. We leave this proof to the reader. Since B(G0) has precisely three atoms,
it follows immediately that L(S · S−1) = L(S · S) = {2,D(G)}. Furthermore,

T = a[2n−2]
· b[2] ∈ A(G) (for details see the proof of [26, Lemma 5.2]) ,

and since

T · T−1 = a[n] · (a−1)[n] ·
(
a · a−1

)[n−2]
· b[2] · b[2] ,

we infer that {2, n+ 2,D(G)} ⊂ L(T · T−1).

4. Let G∗ be a finite abelian group. Lemma 4.3 together with 3. implies that L(D2n) 6= L(G∗). �

Lemma 4.5.

1. For every finite group G, we have

D(G) ≤ |G| ≤ 1 +

d(G)∑

k=1

(
d(G)

k

)
k! .

2. For every N ∈ N, there are only finitely many finite groups G (up to isomorphism) such that

D(G) = N .

3. For every finite group G, there are only finitely many finite group G∗ (up to isomorphism) such

that L(G∗) = L(G).

Proof. 1. The left inequality follows from Lemma 2.2.1. Consider a product-one free sequence S ∈ F(G)
of length |S| = d(G). Then Π(S) = G \ {1G} by Lemma 2.2.2 whence it follows that

|G| = 1 + |Π(S)| = 1 +
∣∣∣

⋃

16=T |S

π(T )
∣∣∣ ≤ 1 +

d(G)∑

k=1

(
d(G)

k

)
k! .

2. It is well-known that for every M ∈ N there are only finitely many finite groups G (up to isomor-
phism) with |G| ≤ M . Thus the assertion follows from 1.

3. Let G be a finite group. If G∗ is any finite group with L(G∗) = L(G), then by [29, Proposition 5.6],

D(G∗) = ρ2(G
∗) = ρ2(G) = D(G) .

Thus the assertion follows from 2. �

Lemma 4.6.

1. If G is a finite group with |G| ≥ 32, then either G ∼= C5
2 and d(G) = 5 or else d(G) ≥ 6.

2. Every group G with D(G) = 6 is isomorphic to one of the following groups :

C6, C2 ⊕ C2 ⊕ C4, C5
2 , D6, Q8, D8 .

Moreover, all finite groups G with D(G) ≤ 5 are abelian.
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Proof. Suppose that G is abelian, say G ∼= Cn1
⊕ . . .⊕Cnr

with 1 < n1 | . . . | nr. We use frequently that∑r
i=1(ni− 1) ≤ d(G) = D(G)− 1 and that equality holds for p-groups and in case r ≤ 2 (see [16, Chapter

5]).
1. Let G be a finite group with |G| ≥ 32. If there is an element g ∈ G with ord(g) ≥ 7, then g[6] is

product-one free whence

d(G) ≥ |g[6]| = 6 .

Suppose that ord(g′) ≤ 6 for all g′ ∈ G and that there is an element g ∈ G with ord(g) = 6. Since
|G| ≥ 32, it follows that 〈g〉 ( G whence there is some h ∈ G \ 〈g〉. Then g[5] · h is product-one free, and
we assume from now on that all group elements have order at most five.

First we suppose that G is abelian, say G ∼= Cn1
⊕ . . . ⊕ Cnr

with 1 < n1 | . . . |nr. If nr = 2, then
d(G) = r whence either r = 5 and G ∼= C5

2 or else d(G) = r ≥ 6. If nr ∈ [3, 5], then d(G) ≥
∑r

i=1(ni − 1)
quickly implies that assertion.

Suppose that G is non-abelian. If all elements of G would have order two, then G would be abelian.
Furthermore, since all groups of order p2, for a prime p, are abelian, we suppose that |G| is not the square
of a prime. Thus we may assume that all group elements have order at most five and G has an element g
with ord(g) ∈ [3, 5]. Furthermore, [9, Proposition 3.9.1] shows us that for every normal subgroup N ⊳ G
we have

(4.1) d(N) + d(G/N) ≤ d(G) .

CASE 1 : G is a p-group.
If p = 2, then, by Sylow’s Theorem, G has a proper subgroup H ( G with |H | = 16. By the table

given in [10], we obtain that 5 ≤ d(H) < d(G). If p = 3, then G has a subgroup H with |H | = 27 and the
table given in [10] shows that d(H) ≥ 6. If p = 5, then G has a subgroup H with |H | = 25 whence H is
abelian and d(H) ≥ 8.

CASE 2 : G is not a p-group.
Then |G| = 2i3j5k is not a prime power, where i ∈ [0, 4], j ∈ [0, 2], and k ∈ [0, 1]. Suppose that G is

simple. Then [5] implies that G is isomorphic either to A5 or to A6. Since D10 is a proper subgroup of
both A5 and A6, [26, Corollary 5.7] implies that

5 = d(D10) < d(G) .

From now on we suppose that G is not simple, and we denote by Sylp(G) a Sylow p-subgroup of G for a
prime number p.

CASE 2.1 : k = 0 and j = 1.
Then we only have the case i = 4. Then, by Sylow’s Theorem, we obtain that either Syl2(G) or Syl3(G)

is normal subgroup of G. If N = Syl2(G) is normal subgroup, then |N | = 16, and hence 4 ≤ d(N) by the
table given in [10]. It follows that

6 ≤ d(N) + d(G/N) ≤ d(G) .

If Syl3(G) is normal subgroup, then we obtain the same result by symmetry.

CASE 2.2 : k = 0 and j = 2.
If i = 2, then it is well known that either Syl2(G) or Syl3(G) is a normal subgroup of G (see, [11,

Exercise 6.2.18]). By letting N = Syl2(G) or N = Syl3(G), we obtain in any cases

6 ≤ d(N) + d(G/N) ≤ d(G) .

Suppose that i = 3 and N is a non-trivial proper normal subgroup of G. Consider all possible value of
the pair

(
|N |, |G/N |

)
∈

{
(2, 36), (4, 18), (6, 12), (8, 9), (9, 8), (12, 6), (18, 4), (36, 2)

}
.
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Applying the table given in [10] with the case i = 2, we obtain that

7 ≤ d(N) + d(G/N) ≤ d(G) .

For i = 4, let N be a non-trivial proper normal subgroup of G and consider all possible value of the pair
(
|N |, |G/N |

)
∈

{
(2, 72), (3, 48), (4, 36), (6, 24), (8, 18), (9, 16), (12, 12),

(16, 9), (18, 8), (24, 6), (36, 4), (48, 3), (72, 2)
}
.

Applying the table given in [10] with the case i = 2, 3 and CASE 4.1, we obtain that

8 ≤ d(N) + d(G/N) ≤ d(G) .

CASE 2.3 : k = 1 and j = 0.
By the same line of CASE 2.2, it is enough to verify the case i = 3 and hence we assume that |G| = 40.

Then, by Sylow’s Theorem, N = Syl5(G) is normal subgroup of G. Hence G/N is isomorphic to one of
the following groups :

C3
2 , C2 ⊕ C4, C8, D8, Q8 .

Thus we obtain

7 ≤ d(N) + d(G/N) ≤ d(G) .

CASE 2.4 : k = 1 and j = 1.
By the same line of CASE 2.2, it is enough to verify the case i = 2 and hence we assume that |G| = 60.

Since G is not simple group, we obtain that N = Syl5(G) is normal subgroup of G by [11, Proposition
21]. Hence G/N is isomorphic to one of the following groups :

C2 ⊕ C6, C12, A4, D12, Dic12 .

Thus we obtain

8 ≤ d(N) + d(G/N) ≤ d(G) .

CASE 2.5 : k = 1 and j = 2.
By the same line of CASE 2.2, it is enough to verify the case i = 0 and hence we assume that |G| = 45.

Then, by Sylow’s Theorem, N = Syl3(G) is normal subgroup of G. Hence G/N is isomorphic to C5. Thus
we obtain

8 = d(N) + d(G/N) ≤ d(G) .

2. Let G be a finite group with D(G) = 6. If G is abelian, say G ∼= Cn1
⊕ . . .⊕Cnr

with 1 < n1 | . . . | nr,
then

1 +

r∑

i=1

(ni − 1) ≤ D(G) = 6 ,

implies that G is isomorphic to one of groups in the list. Suppose that G is non-abelian. Then 1. implies
that |G| ≤ 32. Now the table given in [10] shows that G is isomorphic either to D6, or to Q8, or to D8. �

It is easy to write down explicitly the system L(G) for groups G with D(G) ≤ 4 ([16, Section 7.3]).
However, it turned out that the explicit description of L(G) for groups with D(G) = 5 is extremely complex
([21, Section 4]), to the extent that no system L(G) has been written down completely. Nevertheless,
we can show that for a group G with Davenport constant D(G) = 6 its system of sets of lengths is
characteristic.

Theorem 4.7. Let G be a finite group with D(G) = 6. If G∗ is a finite group with L(G∗) = L(G), then
G∗ ∼= G.
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Proof. Let G∗ be a finite group with L(G∗) = L(G). By [29, Proposition 5.6], we infer that

D(G∗) = ρ2(G
∗) = ρ2(G) = D(G) = 6 .

Lemma 4.6 provides all groups having Davenport constant six. Thus it remains to show that the systems
of sets of lengths of any two of them are distinct. If G and G∗ are both abelian, then L(G) 6= L(G∗) by
[16, Theorem 7.3.3]. Thus it remains to consider the case where G ∈ {D6, Q8, D8}.

In the following three cases, we list all minimal product-one sequences of certain length. This can be
done by straightforward but very tedious case distinctions or by computer (indeed, we rechecked the given
lists with the help of Mathematica).

CASE 1 : G = D6.
By Theorem 4.4.4, G∗ cannot be abelian. Hence it remains to verify that L(D6) 6= L(Q8) and L(D6) 6=

L(D8). Observe that

• B(D8) has precisely four atoms of length 6, namely

a[4] · b · (a2b), (a3)[4] · b · (a2b), a[4] · ab · (a3b), (a3)[4] · ab · (a3b) .

• The atoms of B(Q8) of length 6 have the following form :

g
[4]
1 · g

[2]
2 , where g1, g2 ∈ {I, J,K,−I,−J,−K} with g2 6= ±g1 .

It follows that {2, 6} /∈ L(D8) and {2, 6} /∈ L(Q8). Thus L(Q8) 6= L(D6) and L(D8) 6= L(D6) by Theorem
4.4.3.

CASE 2 : G = Q8.
Since {2, 6} /∈ L(Q8), Lemma 4.3 implies that it suffices to show that L(C2

2 ⊕ C4) 6= L(Q8) and
L(D8) 6= L(Q8). To do so we recall that {2, 5} ∈ L(C2

2 ⊕ C4) by [23, Proposition 3.8], and for S =
a2 · b · b · ab · ab ∈ B(D8), we have that S ∈ A(D8) and

{2, 5} = L(S · S−1) ∈ L(D8) .

Therefore it is sufficient to verify that {2, 5} /∈ L(Q8). Assume to the contrary that there are U, V ∈ A(Q8)
such that {2, 5} = L(U · V ). Observe that any atom of length 5 has one of the following three forms :

• g
[3]
1 · g2 · g3, where g1, g2, g3 ∈ {I, J,K,−I,−J,−K} with g2 6= g3 and g2, g3 6= ±g1.

• g
[2]
1 · g

[2]
2 · (−E), where g1, g2 ∈ {I, J,K,−I,−J,−K} with g2 6= ±g1.

• g1 · (−g1) · g2 · (−g2) · (−E), where g1, g2 ∈ {I, J,K} with g1 6= g2.

CASE 2.1 : |U | = |V | = 5.
Then V = U−1, and hence we obtain that 4 ∈ L(U · U−1), a contradiction.

CASE 2.2 : |U | = 6 or |V | = 6.

Without loss of generality, we may assume that |U | = 6 and we set U = g
[4]
1 · g

[2]
2 for some g1, g2 ∈

{I, J,K,−I,−J,−K} with g2 6= ±g1. If |V | = 5, then U · V has a factorization of product of four atoms
of length 2 and one atom of length 3. It follows that

V = (−g1)
[3]

· (−g2) · g3 or V = (−g1)
[2]

· (−g2)
[2]

· (−E) ,

where g3 ∈ {K,−K}. Hence we obtain that

U · V =
(
g1 · (−g1)

)[2]

·

(
(g1)

[2]
· (g2)

[2]
)
·W ,

where W = (−g1) · (−g2) · g3 or W = (−g2)
[2]

· (−E), and thus 4 ∈ L(U · V ), a contradiction. If |V | = 6,
then

V = (−g2)
[4]

· (−g1)
[2] or V = (−g1)

[4]
· g

[2]
3 ,

where g3 ∈ {I, J,K,−I,−J,−K} \ {g1,−g1,−g2}. Hence we obtain that

U · V =
(
g1 · (−g1)

)[2]

·

(
(g1)

[2]
· (g2)

[2]
)
·W ,
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where W = (−g2)
[4] or W = (−g1)

[2]
· g

[2]
3 , and thus 4 ∈ L(U · V ), a contradiction.

CASE 3 : G = D8.
Since {2, 6} /∈ L(D8), Lemma 4.3 implies that it remains to show that L(C2

2 ⊕ C4) 6= L(D8). We have
that S = a[4] · b · (a2b) ∈ A(D8) and

S · S−1 =
(
a[4]

)
·

(
(a3)[2] · b[2]

)
·

(
(a3)[2] · (a2b)[2]

)
,

whence {2, 3, 6} ⊂ L(S · S−1). On the other hand, by [32, Proposition 4.14], there is no L ∈ L(C2
2 ⊕ C4)

such that {2, 3, 6} ⊂ L. Thus L(C2
2 ⊕ C4) 6= L(D8). �
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[25] P.A. Grillet, Commutative Semigroups, Kluwer Academic Publishers, 2001.
[26] D.J. Grynkiewicz, The large Davenport constant II: General upper bounds, J. Pure Appl. Algebra 217 (2013), 2221 –

2246.
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