
Multiplicative dependence between k−Fibonacci
and k−Lucas numbers
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Abstract

A generalization of the well–known Fibonacci and Lucas sequences are
the k−Fibonacci and k−Lucas sequences with some fixed integer k ≥ 2,
respectively. For these sequences the first k terms are 0, . . . , 0, 1 and
0, . . . , 0, 2, 1, respectively, and each term afterwards is the sum of the
preceding k terms. Here we find all pairs of k−Fibonacci and k−Lucas
numbers multiplicatively dependent.
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1 Introduction

For an integer l ≥ 2, we say that the integers A1, . . . , Al are multiplicatively
dependent if there are xi ∈ Z, not all zero, such that Ax1

1 · · ·A
xl

l = 1.
Let F := {Fn}n≥0 be the classical Fibonacci sequence. One important

property concerning prime factors of Fibonacci numbers, given by Carmichael’s
Primitive Divisor Theorem (see [4]), states that any two distinct Fibonacci
numbers with one of the indices greater than or equal to 13 are multiplicatively
independent. In other words, the Diophantine equation

(Fn)x = (Fm)y, where n > max {12,m} and x, y ∈ Z, (1)

has no solutions. Now, an easy check shows that for indices m < n ≤ 12,
the only pairs of multiplicatively dependent Fibonacci numbers correspond to
indices (n,m) = (2, 1) and (6, 3).
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In this paper, for a fixed integer k ≥ 2, we consider a generalization of the

Fibonacci sequence, U (k) := {u(k)
n }n≥−(k−2), given by the linear recursion of

order k,

u(k)
n = u

(k)
n−1 + · · ·+ u

(k)
n−k for n ≥ 2, (2)

with initial conditions u
(k)
−(k−2) = · · · = u

(k)
−1 = 0, u

(k)
0 = a, u

(k)
1 = b.

If a := 0 and b := 1, we obtain the so called k−generalized Fibonacci se-

quence, F (k) := {F (k)
n }n≥−(k−2). If instead we take a := 2 and b := 1, we obtain

the k-generalized Lucas sequence, L(k) := {L(k)
n }n≥−(k−2). In this context, F

(k)
n

and L
(k)
n are known as the nth k−Fibonacci and k−Lucas numbers, respectively.

Despite considerable amount of well known properties between Fibonacci and

Lucas numbers, little do we know about multiplicative dependence among F
(k)
n

and L
(k)
n . As an example of the problems that we are interested, Gómez and

Luca (see [9]) proved the following result related to the Diophantine equation(
F (k)
n

)x
=
(
F (k)
m

)y
, where n,m, k, x, y ∈ Z+ with n > m and k ≥ 3.

Theorem 1. For k ≥ 3, there is no pair of k–Fibonacci numbers which are
multiplicatively dependent except for trivial situations:

(n,m) = (2, 1) and {(n,m) : 3 ≤ m < n ≤ k + 1} .

In this paper, we investigate multiplicative dependence relations between
F (k) and L(k); namely, we deal with the Diophantine equation(

F (k)
n

)x
=
(
L(k)
m

)y
, where k ≥ 2, n ≥ 1, m ≥ 0 and x, y ∈ Z+. (3)

Since, F
(k)
1 = F

(k)
2 = 1, L

(k)
0 = 2 and L

(k)
1 = 1, we have the following result:

Main Theorem. For k ≥ 2, n ≥ 3, m ≥ 0 and m 6= 1, there is no pair of
multiplicatively dependent k−Fibonacci and k−Lucas numbers, except for those
triplets (k, n,m) from the set

{(k, n, 0) : 3 ≤ n ≤ k + 1} ∪ {(3, n, 7) : 3 ≤ n ≤ 4} ,

together with
{(2, 3, 3), (2, 4, 2), (2, 6, 0), (2, 6, 3), (3, 9, 2)} .

2 Preliminaries

2.1 Some facts about U (k) = {u(k)
n }n≥−(k−2)

It is known that the characteristic polynomial associated to U (k), namely

Ψk(z) = zk − zk−1 − · · · − z − 1,

is irreducible over Q[z] and has just one real zero outside the unit circle between
1 and 2 (see [13] and [14]). Throughout this paper, α1, . . . , αk, are the roots of
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the characteristic polynomial Ψk and α1 := α(k) denotes the zero outside the
unit circle. Besides, it is known that 2(1 − 2−k) < α(k) < 2, for all k ≥ 2 (see
[16]). To simplify notation, we will omit the dependence on k of α1, writing

α1 := α. Bravo and Luca in [1] proved that the inequality αn−2 ≤ F (k)
n ≤ αn−1

holds for all n ≥ 1 and k ≥ 2.
Now, for k ≥ 2, we consider the function

fk(z) :=
z − 1

(2 + (k + 1)(z − 2))
.

We have 1/2 ≤ fk(α) ≤ 3/4, for all k ≥ 3 (see [9]). On the other hand, it is easy
to verify that |fk(αi)| < 1 for all i = 2, . . . , k and all k ≥ 2. Moreover, Dresden
and Du [7] proved that

F (k)
n =

k∑
i=1

fk(αi)α
n−1
i and

∣∣∣F (k)
n − fk(α)αn−1

∣∣∣ < 1

2
, (4)

where the expression on the left-hand side is a “Binet-like” formula for the

k-Fibonacci number F
(k)
n .

It is well known that F
(k)
1 = 1 and F

(k)
n = 2n−2 for all 2 ≤ n ≤ k+1. Cooper

and Howard [6] proved that:

Lemma 1. For k ≥ 2 and r ≥ k + 2, F
(k)
r = 2r−2 +

∑`−1
j=1 cr,j 2r−(k+1)j−2,

where ` := b r+k
k+1c and

cr,j = (−1)j
[(
r − jk
j

)
−
(
r − jk − 2

j − 2

)]
,

with the convention that
(
a
b

)
= 0 if either a < b or if one of a or b is negative

and we denote the greatest integer less than or equal to x by bxc.

All the previous information allows us to present the following result con-
cerning the sequence U (k).

Lemma 2. Let a, b be non−negative integers with b > 0. We define

Φa,b
k (z) := (a(z − 1) + b)fk(z),

to simplify notation, we use Φk(z) := Φa,b
k (z) when it is not necessary to high-

light the dependency on a, b.
The following holds:

1. For every k ≥ 2 and s ≥ 0, u
(k)
s = aF

(k)
s+1 + (b− a)F

(k)
s . In particular, we

have L
(k)
s = 2F

(k)
s+1 − F

(k)
s .

2. If a > b, then, for every s ≥ 1, bαs−1 ≤ u(k)
s ≤ (aα2 + (b− a))αs−2.

In particular, αs−1 ≤ L(k)
s ≤ (2α2 − 1)αs−2.
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3. For k ≥ 2, the “Binet-like” formula

u(k)
s =

k∑
i=1

Φk(αi)α
s−1
i where |u(k)

s − Φk(α)αs−1| < (a+ |b− a|)/2,

holds for s ≥ 2 − k. In particular, L
(k)
s =

∑k
i=1(2α − 1)fk(α)αs−1

i and

|L(k)
s − (2α− 1)fk(α)αs−1| < 3/2.

4. For 2 ≤ s ≤ k, u
(k)
s = (a+ b)2(s−2). In particular, L

(k)
s = 3 · 2(s−2).

5. If ` := b r+k
k+1c, `

′ := b r+k+1
k+1 c and r ≥ k + 2, then

u(k)
s = (a+ b)2s−2 + a

`′−1∑
j=1

cs+1,j2
s−(k+1)j−1 + (b− a)

`−1∑
j=1

cs,j2
s−(k+1)j−2.

In particular when `′ = `, we have, if ds,j := 2acs+1,j + (b− a)cs,j,

u(k)
s = (a+ b)2s−2 − [(a+ b)(s− k) + 2a]2s−k−3 +

`−1∑
j=2

ds,j2
s−(k+1)j−2.

In the following lemma we use the notation ek(s) := u
(k)
s =

∑k
i=1 Φk(αi)α

s−1
i ,

according to part 3 of Lemma 2.

Lemma 3. For k ≥ 2 and t, s positive integers, if r := ek(s)/Φk(α)αs−1 and
z := tr, then

|z| < 2(a+ |b− a|)t
1.75s

.

If in addition we assume |z| < 0.4, then∣∣∣∣(u(k)
s

)t
− Φt

k(α)α(s−1)t

∣∣∣∣ < 4t(a+ |b− a|)Φt
k(α)α(s−1)t

1.75s
.

Proof. Note that, by item 3 of Lemma 2 we have that

u(k)
s = Φk(α)αs−1(1 + r) and |ek(s)| < (a+ |b− a|)/2.

Since |z| = t|ek(s)|/Φk(α)αs−1, then first inequality follows from the fact
that 1.75 < α < 2 and 1/2 < fk(α) < Φk(α), as one can easily check.

Now let us assume |z| < 0.4. If r < 0, then

1 > (1 + r)t = exp (t log(1− |r|)) ≥ exp(−2|z|) > 1− 2|z|,

and, if r > 0, then

1 < (1 + r)t =

(
1 +
|z|
t

)t

< exp |z| < 1 + 2|z|.

In either case, we conclude that |(1 + r)t − 1| < 2|z|. Therefore, we have the
second inequality.
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2.2 Some tools

Let γ be an algebraic number of degree d over Q with minimal primitive poly-
nomial over the integers f(z) := a0

∏d
i=1(X − γ(i)) ∈ Z[z], where the leading

coefficient a0 is positive. The logarithmic height of γ is defined by

h(γ) :=
1

d

(
log a0 +

d∑
i=1

log max{|γ(i)|, 1}

)
.

In particular, if γ = p/q is a rational number with gcd(p, q) = 1 and q > 0, then
h(γ) = log max{|p|, q}.

2.2.1 Lower bounds for non-zero linear forms in logarithms

To deal with linear forms of tree algebraic numbers, our workhorse is the fol-
lowing theorem by Matveev [12]:

Theorem 2. Let K be a number field of degree D over Q, γ1, . . . , γt be positive
real numbers of K, and b1, . . . , bt rational integers. Put

Λ := γb11 · · · γ
bt
t − 1 and B ≥ max{|b1|, . . . , |bt|}.

Let Ai ≥ max{Dh(γi), | log γi|, 0.16} be real numbers, for i = 1, . . . , t. Then,
assuming that Λ 6= 0, we have

|Λ| > exp(−1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At).

When t = 2, the following theorem allows us to get better results as a con-
sequence of the small multiplicative constants involved.

Let α1 and α2 be positive algebraic numbers, L = Q[α1, α2] and D1 the
degree of L over Q. Suppose that Aj ≥ max {D1h(αj), | logαj |, 1} for j = 1, 2.
Let Γ = b2 logα2 − b1 logα1 and

b′ =
b1
A2

+
b2
A1

.

Laurent, Mignotte and Nesterenko [11] proved the following result,

Theorem 3. If α1 and α2 are positive and multiplicatively independent real
numbers, then

log |Γ| ≥ −23.34 (max {D1 log b′ + 0.14D1, 21, D1/2})
2
A1A2.

Note that eΓ−1 = α−b11 αb2
2 −1, which is a quantity similar to Λ on Theorem

2. This explains the connection between these two theorems.

2.2.2 Reduction algorithms

We need algorithms to reduce the upper bounds that we obtain for the variables
in our equation. In this paper we use the following result related with continued
fractions.
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Theorem 4. Let M be a positive integer, p1/q1, p2/q2, . . . the convergents of
an irrational γ, and [a0, a1, . . .] its continued fraction.
If aM := max {at : 0 ≤ t ≤ N + 1} , when N is some positive integer such that
qN+1 > M . Then, ∣∣∣γ − n

m

∣∣∣ > 1

(aM + 2)m2
,

for every pair (m,n) such that 0 < m < M .

2.2.3 A Diophantine equation

Lemma 4. The only solution in positive integers k ≥ 2, x, y of the Diophantine
equation

(2k+1 − 3)x =

(
2k+1kk − (k + 1)k+1

(k − 1)2

)y

is k = 2 for which x = y.

Proof. We may assume that x and y are coprime. Then there exist a positive
integer R such that

2k+1 − 1 = Ry and
2k+1kk − (k + 1)k+1

(k − 1)2
= Rx.

If y is even, then 2k+1 − 3 = �, and reducing it modulo 8 we would get
5 ≡ � (mod 8), which is false. The fact that x cannot be even was proved in
Theorem 2 in [8]. Thus, both x and y are odd.

Hereafter we use the notation

ak :=
2k+1kk − (k + 1)k+1

(k − 1)2
and bk := 2k+1 − 3 for all k ≥ 2.

Since x is odd, we have (2k+1−3)x ≡ 2k+1−3 (mod 4) ≡ 1 (mod 4). Hence,(
2k+1kk − (k + 1)k+1

(k − 1)2

)y

≡ 1 (mod 4),

and, since y is odd, we get

ak =
2k+1kk − (k + 1)k+1

(k − 1)2
≡ 1 (mod 4). (5)

We have that

kk ≡
(
k

3

)
(k − 1)3 +

(
k

2

)
(k − 1)2 +

(
k

1

)
(k − 1) + 1 (mod (k − 1)4),

and

(k + 1)k+1 ≡
(
k + 1

3

)
(k − 1)32k−2 +

(
k + 1

2

)
(k − 1)22k−1

+ (k + 1)(k − 1)2k + 2k+1 (mod (k − 1)4).
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Thus,

2k+1kk ≡
(
k

3

)
2k+1(k−1)3+

(
k

2

)
2k+1(k−1)2+2k+1k(k−1)+2k+1 (mod (k−1)4).

Hence,

ak ≡
k(k − 1)2(7k − 17)

6
2k−2 + k(3k − 5)2k−2 + 2k (mod (k − 1)2). (6)

If k is even, then (k − 1)2 ≡ 1 (mod 4). Hence,

ak ≡ 2k+1kk − (k + 1)k+1 ≡ −(k + 1)k+1 ≡ −k − 1 (mod 4),

which is periodic modulo 4 with period 4. More precisely, a2 ≡ 1 (mod 4) and
a4 ≡ 3 (mod 4).

If k is odd, then 4 | (k − 1)2, so, by (6), ak ≡ 0 (mod 4) for k ≥ 3. Thus,

{ak mod 4}k≥2 = 1, 0, 3, 0, 1, 0, 3, 0, 1, . . . .

Now, from (5), we have k ≡ 2( mod 4), and, for such k, Fermat’s Little Theorem
implies bk = 2k+1 − 1 ≡ 23 − 3 ≡ 0(mod 5), which allows us to conclude that
5|ak.

Now, if k 6≡ 1 (mod 5), then we have 1/(k − 1)2 ≡ (k − 1)2 (mod 5) and
1/(k − 1)2 ≡ (k − 1)18 (mod 25) by Fermat’s Little Theorem. Hence,

ak ≡ (k − 1)2(2k+1kk − (k + 1)k+1) (mod 5),

which is periodic module 5 with period 20 by Euler’s Theorem, and

ak ≡ (k − 1)18(2k+1kk − (k + 1)k+1) (mod 25),

which is periodic with period 100 again by Euler’s Theorem.
On the other hand, if k ≡ 1 (mod 5), then, by (6),

ak ≡ 3 · 2k−2 + 2k ≡ 2k−1 (mod 5),

where the last residue class only depends on the class of k modulo 4. Thus,

{ak mod 5}k≥2 = 0, 4, 3, 4, 2, 2, 2, 4, 4, 4, 4, 4, 2, 4, 3, 4, 2, 1, 4, 1, . . . .

We notice that ak ≡ 0 (mod 5) implies k ≡ 2 (mod 20). However, for such k,
using Euler’s Theorem and the fact that φ(25) = 20, we get

bk = 2k+1 − 3 ≡ 23 − 3 (mod 25) ≡ 5 (mod 25).

Hence, 5‖bk, so we conclude that ν5((bk)x) = x. Here we use νp(m) for the
exponent at which the prime p appear in the factorization of the integer m.

Finally, by (6) for k ≡ (1 mod 5), we have ak ≡ k(3k−5)2k−2 +2k (mod 25),
and the residue class in the right–hand side only depends on the class of k
modulo 100. Thus,

{ak mod 25}k≥2 = 5, 19, 13, 9, 12, 22, 22, 24, 19, 19, 19, 19, 2, 4, 3, 19, 22, 21,

14, 11, 5, 19, 8, 24, 7, 7, 22, 9, 9, 9, 14, 19, 7, 19, 8, 14, 22,

11, 4, 21, 5, 19, 3, 14, 2, 17, 22, 19, 24, 24, 9, 19, 12, 9, 13, 9,

22, 1, 19, 6, 5, 19, 23, 4, 22, 2, 22, 4, 14, 14, 4, 19, 17, 24, 18,

4, 22, 16, 9, 16, 5, 19, 18, 19, 17, 12, 22, 14, 4, 4, 24, 19, 22,

14, 23, 24, 22, 6, 24, 1, 5, . . . .
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One can see from the above list that there is no k with 25|ak. Hence, 5‖ak
whenever ak is a multiple of 5. Thus, ν5(ayk) = y. Now, by unique factorization,
we have x = y, so

2k+1 − 3 =
2k+1kk − (k + 1)k+1

(k − 1)2
.

This has a solution at k = 2, but for k > 2, the right–hand side is larger than
the left–hand side. To prove it, we check that this is so for k = 3, 4, 5. Now, for
k ≥ 6, we have (3/2)k > k + 3 and 2k/(k + 1) ≥ 3/2, then(

2k

k + 1

)k

>

(
3

2

)k

> k + 3 > k + 2 +
2

k − 1
=
k(k + 1)

k − 1
,

which implies (k−1)/k > (k+1) ((k + 1)/2k)
k
, but (k−1)2 < k2 < kk−1. Then

we have

kk − (k − 1)2 >

(
k + 1

2

)k+1

.

Hence, 2k+1(kk − (k − 1)2) > (k + 1)k+1. From here we get

2k+1(k − 1)2 − 3(k − 1)2 < 2k+1kk − (k + 1)k+1,

which is equivalent to

2k+1 − 3 <
2k+1kk − (k + 1)k+1

(k − 1)2
,

as we wanted to show.

The last inequality implies item 3 of the following result (see [9]).

Lemma 5. Let N := NK/Q, where K = Q(α). Then

1. For n,m ≥ 1 and k ≥ 2, |N(α)| = 1.

2. N(2α− 1) = 2k+1 − 3 and N(fk(α)) = (k − 1)2/(2k+1kk − (k + 1)k+1).

3. For k ≥ 3, N((2α− 1)fk(α)) < 1.

2.2.4 Preliminary results

By Bravo-Luca [2] and Rihane-Faye-Luca-Togbé [15], we have:

Lemma 6. The only k−Fibonacci numbers with 2 or 3 as their only prime
factors are

F (k)
n = 2n−2 for 2 ≤ n ≤ k + 1, F

(2)
6 = 8 = 23.

F
(2)
4 = 3, F

(3)
9 = 81 = 34.

F
(2)
8 = 144 = 24 · 32, F

(3)
7 = 24 = 23 · 3, F

(4)
9 = 108 = 22 · 33.

The only k−Lucas numbers powers of two are

L
(k)
0 = 2, L

(k)
1 = 1 = 20, L

(2)
3 = 4 = 22, L

(3)
7 = 64 = 26.

An analytic argument that we use is Lemma 7 from [10].

Lemma 7. If m ≥ 1, T > (4m2)m and T > x/(log x)m, then

x < 2mT (log T )m.
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3 The proof of the Main Theorem

3.1 Multiplicative dependence between Fibonacci and Lu-
cas numbers; i.e., case k = 2

On this section we study the Diophantine equation

(Fn)x = (Lm)y where n,m ≥ 0 and x, y ∈ Z+. (7)

Clearly we discard the cases n = 1, n = 2 and m = 1, since we get a trivial
equation. Hence, our main theorem when k = 2 is the following.

Lemma 8. The only integers solutions (n,m) of equation (7) in the range
n ≥ 3, m ≥ 0, m 6= 1 are {(3, 0), (6, 0), (3, 3), (4, 2), (6, 3)}.

Proof. By Carmichael’s Primitive Divisor Theorem and the known relation
F2m = FmLm, we have that, for n > max {2m, 12} or 2m > max {n, 12}, equa-
tion (7) has no solutions. The remaining cases are easily check by hand.

3.2 Case k ≥ 3. Bounds for our variables

First, we use item 4 of Lemma 2 and Lemma 6 to comment on trivial situations
concerning equation (3) for k ≥ 3.

Note that our equation have solution when we consider the triplets (k, n, 0)
with 2 ≤ n ≤ k + 1, since for m = 0 we have(

F (k)
n

)x
= 2y.

Besides, the equation (3) is trivial when we use F
(k)
1 = F

(k)
2 = L

(k)
1 = 1. From

now on we assume n ≥ 3 and m ≥ 2.
If 2 ≤ n,m ≤ k, we have the equations

(F (k)
n )x = 2(m−2)y3y or (L(k)

m )y = 2(n−2)x.

For the left–hand side equation the options are: F
(3)
7 = 23 · 3, which implies

m = 5 but L
(3)
5 = 19, or F

(4)
9 = 22 · 33, which implies m = 8/3. Hence, we

have no solutions for this equation. Instead, for the right–hand side equation

the only option is L
(3)
7 = 26. So, we get the triplets (k, n,m) = (3, 3, 7) and

(3, 4, 7).
Thus, we assume l := min{n,m} ≥ k + 1 and, also, we assume that x and y

are coprime. Hence, from equation (3) we conclude that

F (k)
n = Ry and L(k)

m = Rx

hold for some integer R ≥ 3. It is a straightforward exercise to show that this im-
plies x < m and y < n. Hence, we have L := max {n,m} = max {n,m, k, x, y}.

Now we use Lemma 3. If we consider a := 0 and b := 1; i.e., U (k) = F (k),
then, we use t := x, s := n and the fact that x < m, to get:

|z| < 2m

1.75n
and

∣∣∣(F (k)
n

)x
− fxk (α)α(n−1)x

∣∣∣ < 4mfxk (α)α(n−1)x

1.75n
. (8)
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Instead, if a := 2 and b := 1; i.e., U (k) = L(k), then we use t := y, s := m
and the fact that y < m, to get:

|z| < 6n

1.75m
and

∣∣∣(L(k)
m

)y
− gyk(α)α(m−1)y

∣∣∣ < 12ngyk(α)α(m−1)y

1.75m
, (9)

where gk(α) := (2α− 1)fk(α) = Φ2,1
k (α).

These formulas require |z| < 0.4, but if this does not hold, since L ≥ 2, we
get 0.4 < 6L/1.75l, which implies

l < 9 log(L). (10)

From now on we assume that (10) does not hold.

3.2.1 The non-zero linear forms

By (8) and (3), we have an upper bound for our first linear form

|Λ1| :=
∣∣∣(L(k)

m

)y
f−xk (α)α−(n−1)x − 1

∣∣∣ < 4m

1.75n
. (11)

Similarly, by (9) and (3), we have an upper bound for our second linear form

|Λ2| :=
∣∣∣(F (k)

n

)x
g−yk (α)α−(m−1)y − 1

∣∣∣ < 12n

1.75m
. (12)

On the other hand, combining (3), (8) and (9), we have

|fxk (α)α(n−1)x − gyk(α)α(m−1)y| < 4mfxk (α)α(n−1)x

1.75n
+

12ngyk(α)α(m−1)y

1.75m

<
12L

1.75l

(
fxk (α)α(n−1)x + gyk(α)α(m−1)y

)
.

Dividing both sides by gyk(α)α(m−1)y, we get

|fxk (α)g−yk (α)α(n−1)x−(m−1)y − 1| < 12L

1.75l

(
1 + fxk (α)g−yk (α)α(n−1)x−(m−1)y

)
.

By (3) and item 3 of Lemma 2,

fxk (α)g−yk (α)α(n−1)x−(m−1)y =
(1 + r2)y

(1 + r1)x
<

1 + 2|z2|
1− 2|z1|

< 9,

where we use r1 := ek(n)/fk(α)αn−1, r2 := ek(m)/gk(α)αm−1, z1 := xr1 and
z2 := yr2. Note the last inequality holds since |zi| < 0.4 for i = 1, 2. Thus, we
have an upper bound for our third linear form

|Λ3| :=
∣∣∣fxk (α)g−yk (α)α(n−1)x−(m−1)y − 1

∣∣∣ < 120L

1.75l
. (13)

Theorem 2 is our battle horse to get lower bounds but, in order to use it, we
need to guarantee we have non-zero linear forms.
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Let us start with Λ3. If Λ3 = 0, we get fx−yk (α) = (2α − 1)yαz, since
gk(α) = (2α − 1)fk(α), where z := (n − 1)x − (m − 1)y. But |N(α)| = 1, so
|N(fk(α))|x−y = |N(2α− 1)|y. By item 2 of Lemma 5, we get y > x and(

2k+1kk − (k + 1)k+1

(k − 1)2

)w

= (2k+1 − 3)y,

with w := y−x, where y and w are coprime positive integers. This is impossible
by Lemma 4.

Now, if Λ1 = 0 or Λ2 = 0, then we get |N(fk(α))| ≥ 1 or |N(gk(α))| ≥ 1,
respectively, a contradiction with item 3 of Lemma 5.

3.2.2 An inequality for L in terms of k

Since we have h(η±γ) ≤ h(η)+h(γ)+2, h(ηγ) ≤ h(η)+h(γ) and h(ηs) = |s|h(η)
for s ∈ Q, we get h(α) = (logα)/k, h(2α − 1) < 3/k, h(fk(α)) < 2 log k,

h(gk(α)) < 5 log k and h(F
(k)
n ) < n log(α) (see [9]). Also, it is a straightforward

exercise to show that h(L
(k)
m ) < m log(α).

For Λ1. We have a linear form in t := 3 logarithms, with

γ1 := fk(α), γ2 := α γ3 := L(k)
m ,

b1 := −x, b2 := −(n− 1)x, b3 := y,

A1 := 2k log k, A2 := logα, A3 := km logα,

K := Q(α), D := k and B := L2, hence we have the lower bound for |Λ1|:

exp
(
−1.4× 306 × 34.5 × k2(1 + log k)(1 + logL2)(2k log k)(logα)2km

)
,

which, together with (11), gives

exp
(
−3.1× 1012 × k4(log k)2(logL)m

)
< 4m(1.75−n).

Thus, performing some calculations, we get

n < 5.8× 1012 × k4(log k)2(logL)m. (14)

For Λ2. We have a linear form in t := 3 logarithms, with

γ1 := gk(α), γ2 := α γ3 := F (k)
n ,

b1 := −y, b2 := −(m− 1)y, b3 := x,

A1 := 5k log k, A2 := logα, A3 := kn logα,

K := Q(α), D := k and B := L2, hence we have the lower bound for |Λ2|:

exp
(
−1.4× 306 × 34.5 × k2(1 + log k)(1 + logL2)(5k log k)(logα)2kn

)
,

which, together with (12), gives

exp
(
−7.6× 1012 × k4(log k)2(logL)n

)
< 12n(1.75−m).

11



Thus, performing some calculations, we get

m < 1.4× 1013 × k4(log k)2(logL)n. (15)

For Λ3. We have a linear form in t := 3 logarithms, with

γ1 := 2α− 1, γ2 := fk(α), γ3 := α,

b1 := −y, b2 := x− y, b3 := (n− 1)x− (m− 1)y,

A1 := 3k, A2 := 2k log k, A3 := logα,

K := Q(α), D := k and B := L2, hence we have the lower bound for |Λ3|:

exp(−1.4× 306 × 34.5 × k2(1 + log k)(1 + logL2)(3k)(2k log k)(logα)),

which, together with (13), gives

exp(−3.6× 1012 × k4 log2 k logL) < 120L
(
1.75−l

)
.

Thus, performing some calculations, we get

l < 7× 1012 × k4(log k)2(logL). (16)

We get this upper bound for l under the assumption that (10) does not hold,
but, clearly, the upper bound for l from (10) is smaller than the one on (16), so
we have that (16) holds in all cases.

On the other hand, by (14) and (15), we conclude that

L < 1.4× 1013 × k4(log k)2(logL)l. (17)

Thus, by (16) and (17), we have L < 9.8× 1025 × k8 log4 k(logL)2. Finally,
by Lemma 7, we get the following result:

Lemma 9. Let (n,m, k, x, y) be a nontrivial solution in positive integers of
equation (3) with k ≥ 3. Then

max {n,m, k, x, y} < 1.8× 1029 × k8 log6 k. (18)

3.3 Considerations on k

Here we show that in the case k > 500, the Diophantine equation (3) has no
solutions. So the only possibility left is that k ≤ 500. However, by Lemma 9,
we have L < 4.1× 1055, an upper bound which is too large to allow computing.
Therefore, for the case of k small, we use a reduction method to decrease the
upper bound on L.

3.3.1 The case k > 500

We have from Lemma 9 that L < 1.8× 1029 × k8 log6 k < 22k/5. Also, we have
`′ = `, since 1/(k + 1) < 2× 10−3.

First, we deduce the following estimate:(
u(k)
r

)t
= (a+ b)t2t(r−2)

(
1− (a+ b)(r − k) + 2a

2k+1(a+ b)
t+ ζ

)
, (19)

12



with |ζ| < 70/22k/5.
Indeed, given that dr,1 = −[(a+ b)(r − k) + 2a], then, by Lemma 2,

u(k)
r = (a+ b)2(r−2)

1− (a+ b)(r − k) + 2a

2k+1(a+ b)
+

`−1∑
j=2

dr,j
2(k+1)j(a+ b)

 .

Now, letting s be the sum on the right–hand side of the above expression, as

|dr,j | ≤ (2a+ |b− a|)2(r + 1)j

(j − 2)!
,

since |cr,j | ≤ 2rj/(j − 2)! and |dr,j | ≤ 2a|cr+1,j |+ |b− a||cr,j |, we have

|s| < 2a+ |b− a|
a+ b

∑
j≥2

2(r + 1)j

2(k+1)j(j − 2)!

=
2a+ |b− a|

a+ b
· 2(r + 1)2

22k+2

∑
j≥2

((r + 1)/2k+1)j−2

(j − 2)!

<
2a+ |b− a|

a+ b
· 2(r + 1)2

22k+2
· e(r+1)/2k+1

.

But (2a+ |b− a|)/(a+ b) < 3 and r < 22k/5, since eventually r will be one of n

or m. Hence, we have e(r+1)/2k+1

< 1.1 and |s| < 7(r + 1)2/22k+2.
Until now we have shown(

u(k)
r

)t
= (a+ b)t2t(r−2)

(
1− (a+ b)(r − k) + 2a

2k+1(a+ b)
+ s

)t

,

with |s| < 7(r + 1)2/22k+2 < 7/26k/5.
Let us consider ζ equal to(

1− (a+ b)(r − k) + 2a

2k+1(a+ b)
+ s

)t

− 1 +
(a+ b)(r − k) + 2a

2k+1(a+ b)
t.

Since eventually t will be x or y, we have t < L < 22k/5. Besides,

(a+ b)(r − k) + 2a

2k+1(a+ b)
<
r − k + 2

2k
<

1

23k/5
.

By the binomial theorem

|ζ| ≤ t|s|+
t∑

j=2

(
t

j

)(
(a+ b)(r − k) + 2a

2k+1(a+ b)
+ |s|

)j

≤ t|s|+ t

(
(a+ b)(r − k) + 2a

2k+1(a+ b)
+ |s|

)∑
j≥1

(
t

(
(a+ b)(r − k) + 2a

2k+1(a+ b)
+ |s|

))j

<
7

24k/5
+

8

2k/5

∑
j≥1

(
8

2k/5

)j

=
7

24k/5
+

64

22k/5

(
2k/5

2k/5 − 8

)
<

70

22k/5
,
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where we use the fact that
(
t
j

)
< tj , |s| < 7/26k/5 and k > 500. This implies

(19). Now we use this estimate to get∣∣∣(u(k)
r )t − 2(r−2)t(a+ b)t

∣∣∣ ≤ 2(r−2)t(a+ b)t
(

(a+ b)(r − k) + 2a

2k+1(a+ b)
t+ |ζ|

)
< 2(r−2)t(a+ b)t

(
1

23k/5
+

70

22k/5

)
< 71 · 2(r−2)t(a+ b)t

22k/5
. (20)

Hence, using the inequality (20) and the equation (3), we get∣∣∣2(n−2)x − 2(m−2)y3y
∣∣∣ ≤ ∣∣∣(F (k)

n

)x
− 2(n−2)x

∣∣∣+
∣∣∣(L(k)

m

)y
− 2(m−2)y3y

∣∣∣
< 71 · 2(n−2)x + 2(m−2)y3y

22k/5
.

If we divide both sides by max
{

2(n−2)x, 2(m−2)y3y
}

, we get∣∣∣1− 2ε((n−2)x−(m−2)y)3−εy
∣∣∣ < 142

22k/5

with

ε =

{
1, if 2(m−2)y3y ≥ 2(n−2)x

−1, if 2(m−2)y3y < 2(n−2)x.

Now, we set Λ4 := 1− 2a · 3b, with a = ε((n− 2)x− (m− 2)y) and b = −εy. If
we denote by Γ4, the linear form a log 2 + b log 3, we have

|Γ4| < e|Γ4||eΓ4 − 1| < 284

22k/5
, (21)

since |eΓ4 − 1| = |Λ4| < 6/2k/4 and e|Γ4| ≤ 1 + |Λ4| < 2 for k > 500.

By Theorem 3, with α1 = 3, α2 = 2, b1 = −a, b2 = b, L = Q, D1 = 1, and
Aj = log 3 for j = 1, 2,

log |Γ4| ≥ −23.34 (max{log b′ + 0.14, 21})2
log2 3,

and, using the upper bound that provides (21), we get

log(71 · 22−2k/5) > −28.2 (max{log b′ + 0.14, 21})2
,

so, after some calculations, we get

k < 103 (max{log b′ + 0.14, 21})2
+ 23.

Now, if max {log b′ + 0.14, 21} = 21, then k < 45500. On the other hand, if
max {log b′ + 0.14, 21} = log b′ + 0.14, then k < 8.7× 107. Indeed, note that

b′ <
|y|+ |(n− 2)x− (m− 2)y|

log 3
≤ L+ L2

log 3
< 4.6× 1058 × k16 log12 k,
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with L < 1.8× 1029 × k8 log6 k. Hence, after some calculations we get

k < 2.6× 105 × log2 k + 23,

which implies k < 8.7× 107.
Thus, without loss of generality, we take k0 to be 8.7×107 as an upper bound

for k. Therefore, y < L < 1.8× 1029 × k8
0 log6 k0 < 2.3× 10100.

Now, dividing (21) by y log 2, we get∣∣∣∣ log 3

log 2
− |(n− 2)x− (m− 2)y|

y

∣∣∣∣ < 410

y22k/5
. (22)

By Theorem 4, with γ := log 3/ log 2 and M := 10101, we get

1

(aM + 2)y2
<

∣∣∣∣ log 3

log 2
− |(n− 2)x− (m− 2)y|

y

∣∣∣∣ ,
where aM = 55. If we compare the previous lower bound with the upper bound
in (22), we get

22k/5 < 410(aM + 2)y < 4.2× 1033 × k8 log6 k,

and, after some calculations, we get k < 500, a contradiction.

3.3.2 The case of small k

Here, we treat the cases when k ∈ [3, 500]. For technical reasons we assume
l > 240. Our purpose is to reduce the upper bound on L that we have. In order
to proceed we let

Γ3 := z1 log(α) + z2 log(2α− 1) + z3 log(fk(α)),

where z1 := (n− 1)x− (m− 1)y, z2 := −y, z3 := x− y, are integer coefficients
with

max {|zi| : 1 ≤ i ≤ 3} ≤ 9L < b1.7× 1030 × k8 log6 kc. (23)

Since |Λ3| < 1 and e|Γ3| ≤ 1 + |Λ3| < 2, implies

|z1| <
1

| log(α)|
|2 + |z2|| log(2α− 1)|+ |z3|| log(fk(α))|| < 9L,

where we have use that | log(2α − 1)| < 2 and | log(fk(α))| < 1, and the last
inequality holds by Lemma 9.

Note that Γ2 6= 0, since eΓ3 − 1 = Λ3, where Λ3 is the linear form given in
(13) and Λ3 6= 0. Therefore, rewriting (13) and using Lemma 9, we have

|Γ3| < e|Γ3||eΓ3 − 1| < 1058

1.75l
, (24)

which holds for all k ∈ [3, 500].
So, for each k ∈ [3, 500], we followed the method described in [5], Sec. 2.3.5.,

known as LLL algorithm, to compute a lower bound for the smallest non-zero
number of the form |Γ3| with integer coefficients zi not exceeding

b1.7× 1030 × k8 log6 kc,
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in absolute values. Hence, we get 6.4× 10−149 < |Γ3|, which together with the
upper bound in (24) gives l ≤ 850. Thus, by (17), we get L < 3.3 × 1015 ×
k4 log2 k logL, and, by Lemma 7, we obtain

L < 2.6× 1017 × k4 log3 k. (25)

On the other hand, for i = 1, 2, we let

Γi := xi,1 log(ηi,1) + xi,2 log(ηi,2) + xi,3 log(α),

where η1,1 := fk(α), η1,2 := L
(k)
m , η2,1 := gk(α), η2,2 := F

(k)
n , and the

x1,1 := −x, x1,2 := y, x1,3 := −(n− 1)x,

x2,1 := −y, x2,2 := x, x2,3 := −(m− 1)y,

are integers coefficients such that, by (25),

max {|xi,j |} < L2 < b6.8× 1034 × k8 log6 kc. (26)

Clearly Γi 6= 0, since eΓi − 1 = Λi for i = 1, 2, where the Λi’s are given in (11),
(12), respectively. Thus, by (11), (12) and (25), we have

|Γi| < e|Γi||Γi − 1| < 1032

1.75ni
with n1 := n and n2 := m, (27)

where, as before, we use the fact that |Λi| < 1 and e|Γi| ≤ 1 + |Λi| < 2, for
i = 1, 2. Therefore, for each k ∈ [3, 500], we use the LLL algorithm to compute
a lower bound for the smallest non-zero number of the form Γ1 or Γ2, when
m ∈ [4, 850] or n ∈ [4, 850], respectively. We get 2.3 × 10−390 < |Γ1| and
7.6 × 10−149 < |Γ2|. Thus, without loss of generality, by the upper bound in
(27), we get L ≤ 1800.

Now, we repeat the process with this new upper bound for L. Hence, (23)
and (24) become max {|zi| : 1 ≤ i ≤ 3} < 1.7 × 104 and |Γ3| < 4.4 × 105/1.75l.
Thus, we get 7.6× 10−149 < |Γ3| and l ≤ 630.

On the other hand, (26) and (27) becomes max {|xi,j |} < 3.3 × 106 and
|Γi| < 4.5 × 104/1.75ni , respectively. Thus, if k ∈ [3, 500], for m ∈ [4, 630],
we get 1.9 × 10−113 < |Γ1|, and, for n ∈ [4, 630], we get 7.6 × 10−149 < |Γ2|.
Therefore, we get L ≤ 625.

Finally, we do a computational search for solutions of our Diophantine equa-
tion (3), when 3 ≤ k ≤ 500 and 4 ≤ n,m ≤ 625. First, for k fixed, we use

Mathematica to calculate M(n,m) := GCD[F
(k)
n , L

(k)
m ] and we print the pairs

(n,m), with n,m ∈ [3, 625], such that

PowerMod[M(n,m), n, F (k)
n ] = 0 and PowerMod[M(n,m),m,L(k)

m ] = 0.

Here PowerMod[A, r,B] calculate Ar(mod B). To conclude, we verify by hand
which of these pairs correspond to solutions of equation (3), for each k ∈ [3, 500].
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