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On two supercongruences of double binomial sums

Long Li1 and Ji-Cai Liu2*

1School of Mathematics and Statistics, Huaiyin Normal University, Huai’an 223300, PR China
lli@hytc.edu.cn

2Department of Mathematics, Wenzhou University, Wenzhou 325035, PR China

jcliu2016@gmail.com

Abstract. In this note, we confirm two conjectural supercongruences on double sums of
binomial coefficients due to El Bachraoui.

Keywords: q-Congruences; Supercongruences; Central binomial coefficients

MR Subject Classifications: 11A07, 11B65, 05A19

1 Introduction

Recall that the q-shifted factorials are given by (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1)
for n ≥ 1 and (a; q)0 = 1, and the q-integers are defined by [n] = (1 − qn)/(1 − q). For
polynomials A1(q), A2(q), P (q) ∈ Z[q], the q-congruence

A1(q)/A2(q) ≡ 0 (mod P (q))

is understood as A1(q) is divisible by P (q) and A2(q) is coprime with P (q). In general,
for rational functions A(q), B(q) ∈ Z(q),

A(q) ≡ B(q) (mod P (q)) ⇐⇒ A(q)− B(q) ≡ 0 (mod P (q)).

In the past few years, q-congruence for sums of binomial coefficients as well as hyper-
geometric series attracted many experts’ attention (see, for instance, [1–7]). In particular,
Guo and Zudilin [5] developed a creative microscoping method to prove many interesting
q-congruences, such as

n−1
∑

k=0

(−1)k
(q; q2)k(−q; q2)2k
(q4; q4)k(−q4; q4)2k

[6k + 1]q3k
2

≡ 0 (mod [n]), (1.1)

and

n−1
∑

k=0

(q2; q4)k(−q; q2)2k
(q4; q4)k(−q4; q4)2k

[6k + 1]qk
2

≡ 0 (mod [n]), (1.2)
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for any odd positive integer n.
Motivated by (1.1) and (1.2), El Bachraoui [1, Theorems 1 and 2] established the

following two q-congruences:

n−1
∑

k=0

k
∑

j=0

cq(j)cq(k − j) ≡ 0 (mod [n]), (1.3)

and

n−1
∑

k=0

k
∑

j=0

c′q(j)c
′

q(k − j) ≡ 0 (mod [n]), (1.4)

where cq(k) and c′q(k) denote the k-th term of the summations on the left-hand sides of
(1.1) and (1.2), respectively.

Suppose p is an odd prime. Letting q → 1 and n = p in (1.3) and (1.4) gives

p−1
∑

k=0

(

−
1

8

)k k
∑

j=0

(

2j

j

)(

2k − 2j

k − j

)

(6j + 1)(6k − 6j + 1) ≡ 0 (mod p), (1.5)

and

p−1
∑

k=0

(

1

4

)k k
∑

j=0

(

2j

j

)(

2k − 2j

k − j

)

(6j + 1)(6k − 6j + 1) ≡ 0 (mod p). (1.6)

El Bachraoui [1, Conjectures 1 and 2] also conjectured two extensions of (1.5) and
(1.6) as follows:

Conjecture 1.1 For any odd prime p, we have

p−1
∑

k=0

(

−
1

8

)k k
∑

j=0

(

2j

j

)(

2k − 2j

k − j

)

(6j + 1)(6k − 6j + 1) ≡ −
p

2
(mod p2), (1.7)

and

p−1
∑

k=0

(

1

4

)k k
∑

j=0

(

2j

j

)(

2k − 2j

k − j

)

(6j + 1)(6k − 6j + 1) ≡ p (mod p2). (1.8)

The above two conjectural supercongruences motivate us to establish the following
more general result, which includes (1.7) and (1.8) as special cases.

Theorem 1.2 For any positive integer n, we have

n−1
∑

k=0

(q

4

)k
k
∑

j=0

(

2j

j

)(

2k − 2j

k − j

)

(6j + 1)(6k − 6j + 1)

=
(9n2 − 15n+ 8)qn+2 − (18n2 − 12n− 8)qn+1 + (9n2 + 3n+ 2)qn − 2(2q + 1)2

2(1− q)3
. (1.9)
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Letting q → −1

2
and q → 1 in (1.9), we obtain the following two combinatorial

identities:

Corollary 1.3 For any positive integer n, we have

n−1
∑

k=0

(

−
1

8

)k k
∑

j=0

(

2j

j

)(

2k − 2j

k − j

)

(6j + 1)(6k − 6j + 1) =

(

−
1

2

)n

n(1− 3n), (1.10)

and

n−1
∑

k=0

(

1

4

)k k
∑

j=0

(

2j

j

)(

2k − 2j

k − j

)

(6j + 1)(6k − 6j + 1) =
n(3n2 − 3n+ 2)

2
. (1.11)

It is clear that (1.7) and (1.8) can be deduced from (1.10) and (1.11) directly. We
shall prove Theorem 1.2 in the next section.

2 Proof of Theorem 1.2

In order to prove Theorem 1.2, we need the following preliminary result.

Lemma 2.1 For any non-negative integer n, we have

k
∑

j=0

(

2j

j

)(

2k − 2j

k − j

)

(6j + 1)(6k − 6j + 1) = 4k
(

9

2
k2 +

3

2
k + 1

)

. (2.1)

Proof. Note that central binomial coefficients possess the following generating function:

1
√
1− 4x

=

∞
∑

j=0

(

2j

j

)

xj . (2.2)

On the other hand,

1

1− 4x
=

∞
∑

k=0

(4x)k.

Thus,

(

∞
∑

j=0

(

2j

j

)

xj

)2

=
∞
∑

k=0

(4x)k. (2.3)

Comparing the coefficient of xk on both sides of (2.3), we obtain

k
∑

j=0

(

2j

j

)(

2k − 2j

k − j

)

= 4k. (2.4)
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Differentiating both sides of (2.2) respect to x, we obtain

2x
√

(1− 4x)3
=

∞
∑

j=0

j

(

2j

j

)

xj . (2.5)

On the other hand,

4x2

(1− 4x)3
= 4x2

∞
∑

k=0

(

−3

k

)

(−4x)k.

Since
(

−3

k

)

=
(−1)k(k + 1)(k + 2)

2
,

we have

4x2

(1− 4x)3
=

∞
∑

k=0

4k+1(k + 1)(k + 2)

2
xk+2. (2.6)

Noting (2.5) and (2.6), we find that

(

∞
∑

j=0

j

(

2j

j

)

xj

)2

=

∞
∑

k=0

4k+1(k + 1)(k + 2)

2
xk+2. (2.7)

Comparing the coefficient of xk on both sides of (2.7), we obtain

k
∑

j=0

(

2j

j

)(

2k − 2j

k − j

)

j(k − j) =
4kk(k − 1)

8
. (2.8)

Finally, using (2.4) and (2.8) we arrive at

k
∑

j=0

(

2j

j

)(

2k − 2j

k − j

)

(6j + 1)(6k − 6j + 1)

= (6k + 1)
k
∑

j=0

(

2j

j

)(

2k − 2j

k − j

)

+ 36
k
∑

j=0

(

2j

j

)(

2k − 2j

k − j

)

j(k − j)

= 4k
(

9

2
k2 +

3

2
k + 1

)

,

as desired. �
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Proof of Theorem 1.2. By (2.1), we have

n−1
∑

k=0

(q

4

)k
k
∑

j=0

(

2j

j

)(

2k − 2j

k − j

)

(6j + 1)(6k − 6j + 1)

=

n−1
∑

k=0

qk
(

9

2
k2 +

3

2
k + 1

)

. (2.9)

Let

Sn =

n−1
∑

k=0

qkk and Tn =

n−1
∑

k=0

qkk2.

Note that

(1− q)Sn =
n−1
∑

k=0

qkk −
n−1
∑

k=0

qk+1k

=
n−1
∑

k=1

qkk −
n
∑

k=1

qk(k − 1)

=
n−1
∑

k=1

qkk −
n−1
∑

k=1

qk(k − 1)− qn(n− 1)

=
n−1
∑

k=1

qk − qn(n− 1).

Thus,

Sn =
q(1− qn−1)

(1− q)2
−

qn(n− 1)

1− q
. (2.10)

On the other hand,

(1− q)Tn =

n−1
∑

k=0

qkk2 −
n−1
∑

k=0

qk+1k2

=

n−1
∑

k=1

qkk2 −
n
∑

k=1

qk(k − 1)2

=

n−1
∑

k=1

qkk2 −
n−1
∑

k=1

qk(k − 1)2 − qn(n− 1)2

=

n−1
∑

k=1

qk(2k − 1)− qn(n− 1)2. (2.11)
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Combining (2.10) and (2.11), we obtain

Tn =
2q(1− qn−1)

(1− q)3
−

2qn(n− 1)

(1− q)2
−

q(1− qn−1)

(1− q)2
−

qn(n− 1)2

1− q
. (2.12)

Finally, substituting (2.10) and (2.12) into (2.9), we arrive at

n−1
∑

k=0

(q

4

)k
k
∑

j=0

(

2j

j

)(

2k − 2j

k − j

)

(6j + 1)(6k − 6j + 1)

=
(9n2 − 15n+ 8)qn+2 − (18n2 − 12n− 8)qn+1 + (9n2 + 3n+ 2)qn − 2(2q + 1)2

2(1− q)3
,

as desired. �
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