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Abstract
For a given integer k ≥ 1, a graph G with at least 2k vertices is called k-path-pairable, if
for any set of k disjoint pairs of vertices, si , ti , 1 ≤ i ≤ k, there exist pairwise edge-disjoint
si , ti -paths in G. The path-pairability numberis the largest k such that G is k-path-pairable.
Bounds on the path-pairability number are given here ifG is the graph of infinite integer grids
in the Euclidean plane. We prove that the path-pairability number of the integer quadrant is
4, and we show that the integer half-plane is 6-path-pairable and at most 7-path-pairable.

Keywords Linkage · Infinite grid · Path-pairability · Interconnection networks

Mathematics Subject Classification 05C10 · 05C38 · 05C40 · 94C15

1 Introduction

Problems concerning edge-disjoint paths have several applications in the areas of routing,
wavelength assignment, call admission control, point-to-point delivery, real-time communi-
cation, etc. (see [5]). In VLSI layout and reconfiguration problems the linkage properties
are studied on a planar grid network, that is the underlying graph of the model is the Carte-
sian product of paths (see [1]). The general concept of path-pairability we are dealing with
here is actually originated in a practical problem concerning telecommunications network as
first described in [2]. Such a data- or telephone network is a collection of terminals (hosts),
transmission links, and intermediate nodes which are assembled so as to enable simultaneous
communication between pairs of terminals.

For a given integer k ≥ 1, a graph G with at least 2k vertices is k-path-pairable, if for any
set of k disjoint pairs of vertices si , ti , 1 ≤ i ≤ k, called terminals, there exist pairwise edge-
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disjoint si , ti -paths in G. The path-pairability number, denoted pp(G), is the largest k such
that G is k-path-pairable. A summary of early results concerning path-pairability was given
in [3], recent papers witness a renewed interest in linkage properties of Cartesian products
of graphs (see [10–12]). The parameter pp(G) was investigated recently in [6,7], for finite
and infinite grid graphs G, that is, for the Cartesian product of finite or infinite paths.

We use here N and Z to denote the one-way and the two-way infinite path on the natural
numbers and on the integers, respectively, with an edge between i and j if and only if |i− j | =
1. The Cartesian product of two of these infinite paths lead to three kinds of infinite grid,
Z�Z (integer plane), N�Z (integer half-plane), and N�N (integer quadrant). (Between
vertices (p, q) and (i, j) of a product graph there is an edge if and only if |p−i |+|q− j | = 1.)

In [6,8] the path-pairability number of the finite rectangular grids, the Cartesian product
Pa � Pb, was determined for every pair of positive integers a, b ≥ 2. From the meticulous
proof of pp(P6 � P6) = 4 in [8] we immediately obtain the path-pairability number of
N�N. In Sect. 4 a much shorter transparent proof is presented for pp(N�N) = 4. We use
two technical lemmas (Lemmas 4.1 and 4.2) whose detailed proofs are given in [9].

Determining the path-pairability number of the integer half-plane and the integer plane
remain challenging open problems. The bounds 10 ≤ pp(Z�Z) ≤ 14 were obtained in
[7]; here in Sect. 3 we prove 6 ≤ pp(N�Z) ≤ 7 by using similar methods. The lower
bound proofs are based on Hall’s matching theorem, the upper bound constructions violate
cut conditions as explained in Sect. 2. Conjectures on the value of these path-pairability
numbers, supported/tested by exhaustive computer search, are proposed in Sect. 5

2 Proof strategies

To prove that a graphG is not k-path-pairable, we need to exhibit a counterexample consisting
of k terminal pairs that does not admit edge disjoint linkage. For the proof that no linkage
exists we use a necessary condition, called cut condition1 and its variations. As an example,
the bound pp(Z�Z) < 19 follows from a pairing where one terminal from each pair is
located at the vertices of a 4 × 5 grid R and the second members of the pairs are located
anywhere in (Z�Z)−R. Indeed, if there was a linkage for the 19 pairs, 19 edge disjoint paths
must exit R, but there are only 18 edges between R and (Z�Z) − R. We might say, there
is no edge disjoint linkage because the cut condition is violated by this particular pairing.
Sharper upper bounds can be obtained by using stronger necessary conditions derived from
the cut condition. The best bound pp(Z�Z) < 15 that we know so far was obtained in this
way in [7].

LetG be an infinite gridwhose vertices are arranged into ‘vertical’ and ‘horizontal’ infinite
lines (or half-lines). For a proof that pp(G) ≥ k, let πi = {si , ti } be an arbitrary pairing of
2k terminals in G. Denote by T the set of those 2k terminals and include T into a (smallest)
rectangle R ⊂ G. An edge disjoint linkage of the k pairs can be obtained by a general
two-stage procedure.

The first stage, the essential part of the proofs, is slightly different for each of the three
infinite grids Z�Z, N�Z, and N�N. First we take the edge disjoint linkage of some pairs
inside R; then every unlinked terminal u ∈ T is ‘mapped’ to a vertical or horizontal half-line
�(u) through u going out from R in such a way that all these half-lines are pairwise edge-

1 If the vertex set of G is partitioned into two sets, the number of edges of G between the sets is not smaller
than the cardinality of each of these sets.

123



222 A. S. Jobson et al.

disjoint and disjoint from the paths used by the linkage inside R. To obtain such a mapping
Hall’s matching theorem (see [4]) will be used.

The second stage is common for each of the three infinite grids. We take k pairwise
disjoint finite paths Fi in the grid, 1 ≤ i ≤ k, each intersecting all the half-lines assigned to
unlinked terminals by the mapping in the first stage. For every unlinked terminal u ∈ πi , let
u∗ ∈ �(u)∩ Fi ; then the linkage for any unlinked pair πi can be completed along Fi between
s∗
i and t∗i .
A humble application of Hall’s matching theorem in the first stage would lead to small k, a

plain lower bound on the path-pairability number of the grid. In order to achieve larger k, the
application of Hall’s matching theorem will be preceded with an investigation of exceptional
terminal pairings, a few annoying cases called here ‘obstructions’, when Hall’s condition is
violated.

In order to handle the linkage of terminals of an obstruction, the general procedure is
refined as follows. Besides linking a pair inside R we are also allowed to ‘move’ a terminal
into a ‘mate’ at a more favorable locations along pairwise edge-disjoint ‘mating paths’ in R.
The first stage of the refined procedure starts with the edge disjoint linkage of some pairs
inside R, then half-lines ‘sticking out’ from R are assigned to the unlinked terminals. The
head vertices of these half-lines located on the boundary of R will serve as mates; to conclude
the first stage edge-disjoint mating paths are built from each unlinked terminal to the head
vertex of an appropriate half-line. In this way the unlinked terminals ‘exit’ through the half-
lines headed at their mates, and those pairs leaving R become linked in the standard second
stage as described above. The lower bound pp(N�Z) ≥ 6 in Proposition 3.2 is obtained in
this way.

The process of selecting the pool of mates and the strategy of building non-conflicting
mating paths from terminals to mates is tailored to the underlying grids under study and
depends on specific conditions different from case to case (see [6–10]).

3 The integer half-plane

In this section we prove the bounds 6 ≤ pp(N�Z) ≤ 7.

Proposition 3.1 The grid N�Z is not 8-path-pairable.

Proof Let A(i), i = 1, 2, . . ., denote the horizontal lines (also called rows) of the grid
G = N�Z from top down. Let R ⊂ A(1) ∪ A(2) be a 2 × 5 rectangle; locate 10 terminals
s1, t1, s2, t2, si , 3 ≤ i ≤ 8, in R as seen in Fig. 1, and let t j , 3 ≤ j ≤ 8, be placed arbitrarily
in G − R.

Assume there is a linkage inG for each pair πi , 1 ≤ i ≤ 8. Observe that inside R there is a
linkage either for π1 or for π2, but not for both. Therefore, at least eight terminals must leave
R using the nine exits (two exits on A(1) and A(2), and one exit on each vertical half-line). By
symmetry, we may assume that the s1, t1-path P1 of the solution is contained by R. Observe
that between {s1, s2} and R\{s1, s2} there are two edges, and one is used by P1. Thus at most
two among the three exits at s1, s2 can be accessed by the remaining terminals. The same is
true considering the three exits at t1, t2. Hence only seven terminals are able to leave R, a
contradiction. 	


The vertices of a p×q rectangular grid R are considered as entries of a p×q matrix, and
(i, j) 1 ≤ i ≤ p, 1 ≤ j ≤ q , denotes the vertex in row i and column j . The rows and the
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Fig. 1 pp(N�Z) < 8

s1

s2

s3 s4 s5 t2

t1s6 s7 s8

R

columns of R are simply denoted by A(i), 1 ≤ i ≤ p, and B( j), 1 ≤ j ≤ q , respectively.
The number of terminals in a finite subset S ⊂ N�Z is denoted by ‖S‖.
Proposition 3.2 The grid N�Z is 6-path-pairable.

Proof Let T be a set of at most 12 terminals in the grid G = N�Z; let L(T ) be the set of
all horizontal lines and vertical half-lines in G containing a terminal. We wish to exhibit a
mapping ψ : T −→ L(T ) such that u ∈ ψ(u), for every u ∈ T , furthermore, at most one
terminal is mapped to each vertical half-line of L(T ), and at most two terminals are mapped
to each horizontal line of L(T ). Let S ⊆ T and assume that L(S) contains p horizontal lines
and q vertical half-lines. The existence of the mappingψ would follow fromHall’s condition
provided

|S| ≤ min{12, pq} ≤ 2p + q (1)

holds for every S ⊆ T .

A grid formed by any p rows and any q columns of G, and holding a set S ⊆ T of
terminals is considered to be an obstruction, provided |S| > 2p + q. We may successively
reduce an obstruction to a minimal one as follows. If one or two terminals are contained in a
row, then they are mapped into one half-line or two disjoint half-lines emanating from these
terminals; if a single terminal is contained by a column, then it is mapped to the vertical
half-line emanating from this terminal. After discarding the terminals and the assigned rows
and columns the procedure is repeated until an obstruction is reduced to minimal.

Thus a (minimal) obstruction is defined as a p×q rectangle R containing a set of terminals,
S ⊆ T , such that each row has at least 3 terminals and each column has at least 2 terminals,
furthermore, |S| > 2p + q. In particular, an obstruction satisfies 2 ≤ p ≤ 4 and 3 ≤ q ≤ 6.

Case a: p = 2. Let Rq be a minimal 2 × q obstruction containing a set Sq of terminals.
Each column of Rq has 2 terminals, thus we have |Sq | = 2q ≤ |T | = 12. Since |Sq | = 2q ≥
1 + (2p + q) = q + 5, it follows that q = 5 or 6. Let R ⊂ Rq be a 2 × 4 grid. Since T
contains 6 pairs, and ‖R‖ = 8, there is a pair π1 ⊂ R, by the pigeon hole principle.

We label the vertices of R along the 8-path Q∗ = (v1, v2, . . . , v7, v8) as in the top left
in Fig. 2. Let P1 ⊂ Q∗ be the (unique) linkage for π1 along Q∗. For j = 1, 8 we define
Q j ⊂ Q∗ to be the mating path (possibly of length 0) from the terminal at v j to the closest
end vertex of P1. Then we assign to the unlinked terminals and mates the vertical half-lines
at vi , for 3 ≤ i ≤ 6, and the two disjoint horizontal half-lines at v2 and at v7 (see the top
right in Fig. 2).

For q = 5, a mapping described above for a 2 × 4 subgrid R ⊂ R5 can be extended with
a vertical half-line disjoint from R and a horizontal half-line in the second row of R assigned
to the two terminals not in R. For q = 6, let R ⊂ R6 be the 2 × 4 grid obtained by the
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v3 v4 v5 v6

Q∗
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P1

Fig. 2 Exit a 2 × 4 rectangle and exit a 2 × 6 obstruction
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Fig. 3 Solving the 4 × 3 obstruction

removal of the first and last column from R6. Then the mapping described for R ⊂ R6 can
be extended with two vertical half-lines disjoint from R and two horizontal half-lines in the
second row of R6 assigned to the four terminals not in R (see the third picture in Fig. 2).

Case b: q = 3 and p ≥ 3. Let Rp be the p × 3 minimal obstruction containing a set Sp
of terminals. Since 12 ≥ |Sp| = 3p ≥ 1 + 2p + q = 2p + 4, we obtain p = 4. Thus we
assume that the only minimal obstruction is formed by 12 terminals located at the vertices of
a 4 × 3 rectangle R. The strategy of handling the obstruction is similar to the one in Case a.

We label the vertices of R\A(4) along the 8-path Q∗ = (v1, v2, . . . , v7, v8) as on the
left in Fig. 3. There is a pair π1 ⊂ Q∗, by the pigeon hole principle. Let P1 ⊂ Q∗ be the
(unique) linkage for π1 along Q∗. For j = 1, 8, we define Q j ⊂ Q∗ to be the mating
path (possibly of length 0) from the terminal at v j to the closest end vertex of P1. Then we
assign to the unlinked terminals and mates in Q∗ the vertical half-line at v5, and the disjoint
horizontal half-lines at vi for 2 ≤ i ≤ 7, i �= 5. Terminals (4, 1), (4, 3) are assigned to
vertical half-lines, terminals (1, 3), (4, 2) exit along horizontal half-lines going right, each
emanating from them (see examples in Fig. 3).

Case c: p = 3, q = 4, and |S| = 11 or 12. Let R be the 3× 4 rectangle with a terminal at
each vertex except possible one position. The strategy is similar to the ones in Case a and b.
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Fig. 4 Solving 3 × 4 obstructions

Fig. 5 Notations in Case d M

A(3)

R

w

L(w)

s1

t1

mi

ti

si

We label the vertices of R\A(3) along the 8-path Q∗ = (v1, v2, . . . , v7, v8), see the left
of Fig. 4. There is a pair π1 ⊂ Q∗ by the pigeon hole principle. Let P1 ⊂ Q∗ be the (unique)
linkage for π1 along Q∗. For j = 1, 8, we define Q j ⊂ Q∗ to be the mating path from the
terminal at v j to the closest end vertex of P1. Then we assign to the unlinked terminals and
mates in Q∗ the vertical half-lines at v4, v5, and the disjoint horizontal half-lines emanating
from vi for i ∈ {2, 3, 6, 7}. Vertical half-lines are assigned to terminals (3, 1), (3, 4), and
terminals (3, 2), (3, 3) exit along disjoint horizontal half-lines emanating from them (see
examples in Fig. 4).

There remain several minimal obstructions with parameters p = 3, q = 5, and |S| = 12.
Each column of a 3×5 rectangle R contains at most one, and each row of R contains at most
two terminal-free vertices we will call holes. These obstructions are handled next in Case d
and Case e, according to the number of holes in row A(3) of R.

Let M = {(i, j) | 1 ≤ i ≤ 2 ≤ j ≤ 4} be the middle rectangle containing the six interior
vertices of R. A vertex w ∈ R\M is called a boundary vertex; each boundary vertex is the
head of a half-line L(w) sticking out from R. A terminal located at a boundary vertex of R
is called a boundary terminal.

Case d: ‖A(3)‖ = 3. Since A(3) contains two holes, there is a third hole in R\A(3).
Depending on the location of the third hole, there are 6 or 7 boundary terminals to be
associated with some of the 11 horizontal or vertical half-lines emanating from the boundary
vertices. Then there remain 5 or 4 unassigned half-lines available to escape terminals from
M . Our strategy consists of finding a linkage for an appropriate pair π1 ⊂ R\A(3) inside
R\A(3) and ‘move down’ (at most) 4 further terminals to their mates mi ∈ A(3), 1 ≤ i ≤ 4,
(see Fig. 5).

First we discuss how to distribute the 7 horizontal and vertical half-lines at the ver-
tices of A(3) among the three terminals t1, t2, t3 ∈ A(3) and four fixed mate positions
m1,m2,m3,m4 ∈ A(3) not necesserly distinct from terminals (indexing is from left to right
along A(3)). Terminals t1 and t3 are mated along A(3) to be associated with disjoint hor-
izontal half-lines emanating from (3, 1) and (3, 5), respectively. Furthermore, the vertical
half-line at mi is associated to the terminal mated with mi , for every 1 ≤ i ≤ 4. We are able
to finish the assignment of the half-lines in two particular cases as follows.
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t1 t2 t3

m1 m2 m3 m4

(i)

t1 t2 t3

m2m1 m3 m4

(ii)

Fig. 6 Assigning half-lines to terminals and mates in A(3)

s1

t1

s1 t1

s1 t1

s1

t1 s1

t1

Fig. 7 π1 ⊂ B(2) ∪ B(3)

(i) If (3, 3) �= mi (i = 2, 3), then t2 is mated to (3, 3) and is associated with the vertical
half-line at (3, 3) (see Fig. 6 (i)).

(ii) If t1 = (3, 1) and (3, 1) �= m1, then t2 is mated to (3, 1) and the vertical half-line at
(3, 1) is assigned to t2 (see Fig. 6 (ii)).

(d.1) Assume there is a pair in M , say π1 ⊂ M . By symmetry, we have either π1 ⊂ B(2),
or π1 ⊂ B(2) ∪ B(3), or π1 ⊂ B(2) ∪ B(4). If π1 ⊂ B(2) or π1 ⊂ B(2) ∪ B(3), there are
five patterns for the 4 unlinked terminals. Mating for the terminals in B(4) is common for
them: (1, 4) � (3, 5) and (2, 4) � (3, 4), where the symbol t � w means the mating of
the terminal at location t ∈ M into a mate at location w ∈ A(3).

The mating paths for each is shown in Fig. 7 (the top left picture shows the solution for
π1 ⊂ B(2), the other ones are shown without repeating the identical columns B(4), B(5)).

For π1 ⊂ B(2) ∪ B(4) the terminals are mated according to (1, 3) � (3, 1), (2, 3) �
(3, 5), furthermore, (i, j) � (3, j), for i = 1, 2, j = 2, 4, and (i, j) /∈ π1. By symmetry,
π1 has three different locations, the mating paths are shown in Fig. 8. In each case (3, 3) is
not assigned as a mate, thus the assignment satisfies (i).

(d.2) There is no terminal pair in M , and M contains no hole. By symmetry, we may
assume that the only hole in R\A(3) is h ∈ {(1, 1), (2, 1)}. By the pigeon hole principle,
there is a terminal pair (s1, t1) among the seven terminals of (R\(A(3)∪ B(3)), furthermore,
s1 ∈ {(2, 1), (1, 1)} and t1 ∈ M . Notice that (3, 1) is a terminal.

The mating plan for the case when s1, h ∈ B(1)\A(3) is as follows
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s1 t1

s1 t1 s1

t1

Fig. 8 π1 ⊂ B(2) ∪ B(4)

s1 t1

s1

t1

Fig. 9 s1, h ∈ B(1)\A(3)

s1 t1

h
s1

t1h
s1

t1 h

s1

t1h

= 2

s1

t1

h

= 3

s1 t1

h

= 4

Fig. 10 s1 ∈ B(1) and t1, h ∈ M

(1, 2) � (1, 1), (1, 3) � (3, 5), (1, 3) � (1, 1), (1, 4) � (3, 5),
(i, j) � (3, j) for i = 1, 2, j = 2, 3, 4 and (i, j) �= t1.

Notice that the left horizontal half-line emanating from (1, 1) is unused, because (1, 1) ∈
{s1, h}, hence this location is an available mate in addition to those in A(3). In each case the
mating satisfies the half-line assignment (ii). The mating paths for the 12 possible patterns
of π1 are very similar, Fig. 9 shows two examples.

(d.3) Assume there is no terminal pair in M , and h ∈ M is a hole. The strategy is similar to
(d.2), it starts with linking a pairπ1 = (s1, t1) such that t1 ∈ M and s1 ∈ (B(1)∪B(5))\A(3).
We mate the other 4 terminals from M to A(3)\{(3, 3)}, in order to satisfy the assignment in
(i).

If h ∈ B( j), 2 ≤ j ≤ 4, then w.l.o.g. we may assume that there exists a pair π1 = (s1, t1)
such that s1 ∈ {(1, 1), (2, 1)} and t1 ∈ (R\B( j)) ∩ M , since ‖(R\B( j)) ∩ M‖ = 4 and
‖A(3)‖ = 3. Let t1 ∈ B(k), j �= k, and set � ∈ {2, 3, 4}\{ j, k}. Notice that M has two
terminals in B(�) to mate, and one terminal from each of B( j) and B(k). According to the
values � = 2, 3, or 4, we propose the following mating plans, which have realizations with
mating paths in each case.

For � = 2: (1, 2) � s1, (2, 2) � (3, 2),

(i, 3) � (3, 5), where i = 1, 2 and (i, 3) /∈ {h, t1},
(i, 4) � (3, 4), where i = 1, 2 and (i, 4) /∈ {h, t1}.
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For � = 3: (1, 3) � s1, (2, 3) � (3, 5),

(i, 2) � (3, 2), where i = 1, 2 and (i, 2) /∈ {h, t1},
(i, 4) � (3, 4), where i = 1, 2 and (i, 4) /∈ {h, t1}.
For � = 4: (1, 4) � (3, 5), (2, 4) � (3, 4),

(i, 2) � (3, 2), where i = 1, 2 and (i, 2) /∈ {h, t1},
(i, 3) � s1, where i = 1, 2 and (i, 3) /∈ {h, t1}.
Figure 10 shows examples of realizing the mating plan, two for each value of �. This

concludes the proof of Case d when ‖A(3)‖ = 3. For the proof of the last case ‖A(3)‖ ≥ 4
we need a technical lemma.

Lemma 3.3 Let D ⊂ N�Z be a 2 × 4 rectangle of eight terminals labeled as below.

x0 x1 x2 x3

y0 y1 y2 y3

D

Assume that there is a pair π1 among the terminals of D. If y0 /∈ π1, then there is a linkage
in D for π1, and there exist edge disjoint mating paths mating the other six terminals to
the head of distinct horizontal and vertical half-lines exiting D subject to either one of the
following restrictions:

(A) The horizontal left half-line at x0 is not assigned to any terminal.
(B) The horizontal half-lines at y0 and y3 are not assigned to any terminal, furthermore,

edges x1y1 and x2y2 are not used by the linkage and by any mating paths.

Proof (A) If x0 /∈ π1, then we assign to the terminal x0 the vertical half-line at x0 and we
assign to y0 the left horizontal half-line at y0. To complete a solution as required by (A)
we consider the 6-path Q∗ = (x1, y1, y2, y3, x3, x2) and let P1 ⊂ Q∗ be the (unique)
linkage in Q∗ for π1.
For x j /∈ π1, j = 1, 2, we define Q j ⊂ Q∗ to be the mating path from the terminal at x j
to the closest end vertex of P1. Then we assign to the four terminals and mates in Q∗ −π1

the three vertical half-lines at yi , for 1 ≤ i ≤ 3, and the horizontal right half-line at x3
(see examples in Fig. 11).
Among the six possible cases when s1 = x0 and t1 = xi or yi , 1 ≤ i ≤ 3, we show
a solution for t1 ∈ {y1, x2, y2} in Fig. 12. Obvious variations of these examples by
extending or shortening P1 lead to a solution for t1 ∈ {x1, x3, y3}.

(B) Let Q∗ = (x1, x0, y0, y1, y2, y3, x3, x2) and let P1 ⊂ Q∗ be the (unique) linkage for
π1 along Q∗. For x j /∈ π1, j = 1, 2, we define Q j ⊂ Q∗ to be the mating path from
the terminal at x j to the closest end vertex of P1. Then we assign to the six terminals
and mates the four vertical half-lines at yi , 0 ≤ i ≤ 3, and the two disjoint horizontal
half-lines at x0 and at x3 (see examples in Fig. 13). 	

Case e: ‖A(3)‖ ≥ 4. Assume that each row of the 3 × 5 rectangle R contains one hole,

and let x = (2, a) and y = (3, b) be holes for some a �= b and 1 ≤ a, b ≤ 5. Then mate
(1, a) to x and (1, b) to y along their columns. There remain two terminals in the top line
A(1), we assign to these terminals disjoint horizontal half-lines emanating from them. By
symmetry, we may assume that b ∈ {1, 3, 4}. Let D = R\(A(1) ∪ B(1)) be the 2 × 4 grid
with vertices labeled as in Lemma 3.3. Among the six pairs of terminals (and mates) eight
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Fig. 11 Solutions for (A) for
x0, y0 /∈ π1

x0 x1 x2 x3

y0 y1 y2 y3

D

P1Q1

x0

y3

x1

y0 y2s1

t1 x3

P1Q1

x1 s1 t1

y1 y2 y3y0

P1Q1 Q2

x2

y2y0

x3x1

s1 t1

Fig. 12 Solutions for (A) with x0 ∈ π1, y0 /∈ π1

s1

t1
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x2 s1 t1

P1

x1

y0

x3

y2 y3y1

s1

t1

P1
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x3x2

y3y1

Fig. 13 Solutions for (B)

(A)

P1

t1w

b a

D

y0

s1

(B)

P1

w

ba

D

y0

t1 s1

Fig. 14 Each row contains a hole (Case e)

are located at the vertices of D, thus there are at least two pairs in D; one of them, say π1,
does not contain y0.

For b = 1 we obtain a half-line assignment by Lemma 3.3 (A) which can be completed
by a horizontal left half-line at (2, 1) and a vertical half-line at (3, 1). For b = 3 or 4 we
use Lemma 3.3(B); in each case the assignment (B) can be completed by the horizontal left
half-line at (3, 1) and the vertical half-line at (2, 1). Figure 14 shows examples for a = 3,
b = 1 and for a = 2, b = 4.

A solution is obtained similarly if row A(�) contains two holes, where � = 1 or 2. Let
the third hole in R be w = (i, b), where i �= � and b ∈ {1, 3, 4} (w.l.o.g., by symmetry). We
mate (�, b) to w, and we assign disjoint horizontal half-lines emanating from the remaining
two terminals in A(�). Then we apply Lemma 3.3(A) or (B) with D = R\(A(�) ∪ B(1)) as
before. Examples for (A) and (B) are presented in Fig. 15, where in picture (B) � = 2, b = 4
and t1 = (2, 4). This concludes the proof of Case e, and the proposition follows. 	
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Fig. 15 Reducing a 3 × 5 obstruction to a 2 × 4 grid

Fig. 16 pp(N�N) < 5 t1
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4 The integer quadrant

In this section we sketch a proof for pp(N�N) = 4. We need two technical lemmas applied
in [8] for determining the path-pairability number of the 6× 6 grid P6 � P6. These lemmas,
called there ‘exit lemmas’, serve to handle the corner of G = N�N crowded with terminals;
their detailed proofs are presented in [9].

Let Q be a 3×3 subgrid ofG with a horizontal bottom line A and a vertical right boundary
line B. The 5 vertices of A ∪ B are called exit vertices of Q. Recall that mating a terminal
t to a vertex t ′ ∈ G means fixing a t, t ′-path called a mating path. In the lemmas below
T = ∪{πi | 1 ≤ i ≤ 4} is a set of 8 terminals (members of 4 pairs) located in G; and
‖Q‖ = |T ∩ Q| denotes the number of terminals in Q.

Lemma 4.1 [9] If ‖Q‖ = 7 or 8, then there is a linkage of two or more pairs in Q, and there
are edge disjoint mating paths for the unlinked terminals to distinct exit vertices of A∪ B. 	

Lemma 4.2 [9] If ‖Q‖ = 6, then there is a linkage of one or more pairs in Q, and there are
edge disjoint mating paths for the unlinked terminals to distinct exit vertices of A ∪ B such
that B\A contains at most one exit vertex. 	


Proposition 4.3 pp(N�N) = 4.

Proof The bound pp(N�N) < 5 follows from the pairing of 10 terminals in Fig. 16. If there
was a solution Pi , 1 ≤ i ≤ 5, then the path P5 starting from terminal s5 will either head right
or down from s5; without loss of generality assume it heads down to t3. Either P4 from s4
or P2 from s2 will have to exit the upper-left 2 × 2 cluster along the edge down toward s1.
From that location either this path or the path P1 starting from s1 will then be forced to head
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Fig. 17 Exit from a 2 × 3 or a 2 × 4 grid

right to t3. There are now three different paths at that location but only two edges go out, a
contradiction.

Next we verify that G = N�N is 4-path-pairable. Let T be a set of 8 distinct terminals
in G partitioned into pairs πi , 1 ≤ i ≤ 4. Let L(T ) be the set of all horizontal and vertical
half-lines in G containing a terminal. If a half-line � ∈ L(T ) contains just one terminal, then
assign � to this terminal, then remove it from T . Repeating this reduction reduces T to a
subset of terminals S ⊂ T contained by a p × q rectangle R such that each row and column
of R contains either zero or at least two terminals. We continue ‘exiting’ terminals from R by
mating interior terminals to free half-lines starting at the boundary of R, meanwhile, we are
allowed (or urged) to link appropriate pair(s) in R. The linkage of the pairs is completed using
the second stage of the procedure described in Sect. 2. Rows and columns with no terminal
can be discarded, thus w.l.o.g. we my assume that each row and column of R contains at least
two terminals. Consequently we have 2 ≤ p, q ≤ 4, and |S| ≤ min{8, pq}. By symmetry,
we may assume that p ≤ q .

If q = 2, then R is a 2×2 square and |S| = 4. Then there are four edge disjoint half-lines
in G emanating from the four terminals. Thus q > 2 can be assumed.

If p = 4, then q = 4, and thus ‖�‖ = 2, for every � ∈ L(S). Consider the 2-regular
4 × 4 bipartite graph H where one partite set corresponds to the rows and the other partite
set corresponds to the columns formed by the lines in L(S), and the edges of H correspond
to the terminals in S. Then H is the union of even cycles. For each even cycle we define
disjoint half-lines emanating from consecutive terminals by assigning alternately horizontal
and vertical half-lines in G. The remaining cases are: p = 2 or p = 3.

Case a: p = 2. Since each column of R has two terminals, we have q = 3 or 4.
The left picture of Fig. 17 shows the 6-path Q∗ = (v1, . . . , v6) covering the terminals in

the first three columns of R. The path Q∗ contains a pair π1, by the pigeon hole principle. Let
P1 ⊂ Q∗ be the (unique) linkage for π1 in Q∗. For v j /∈ π1, j = 1, 6, we define Q j ⊂ Q∗ to
be the mating path from the terminal at v j to the closest end vertex of P1. Then we assign to
the unlinked four terminals and mates the three vertical half-lines at vi /∈ π1, for 2 ≤ i ≤ 4,
and the horizontal right half-line at v5, provided v5 /∈ π1. For q = 4 there are two more
terminals in B(4), they are assigned to the vertical half-line B(4), and the horizontal right
half-line in A(2) (see examples in Fig.17).

Case b: p = 3. Let Q be the 3× 3 square formed by the rows and the first three columns
of R. Let A = A(3) ∩ Q and B = B(3) ∩ Q. Since each column contains two or more
terminals, we have ‖Q‖ ≥ 6.

We apply Lemma 4.1 for ‖Q‖ = 7 or 8, and we apply Lemma 4.2, for ‖Q‖ = 6. For
q = 3 we assign half-lines to the at most four exits (mates and unlinked terminals) in A ∪ B
among the the three vertical and three horizontal right half-lines emanating from A ∪ B. For
q = 4, since each column of R has two mates, we have ‖Q‖ = 6. The vertical half-lines
emanating from A are assigned to the exits in A, and a horizontal half-line is assigned to
the only exit in B\A. The two terminals in B(4) can be mated easily to the head of the two
unused horizontal half-lines emanating from B(4) and the vertical half-line in B(4). 	
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5 Conclusion

It was proved in [7] that the grid Z�Z is 10-path-pairable and not 15-path-pairable. These
bounds and those proved here in Propositions 3.1, 3.2 and 4.3 are summarized as follows:

pp(N�N) = 4, 6 ≤ pp(N�Z) ≤ 7, 10 ≤ pp(Z�Z) ≤ 14.

The strategy of applying Hall’s theorem (as in the proof of Proposition 3.2) is well-suited for
deriving sharper lower bounds by using computer to resolve the rapidly increasing number
of obstructions. A computer program confirmed that the half-plane is 7-path-pairable, thus
we are making the ‘safe conjecture’ that pp(N�Z) = 7. For the plane the upper and lower
bounds are improved by a computer program to 11 ≤ pp(Z�Z) ≤ 12. We think that
pp(Z�Z) = 12 is the right value, meanwhile, computer checking whether the plane is
12-path-pairable is beyond our computing capacity.
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