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Abstract
Let p ≡ −q ≡ 5 (mod 8) be two prime integers. In this paper, we investigate the unit groups
of the fields L1 = Q(

√
2,

√
p,

√
q,

√−1) and L+
1 = Q(

√
2,

√
p,

√
q). Furthermore , we

give the second 2-class groups of the subextensions of L1 as well as the 2-class groups of
the fields Ln = Q(

√
p,

√
q, ζ2n+2) and their maximal real subfields.

Keywords Multiquadratic number fields · Unit group · 2-class group · Hilbert 2-class field
tower · Cyclotomic Z2-extension.

Mathematics Subject Classification 11R04 · 11R27 · 11R29 · 11R37

1 Introduction

Let k be a number field and Ek its unit group. The determination of Ek is a very difficult
computational problem that serves to give answers tomany problems such as the computation
of the class number of k, the capitulation problem and many other problems in algebraic
number theory. The most spectacular result that describes the structure of Ek is the well-
known Dirichlet unit theorem that says that

Ek = μ(k) × Zr1+r2−1,

where μ(k) is the group of roots of unity contained in k, r1 is the number of real embeddings
and r2 is the number of conjugate pairs of complex embeddings of k. This is the only known
and general result that covers any given number field k. If k is an imaginary J-field, there is
a known result of Hasse that gives the difference between the unit group of k and that of its
real maximal subfield k+ i.e., the index [Ek : μ(k)Ek+] equals 1 or 2.

Unfortunately, these results do not give much information on the generators of the group
Ek . For the particular family ofmultiquadratic number fields there are some useful algorithms

This paper was written to commemorate the innocent victims of the coronavirus disease (COVID-19)
pandemic all around the world.

B Mohamed Mahmoud Chems-Eddin
2m.chemseddin@gmail.com

1 Mathematics Department, Sciences Faculty, Mohammed First University, Oujda, Morocco

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10998-021-00402-0&domain=pdf
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by Wada ([15]) and Azizi ([3]) that helped to compute the unit groups of many families of
real biquadratic number fields and imaginary triquadratic number fields ([4,7]). However,
these algorithms became very difficult to apply to real multiquadratic fields of degree at least
8 and imaginary multiquadratic fields of degree at least 16. To the best of our knowledge
there is only one example in the literature that explicitly determines the unit groups of some
infinite families of such fields (see the recently published paper [9]). In Sect. 2 of this paper
we shall modify the algorithms of Wada and Azizi by a process of elimination based on
norm maps and class number formulas to explicitly determine the unit groups of the fields
L1 = Q(

√
2,

√
p,

√
q,

√−1) and L+
1 = Q(

√
2,

√
p,

√
q), where p and q are two primes

that satisfy one of the following conditions:

p ≡ 5 (mod 8), q ≡ 3 (mod 8) and

(
p

q

)
= 1, (1.1)

p ≡ 5 (mod 8), q ≡ 3 (mod 8) and

(
p

q

)
= −1. (1.2)

In Sect. 3, we determine the 2-class groups and the second 2-class groups of the unramified
quadratic extensions of Q(

√
2pq, i), as well as we give the 2-class groups of the layers of

their cyclotomic Z2-extension.

Notations

Let k be a number field. We shall use the following notations for the rest of this paper:

∗ h2(k): the 2-class number of k,
∗ h2(d): the 2-class number of the quadratic field Q(

√
d),

∗ εd : the fundamental unit of the quadratic field Q(
√
d),

∗ Ek : the unit group of k,
∗ FSU: abbreviation of “fundamental system of units”,
∗ k(1): the Hilbert 2-class field of k,
∗ k(2): the Hilbert 2-class field of k(1),
∗ k+: the maximal real subfield of k, whenever k is imaginary,
∗ q(k) = (Ek : ∏

i Eki ) is the unit index of k, if k is multiquadratic, where ki are the
quadratic subfields of k,

∗ Nk′/k : the norm map of an extension k′/k.

2 Units of somemultiquadratic number fields of degree 8 and 16

Let us start by collecting some results that will be useful in the sequel.

Lemma 2.1 ([2, Lemma 5]) Let d > 1 be a square-free integer and εd = x + y
√
d, where

x, y are integers or semi-integers. If N (εd) = 1, then 2(x + 1), 2(x − 1), 2d(x + 1) and
2d(x − 1) are not squares in Q.

Lemma 2.2 ([3], Proposition 2) Let K0 be a real number field, K = K0(i) a quadratic
extension of K0, n ≥ 2 an integer and ξn a 2n-th primitive root of unity. Then ξn = 1

2 (μn +
λni), where μn = √

2 + μn−1, λn = √
2 − μn−1, μ2 = 0, λ2 = 2 and μ3 = λ3 = √

2. Let
n0 be the greatest integer such that ξn0 is contained in K , {ε1, . . . , εr } a fundamental system
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Unit groups of some multiquadratic number fields 237

of units of K0 and ε a unit of K0 such that (2 + μn0)ε is a square in K0 (if it exists). Then a
fundamental system of units of K is one of the following systems:

1. {ε1, . . . , εr−1,
√

ξn0ε} if ε exists, in this case ε = ε
j1
1 · · · ε j1

r−1εr , where ji ∈ {0, 1};
2. {ε1, . . . , εr } else.
Let us recall the method given in [15] that describes a fundamental system of units of a

real multiquadratic field K0. Let σ1 and σ2 be two distinct elements of order 2 of the Galois
group of K0/Q. Let K1, K2 and K3 be the three subextensions of K0 invariant by σ1, σ2 and
σ3 = σ1σ3, respectively. Let ε denote a unit of K0. Then

ε2 = εεσ1εεσ2(εσ1εσ2)−1,

and we have, εεσ1 ∈ EK1 , εε
σ2 ∈ EK2 and εσ1εσ2 ∈ EK3 . It follows that the unit group of

K0 is generated by the elements of EK1 , EK2 and EK3 , and the square roots of elements of
EK1EK2EK3 which are perfect squares in K0.
Let us continue by stating the following results.

Lemma 2.3 Let p and q be two primes satisfying (1.1).

(1) Let x and y be two integers such that ε2pq = x + y
√
2pq. Then we have

(i) p(x − 1) is a square in N,
(ii)

√
2ε2pq = y1

√
p + y2

√
2q and 2 = 2qy22 − py21 , for some integers y1 and y2.

(2) Let a and b be two integers such that εpq = a + b
√
pq. Then we have

(i) 2p(a + 1) is a square in N,
(ii)

√
εpq = b1

√
p + b2

√
q and 1 = pb21 − qb22 , for some integers b1 and b2.

(3) Let c and d be two integers such that ε2q = c + d
√
2q. Then we have

(i) c − 1 is a square in N,
(ii)

√
2ε2q = d1 + d2

√
2q and 2 = −d21 + 2qd22 , for some integers d1 and d2.

(4) Let α and β be two integers such that εq = α + β
√
q. Then we have

(i) α − 1 is a square in N,
(ii)

√
2εq = β1 + β2

√
q and 2 = −β2

1 + qβ2
2 , for some integers β1 and β2.

Proof (1) It is known that N (ε2pq) = 1. Then, by the unique factorization in Z and
Lemma 2.1, there exist some integers y1 and y2 (y = y1y2) such that

(1) :
{
x ± 1 = y21 ,
x ∓ 1 = 2pqy22 ,

(2) :
{
x ± 1 = py21 ,
x ∓ 1 = 2qy22 ,

or (3) :
{
x ± 1 = 2py21 ,
x ∓ 1 = qy22 .

∗ System (1) can not occur since it implies 1 =
(

y21
p

)
=

(
x±1
p

)
=

(
x∓1±2

p

)
=

(±2
p

)
=(

2
p

)
= −1, which is absurd.

∗ Similarly, system (3) can not occur either since it implies 1 =
(
q
p

)
=

(
x∓1
p

)
=

(±2
p

)
=(

2
p

)
= −1, which is absurd.

∗ Suppose that

{
x + 1 = py21 ,
x − 1 = 2qy22 .

Then 1 =
(

py21
q

)
=

(
x+1
q

)
=

(
x−1+2

q

)
=

(
2
q

)
= −1,

which is also impossible.
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238 M. M. Chems-Eddin

Thus, the only possible case is

{
x − 1 = py21 ,
x + 1 = 2qy22 ,

which implies that√
2ε2pq = y1

√
p + y2

√
2q and 2 = 2qy22 − py21 .

(2) N (εpq) = 1. Then, by Lemma 2.1, we have

(1) :
{
a ± 1 = pb21,
a ∓ 1 = qb22,

(2) :
{
a ± 1 = b21,
a ∓ 1 = pqb22,

or (3) :
{
a ± 1 = 2pb21,
a ∓ 1 = 2qb22,

for some integers b1 and b2 such that b = b1b2 or b = 2b1b2 (b = 2b1b2 in the cases

of system (3)). As above we show that the only possible case is

{
a + 1 = 2pb21,
a − 1 = 2qb22.

From

this we infer that
√

εpq = b1
√
p + b2

√
q and 1 = pb21 − qb22.

(3) N (ε2q) = 1. Then, using Lemma 2.1 and the same technique as above, we show that

there are two integers d1 and d2 such that

{
c − 1 = d21 ,

c + 1 = 2qd22 .
Thus,

√
2ε2q = d1 + d2

√
2q

and 2 = −d21 + 2qd22 .
(4) N (εq) = 1. Then, using Lemma 2.1 and the same technique as above, we show that there

are two integers β1 and β2 such that

{
α − 1 = β2

1 ,

α + 1 = qβ2
2 .

Thus,
√
2εq = β1 + β2

√
q and

2 = −β2
1 + qβ2

2 .

Corollary 2.4 Let p and q be two primes satisfying (1.1).

(1) A FSU of Q(
√
p,

√
q) is given by {εp, εq ,√εpq}.

(2) A FSU of Q(
√
2,

√
q) is given by {ε2,√εq ,

√
ε2q}.

(3) A FSU of Q(
√
p,

√
2q) is given by {εp, ε2q ,√ε2qε2pq}.

(4) A FSU of Q(
√
q,

√
2p) is given by {εq , ε2p,√ε2pq}.

(5) A FSU of Q(
√
2,

√
pq) is given by {ε2, εpq ,√εpqε2pq}.

Proof Note that
√
2 /∈ Q(

√
p,

√
q) and εp has negative norm. So, using Lemma 2.3, one

easily verifies that the only element of the form εipqε
j
pε

k
q , for i, j and k ∈ {0, 1}, which is

a square in Q(
√
p,

√
q), is εpq . So (1) follows by the method given on Page 3. One can

similarly deduce the rest from Lemma 2.3 and [7, Propositions 3.1 and 3.2]. 	

Now we are able to state the first important result of this section.

Theorem 2.5 Let p and q be two primes satisfying (1.1). Put K = Q(
√
2,

√
p,

√
q,

√−1)
and K+ = Q(

√
2,

√
p,

√
q). Then the following hold.

(1) (a) EK+ = 〈−1, ε2, εp,
√

εq ,
√

ε2q ,
√

εpq ,
√

ε2εpε2p,
4
√

ε2pε2qεpqε2pq〉.
(b) The class number of K+ is odd.

(2) (a) EK = 〈ζ24 or ζ8, ε2, εp,
√

εq ,
√

εpq ,
√

ε2εpε2p,
4
√

ε2pε2qεpqε2pq ,
4
√

ζ 2
8 ε22εqε2q〉,

according to whether q = 3 or not.
(b) h2(K) = h2(−pq).

Proof (1) Consider the following diagram (see Fig. 1):
Note that by [6, Théorème 6], {ε2, εp,√ε2εpε2p}, is a FSU of k1. By Corollary 2.4,
{ε2,√εq ,

√
ε2q} is a FSU of k2 and a FSU of k3 is given by {ε2, εpq ,√ε2pqεpq}.
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Unit groups of some multiquadratic number fields 239

K
+ = Q(

√
2,

√
p,

√
q)

k1 = Q(
√
2,

√
p) k2 = Q(

√
2,

√
q) k3 = Q(

√
2,

√
pq)

Q(
√
2)

Fig. 1 Subfields of K+/Q(
√
2)

It follows that

Ek1Ek2Ek3 = 〈−1, ε2, εp, εpq ,
√

εq ,
√

ε2q ,
√

εpqε2pq ,
√

ε2εpε2p〉.
Note that a FSU ofK consists of seven units chosen from those of k1, k2 and k3, and from the
square roots of the units of Ek1Ek2Ek3 which are squares in K (cf. Page 3). Thus, we shall
determine elements of Ek1Ek2Ek3 which are squares inK

+. Suppose X is an element ofK+
which is the square root of an element of Ek1Ek2Ek3 . We can assume that

X2 = εa2ε
b
pε

c
pq

√
εq

d√ε2q
e√εpqε2pq

f √ε2εpε2p
g,

where a, b, c, d, e, f and g are in {0, 1}.
We shall use norm maps fromK+ to its subextensions to eliminate the cases of X2 which

do not occur.
Let τ1, τ2 and τ3 be the elements of Gal(K+/Q) defined by

τ1(
√
2) = −√

2, τ1(
√
p) = √

p, τ1(
√
q) = √

q,

τ2(
√
2) = √

2, τ2(
√
p) = −√

p, τ2(
√
q) = √

q,

τ3(
√
2) = √

2, τ3(
√
p) = √

p, τ3(
√
q) = −√

q.

Note that Gal(K+/Q) = 〈τ1, τ2, τ3〉 and the subfields k1, k2 and k3 are fixed by 〈τ3〉, 〈τ2〉
and 〈τ2τ3〉 respectively. Lemma 2.3 is used to compute the norm maps from K+ to its
subextensions. We summarize these computations in Table 1. Let us start by applying the
norm map NK+/k2 = 1 + τ2:

NK+/k2(X
2) = NK+/k2(X)2 = ε2a2 (−1)b · 1 · εdq εe2q · (−1) f · (−1)gvεg2

= ε2a2 εdq εe2q · (−1)b+ f +gvε
g
2 .

Note that, by Corollary 2.4, {ε2,√εq ,
√

ε2q} is a FSU of k2. Thus, εq and ε2q are squares
in k2 whereas ε2 is not. Since NK+/k2(X

2) > 0, then b + f + vg ≡ 0 (mod 2) and ε
g
2 is a

square in k2. Therefore g = 0 and b = f . So we have

X2 = εa2ε
f
p εcpq

√
εq

d√ε2q
e√εpqε2pq

f .

Similarly, by applying NK+/k3 = 1 + τ2τ3, one gets

NK+/k3(X
2) = ε2a2 · (−1) f · ε2cpq · (−1)d · (−1)e · ε

f
pqε

f
2pq

= ε2a2 ε2cpqε
f
pqε

f
2pq(−1) f +d+e > 0.

123



240 M. M. Chems-Eddin

Note that, by Corollary 2.4, εpqε2pq is a square in k3. Thus, all that we can deduce is
f + d + e ≡ 0 (mod 2). Let us now apply NK+/k4 = 1 + τ1, where k4 = Q(

√
p,

√
q).

We have

NK+/k4(X
2) = (−1)a · ε

2 f
p · ε2cpq · (−εq)

d · 1 · (εpq)
f

= ε
2 f
p ε2cpqε

f
pq · (−1)a+d · εdq > 0.

Thus, a + d ≡ 0 (mod 2). By Corollary 2.4, εpq is a square in k4 and, by Lemma 2.3, 2εq
is a square in k4 whereas εq is not (in fact

√
2 /∈ k4). So d = 0 and then a = 0. Since

f + d + e ≡ 0 (mod 2), we have f = e. Therefore,

X2 = ε
f
p εcpq

√
ε2q

f √εpqε2pq
f .

Note that, by Lemma 2.3, εpq is a square in K+, so we may put

X2 = ε
f
p
√

ε2q
f √εpqε2pq

f .

Suppose that f = 0. Then, by the above discussions and Lemma 2.2, a FSU of K+ is

{ε2, εp,√εq ,
√

ε2q ,
√

εpq ,
√

ε2pq ,
√

ε2εpε2p}.
Thus, q(K+) = 25. We have h2(p) = h2(q) = h2(2q) = h2(2) = 1 and h2(2p) =

h2(pq) = h2(2pq) = 2 (cf. [10, Corollaries 18.4, 19.7 and 19.8]),

h2(K
+) = 1

29
q(K+)h2(2)h2(p)h2(q)h2(2p)h2(2q)h(pq)h2(2pq)

= 1

29
· 25 · 1 · 1 · 1 · 2 · 1 · 2 · 2

= 1

2
,

which is absurd. Thus, f = 1 and then q(K+) = 26. So we have (1).
(2) Keep the notations of Lemma 2.2. Note that the greatest integer n0 such that ζ2n0 is

contained in K equals 3, therefore μn0 = √
2. So, according to Lemma 2.2, we should find

an element Y , if it exists, which is in K+ such that

Y 2 = (2 + √
2)εa2ε

b
p
√

εq
c√ε2q

d√εpq
e√ε2εpε2p

f 4
√

ε2pε2qεpqε2pq
g
,

where a, b, c, d, e, f and g are in {0, 1}. So firstly we shall use normmaps to eliminate some
cases (see Table 1).

• We have NK+/k2 = 1 + τ2. So, by applying NK+/k2 , we get

NK+/k2(Y
2) = (2 + √

2)2ε2a2 (−1)bεcqε
d
2q · (−1)e · (−1) f vε f

2 (−1)gs
√

ε2q
g,

= (2 + √
2)2ε2a2 εcqε

d
2q(−1)b+e+ f v+gsε

f
2
√

ε2q
g > 0.

Thus, b + e + f v + gs = 0 (mod 2). By Corollary 2.4, {ε2,√εq ,
√

ε2q} is a FSU of
k2. Since ε2,

√
ε2q and ε2

√
ε2q are not squares in k2, we have f = g = 0 and so b = e.

Therefore,

Y 2 = (2 + √
2)εa2ε

e
p
√

εq
c√ε2q

d√εpq
e.
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Unit groups of some multiquadratic number fields 241

We have NK+/k4 = 1 + τ1 with k4 = Q(
√
p,

√
q). So

NK+/k4(Y
2) = (4 − 2)(−1)aε2ep (−1)cεcq · 1 · εepq ,

= ε2ep εepq(−1)a+c · 2 · εcq > 0.

So a+c = 0 (mod 2). Since
√
2 /∈ k4 and, by Lemma 2.3,

√
2εq ∈ k4, then c = 1. Therefore

a = c = 1 and we have

Y 2 = (2 + √
2)ε2ε

e
p
√

εq
√

ε2q
d√εpq

e.

By applying the norm map, NK+/k3 = 1 + τ2τ3, we get

NK+/k3(Y
2) = (2 + √

2)2ε22 · (−1)e · (−1) · (−1)d .(−1)e.εepq ,

= (2 + √
2)2ε22 · (−1)1+d · εepq > 0.

Thus, 1 + d = 0 (mod 2). So d = 1. As, by Corollary 2.4, εpq is a not a square in k3,
then e = 0. It follows that

Y 2 = (2 + √
2)ε2

√
εq

√
ε2q .

Let us now verify that (2 + √
2)ε2

√
εq

√
ε2q is a square in K+.

• Note that by [5, Theorem 5.5], the 2-class group of L pq := Q(
√
pq,

√
2, i) is cyclic.

SinceK is an unramified quadratic extension of L pq , this implies that the Hilbert 2-class

field of L pq (i.e., L
(1)
pq ) andK have the same Hilbert 2-class field. So h2(L pq) = 2h2(K).

Therefore, again by [8, Lemma 3], we have 2h2(K) = 2h2(−pq). Thus,

h2(K) = h2(−pq). (2.1)

Assume that (2 + √
2)ε2

√
εq

√
ε2q is not a square in K+. Then, by Lemma 2.2 and

the above discussions, K+ and K have the same fundamental system of units. Thus,
q(K) = 27. We have h2(−1) = h2(−2) = h2(−q) = 1, h2(−p) = h2(−2p) =
h2(−2q) = 2 and h2(−2pq) = 4 by [10, Corollary 18.4], [10, Corollary 19.6] and [12,
p. 353] respectively. So, by the class number formula (cf. [15, p. 201]) and the above
setting on the 2-class numbers of real quadratic fields (Page 6), we get

h2(K) = 1

216
q(K)h2(−1)h2(2)h2(−2)h2(p)h2(−p)h2(q)h2(−q)h2(2p)

h2(−2p)h2(2q)h2(−2q)h2(pq)h2(−pq)h2(2pq)h2(−2pq)

= 1

216
· 27 · 1 · 1 · 1 · 1 · 2 · 1 · 1 · 2 · 2 · 1 · 2 · 2 · h2(−pq) · 2 · 4

= 1

2
h2(−pq).

This contradicts (2.1). It follows that (2 + √
2)ε2

√
εq

√
ε2q is a square in K+. Hence

Lemma 2.2 completes the proof. 	

Toprove our secondmain result of this section,we need the following lemmaand corollary.

Lemma 2.6 Let p and q be two primes satisfying (1.2).

(1) Let x and y be two integers such that ε2pq = x + y
√
2pq. Then we have
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Ta
bl
e
1

N
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(i) 2p(x − 1) is a square in N,
(ii)

√
2ε2pq = y1

√
2p + y2

√
q and 2 = −2py21 + qy22 , for some integers y1 and y2.

(2) Let a and b be two integers such that εpq = a + b
√
pq. Then we have

(i) p(a + 1) is a square in N,
(ii)

√
2εpq = b1

√
p + b2

√
q and 2 = pb21 − qb22 , for some integers b1 and b2.

(3) Let c and d be two integers such that ε2q = c + d
√
2q. Then we have

(i) c − 1 is a square in N,
(ii)

√
2ε2q = d1 + d2

√
2q and 2 = −d21 + 2qd22 , for some integers d1 and d2.

(4) Let α and β be two integers such that εq = α + β
√
q. Then we have

(i) α − 1 is a square in N,
(ii)

√
2εq = β1 + β2

√
q and 2 = −β2

1 + qβ2
2 , for some integers β1 and β2.

Proof We proceed similarly as in the proof of Lemma 2.3. 	

Corollary 2.7 Let p and q be two primes satisfying (1.2).

(1) A FSU of Q(
√
p,

√
q) is given by {εp, εq ,√εqεpq}.

(2) A FSU of Q(
√
2,

√
q) is given by {ε2,√εq ,

√
ε2q}.

(3) A FSU of Q(
√
p,

√
2q) is given by {εp, ε2q ,√ε2pq}.

(4) A FSU of Q(
√
q,

√
2p) is given by {εq , ε2p,√εqε2pq}.

(5) A FSU of Q(
√
2,

√
pq) is given by {ε2, εpq ,√εpqε2pq}.

Proof We proceed similarly as in the proof of Corollary 2.4. 	

We can now state and prove the second main theorem of this section.

Theorem 2.8 Let p and q be two primes satisfying (1.2). Put L = Q(
√
2,

√
p,

√
q,

√−1)
and L+ = Q(

√
2,

√
p,

√
q). Then the following hold.

(1) (a) EL+ = 〈−1, ε2, εp,
√

εq ,
√

ε2q ,
√

εpq ,
√

ε2εpε2p,
4
√

ε22ε
2
pεqεpqε2pq〉.

(b) h2(L+) = 1.

(2) (a) EL = 〈ζ24 or ζ8, ε2, εp,
√

εq ,
√

εpq ,
√

ε2εpε2p,
4
√

ε22ε
2
pεqεpqε2pq ,

4
√

ζ 2
8 ε22εqε2q〉,

according to whether q = 3 or not.
(b) h2(L) = h2(−pq) = 2.

Proof (1) We consider an analogous diagram as in Fig. 1. Note that, by [6, Théorème 6]
and Corollary 2.7, a FSU of k1 = Q(

√
2,

√
p) is given by {ε2, εp,√ε2εpε2p}, a FSU of

k2 = Q(
√
2,

√
q) is given by {ε2,√εq ,

√
ε2q} and a FSU of k3 = Q(

√
2,

√
pq) is given

by {ε2, εpq ,√ε2pqεpq}. It follows that
Ek1Ek2Ek3 = 〈−1, ε2, εp, εpq ,

√
εq ,

√
ε2q ,

√
εpqε2pq ,

√
ε2εpε2p〉.

Note that, by Lemma 2.7, εpq is a square in L+. So we shall find elements X of L+, if
they exist, such that

X2 = εa2ε
b
p
√

εq
c√ε2q

d√εpqε2pq
e√ε2εpε2p

f ,

where a, b, c, d, e and f are in {0, 1}. Let us define τ1, τ2 and τ3 similarly as in the proof
of Theorem 2.5. We shall use Table 2.
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By applying the norm map NL+/k2 = 1 + τ2, where k2 = Q(
√
2,

√
q), we get

NL+/k2(X
2) = ε2a2 (−1)b · εcqε

d
2q · (−1)e · (−1) f vε f

2

= ε2a2 εcqε
d
2q · (−1)b+e+ f vε

f
2 > 0.

We have b + e + f v ≡ 0 (mod 2). By Corollary 2.7, the units εq and ε2q are squares in k2
whereas ε2 is not. Then f = 0 and b = e. Therefore

X2 = εa2ε
b
p
√

εq
c√ε2q

d√εpqε2pq
b,

NL+/k4 = 1 + τ1, where k4 = Q(
√
p,

√
q). We have

NL+/k4(X
2) = (−1)a · ε2bp · (−1)c · εcq · 1 · εbpq

= ε2bp · (−1)a+c · εcqε
b
pq > 0.

Then a + c = 0 (mod 2), so a = c. Since, by Corollary 2.7, the units εq and εpq are not
squares in k4, we have c = b. Thus, a = b = c and

X2 = εa2ε
a
p
√

εq
a√ε2q

d√εpqε2pq
a .

Let us now apply NL+/k3 = 1 + τ2τ3, where k3 = Q(
√
2,

√
pq). Then

NL+/k4(X
2) = ε2a2 · (−1)a · (−1)a · (−1)d · εapqε

a
2pq = ε2a2 · (−1)d · εapqε

a
2pq > 0.

Thus, d = 0. Hence, X2 = εa2ε
a
p
√

εq
a√εpqε2pq

a .

Let us suppose that a = 0. Then a FSU of L+ is

{ε2, εp,√εq ,
√

ε2q ,
√

εpq ,
√

ε2pq ,
√

ε2εpε2p}.
Thus, q(L+) = 25. We have h2(p) = h2(q) = h2(2q) = h2(2) = 1 and h2(2p) =
h2(pq) = h2(2pq) = 2 (cf. [10, Corollaries 18.4, 19.7 and 19.8]). So the class number
formula (cf. [15, p. 201]) gives

h2(L
+) = 1

29
q(L+)h2(2)h2(p)h2(q)h2(2p)h2(2q)h(pq)h2(2pq)

= 1

29
· 25 · 1 · 1 · 1 · 2 · 1 · 2 · 2

= 1

2
,

which is absurd. So necessarily a = 1 and then q(L+) = 26. Therefore we have (1).
(2) We shall proceed as in the second part of the proof of Theorem 2.5. So let

Y 2 = (2 + √
2)εa2ε

b
p
√

εq
c√ε2q

d√εpq
e√ε2εpε2p

f 4
√

ε22ε
2
pεqεpqε2pq

g
,

where a, b, c, d, e, f and g are in {0, 1}. According to Lemma 2.2, we should find an element
Y , if it exists, which is in L+. So firstly we shall use norm maps to eliminate some cases (see
Table 2).

• We have NL+/k2 = 1 + τ2. Note that, by Corollary 2.7, {ε2,√εq ,
√

ε2q} is a FSU of k2.
So we have

NL+/k2(Y
2) = (2 + √

2)2ε2a2 (−1)bεcq · εd2q · (−1)e · (−1) f vε f
2 (−1)gsεg2

√
ε2q

g,

= (2 + √
2)2ε2a2 εcqε

d
2q(−1)b+e+ f v+gsε

f +g
2

√
ε2q

g > 0.
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Thus, b + e + f v + gs = 0 (mod 2). We have

∗ f = g = 1 is impossible. In fact,
√

εq is not square in k2.
∗ f 
= g is impossible. In fact, ε2

√
ε2q and ε2 are not squares in k2.

Thus, f = g = 0 and b = e. It follows that

Y 2 = (2 + √
2)εa2ε

b
p
√

εq
c√ε2q

d√εpq
b.

We have NL+/k4 = 1 + τ1 with k4 = Q(
√
p,

√
q). Note that, by Corollary 2.7,

{εp, εq ,√εqεpq} is a FSU of k4. We have

NL+/k4(Y
2) = (4 − 2)(−1)a · ε2bp · (−1)c · εcq · 1 · (−1)b · εbpq

= ε2bp · (−1)a+b+c · 2 · εcq · εbpq > 0.

So a+b+c = 0 (mod 2). Since εqεpq is a square in k4 whereas 2 is not, this implies c 
= b.
So a = 1 and we have

Y 2 = (2 + √
2)ε2ε

b
p
√

εq
c√ε2q

d√εpq
b,

with c 
= b. Let us now apply NL+/k3 = 1 + τ2τ3 to obtain

NL+/k3(Y
2) = (2 + √

2)2 · ε22 · (−1)b · (−1)c · (−1)d .(−1)b.εbpq

= (2 + √
2)2 · ε22 · (−1)c+d · εbpq > 0.

Then c+d = 0 (mod 2) and so c = d . By Corollary 2.7, εpq is a not a square in k3, therefore
b = 0. Since c 
= b, we have c = d = 1. Therefore

Y 2 = (2 + √
2)ε2

√
εq

√
ε2q .

Let us now verify that (2 + √
2)ε2

√
εq

√
ε2q is a square in L+.

• As in the second part of the proof of Theorem 2.5, we show that

h2(L) = h2(−pq) = 2. (2.2)

Assume that (2 + √
2)ε2

√
εq

√
ε2q is not a square in L+. Then, by Lemma 2.2 and the

above discussions, L+ and L have the same fundamental system of units. Therefore
q(L) = 27. We have h2(−1) = h2(−2) = h2(−q) = 1, h2(−p) = h2(−2p) =
h2(−2q) = h2(−pq) = 2 and h2(−2pq) = 4 by [10, Corollary 18.4], [10, Corollary
19.6] and [12, p. 353] respectively. So, by the class number formula (cf. [15, p. 201]) and
the above setting on the 2-class numbers of real quadratic fields (Page 11), we get

h2(L) = 1

216
q(L)h2(−1)h2(2)h2(−2)h2(p)h2(−p)h2(q)h2(−q)h2(2p)

h2(−2p)h2(2q)h2(−2q)h2(pq)h2(−pq)h2(2pq)h2(−2pq)

= 1

216
· 27 · 1 · 1 · 1 · 1 · 2 · 1 · 1 · 2 · 2 · 1 · 2 · 2 · 2 · 2 · 4 = 1.

This contradicts (2.2). It follows that (2 + √
2)ε2

√
εq

√
ε2q is a square in L+ and so

Lemma 2.2 completes the proof.
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3 Remarks on Hilbert 2-class field towers and cyclotomic Z2-extensions

Let k be an algebraic number field and Cl2(k) the 2-Sylow subgroup of its ideal class group
Cl(k). Let k(1) (resp. k(2)) be the first (resp. second) Hilbert 2-class field of k and put G =
Gal(k(2)/k). Then if G ′ denotes the commutator subgroup of G, we have by class field
theory that G ′ � Gal(k(2)/k(1)) and G/G ′ � Gal(k(1)/k) � Cl2(k). Assume in all what
follows that Cl2(k) is of type (2, 2). Then in [13] Kisilevsky showed that G is isomorphic to
Z/2Z× Z/2Z, Qm , Dm or Sm , where Qm , Dm , and Sm denote the quaternion, dihedral and
semidihedral groups, respectively, of order 2m , where m ≥ 3 and m ≥ 4 for Sm . Let F1, F2
and F3 be the three unramified quadratic extensions of k and assume that the 2-class group
of F1 is cyclic. Then, using some known results of group theory, one can easily deduce from
[13, Theorem 2] that we have the following remark (cf. [9, Remark 2.2]):

Remark 3.1 The 2-class groups of the two fields F2 and F3 are cyclic if and only if k(1) = k(2)

or k(1) 
= k(2) and G � Q3. In the other cases the 2-class groups F2 and F3 are of type (2, 2)
(whereas that of F1 is cyclic).

Set the following notations:

(1) L pq : Q(
√
2,

√
qp, i),

(2) Fpq : Q(
√
p,

√
2q, i),

(3) Kpq : Q(
√
2p,

√
q, i).

Remark 3.2 Let p and q be two primes satisfying conditions (1.1) or (1.2). Note that, by
Lemmas 2.3 and 2.6, x ± 1 is not a square in N, where x and y are the two integers such
that ε2pq = x + y

√
2pq. Thus, the Hasse unit index of k = Q(

√
2pq, i) equals 1 (cf. [3,

3.(1) p. 19]). So by [1] the 2-class group of k is of type (2, 2). We similarly deduce, by using
Lemmas 2.3 and 2.6, [9, Lemma 4.1] and [3, 3.(1) p. 19], that the condition on the Hasse
unit index of k, in [2, Théorème 21], is always verified (so, in particular, the conditions of
this theorem hold).

Theorem 3.3 Let p and q be two primes satisfying (1.1). Then the following hold.

(1) The 2-class group of L pq is Z/2m+1Z, with h2(−pq) = 2m.
(2) The 2-class group of Fpq is of type (2, 2).
(3) The 2-class group of K pq is of type (2, 2).

Proof Let k = Q(
√
2pq, i). By Remark 3.2, the 2-class group of k is of type (2, 2). Note

that L pq , Fpq and Kpq are the three unramified quadratic extensions of k. Note that, by [8,
Theorem 10], the 2-class group L pq is cyclic. So the above preliminaries complete the proof.

	

Since the 2-class group of L pq is cyclic, the Hilbert 2-class field tower of L pq terminates

at the first layer. Now we shall determine the structure of the groups Gal(F (2)
pq /Fpq) and

Gal(K (2)
pq /Kpq).

Theorem 3.4 Let p and q be two primes and m such that and h2(−pq) = 2m.

(1) If p and q satisfy (1.1), then we have

Gal(F (2)
pq /Fpq) � Gal(K (2)

pq /Kpq) � Qm+1.

(2) If p and q satisfy (1.2), then we have

Gal(F (2)
pq /Fpq) � Gal(K (2)

pq /Kpq) � Z/4Z.
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Proof Let L1,pq = Q(
√
2,

√
q,

√
p, i). Since the 2-class group of L pq is cyclic (so its Hilbert

2-class field tower terminates at the first layer) and L1,pq is an unramified extension of L pq ,
we have that the 2-class group of L1,pq is also cyclic. As L1,pq is also a quadratic unramified
extension of both Fpq and Kpq , then by [9, Proposition 2.2] and Theorems 2.5 and 2.8 we

have |Gal(F (2)
pq /Fpq)| = |Gal(K (2)

pq /Kpq)| = 2 · h2(L1) = 2 · h2(−pq). Since h2(−pq) is
even, and h2(−pq) = 2 if and only if

( p
q

) = −1 (cf. [10, Corollaries 18.4 and 19.6]), then

we have the orders of the groups in question in both cases. Suppose that
( p
q

) = 1. Then,
by [2, Théorème 21], Remark 3.2 and the above discussions, the two groups in question are
subgroups of index 2 of Qm+2. So they are also quaternions of order 2m+1.

Suppose now that
( p
q

) = −1. Then, by [2, Théorème 21] and Remark 3.2, the groups in
question are subgroups of Q3 of index 2. So they are cyclic. This completes the proof. 	

Remark 3.5 Put k = Q(

√
2pq, i) and assume that p and q are two primes satisfying (1.1).

The author of [2] did not determine the order of Gal(k(2)/k). Now it is easy to deduce
that it is of order |Gal(k(2)/k)| = 2m+2 (i.e., Gal(k(2)/k) � Qm+2), where m is such that
h2(−pq) = 2m .

Theorem 3.6 Let p and q be two primes satisfying (1.1) or (1.2). Putπ1 = 2,π2 = 2+√
2,…,

πn = 2+√
πn−1, Ln = Q(

√
q,

√
p, ζ2n+2) and L+

n = Q(
√
p,

√
q,

√
πn). Then the following

hold.

(1) For all n ≥ 1, the 2-class group of L+
n is trivial.

(2) For all n ≥ 1, the 2-class group of Ln is Z/2n+m−1Z, where h2(−pq) = 2m.

Proof (1) We claim that the 2-class group of k = Q(
√
p,

√
q) is trivial. In fact, by Corollar-

ies 2.4 and 2.7, [10, Corollaries 18.4 and 19.7] and Kuroda’s class number formula ([14,
p. 247]), we obtain

h2(k) = 1

4
q(k)h2(p)h2(q)h2(pq) = 1

4
· 2 · 1 · 1 · 2 = 1.

By Theorems 2.5 and 2.8, the class number of Q(
√
p,

√
q,

√
2) the first step of the

cyclotomic Z2-extension of k is odd. So we have proved (1) by [11, Theorem 1].
(2) Note that Ln is the genus field of Ln,pq = Q(

√
pq, ζ2n+2) and [Ln : Ln,pq ] = 2. By [8,

Theorem 10], the 2-class group of Ln,pq is isomorphic to a cyclic group of order 2n+m ,

therefore that of Ln is also cyclic and h2(Ln) = h2(Ln,pq )

2 = 2n+m−1. So (2) is proved.
	


Remark 3.7 Let p and q be two primes satisfying (1.1) or (1.2). By the above theorem, the
Iwasawa invariants λ2 and ν2 of the fields Fpq , Kpq and Q(

√
p,

√
q, i) are equal to 1 and

m − 1, respectively.
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