Unit groups of some multiquadratic number fields and 2-class groups

Mohamed Mahmoud Chems-Eddin ${ }^{1}$

Accepted: 25 September 2020 / Published online: 4 July 2021
© Akadémiai Kiadó, Budapest, Hungary 2021

Abstract

Let $p \equiv-q \equiv 5(\bmod 8)$ be two prime integers. In this paper, we investigate the unit groups of the fields $L_{1}=\mathbb{Q}(\sqrt{2}, \sqrt{p}, \sqrt{q}, \sqrt{-1})$ and $L_{1}^{+}=\mathbb{Q}(\sqrt{2}, \sqrt{p}, \sqrt{q})$. Furthermore, we give the second 2-class groups of the subextensions of L_{1} as well as the 2-class groups of the fields $L_{n}=\mathbb{Q}\left(\sqrt{p}, \sqrt{q}, \zeta_{2^{n+2}}\right)$ and their maximal real subfields.

Keywords Multiquadratic number fields • Unit group • 2-class group • Hilbert 2-class field tower • Cyclotomic \mathbb{Z}_{2}-extension.

Mathematics Subject Classification 11R04 • 11R27 • 11R29 • 11R37

1 Introduction

Let k be a number field and E_{k} its unit group. The determination of E_{k} is a very difficult computational problem that serves to give answers to many problems such as the computation of the class number of k, the capitulation problem and many other problems in algebraic number theory. The most spectacular result that describes the structure of E_{k} is the wellknown Dirichlet unit theorem that says that

$$
E_{k}=\mu(k) \times \mathbb{Z}^{r_{1}+r_{2}-1},
$$

where $\mu(k)$ is the group of roots of unity contained in k, r_{1} is the number of real embeddings and r_{2} is the number of conjugate pairs of complex embeddings of k. This is the only known and general result that covers any given number field k. If k is an imaginary J -field, there is a known result of Hasse that gives the difference between the unit group of k and that of its real maximal subfield k^{+}i.e., the index $\left[E_{k}: \mu(k) E_{k^{+}}\right]$equals 1 or 2.

Unfortunately, these results do not give much information on the generators of the group E_{k}. For the particular family of multiquadratic number fields there are some useful algorithms

[^0]by Wada ([15]) and Azizi ([3]) that helped to compute the unit groups of many families of real biquadratic number fields and imaginary triquadratic number fields ([4,7]). However, these algorithms became very difficult to apply to real multiquadratic fields of degree at least 8 and imaginary multiquadratic fields of degree at least 16 . To the best of our knowledge there is only one example in the literature that explicitly determines the unit groups of some infinite families of such fields (see the recently published paper [9]). In Sect. 2 of this paper we shall modify the algorithms of Wada and Azizi by a process of elimination based on norm maps and class number formulas to explicitly determine the unit groups of the fields $L_{1}=\mathbb{Q}(\sqrt{2}, \sqrt{p}, \sqrt{q}, \sqrt{-1})$ and $L_{1}^{+}=\mathbb{Q}(\sqrt{2}, \sqrt{p}, \sqrt{q})$, where p and q are two primes that satisfy one of the following conditions:
\[

$$
\begin{align*}
& p \equiv 5 \quad(\bmod 8), q \equiv 3 \quad(\bmod 8) \text { and }\left(\frac{p}{q}\right)=1 \tag{1.1}\\
& p \equiv 5 \quad(\bmod 8), q \equiv 3 \quad(\bmod 8) \text { and }\left(\frac{p}{q}\right)=-1 \tag{1.2}
\end{align*}
$$
\]

In Sect. 3, we determine the 2-class groups and the second 2-class groups of the unramified quadratic extensions of $\mathbb{Q}(\sqrt{2 p q}, i)$, as well as we give the 2-class groups of the layers of their cyclotomic \mathbb{Z}_{2}-extension.

Notations

Let k be a number field. We shall use the following notations for the rest of this paper:

* $h_{2}(k)$: the 2-class number of k,
* $h_{2}(d)$: the 2 -class number of the quadratic field $\mathbb{Q}(\sqrt{d})$,
* ε_{d} : the fundamental unit of the quadratic field $\mathbb{Q}(\sqrt{d})$,
* E_{k} : the unit group of k,
* FSU: abbreviation of "fundamental system of units",
* $k^{(1)}$: the Hilbert 2-class field of k,
* $k^{(2)}$: the Hilbert 2-class field of $k^{(1)}$,
* k^{+}: the maximal real subfield of k, whenever k is imaginary,
* $q(k)=\left(E_{k}: \prod_{i} E_{k_{i}}\right)$ is the unit index of k, if k is multiquadratic, where k_{i} are the quadratic subfields of k,
* $N_{k^{\prime} / k}$: the norm map of an extension k^{\prime} / k.

2 Units of some multiquadratic number fields of degree 8 and 16

Let us start by collecting some results that will be useful in the sequel.
Lemma 2.1 ([2, Lemma 5]) Let $d>1$ be a square-free integer and $\varepsilon_{d}=x+y \sqrt{d}$, where x, y are integers or semi-integers. If $N\left(\varepsilon_{d}\right)=1$, then $2(x+1), 2(x-1), 2 d(x+1)$ and $2 d(x-1)$ are not squares in \mathbb{Q}.

Lemma 2.2 ([3], Proposition 2) Let K_{0} be a real number field, $K=K_{0}(i)$ a quadratic extension of $K_{0}, n \geq 2$ an integer and ξ_{n} a 2^{n}-th primitive root of unity. Then $\xi_{n}=\frac{1}{2}\left(\mu_{n}+\right.$ $\left.\lambda_{n} i\right)$, where $\mu_{n}=\sqrt{2+\mu_{n-1}}, \lambda_{n}=\sqrt{2-\mu_{n-1}}, \mu_{2}=0, \lambda_{2}=2$ and $\mu_{3}=\lambda_{3}=\sqrt{2}$. Let n_{0} be the greatest integer such that $\xi_{n_{0}}$ is contained in $K,\left\{\varepsilon_{1}, \ldots, \varepsilon_{r}\right\}$ a fundamental system
of units of K_{0} and ε a unit of K_{0} such that $\left(2+\mu_{n_{0}}\right) \varepsilon$ is a square in K_{0} (if it exists). Then a fundamental system of units of K is one of the following systems:

1. $\left\{\varepsilon_{1}, \ldots, \varepsilon_{r-1}, \sqrt{\xi_{n_{0}}} \varepsilon\right\}$ if ε exists, in this case $\varepsilon=\varepsilon_{1}^{j_{1}} \cdots \varepsilon_{r-1}^{j_{1}} \varepsilon_{r}$, where $j_{i} \in\{0,1\}$;
2. $\left\{\varepsilon_{1}, \ldots, \varepsilon_{r}\right\}$ else.

Let us recall the method given in [15] that describes a fundamental system of units of a real multiquadratic field K_{0}. Let σ_{1} and σ_{2} be two distinct elements of order 2 of the Galois group of K_{0} / \mathbb{Q}. Let K_{1}, K_{2} and K_{3} be the three subextensions of K_{0} invariant by σ_{1}, σ_{2} and $\sigma_{3}=\sigma_{1} \sigma_{3}$, respectively. Let ε denote a unit of K_{0}. Then

$$
\varepsilon^{2}=\varepsilon \varepsilon^{\sigma_{1}} \varepsilon \varepsilon^{\sigma_{2}}\left(\varepsilon^{\sigma_{1}} \varepsilon^{\sigma_{2}}\right)^{-1}
$$

and we have, $\varepsilon \varepsilon^{\sigma_{1}} \in E_{K_{1}}, \varepsilon \varepsilon^{\sigma_{2}} \in E_{K_{2}}$ and $\varepsilon^{\sigma_{1}} \varepsilon^{\sigma_{2}} \in E_{K_{3}}$. It follows that the unit group of K_{0} is generated by the elements of $E_{K_{1}}, E_{K_{2}}$ and $E_{K_{3}}$, and the square roots of elements of $E_{K_{1}} E_{K_{2}} E_{K_{3}}$ which are perfect squares in K_{0}.
Let us continue by stating the following results.
Lemma 2.3 Let p and q be two primes satisfying (1.1).
(1) Let x and y be two integers such that $\varepsilon_{2 p q}=x+y \sqrt{2 p q}$. Then we have
(i) $p(x-1)$ is a square in \mathbb{N},
(ii) $\sqrt{2 \varepsilon_{2 p q}}=y_{1} \sqrt{p}+y_{2} \sqrt{2 q}$ and $2=2 q y_{2}^{2}-p y_{1}^{2}$, for some integers y_{1} and y_{2}.
(2) Let a and b be two integers such that $\varepsilon_{p q}=a+b \sqrt{p q}$. Then we have
(i) $2 p(a+1)$ is a square in \mathbb{N},
(ii) $\sqrt{\varepsilon_{p q}}=b_{1} \sqrt{p}+b_{2} \sqrt{q}$ and $1=p b_{1}^{2}-q b_{2}^{2}$, for some integers b_{1} and b_{2}.
(3) Let c and d be two integers such that $\varepsilon_{2 q}=c+d \sqrt{2 q}$. Then we have
(i) $c-1$ is a square in \mathbb{N},
(ii) $\sqrt{2 \varepsilon_{2 q}}=d_{1}+d_{2} \sqrt{2 q}$ and $2=-d_{1}^{2}+2 q d_{2}^{2}$, for some integers d_{1} and d_{2}.
(4) Let α and β be two integers such that $\varepsilon_{q}=\alpha+\beta \sqrt{q}$. Then we have
(i) $\alpha-1$ is a square in \mathbb{N},
(ii) $\sqrt{2 \varepsilon_{q}}=\beta_{1}+\beta_{2} \sqrt{q}$ and $2=-\beta_{1}^{2}+q \beta_{2}^{2}$, for some integers β_{1} and β_{2}.

Proof (1) It is known that $N\left(\varepsilon_{2 p q}\right)=1$. Then, by the unique factorization in \mathbb{Z} and Lemma 2.1, there exist some integers y_{1} and $y_{2}\left(y=y_{1} y_{2}\right)$ such that
(1) : $\left\{\begin{array}{l}x \pm 1=y_{1}^{2}, \\ x \mp 1=2 p q y_{2}^{2},\end{array}\right.$
(2) : $\left\{\begin{array}{l}x \pm 1=p y_{1}^{2}, \\ x \mp 1=2 q y_{2}^{2},\end{array}\right.$
or (3) : $\left\{\begin{array}{l}x \pm 1=2 p y_{1}^{2}, \\ x \mp 1=q y_{2}^{2} .\end{array}\right.$

* System (1) can not occur since it implies $1=\left(\frac{y_{1}^{2}}{p}\right)=\left(\frac{x \pm 1}{p}\right)=\left(\frac{x \neq 1 \pm 2}{p}\right)=\left(\frac{ \pm 2}{p}\right)=$ $\left(\frac{2}{p}\right)=-1$, which is absurd.
* Similarly, system (3) can not occur either since it implies $1=\left(\frac{q}{p}\right)=\left(\frac{x \mp 1}{p}\right)=\left(\frac{ \pm 2}{p}\right)=$ $\left(\frac{2}{p}\right)=-1$, which is absurd.
* Suppose that $\left\{\begin{array}{l}x+1=p y_{1}^{2}, \\ x-1=2 q y_{2}^{2} .\end{array}\right.$ Then $1=\left(\frac{p y_{1}^{2}}{q}\right)=\left(\frac{x+1}{q}\right)=\left(\frac{x-1+2}{q}\right)=\left(\frac{2}{q}\right)=-1$, which is also impossible.

Thus, the only possible case is $\left\{\begin{array}{l}x-1=p y_{1}^{2}, \\ x+1=2 q y_{2}^{2},\end{array}\right.$ which implies that
$\sqrt{2 \varepsilon_{2 p q}}=y_{1} \sqrt{p}+y_{2} \sqrt{2 q}$ and $2=2 q y_{2}^{2}-p y_{1}^{2}$.
(2) $N\left(\varepsilon_{p q}\right)=1$. Then, by Lemma 2.1, we have
(1) : $\left\{\begin{array}{l}a \pm 1=p b_{1}^{2}, \\ a \mp 1=q b_{2}^{2},\end{array}\right.$
(2) : $\left\{\begin{array}{l}a \pm 1=b_{1}^{2}, \\ a \mp 1=p q b_{2}^{2},\end{array}\right.$
or (3): $\left\{\begin{array}{l}a \pm 1=2 p b_{1}^{2}, \\ a \mp 1=2 q b_{2}^{2},\end{array}\right.$
for some integers b_{1} and b_{2} such that $b=b_{1} b_{2}$ or $b=2 b_{1} b_{2}\left(b=2 b_{1} b_{2}\right.$ in the cases of system (3)). As above we show that the only possible case is $\left\{\begin{array}{l}a+1=2 p b_{1}^{2} \\ a-1=2 q b_{2}^{2}\end{array}\right.$. From this we infer that $\sqrt{\varepsilon_{p q}}=b_{1} \sqrt{p}+b_{2} \sqrt{q}$ and $1=p b_{1}^{2}-q b_{2}^{2}$.
(3) $N\left(\varepsilon_{2 q}\right)=1$. Then, using Lemma 2.1 and the same technique as above, we show that there are two integers d_{1} and d_{2} such that $\left\{\begin{array}{l}c-1=d_{1}^{2}, \\ c+1=2 q d_{2}^{2} .\end{array}\right.$ Thus, $\sqrt{2 \varepsilon_{2 q}}=d_{1}+d_{2} \sqrt{2 q}$ and $2=-d_{1}^{2}+2 q d_{2}^{2}$.
(4) $N\left(\varepsilon_{q}\right)=1$. Then, using Lemma 2.1 and the same technique as above, we show that there are two integers β_{1} and β_{2} such that $\left\{\begin{array}{l}\alpha-1=\beta_{1}^{2}, \\ \alpha+1=q \beta_{2}^{2} .\end{array}\right.$ Thus, $\sqrt{2 \varepsilon_{q}}=\beta_{1}+\beta_{2} \sqrt{q}$ and $2=-\beta_{1}^{2}+q \beta_{2}^{2}$.

Corollary 2.4 Let p and q be two primes satisfying (1.1).
(1) A FSU of $\mathbb{Q}(\sqrt{p}, \sqrt{q})$ is given by $\left\{\varepsilon_{p}, \varepsilon_{q}, \sqrt{\varepsilon_{p q}}\right\}$.
(2) A FSU of $\mathbb{Q}(\sqrt{2}, \sqrt{q})$ is given by $\left\{\varepsilon_{2}, \sqrt{\varepsilon_{q}}, \sqrt{\varepsilon_{2 q}}\right\}$.
(3) A FSU of $\mathbb{Q}(\sqrt{p}, \sqrt{2 q})$ is given by $\left\{\varepsilon_{p}, \varepsilon_{2 q}, \sqrt{\varepsilon_{2 q} \varepsilon_{2 p q}}\right\}$.
(4) A FSU of $\mathbb{Q}(\sqrt{q}, \sqrt{2 p})$ is given by $\left\{\varepsilon_{q}, \varepsilon_{2 p}, \sqrt{\varepsilon_{2 p q}}\right\}$.
(5) A FSU of $\mathbb{Q}(\sqrt{2}, \sqrt{p q})$ is given by $\left\{\varepsilon_{2}, \varepsilon_{p q}, \sqrt{\varepsilon_{p q} \varepsilon_{2 p q}}\right\}$.

Proof Note that $\sqrt{2} \notin \mathbb{Q}(\sqrt{p}, \sqrt{q})$ and ε_{p} has negative norm. So, using Lemma 2.3, one easily verifies that the only element of the form $\varepsilon_{p q}^{i} \varepsilon_{p}^{j} \varepsilon_{q}^{k}$, for i, j and $k \in\{0,1\}$, which is a square in $\mathbb{Q}(\sqrt{p}, \sqrt{q})$, is $\varepsilon_{p q}$. So (1) follows by the method given on Page 3. One can similarly deduce the rest from Lemma 2.3 and [7, Propositions 3.1 and 3.2].

Now we are able to state the first important result of this section.
Theorem 2.5 Let p and q be two primes satisfying (1.1). Put $\mathbb{K}=\mathbb{Q}(\sqrt{2}, \sqrt{p}, \sqrt{q}, \sqrt{-1})$ and $\mathbb{K}^{+}=\mathbb{Q}(\sqrt{2}, \sqrt{p}, \sqrt{q})$. Then the following hold.
(1) (a) $E_{\mathbb{K}^{+}}=\left\langle-1, \varepsilon_{2}, \varepsilon_{p}, \sqrt{\varepsilon_{q}}, \sqrt{\varepsilon_{2 q}}, \sqrt{\varepsilon_{p q}}, \sqrt{\varepsilon_{2} \varepsilon_{p} \varepsilon_{2 p}}, \sqrt[4]{\varepsilon_{p}^{2} \varepsilon_{2 q} \varepsilon_{p q} \varepsilon_{2 p q}}\right\rangle$.
(b) The class number of \mathbb{K}^{+}is odd.
(2) (a) $E_{\mathbb{K}}=\left\langle\zeta_{24}\right.$ or $\zeta_{8}, \varepsilon_{2}, \varepsilon_{p}, \sqrt{\varepsilon_{q}}, \sqrt{\varepsilon_{p q}}, \sqrt{\varepsilon_{2} \varepsilon_{p} \varepsilon_{2 p}}, \sqrt[4]{\varepsilon_{p}^{2} \varepsilon_{2 q} \varepsilon_{p q} \varepsilon_{2 p q}}, \sqrt[4]{\left.\zeta_{8}^{2} \varepsilon_{2}^{2} \varepsilon_{q} \varepsilon_{2 q}\right\rangle}$, according to whether $q=3$ or not.
(b) $h_{2}(\mathbb{K})=h_{2}(-p q)$.

Proof (1) Consider the following diagram (see Fig. 1):
Note that by [6, Théorème 6], $\left\{\varepsilon_{2}, \varepsilon_{p}, \sqrt{\varepsilon_{2} \varepsilon_{p} \varepsilon_{2 p}}\right\}$, is a FSU of k_{1}. By Corollary 2.4, $\left\{\varepsilon_{2}, \sqrt{\varepsilon_{q}}, \sqrt{\varepsilon_{2 q}}\right\}$ is a FSU of k_{2} and a FSU of k_{3} is given by $\left\{\varepsilon_{2}, \varepsilon_{p q}, \sqrt{\varepsilon_{2 p q} \varepsilon_{p q}}\right\}$.

Fig. 1 Subfields of $\mathbb{K}^{+} / \mathbb{Q}(\sqrt{2})$

It follows that

$$
E_{k_{1}} E_{k_{2}} E_{k_{3}}=\left\langle-1, \varepsilon_{2}, \varepsilon_{p}, \varepsilon_{p q}, \sqrt{\varepsilon_{q}}, \sqrt{\varepsilon_{2 q}}, \sqrt{\varepsilon_{p q} \varepsilon_{2 p q}}, \sqrt{\varepsilon_{2} \varepsilon_{p} \varepsilon_{2 p}}\right\rangle
$$

Note that a FSU of \mathbb{K} consists of seven units chosen from those of k_{1}, k_{2} and k_{3}, and from the square roots of the units of $E_{k_{1}} E_{k_{2}} E_{k_{3}}$ which are squares in \mathbb{K} (cf. Page 3). Thus, we shall determine elements of $E_{k_{1}} E_{k_{2}} E_{k_{3}}$ which are squares in \mathbb{K}^{+}. Suppose X is an element of \mathbb{K}^{+} which is the square root of an element of $E_{k_{1}} E_{k_{2}} E_{k_{3}}$. We can assume that

$$
X^{2}=\varepsilon_{2}^{a} \varepsilon_{p}^{b} \varepsilon_{p q}^{c}{\sqrt{\varepsilon_{q}}}^{d}{\sqrt{\varepsilon_{2 q}}}^{e}{\sqrt{\varepsilon_{p q} \varepsilon_{2 p q}}}^{f} \sqrt{\varepsilon_{2} \varepsilon_{p} \varepsilon_{2 p}}{ }^{g},
$$

where a, b, c, d, e, f and g are in $\{0,1\}$.
We shall use norm maps from \mathbb{K}^{+}to its subextensions to eliminate the cases of X^{2} which do not occur.

Let τ_{1}, τ_{2} and τ_{3} be the elements of $\operatorname{Gal}\left(\mathbb{K}^{+} / \mathbb{Q}\right)$ defined by

$$
\begin{array}{lll}
\tau_{1}(\sqrt{2})=-\sqrt{2}, & \tau_{1}(\sqrt{p})=\sqrt{p}, & \tau_{1}(\sqrt{q})=\sqrt{q}, \\
\tau_{2}(\sqrt{2})=\sqrt{2}, & \tau_{2}(\sqrt{p})=-\sqrt{p}, & \tau_{2}(\sqrt{q})=\sqrt{q}, \\
\tau_{3}(\sqrt{2})=\sqrt{2}, & \tau_{3}(\sqrt{p})=\sqrt{p}, & \tau_{3}(\sqrt{q})=-\sqrt{q} .
\end{array}
$$

Note that $\operatorname{Gal}\left(\mathbb{K}^{+} / \mathbb{Q}\right)=\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle$ and the subfields k_{1}, k_{2} and k_{3} are fixed by $\left\langle\tau_{3}\right\rangle,\left\langle\tau_{2}\right\rangle$ and $\left\langle\tau_{2} \tau_{3}\right\rangle$ respectively. Lemma 2.3 is used to compute the norm maps from \mathbb{K}^{+}to its subextensions. We summarize these computations in Table 1. Let us start by applying the norm map $N_{\mathbb{K}}+/ k_{2}=1+\tau_{2}$:

$$
\begin{aligned}
N_{\mathbb{K}^{+} / k_{2}}\left(X^{2}\right)=N_{\mathbb{K}^{+} / k_{2}}(X)^{2} & =\varepsilon_{2}^{2 a}(-1)^{b} \cdot 1 \cdot \varepsilon_{q}^{d} \varepsilon_{2 q}^{e} \cdot(-1)^{f} \cdot(-1)^{g v} \varepsilon_{2}^{g} \\
& =\varepsilon_{2}^{2 a} \varepsilon_{q}^{d} \varepsilon_{2 q}^{e} \cdot(-1)^{b+f+g v} \varepsilon_{2}^{g} .
\end{aligned}
$$

Note that, by Corollary $2.4,\left\{\varepsilon_{2}, \sqrt{\varepsilon_{q}}, \sqrt{\varepsilon_{2 q}}\right\}$ is a FSU of k_{2}. Thus, ε_{q} and $\varepsilon_{2 q}$ are squares in k_{2} whereas ε_{2} is not. Since $N_{\mathbb{K}^{+} / k_{2}}\left(X^{2}\right)>0$, then $b+f+v g \equiv 0(\bmod 2)$ and ε_{2}^{g} is a square in k_{2}. Therefore $g=0$ and $b=f$. So we have

$$
X^{2}=\varepsilon_{2}^{a} \varepsilon_{p}^{f} \varepsilon_{p q}^{c}{\sqrt{\varepsilon_{q}}}^{d}{\sqrt{\varepsilon_{2 q}}}^{e} \sqrt{\varepsilon_{p q} \varepsilon_{2 p q}}{ }^{f} .
$$

Similarly, by applying $N_{\mathbb{K}^{+} / k_{3}}=1+\tau_{2} \tau_{3}$, one gets

$$
\begin{aligned}
N_{\mathbb{K}^{+} / k_{3}}\left(X^{2}\right) & =\varepsilon_{2}^{2 a} \cdot(-1)^{f} \cdot \varepsilon_{p q}^{2 c} \cdot(-1)^{d} \cdot(-1)^{e} \cdot \varepsilon_{p q}^{f} \varepsilon_{2 p q}^{f} \\
& =\varepsilon_{2}^{2 a} \varepsilon_{p q}^{2 c} \varepsilon_{p q}^{f} \varepsilon_{2 p q}^{f}(-1)^{f+d+e}>0 .
\end{aligned}
$$

Note that, by Corollary $2.4, \varepsilon_{p q} \varepsilon_{2 p q}$ is a square in k_{3}. Thus, all that we can deduce is $f+d+e \equiv 0(\bmod 2)$. Let us now apply $N_{\mathbb{K}^{+} / k_{4}}=1+\tau_{1}$, where $k_{4}=\mathbb{Q}(\sqrt{p}, \sqrt{q})$.

We have

$$
\begin{aligned}
N_{\mathbb{K}^{+} / k_{4}}\left(X^{2}\right) & =(-1)^{a} \cdot \varepsilon_{p}^{2 f} \cdot \varepsilon_{p q}^{2 c} \cdot\left(-\varepsilon_{q}\right)^{d} \cdot 1 \cdot\left(\varepsilon_{p q}\right)^{f} \\
& =\varepsilon_{p}^{2 f} \varepsilon_{p q}^{2 c} \varepsilon_{p q}^{f} \cdot(-1)^{a+d} \cdot \varepsilon_{q}^{d}>0 .
\end{aligned}
$$

Thus, $a+d \equiv 0(\bmod 2)$. By Corollary $2.4, \varepsilon_{p q}$ is a square in k_{4} and, by Lemma 2.3, $2 \varepsilon_{q}$ is a square in k_{4} whereas ε_{q} is not (in fact $\sqrt{2} \notin k_{4}$). So $d=0$ and then $a=0$. Since $f+d+e \equiv 0(\bmod 2)$, we have $f=e$. Therefore,

$$
X^{2}=\varepsilon_{p}^{f} \varepsilon_{p q}^{c}{\sqrt{\varepsilon_{2 q}}}^{f}{\sqrt{\varepsilon_{p q} \varepsilon_{2 p q}}}^{f}
$$

Note that, by Lemma 2.3, $\varepsilon_{p q}$ is a square in \mathbb{K}^{+}, so we may put

$$
X^{2}=\varepsilon_{p}^{f} \sqrt{\varepsilon_{2 q}}{ }^{f}{\sqrt{\varepsilon_{p q} \varepsilon_{2 p q}}}^{f} .
$$

Suppose that $f=0$. Then, by the above discussions and Lemma 2.2, a FSU of \mathbb{K}^{+}is

$$
\left\{\varepsilon_{2}, \varepsilon_{p}, \sqrt{\varepsilon_{q}}, \sqrt{\varepsilon_{2 q}}, \sqrt{\varepsilon_{p q}}, \sqrt{\varepsilon_{2 p q}}, \sqrt{\varepsilon_{2} \varepsilon_{p} \varepsilon_{2 p}}\right\} .
$$

Thus, $q\left(\mathbb{K}^{+}\right)=2^{5}$. We have $h_{2}(p)=h_{2}(q)=h_{2}(2 q)=h_{2}(2)=1$ and $h_{2}(2 p)=$ $h_{2}(p q)=h_{2}(2 p q)=2($ cf. [10, Corollaries 18.4, 19.7 and 19.8] $)$,

$$
\begin{aligned}
h_{2}\left(\mathbb{K}^{+}\right) & =\frac{1}{2^{9}} q\left(\mathbb{K}^{+}\right) h_{2}(2) h_{2}(p) h_{2}(q) h_{2}(2 p) h_{2}(2 q) h(p q) h_{2}(2 p q) \\
& =\frac{1}{2^{9}} \cdot 2^{5} \cdot 1 \cdot 1 \cdot 1 \cdot 2 \cdot 1 \cdot 2 \cdot 2 \\
& =\frac{1}{2}
\end{aligned}
$$

which is absurd. Thus, $f=1$ and then $q\left(\mathbb{K}^{+}\right)=2^{6}$. So we have (1).
(2) Keep the notations of Lemma 2.2. Note that the greatest integer n_{0} such that $\zeta_{2^{n_{0}}}$ is contained in \mathbb{K} equals 3 , therefore $\mu_{n_{0}}=\sqrt{2}$. So, according to Lemma 2.2, we should find an element Y, if it exists, which is in \mathbb{K}^{+}such that

$$
Y^{2}=(2+\sqrt{2}) \varepsilon_{2}^{a} \varepsilon_{p}^{b}{\sqrt{\varepsilon_{q}}}^{c}{\sqrt{\varepsilon_{2 q}}}^{d}{\sqrt{\varepsilon_{p q}}}^{e}{\sqrt{\varepsilon_{2} \varepsilon_{p} \varepsilon_{2 p}}}_{f}^{\sqrt[4]{\varepsilon_{p}^{2} \varepsilon_{2 q} \varepsilon_{p q} \varepsilon_{2 p q}}}{ }^{g}
$$

where a, b, c, d, e, f and g are in $\{0,1\}$. So firstly we shall use norm maps to eliminate some cases (see Table 1).

- We have $N_{\mathbb{K}^{+} / k_{2}}=1+\tau_{2}$. So, by applying $N_{\mathbb{K}^{+} / k_{2}}$, we get

$$
\begin{aligned}
N_{\mathbb{K}^{+} / k_{2}}\left(Y^{2}\right) & =(2+\sqrt{2})^{2} \varepsilon_{2}^{2 a}(-1)^{b} \varepsilon_{q}^{c} \varepsilon_{2 q}^{d} \cdot(-1)^{e} \cdot(-1)^{f v} \varepsilon_{2}^{f}(-1)^{g s}{\sqrt{\varepsilon_{2 q}}}^{g}, \\
& =(2+\sqrt{2})^{2} \varepsilon_{2}^{2 a} \varepsilon_{q}^{c} \varepsilon_{2 q}^{d}(-1)^{b+e+f v+g s} \varepsilon_{2}^{f}{\sqrt{\varepsilon_{2 q}}}^{g}>0 .
\end{aligned}
$$

Thus, $b+e+f v+g s=0(\bmod 2)$. By Corollary 2.4, $\left\{\varepsilon_{2}, \sqrt{\overline{\varepsilon_{q}}}, \sqrt{\varepsilon_{2 q}}\right\}$ is a FSU of k_{2}. Since $\varepsilon_{2}, \sqrt{\varepsilon_{2 q}}$ and $\varepsilon_{2} \sqrt{\varepsilon_{2 q}}$ are not squares in k_{2}, we have $f=g=0$ and so $b=e$. Therefore,

$$
Y^{2}=(2+\sqrt{2}) \varepsilon_{2}^{a} \varepsilon_{p}^{e}{\sqrt{\varepsilon_{q}}}^{c}{\sqrt{\varepsilon_{2 q}}}^{d}{\sqrt{\varepsilon_{p q}}}^{e} .
$$

We have $N_{\mathbb{K}^{+} / k_{4}}=1+\tau_{1}$ with $k_{4}=\mathbb{Q}(\sqrt{p}, \sqrt{q})$. So

$$
\begin{aligned}
N_{\mathbb{K}^{+} / k_{4}}\left(Y^{2}\right) & =(4-2)(-1)^{a} \varepsilon_{p}^{2 e}(-1)^{c} \varepsilon_{q}^{c} \cdot 1 \cdot \varepsilon_{p q}^{e}, \\
& =\varepsilon_{p}^{2 e} \varepsilon_{p q}^{e}(-1)^{a+c} \cdot 2 \cdot \varepsilon_{q}^{c}>0 .
\end{aligned}
$$

So $a+c=0(\bmod 2)$. Since $\sqrt{2} \notin k_{4}$ and, by Lemma 2.3, $\sqrt{2 \varepsilon_{q}} \in k_{4}$, then $c=1$. Therefore $a=c=1$ and we have

$$
Y^{2}=(2+\sqrt{2}) \varepsilon_{2} \varepsilon_{p}^{e}{\sqrt{\varepsilon_{q}}}_{{\sqrt{\varepsilon_{2 q}}}^{d}}^{{\sqrt{\varepsilon_{p q}}}^{e}}
$$

By applying the norm map, $N_{\mathbb{K}^{+} / k_{3}}=1+\tau_{2} \tau_{3}$, we get

$$
\begin{aligned}
& N_{\mathbb{K}+}+k_{3} \\
&\left(Y^{2}\right)=(2+\sqrt{2})^{2} \varepsilon_{2}^{2} \cdot(-1)^{e} \cdot(-1) \cdot(-1)^{d} \cdot(-1)^{e} \cdot \varepsilon_{p q}^{e}, \\
&=(2+\sqrt{2})^{2} \varepsilon_{2}^{2} \cdot(-1)^{1+d} \cdot \varepsilon_{p q}^{e}>0 .
\end{aligned}
$$

Thus, $1+d=0(\bmod 2)$. So $d=1$. As, by Corollary $2.4, \varepsilon_{p q}$ is a not a square in k_{3}, then $e=0$. It follows that

$$
Y^{2}=(2+\sqrt{2}) \varepsilon_{2} \sqrt{\varepsilon_{q}} \sqrt{\varepsilon_{2 q}} .
$$

Let us now verify that $(2+\sqrt{2}) \varepsilon_{2} \sqrt{\varepsilon_{q}} \sqrt{\varepsilon_{2 q}}$ is a square in \mathbb{K}^{+}.

- Note that by [5, Theorem 5.5], the 2-class group of $L_{p q}:=\mathbb{Q}(\sqrt{p q}, \sqrt{2}, i)$ is cyclic. Since \mathbb{K} is an unramified quadratic extension of $L_{p q}$, this implies that the Hilbert 2-class field of $L_{p q}\left(\right.$ i.e., $\left.L_{p q}^{(1)}\right)$ and \mathbb{K} have the same Hilbert 2-class field. So $h_{2}\left(L_{p q}\right)=2 h_{2}(\mathbb{K})$. Therefore, again by [8, Lemma 3], we have $2 h_{2}(\mathbb{K})=2 h_{2}(-p q)$. Thus,

$$
\begin{equation*}
h_{2}(\mathbb{K})=h_{2}(-p q) . \tag{2.1}
\end{equation*}
$$

Assume that $(2+\sqrt{2}) \varepsilon_{2} \sqrt{\varepsilon_{q}} \sqrt{\varepsilon_{2 q}}$ is not a square in \mathbb{K}^{+}. Then, by Lemma 2.2 and the above discussions, \mathbb{K}^{+}and \mathbb{K} have the same fundamental system of units. Thus, $q(\mathbb{K})=2^{7}$. We have $h_{2}(-1)=h_{2}(-2)=h_{2}(-q)=1, h_{2}(-p)=h_{2}(-2 p)=$ $h_{2}(-2 q)=2$ and $h_{2}(-2 p q)=4$ by [10, Corollary 18.4], [10, Corollary 19.6] and [12, p. 353] respectively. So, by the class number formula (cf. [15, p. 201]) and the above setting on the 2 -class numbers of real quadratic fields (Page 6), we get

$$
\begin{aligned}
h_{2}(\mathbb{K})= & \frac{1}{2^{16}} q(\mathbb{K}) h_{2}(-1) h_{2}(2) h_{2}(-2) h_{2}(p) h_{2}(-p) h_{2}(q) h_{2}(-q) h_{2}(2 p) \\
& h_{2}(-2 p) h_{2}(2 q) h_{2}(-2 q) h_{2}(p q) h_{2}(-p q) h_{2}(2 p q) h_{2}(-2 p q) \\
= & \frac{1}{2^{16}} \cdot 2^{7} \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 2 \cdot 1 \cdot 1 \cdot 2 \cdot 2 \cdot 1 \cdot 2 \cdot 2 \cdot h_{2}(-p q) \cdot 2 \cdot 4 \\
= & \frac{1}{2} h_{2}(-p q) .
\end{aligned}
$$

This contradicts (2.1). It follows that $(2+\sqrt{2}) \varepsilon_{2} \sqrt{\varepsilon_{q}} \sqrt{\varepsilon_{2 q}}$ is a square in \mathbb{K}^{+}. Hence Lemma 2.2 completes the proof.

To prove our second main result of this section, we need the following lemma and corollary.

Lemma 2.6 Let p and q be two primes satisfying (1.2).
(1) Let x and y be two integers such that $\varepsilon_{2 p q}=x+y \sqrt{2 p q}$. Then we have
Table 1 Norms when p and q satisfy conditions (1.1)

ε	$\varepsilon^{\tau_{1}}$	$\varepsilon^{\tau_{2}}$	$\varepsilon^{\tau_{3}}$	$\varepsilon^{1+\tau_{1}}$	$\varepsilon^{1+\tau_{2}}$	$\varepsilon^{1+\tau_{3}}$	$\varepsilon^{1+\tau_{1} \tau_{2}}$	$\varepsilon^{1+\tau_{1} \tau_{3}}$	$\varepsilon^{1+\tau_{2} \tau_{3}}$
ε_{2}	$\frac{-1}{\varepsilon_{2}}$	ε_{2}	ε_{2}	-1	ε_{2}^{2}	ε_{2}^{2}	-1	-1	ε_{2}^{2}
ε_{p}	ε_{p}	$\frac{-1}{\varepsilon_{p}}$	ε_{p}	ε_{p}^{2}	-1	ε_{p}^{2}	-1	ε_{p}^{2}	-1
$\sqrt{\varepsilon_{q}}$	$-\sqrt{\varepsilon_{q}}$	$\sqrt{\varepsilon_{q}}$	$\frac{-1}{\sqrt{\varepsilon q}}$	$-\varepsilon_{q}$	ε_{q}	-1	$-\varepsilon_{q}$	1	-1
$\sqrt{\varepsilon_{2 q}}$	$\frac{1}{\sqrt{\varepsilon_{2 q}}}$	$\sqrt{\varepsilon_{2 q} q}$	$\frac{-1}{\sqrt{\varepsilon_{2 q}}}$	1	$\varepsilon_{2 q}$	-1	1	$-\varepsilon_{2 q}$	-1
$\sqrt{\varepsilon p q}$	$\sqrt{\varepsilon p q}$	$\frac{-1}{\sqrt{\varepsilon p q}}$	$\frac{1}{\sqrt{\varepsilon p q}}$	$\varepsilon_{p q}$	-1	1	-1	1	$-\varepsilon_{p q}$
$\sqrt{\varepsilon 2 p q}$	$\frac{1}{\sqrt{\varepsilon_{2 p q}}}$	$\frac{1}{\sqrt{\varepsilon_{2 p q}}}$	$\frac{-1}{\sqrt{\varepsilon_{2 p q}}}$	1	1	-1	$\varepsilon_{2 p q}$	$-\varepsilon_{2} p q$	$-\varepsilon_{2} p q$
$\sqrt{\varepsilon_{2} \varepsilon_{p} \varepsilon_{2 p}}$	$(-1)^{u} \sqrt{\frac{\varepsilon_{p}}{\varepsilon_{2} \varepsilon_{2 p}}}$	$(-1)^{v} \sqrt{\frac{\varepsilon_{2}}{\varepsilon_{p} \varepsilon_{2 p}}}$	$\sqrt{\varepsilon_{2} \varepsilon_{p} \varepsilon_{2 p}}$	$(-1)^{u} \varepsilon_{p}$	$(-1)^{v} \varepsilon_{2}$	$\varepsilon_{2} \varepsilon_{p} \varepsilon_{2 p}$			
$\sqrt[4]{\varepsilon_{p}^{2} \varepsilon_{2 q} \varepsilon_{p q} \varepsilon_{2 p q}}$	$(-1)^{r} \sqrt[4]{\frac{\varepsilon_{p}^{2} \varepsilon_{p q}}{\varepsilon_{2 q} \varepsilon_{p q}}}$	$(-1)^{s} \sqrt[4]{\frac{\varepsilon_{2 q}}{\varepsilon_{p}^{2} \varepsilon_{p q} \varepsilon_{2 p q}}}$	$(-1)^{t} \sqrt[4]{\frac{\varepsilon_{p}^{2}}{\varepsilon_{2 q} \varepsilon_{p q} \varepsilon_{2 p q}}}$	$(-1)^{r} \varepsilon_{p} \sqrt{\varepsilon_{p q}}$	$(-1)^{s} \sqrt{\varepsilon_{2 q} q}$	$(-1)^{t} \varepsilon_{p}$			

(i) $2 p(x-1)$ is a square in \mathbb{N},
(ii) $\sqrt{2 \varepsilon_{2 p q}}=y_{1} \sqrt{2 p}+y_{2} \sqrt{q}$ and $2=-2 p y_{1}^{2}+q y_{2}^{2}$, for some integers y_{1} and y_{2}.
(2) Let a and b be two integers such that $\varepsilon_{p q}=a+b \sqrt{p q}$. Then we have
(i) $p(a+1)$ is a square in \mathbb{N},
(ii) $\sqrt{2 \varepsilon_{p q}}=b_{1} \sqrt{p}+b_{2} \sqrt{q}$ and $2=p b_{1}^{2}-q b_{2}^{2}$, for some integers b_{1} and b_{2}.
(3) Let c and d be two integers such that $\varepsilon_{2 q}=c+d \sqrt{2 q}$. Then we have
(i) $c-1$ is a square in \mathbb{N},
(ii) $\sqrt{2 \varepsilon_{2 q}}=d_{1}+d_{2} \sqrt{2 q}$ and $2=-d_{1}^{2}+2 q d_{2}^{2}$, for some integers d_{1} and d_{2}.
(4) Let α and β be two integers such that $\varepsilon_{q}=\alpha+\beta \sqrt{q}$. Then we have
(i) $\alpha-1$ is a square in \mathbb{N},
(ii) $\sqrt{2 \varepsilon_{q}}=\beta_{1}+\beta_{2} \sqrt{q}$ and $2=-\beta_{1}^{2}+q \beta_{2}^{2}$, for some integers β_{1} and β_{2}.

Proof We proceed similarly as in the proof of Lemma 2.3.
Corollary 2.7 Let p and q be two primes satisfying (1.2).
(1) A FSU of $\mathbb{Q}(\sqrt{p}, \sqrt{q})$ is given by $\left\{\varepsilon_{p}, \varepsilon_{q}, \sqrt{\varepsilon_{q} \varepsilon_{p q}}\right\}$.
(2) A FSU of $\mathbb{Q}(\sqrt{2}, \sqrt{q})$ is given by $\left\{\varepsilon_{2}, \sqrt{\varepsilon_{q}}, \sqrt{\varepsilon_{2 q}}\right\}$.
(3) A FSU of $\mathbb{Q}(\sqrt{p}, \sqrt{2 q})$ is given by $\left\{\varepsilon_{p}, \varepsilon_{2 q}, \sqrt{\varepsilon_{2 p q}}\right\}$.
(4) A FSU of $\mathbb{Q}(\sqrt{q}, \sqrt{2 p})$ is given by $\left\{\varepsilon_{q}, \varepsilon_{2 p}, \sqrt{\varepsilon_{q} \varepsilon_{2 p q}}\right\}$.
(5) A FSU of $\mathbb{Q}(\sqrt{2}, \sqrt{p q})$ is given by $\left\{\varepsilon_{2}, \varepsilon_{p q}, \sqrt{\varepsilon_{p q} \varepsilon_{2 p q}}\right\}$.

Proof We proceed similarly as in the proof of Corollary 2.4.
We can now state and prove the second main theorem of this section.
Theorem 2.8 Let p and q be two primes satisfying (1.2). Put $\mathbb{L}=\mathbb{Q}(\sqrt{2}, \sqrt{p}, \sqrt{q}, \sqrt{-1})$ and $\mathbb{L}^{+}=\mathbb{Q}(\sqrt{2}, \sqrt{p}, \sqrt{q})$. Then the following hold.
(1) (a) $E_{\mathbb{L}^{+}}=\left\langle-1, \varepsilon_{2}, \varepsilon_{p}, \sqrt{\varepsilon_{q}}, \sqrt{\varepsilon_{2 q}}, \sqrt{\varepsilon_{p q}}, \sqrt{\varepsilon_{2} \varepsilon_{p} \varepsilon_{2 p}}, \sqrt[4]{\varepsilon_{2}^{2} \varepsilon_{p}^{2} \varepsilon_{q} \varepsilon_{p q} \varepsilon_{2 p q}}\right\rangle$.
(b) $h_{2}\left(\mathbb{L}^{+}\right)=1$.
(2) (a) $E_{\mathbb{L}}=\left\langle\zeta_{24}\right.$ or $\left.\zeta_{8}, \varepsilon_{2}, \varepsilon_{p}, \sqrt{\varepsilon_{q}}, \sqrt{\varepsilon_{p q}}, \sqrt{\varepsilon_{2} \varepsilon_{p} \varepsilon_{2 p}}, \sqrt[4]{\varepsilon_{2}^{2} \varepsilon_{p}^{2} \varepsilon_{q} \varepsilon_{p q} \varepsilon_{2 p q}}, \sqrt[4]{\zeta_{8}^{2} \varepsilon_{2}^{2} \varepsilon_{q} \varepsilon_{2 q}}\right\rangle$, according to whether $q=3$ or not.
(b) $h_{2}(\mathbb{L})=h_{2}(-p q)=2$.

Proof (1) We consider an analogous diagram as in Fig. 1. Note that, by [6, Théorème 6] and Corollary 2.7, a FSU of $k_{1}=\mathbb{Q}(\sqrt{2}, \sqrt{p})$ is given by $\left\{\varepsilon_{2}, \varepsilon_{p}, \sqrt{\varepsilon_{2} \varepsilon_{p} \varepsilon_{2 p}}\right\}$, a FSU of $k_{2}=\mathbb{Q}(\sqrt{2}, \sqrt{q})$ is given by $\left\{\varepsilon_{2}, \sqrt{\varepsilon_{q}}, \sqrt{\varepsilon_{2 q}}\right\}$ and a FSU of $k_{3}=\mathbb{Q}(\sqrt{2}, \sqrt{p q})$ is given by $\left\{\varepsilon_{2}, \varepsilon_{p q}, \sqrt{\varepsilon_{2 p q} \varepsilon_{p q}}\right\}$. It follows that

$$
E_{k_{1}} E_{k_{2}} E_{k_{3}}=\left\langle-1, \varepsilon_{2}, \varepsilon_{p}, \varepsilon_{p q}, \sqrt{\varepsilon_{q}}, \sqrt{\varepsilon_{2 q}}, \sqrt{\varepsilon_{p q} \varepsilon_{2 p q}}, \sqrt{\varepsilon_{2} \varepsilon_{p} \varepsilon_{2 p}}\right\rangle
$$

Note that, by Lemma $2.7, \varepsilon_{p q}$ is a square in \mathbb{L}^{+}. So we shall find elements X of \mathbb{L}^{+}, if they exist, such that

$$
X^{2}=\varepsilon_{2}^{a} \varepsilon_{p}^{b}{\sqrt{\varepsilon_{q}}}^{c}{\sqrt{\varepsilon_{2 q}}}^{d}{\sqrt{\varepsilon_{p q} \varepsilon_{2 p q}}}^{e}{\sqrt{\varepsilon_{2} \varepsilon_{p} \varepsilon_{2 p}}}^{f}
$$

where a, b, c, d, e and f are in $\{0,1\}$. Let us define τ_{1}, τ_{2} and τ_{3} similarly as in the proof of Theorem 2.5. We shall use Table 2.

By applying the norm map $N_{\mathbb{L}^{+} / k_{2}}=1+\tau_{2}$, where $k_{2}=\mathbb{Q}(\sqrt{2}, \sqrt{q})$, we get

$$
\begin{aligned}
N_{\mathbb{L}^{+} / k_{2}}\left(X^{2}\right) & =\varepsilon_{2}^{2 a}(-1)^{b} \cdot \varepsilon_{q}^{c} \varepsilon_{2 q}^{d} \cdot(-1)^{e} \cdot(-1)^{f v} \varepsilon_{2}^{f} \\
& =\varepsilon_{2}^{2 a} \varepsilon_{q}^{c} \varepsilon_{2 q}^{d} \cdot(-1)^{b+e+f v} \varepsilon_{2}^{f}>0
\end{aligned}
$$

We have $b+e+f v \equiv 0(\bmod 2)$. By Corollary 2.7 , the units ε_{q} and $\varepsilon_{2 q}$ are squares in k_{2} whereas ε_{2} is not. Then $f=0$ and $b=e$. Therefore

$$
X^{2}=\varepsilon_{2}^{a} \varepsilon_{p}^{b}{\sqrt{\varepsilon_{q}}}^{c}{\sqrt{\varepsilon_{2 q}}}^{d}{\sqrt{\varepsilon_{p q} \varepsilon_{2 p q}}}^{b}
$$

$N_{\mathbb{L}^{+} / k_{4}}=1+\tau_{1}$, where $k_{4}=\mathbb{Q}(\sqrt{p}, \sqrt{q})$. We have

$$
\begin{aligned}
N_{\mathbb{L}^{+} / k_{4}}\left(X^{2}\right) & =(-1)^{a} \cdot \varepsilon_{p}^{2 b} \cdot(-1)^{c} \cdot \varepsilon_{q}^{c} \cdot 1 \cdot \varepsilon_{p q}^{b} \\
& =\varepsilon_{p}^{2 b} \cdot(-1)^{a+c} \cdot \varepsilon_{q}^{c} \varepsilon_{p q}^{b}>0 .
\end{aligned}
$$

Then $a+c=0(\bmod 2)$, so $a=c$. Since, by Corollary 2.7 , the units ε_{q} and $\varepsilon_{p q}$ are not squares in k_{4}, we have $c=b$. Thus, $a=b=c$ and

$$
X^{2}=\varepsilon_{2}^{a} \varepsilon_{p}^{a}{\sqrt{\varepsilon_{q}}}^{a}{\sqrt{\varepsilon_{2 q}}}^{d}{\sqrt{\varepsilon_{p q} \varepsilon_{2 p q}}}^{a} .
$$

Let us now apply $N_{\mathbb{L}^{+} / k_{3}}=1+\tau_{2} \tau_{3}$, where $k_{3}=\mathbb{Q}(\sqrt{2}, \sqrt{p q})$. Then

$$
N_{\mathbb{L}^{+} / k_{4}}\left(X^{2}\right)=\varepsilon_{2}^{2 a} \cdot(-1)^{a} \cdot(-1)^{a} \cdot(-1)^{d} \cdot \varepsilon_{p q}^{a} \varepsilon_{2 p q}^{a}=\varepsilon_{2}^{2 a} \cdot(-1)^{d} \cdot \varepsilon_{p q}^{a} \varepsilon_{2 p q}^{a}>0 .
$$

Thus, $d=0$. Hence, $X^{2}=\varepsilon_{2}^{a} \varepsilon_{p}^{a}{\sqrt{\varepsilon_{q}}}^{a}{\sqrt{\varepsilon_{p q} \varepsilon_{2 p q}}}^{a}$.
Let us suppose that $a=0$. Then a FSU of \mathbb{L}^{+}is

$$
\left\{\varepsilon_{2}, \varepsilon_{p}, \sqrt{\varepsilon_{q}}, \sqrt{\varepsilon_{2 q}}, \sqrt{\varepsilon_{p q}}, \sqrt{\varepsilon_{2 p q}}, \sqrt{\varepsilon_{2} \varepsilon_{p} \varepsilon_{2 p}}\right\} .
$$

Thus, $q\left(\mathbb{L}^{+}\right)=2^{5}$. We have $h_{2}(p)=h_{2}(q)=h_{2}(2 q)=h_{2}(2)=1$ and $h_{2}(2 p)=$ $h_{2}(p q)=h_{2}(2 p q)=2$ (cf. [10, Corollaries 18.4, 19.7 and 19.8]). So the class number formula (cf. [15, p. 201]) gives

$$
\begin{aligned}
h_{2}\left(\mathbb{L}^{+}\right) & =\frac{1}{2^{9}} q\left(\mathbb{L}^{+}\right) h_{2}(2) h_{2}(p) h_{2}(q) h_{2}(2 p) h_{2}(2 q) h(p q) h_{2}(2 p q) \\
& =\frac{1}{2^{9}} \cdot 2^{5} \cdot 1 \cdot 1 \cdot 1 \cdot 2 \cdot 1 \cdot 2 \cdot 2 \\
& =\frac{1}{2}
\end{aligned}
$$

which is absurd. So necessarily $a=1$ and then $q\left(\mathbb{L}^{+}\right)=2^{6}$. Therefore we have (1).
(2) We shall proceed as in the second part of the proof of Theorem 2.5. So let

$$
Y^{2}=(2+\sqrt{2}) \varepsilon_{2}^{a} \varepsilon_{p}^{b}{\sqrt{\varepsilon_{q}}}^{c}{\sqrt{\varepsilon_{2 q}}}^{d}{\sqrt{\varepsilon_{p q}}}^{e} \sqrt{\varepsilon_{2} \varepsilon_{p} \varepsilon_{2 p}} f{\sqrt[4]{\varepsilon_{2}^{2} \varepsilon_{p}^{2} \varepsilon_{q} \varepsilon_{p q} \varepsilon_{2 p q}}}^{g},
$$

where a, b, c, d, e, f and g are in $\{0,1\}$. According to Lemma 2.2, we should find an element Y, if it exists, which is in \mathbb{L}^{+}. So firstly we shall use norm maps to eliminate some cases (see Table 2).

- We have $N_{\mathbb{L}^{+} / k_{2}}=1+\tau_{2}$. Note that, by Corollary 2.7, $\left\{\varepsilon_{2}, \sqrt{\varepsilon_{q}}, \sqrt{\varepsilon_{2 q}}\right\}$ is a FSU of k_{2}. So we have

$$
\begin{aligned}
N_{\mathbb{L}^{+} / k_{2}}\left(Y^{2}\right) & =(2+\sqrt{2})^{2} \varepsilon_{2}^{2 a}(-1)^{b} \varepsilon_{q}^{c} \cdot \varepsilon_{2 q}^{d} \cdot(-1)^{e} \cdot(-1)^{f v} \varepsilon_{2}^{f}(-1)^{g s} \varepsilon_{2}^{g}{\sqrt{\varepsilon_{2 q}}}^{g}, \\
& =(2+\sqrt{2})^{2} \varepsilon_{2}^{2 a} \varepsilon_{q}^{c} \varepsilon_{2 q}^{d}(-1)^{b+e+f v+g s} \varepsilon_{2}^{f+g}{\sqrt{\varepsilon_{2 q}}}^{g}>0 .
\end{aligned}
$$

Thus, $b+e+f v+g s=0(\bmod 2)$. We have

* $f=g=1$ is impossible. In fact, $\sqrt{\varepsilon_{q}}$ is not square in k_{2}.
* $f \neq g$ is impossible. In fact, $\varepsilon_{2} \sqrt{\varepsilon_{2 q}}$ and ε_{2} are not squares in k_{2}.

Thus, $f=g=0$ and $b=e$. It follows that

$$
Y^{2}=(2+\sqrt{2}) \varepsilon_{2}^{a} \varepsilon_{p}^{b}{\sqrt{\varepsilon_{q}}}^{c}{\sqrt{\varepsilon_{2 q}}}^{d}{\sqrt{\varepsilon_{p q}}}^{b} .
$$

We have $N_{\mathbb{L}^{+} / k_{4}}=1+\tau_{1}$ with $k_{4}=\mathbb{Q}(\sqrt{p}, \sqrt{q})$. Note that, by Corollary 2.7, $\left\{\varepsilon_{p}, \varepsilon_{q}, \sqrt{\varepsilon_{q} \varepsilon_{p q}}\right\}$ is a FSU of k_{4}. We have

$$
\begin{aligned}
N_{\mathbb{L}+/ k_{4}}\left(Y^{2}\right) & =(4-2)(-1)^{a} \cdot \varepsilon_{p}^{2 b} \cdot(-1)^{c} \cdot \varepsilon_{q}^{c} \cdot 1 \cdot(-1)^{b} \cdot \varepsilon_{p q}^{b} \\
& =\varepsilon_{p}^{2 b} \cdot(-1)^{a+b+c} \cdot 2 \cdot \varepsilon_{q}^{c} \cdot \varepsilon_{p q}^{b}>0 .
\end{aligned}
$$

So $a+b+c=0(\bmod 2)$. Since $\varepsilon_{q} \varepsilon_{p q}$ is a square in k_{4} whereas 2 is not, this implies $c \neq b$. So $a=1$ and we have

$$
Y^{2}=(2+\sqrt{2}) \varepsilon_{2} \varepsilon_{p}^{b}{\sqrt{\varepsilon_{q}}}^{c}{\sqrt{\varepsilon_{2 q}}}^{d}{\sqrt{\varepsilon_{p q}}}^{b},
$$

with $c \neq b$. Let us now apply $N_{\mathbb{L}+/ k_{3}}=1+\tau_{2} \tau_{3}$ to obtain

$$
\begin{aligned}
N_{\mathbb{L}+/ k_{3}}\left(Y^{2}\right) & =(2+\sqrt{2})^{2} \cdot \varepsilon_{2}^{2} \cdot(-1)^{b} \cdot(-1)^{c} \cdot(-1)^{d} \cdot(-1)^{b} \cdot \varepsilon_{p q}^{b} \\
& =(2+\sqrt{2})^{2} \cdot \varepsilon_{2}^{2} \cdot(-1)^{c+d} \cdot \varepsilon_{p q}^{b}>0 .
\end{aligned}
$$

Then $c+d=0(\bmod 2)$ and so $c=d$. By Corollary $2.7, \varepsilon_{p q}$ is a not a square in k_{3}, therefore $b=0$. Since $c \neq b$, we have $c=d=1$. Therefore

$$
Y^{2}=(2+\sqrt{2}) \varepsilon_{2} \sqrt{\varepsilon_{q}} \sqrt{\varepsilon_{2 q}} .
$$

Let us now verify that $(2+\sqrt{2}) \varepsilon_{2} \sqrt{\varepsilon_{q}} \sqrt{\varepsilon_{2 q}}$ is a square in \mathbb{L}^{+}.

- As in the second part of the proof of Theorem 2.5 , we show that

$$
\begin{equation*}
h_{2}(\mathbb{L})=h_{2}(-p q)=2 . \tag{2.2}
\end{equation*}
$$

Assume that $(2+\sqrt{2}) \varepsilon_{2} \sqrt{\varepsilon_{q}} \sqrt{\varepsilon_{2 q}}$ is not a square in \mathbb{L}^{+}. Then, by Lemma 2.2 and the above discussions, \mathbb{L}^{+}and \mathbb{L} have the same fundamental system of units. Therefore $q(\mathbb{L})=2^{7}$. We have $h_{2}(-1)=h_{2}(-2)=h_{2}(-q)=1, h_{2}(-p)=h_{2}(-2 p)=$ $h_{2}(-2 q)=h_{2}(-p q)=2$ and $h_{2}(-2 p q)=4$ by [10, Corollary 18.4], [10, Corollary 19.6] and [12, p. 353] respectively. So, by the class number formula (cf. [15, p. 201]) and the above setting on the 2-class numbers of real quadratic fields (Page 11), we get

$$
\begin{aligned}
h_{2}(\mathbb{L})= & \frac{1}{2^{16}} q(\mathbb{L}) h_{2}(-1) h_{2}(2) h_{2}(-2) h_{2}(p) h_{2}(-p) h_{2}(q) h_{2}(-q) h_{2}(2 p) \\
& h_{2}(-2 p) h_{2}(2 q) h_{2}(-2 q) h_{2}(p q) h_{2}(-p q) h_{2}(2 p q) h_{2}(-2 p q) \\
= & \frac{1}{2^{16}} \cdot 2^{7} \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 2 \cdot 1 \cdot 1 \cdot 2 \cdot 2 \cdot 1 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 4=1
\end{aligned}
$$

This contradicts (2.2). It follows that $(2+\sqrt{2}) \varepsilon_{2} \sqrt{\varepsilon_{q}} \sqrt{\varepsilon_{2 q}}$ is a square in \mathbb{L}^{+}and so Lemma 2.2 completes the proof.
Table 2 Norms when p and q satisfy conditions (1.2)

ε	$\varepsilon^{\tau_{1}}$	$\varepsilon^{\tau_{2}}$	$\varepsilon^{\tau_{3}}$	$\varepsilon^{1+\tau_{1}}$	$\varepsilon^{1+\tau_{2}}$	$\varepsilon^{1+\tau_{3}}$	$\varepsilon^{1+\tau_{1} \tau_{2}}$	$\varepsilon^{1+\tau_{1} \tau_{3}}$	$\varepsilon^{1+\tau_{2} \tau_{3}}$
ε_{2}	$\frac{-1}{\varepsilon_{2}}$	ε_{2}	ε_{2}	-1	ε_{2}^{2}	ε_{2}^{2}	-1	-1	ε_{2}^{2}
ε_{p}	ε_{p}	$\frac{-1}{\varepsilon_{p}}$	ε_{p}	ε_{p}^{2}	-1	ε_{p}^{2}	-1	ε_{p}^{2}	-1
$\sqrt{\varepsilon_{q}}$	$-\sqrt{\varepsilon_{q}}$	$\sqrt{\varepsilon_{q}}$	$\frac{-1}{\sqrt{\varepsilon_{q}}}$	$-\varepsilon_{q}$	ε_{q}	-1	$-\varepsilon_{q}$	1	-1
$\sqrt{\varepsilon_{2 q}}$	$\frac{1}{\sqrt{\varepsilon_{2 q}}}$	$\sqrt{\varepsilon_{2 q}}$	$\frac{-1}{\sqrt{\varepsilon_{2 q}}}$	1	$\varepsilon_{2 q}$	-1	1	$-\varepsilon_{2 q}$	-1
$\sqrt{\varepsilon p q}$	$-\sqrt{\varepsilon p q}$	$\frac{-1}{\sqrt{\varepsilon p q}}$	$\frac{1}{\sqrt{\varepsilon p q}}$	$-\varepsilon_{p q}$	-1	1	1	-1	$-\varepsilon_{p q}$
$\sqrt{\varepsilon_{2 p q}}$	$\frac{-1}{\sqrt{\varepsilon_{2 p q}}}$	$\frac{1}{\sqrt{\varepsilon_{2 p q}}}$	$\frac{-1}{\sqrt{\varepsilon 2 p q}}$	-1	1	-1	$-\varepsilon_{2 p q}$	$\varepsilon_{2 p q}$	$-\varepsilon_{2 p q}$
$\sqrt{\varepsilon_{2} \varepsilon_{p} \varepsilon_{2 p}}$	$(-1)^{u} \sqrt{\frac{\varepsilon_{p}}{\varepsilon_{2} \varepsilon_{2 p}}}$	$(-1)^{v} \sqrt{\frac{\varepsilon_{2}}{\varepsilon_{p} \varepsilon_{2 p}}}$	$\sqrt{\varepsilon_{2} \varepsilon_{p} \varepsilon_{2 p}}$	$(-1)^{u} \varepsilon_{p}$	$(-1)^{v} \varepsilon_{2}$	$\varepsilon_{2} \varepsilon_{p} \varepsilon_{2 p}$			
$\sqrt[4]{\varepsilon_{2}^{2} \varepsilon_{p}^{2} \varepsilon_{q} \varepsilon_{p q} \varepsilon_{2 p q}}$	$(-1)^{r} \sqrt[4]{\frac{\varepsilon_{p}^{2} \varepsilon_{q} \varepsilon_{p q}}{\varepsilon_{2}^{2} \varepsilon_{2 p q}}}$	$(-1)^{s} \sqrt[4]{\frac{\varepsilon_{2}^{2} \varepsilon_{q}}{\varepsilon_{p}^{2} \varepsilon_{p q} \varepsilon_{2 p q}}}$	$(-1)^{t} \sqrt[4]{\frac{\varepsilon_{2}^{2} \varepsilon_{p}^{2}}{\varepsilon_{q} \varepsilon_{p q} \varepsilon_{2 p q}}}$	$(-1)^{r} \varepsilon_{p} \sqrt{\varepsilon_{q} \varepsilon_{p q}}$	$(-1)^{s} \varepsilon_{2} \sqrt{\varepsilon_{q}}$	$(-1)^{t} \varepsilon_{2} \varepsilon_{p}$			

3 Remarks on Hilbert 2-class field towers and cyclotomic $\mathbb{Z}_{\mathbf{2}}$-extensions

Let k be an algebraic number field and $\mathrm{Cl}_{2}(k)$ the 2-Sylow subgroup of its ideal class group $\mathrm{Cl}(k)$. Let $k^{(1)}$ (resp. $k^{(2)}$) be the first (resp. second) Hilbert 2-class field of k and put $G=$ $\operatorname{Gal}\left(k^{(2)} / k\right)$. Then if G^{\prime} denotes the commutator subgroup of G, we have by class field theory that $G^{\prime} \simeq \operatorname{Gal}\left(k^{(2)} / k^{(1)}\right)$ and $G / G^{\prime} \simeq \operatorname{Gal}\left(k^{(1)} / k\right) \simeq \mathrm{Cl}_{2}(k)$. Assume in all what follows that $\mathrm{Cl}_{2}(k)$ is of type $(2,2)$. Then in [13] Kisilevsky showed that G is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}, Q_{m}, D_{m}$ or S_{m}, where Q_{m}, D_{m}, and S_{m} denote the quaternion, dihedral and semidihedral groups, respectively, of order 2^{m}, where $m \geq 3$ and $m \geq 4$ for S_{m}. Let F_{1}, F_{2} and F_{3} be the three unramified quadratic extensions of k and assume that the 2-class group of F_{1} is cyclic. Then, using some known results of group theory, one can easily deduce from [13, Theorem 2] that we have the following remark (cf. [9, Remark 2.2]):
Remark 3.1 The 2-class groups of the two fields F_{2} and F_{3} are cyclic if and only if $k^{(1)}=k^{(2)}$ or $k^{(1)} \neq k^{(2)}$ and $G \simeq Q_{3}$. In the other cases the 2-class groups F_{2} and F_{3} are of type (2,2) (whereas that of F_{1} is cyclic).

Set the following notations:
(1) $L_{p q}: \mathbb{Q}(\sqrt{2}, \sqrt{q p}, i)$,
(2) $F_{p q}: \mathbb{Q}(\sqrt{p}, \sqrt{2 q}, i)$,
(3) $K_{p q}: \mathbb{Q}(\sqrt{2 p}, \sqrt{q}, i)$.

Remark 3.2 Let p and q be two primes satisfying conditions (1.1) or (1.2). Note that, by Lemmas 2.3 and 2.6, $x \pm 1$ is not a square in \mathbb{N}, where x and y are the two integers such that $\varepsilon_{2 p q}=x+y \sqrt{2 p q}$. Thus, the Hasse unit index of $\mathfrak{k}=\mathbb{Q}(\sqrt{2 p q}, i)$ equals 1 (cf. [3, 3.(1) p. 19]). So by [1] the 2 -class group of \mathbb{k} is of type (2,2). We similarly deduce, by using Lemmas 2.3 and 2.6, [9, Lemma 4.1] and [3, 3.(1) p. 19], that the condition on the Hasse unit index of \mathbb{k}, in [2, Théorème 21], is always verified (so, in particular, the conditions of this theorem hold).

Theorem 3.3 Let p and q be two primes satisfying (1.1). Then the following hold.
(1) The 2-class group of $L_{p q}$ is $\mathbb{Z} / 2^{m+1} \mathbb{Z}$, with $h_{2}(-p q)=2^{m}$.
(2) The 2-class group of $F_{p q}$ is of type $(2,2)$.
(3) The 2 -class group of $K_{p q}$ is of type $(2,2)$.

Proof Let $\mathbb{k}=\mathbb{Q}(\sqrt{2 p q}, i)$. By Remark 3.2, the 2-class group of \mathbb{k} is of type $(2,2)$. Note that $L_{p q}, F_{p q}$ and $K_{p q}$ are the three unramified quadratic extensions of \mathbb{k}. Note that, by [8, Theorem 10], the 2-class group $L_{p q}$ is cyclic. So the above preliminaries complete the proof.

Since the 2-class group of $L_{p q}$ is cyclic, the Hilbert 2-class field tower of $L_{p q}$ terminates at the first layer. Now we shall determine the structure of the $\operatorname{groups} \operatorname{Gal}\left(F_{p q}^{(2)} / F_{p q}\right)$ and $\operatorname{Gal}\left(K_{p q}^{(2)} / K_{p q}\right)$.

Theorem 3.4 Let p and q be two primes and m such that and $h_{2}(-p q)=2^{m}$.
(1) If p and q satisfy (1.1), then we have

$$
\operatorname{Gal}\left(F_{p q}^{(2)} / F_{p q}\right) \simeq \operatorname{Gal}\left(K_{p q}^{(2)} / K_{p q}\right) \simeq Q_{m+1} .
$$

(2) If p and q satisfy (1.2), then we have

$$
\operatorname{Gal}\left(F_{p q}^{(2)} / F_{p q}\right) \simeq \operatorname{Gal}\left(K_{p q}^{(2)} / K_{p q}\right) \simeq \mathbb{Z} / 4 \mathbb{Z}
$$

Proof Let $L_{1, p q}=\mathbb{Q}(\sqrt{2}, \sqrt{q}, \sqrt{p}, i)$. Since the 2-class group of $L_{p q}$ is cyclic (so its Hilbert 2-class field tower terminates at the first layer) and $L_{1, p q}$ is an unramified extension of $L_{p q}$, we have that the 2-class group of $L_{1, p q}$ is also cyclic. As $L_{1, p q}$ is also a quadratic unramified extension of both $F_{p q}$ and $K_{p q}$, then by [9, Proposition 2.2] and Theorems 2.5 and 2.8 we have $\left|\operatorname{Gal}\left(F_{p q}^{(2)} / F_{p q}\right)\right|=\left|\operatorname{Gal}\left(K_{p q}^{(2)} / K_{p q}\right)\right|=2 \cdot h_{2}\left(L_{1}\right)=2 \cdot h_{2}(-p q)$. Since $h_{2}(-p q)$ is even, and $h_{2}(-p q)=2$ if and only if $\left(\frac{p}{q}\right)=-1$ (cf. [10, Corollaries 18.4 and 19.6]), then we have the orders of the groups in question in both cases. Suppose that $\left(\frac{p}{q}\right)=1$. Then, by [2, Théorème 21], Remark 3.2 and the above discussions, the two groups in question are subgroups of index 2 of Q_{m+2}. So they are also quaternions of order 2^{m+1}.

Suppose now that $\left(\frac{p}{q}\right)=-1$. Then, by [2, Théorème 21] and Remark 3.2, the groups in question are subgroups of Q_{3} of index 2 . So they are cyclic. This completes the proof.

Remark 3.5 Put $\mathbb{k}=\mathbb{Q}(\sqrt{2 p q}, i)$ and assume that p and q are two primes satisfying (1.1). The author of [2] did not determine the order of $\operatorname{Gal}\left(\mathbb{k}^{(2)} / \mathbb{k}\right)$. Now it is easy to deduce that it is of order $\left|\operatorname{Gal}\left(\mathbb{k}^{(2)} / \mathbb{k}\right)\right|=2^{m+2}$ (i.e., $\left.\operatorname{Gal}\left(\mathbb{k}^{(2)} / \mathbb{k}\right) \simeq Q_{m+2}\right)$, where m is such that $h_{2}(-p q)=2^{m}$.

Theorem 3.6 Let p and q be two primes satisfying (1.1) or (1.2). $\operatorname{Put} \pi_{1}=2, \pi_{2}=2+\sqrt{2}, \ldots$, $\pi_{n}=2+\sqrt{\pi_{n-1}}, L_{n}=\mathbb{Q}\left(\sqrt{q}, \sqrt{p}, \zeta_{2^{n+2}}\right)$ and $L_{n}^{+}=\mathbb{Q}\left(\sqrt{p}, \sqrt{q}, \sqrt{\pi_{n}}\right)$. Then the following hold.
(1) For all $n \geq 1$, the 2 -class group of L_{n}^{+}is trivial.
(2) For all $n \geq 1$, the 2 -class group of L_{n} is $\mathbb{Z} / 2^{n+m-1} \mathbb{Z}$, where $h_{2}(-p q)=2^{m}$.

Proof (1) We claim that the 2-class group of $k=\mathbb{Q}(\sqrt{p}, \sqrt{q})$ is trivial. In fact, by Corollaries 2.4 and 2.7, [10, Corollaries 18.4 and 19.7] and Kuroda's class number formula ([14, p. 247]), we obtain

$$
h_{2}(k)=\frac{1}{4} q(k) h_{2}(p) h_{2}(q) h_{2}(p q)=\frac{1}{4} \cdot 2 \cdot 1 \cdot 1 \cdot 2=1 .
$$

By Theorems 2.5 and 2.8 , the class number of $\mathbb{Q}(\sqrt{p}, \sqrt{q}, \sqrt{2})$ the first step of the cyclotomic \mathbb{Z}_{2}-extension of k is odd. So we have proved (1) by [11, Theorem 1].
(2) Note that L_{n} is the genus field of $L_{n, p q}=\mathbb{Q}\left(\sqrt{p q}, \zeta_{2^{n+2}}\right)$ and $\left[L_{n}: L_{n, p q}\right]=2$. By $[8$, Theorem 10], the 2-class group of $L_{n, p q}$ is isomorphic to a cyclic group of order 2^{n+m}, therefore that of L_{n} is also cyclic and $h_{2}\left(L_{n}\right)=\frac{h_{2}\left(L_{n, p q}\right)}{2}=2^{n+m-1}$. So (2) is proved.

Remark 3.7 Let p and q be two primes satisfying (1.1) or (1.2). By the above theorem, the Iwasawa invariants λ_{2} and ν_{2} of the fields $F_{p q}, K_{p q}$ and $\mathbb{Q}(\sqrt{p}, \sqrt{q}, i)$ are equal to 1 and $m-1$, respectively.

Acknowledgements The author would like to thank his professor Abdelkader Zekhnini for reading the preliminary versions of this paper as well for his comments. Many thanks are also due to the referee for constructive comments which helped to improve this article.

References

1. A. Azizi, Sur le 2-groupe de classes d'idéaux de $\mathbb{Q}(\sqrt{d}, i)$. Rend. Circ. Mat. Palermo 2(48), 71-92 (1999)
2. A. Azizi, Sur la capitulation des 2 -classes d'idéaux de $k=\mathbb{Q}(\sqrt{2 p q}, i)$, où $p \equiv-q \equiv 1(\bmod 4)$. Acta. Arith. 94, 383-399 (2000)
3. A. Azizi, Unités de certains corps de nombres imaginaires et abéliens sur \mathbb{Q}. Ann. Sci. Math. Québec 23, 15-21 (1999)
4. A. Azizi et al., Benhamza, Sur la capitulation des 2-classes d'idéaux de $\mathbb{Q}(\sqrt{d}, \sqrt{-2})$. Ann. Sci. Math. Qué. 29, 1-20 (2005)
5. A. Azizi, M.M. Chems-eddin, A. Zekhnini, On the rank of the 2-class group of some imaginary triquadratic number fields. Ren. Circ. Mat. Palermo, II. Ser (2021). https://doi.org/10.1007/s12215-020-00589-0
6. A. Azizi, M. Talbi, Capitulation des 2-classes d'idéaux de certains corps biquadratiques cycliques. Acta Arith. 127, 231-248 (2007)
7. A. Azizi, A. Zekhnini, M. Taous, On the strongly ambiguous classes of some biquadratic number fields. Math. Bohem. 141, 363-384 (2016)
8. M.M. Chems-Eddin, K. Müller, 2-class groups of cyclotomic towers of imaginary biquadratic fields and applications. Int. J. Num. Theory (2021). https://doi.org/10.1142/S1793042121500627
9. M.M. Chems-Eddin, A. Zekhnini, A. Azizi, Units and 2-class field towers of some multiquadratic number fields. Turk J. Math. 44, 1466-1483 (2020)
10. P.E. Conner, J. Hurrelbrink, Class Number Parity (World Scientific, Singapore, 1988)
11. T. Fukuda, Remarks on \mathbb{Z}_{p}-extensions of number fields. Proc. Jpn. Acad. Ser. A Math. Sci. 70, 264-266 (1994)
12. P. Kaplan, Sur le 2-groupe des classes d'idéaux des corps quadratiques. J. Reine. Angew. Math. 283(284), 313-363 (1976)
13. H. Kisilevsky, Number fields with class number congruent to $4(\bmod 8)$ and Hilbert's theorem 94. J. Number Theory 8, 271-279 (1976)
14. F. Lemmermeyer, Kuroda's class number formula. Acta Arith. 66, 245-260 (1994)
15. H. Wada, On the class number and the unit group of certain algebraic number fields. J. Fac. Sci. Univ. Tokyo 13, 201-209 (1966)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: This paper was written to commemorate the innocent victims of the coronavirus disease (COVID-19) pandemic all around the world.
 \boxtimes Mohamed Mahmoud Chems-Eddin
 2m.chemseddin@gmail.com
 1 Mathematics Department, Sciences Faculty, Mohammed First University, Oujda, Morocco

