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Abstract
In this paper, we study how the roots of theKac polynomialsWn(z) =∑n−1

k=0 ξk zk concentrate
around the unit circle when the coefficients ofWn are independent and identically distributed
nondegenerate real random variables. It is well known that the roots of a Kac polynomial
concentrate around the unit circle as n → ∞ if and only if E[log(1 + |ξ0|)] < ∞. Under
the condition E[ξ20 ] < ∞, we show that there exists an annulus of width O(n−2(log n)−3)

around the unit circle which is free of roots with probability 1 − O((log n)−1/2). The proof
relies on small ball probability inequalities and the least common denominator used in [17].

Keywords Locally sub-Gaussian random variables · Salem–Zygmund type inequalities ·
Small ball probability · Zeros of random polynomials

Mathematics Subject Classification Primary 60G99 · 12D10; Secondary · 11CXX · 30C15

1 Introduction

The z-transform (a particular case is the discrete Fourier transform) is an important tool in
signal analysis and speech recognition. In this context, the study of the zeros of z-transforms
provides useful information on a signal. The existence of a region free of zeros around the
unit circle is important to the proper working of the z-transform. For further details, see
Chapter 3 in [4]. Roughly speaking, in this paper we find a region free of zeros around the
unit circle for Kac polynomials, which are closely related to the discrete Fourier transform.
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160 G. Barrera, P. Manrique

Let n ∈ N and let ξ0, . . . , ξn−1 be independent and identically distributed (iid for short)
nondegenerate real randomvariables (rvs for short) defined in the probability space (�,F,P).
Denote byE the expectationwith respect to themeasureP. TheKac polynomialWn is defined
as the random polynomial of degree n − 1 given by

Wn(z) =
n−1∑

j=0

ξ j z
j , z ∈ C.

In the sequel, we introduce the basic notation and terminology that will be used throughout
this paper. For any z ∈ C, let |z| denote themodulus of z and arg(z) the argument of z. Choose
a, b ∈ R such that a ≤ b. Let Rn(a, b) denote the number of roots of Wn in the annulus
{z ∈ C : a ≤ |z| ≤ b} and, for any α, β ∈ [−π, π] such that α ≤ β, let Sn(α, β) denote the
number of roots in {z ∈ C : α ≤ arg(z) ≤ β}.

Shparo and Shur proved in [20] that under general conditions on the random coefficients
(rcs for short), the roots ofWn concentrate around the unit circle with asymptotically uniform
distribution in the argument as n increases. Moreover, Ibragimov and Zaporozhets showed
in [7] that the rcs of Wn are nondegenerate satisfying E[log(1+ |ξ0|)] < ∞ if and only if its
roots are asymptotically concentrated near the unit circle. Later, Kabluchko and Zaporozhets
provided in [9] a wide description of the localization of the roots for different conditions on
the rcs. We point out that the localization of the roots of Kac polynomials determine the poor
efficiency of some algorithms for speech recognition and signal processing applications; see
[5] for further details.

Ibragimov and Zaporozhets proved in [7] that

P

(
lim
n→∞

1

n
Rn (1 − δ, 1 + δ) = 1

)
= 1 holds for any δ ∈ (0, 1)

if and only if E[log(1 + |ξ0|)] < ∞. They also proved that for any distribution ξ0 and
α, β ∈ (−π, π) the following holds:

P

(
lim
n→∞

1

n
Sn (α, β) = β − α

2π

)
= 1.

Shepp andVanderbei studied in [19] the case of iid standardGaussian coefficients and showed
that

lim
n→∞

1

n
E[Rn(e

−δ/n, eδ/n)] = 1 + e−2δ

1 − e−2δ − 1

δ
for any δ > 0. (1)

Later, Ibragimov and Zeitouni, in [8], extended (1) to the case of iid coefficients, whose
common distribution belongs to the domain of attraction of an α-stable law:

lim
n→∞

1

n
E[Rn(e

−δ/n, eδ/n)] = 1 + e−αδ

1 − e−αδ
− 2

αδ
for any δ > 0. (2)

Note that for any δ > 0, as α → 0+ we have 1+e−αδ

1−e−αδ − 2
αδ

→ 0. Then (2) may tend to zero
as n → ∞ when ξ0 has a slowly varying tail distribution. In fact, Götze and Zaporozhets
showed in [6] that if |ξ0| has a slowly varying tail distribution, then

lim
n→∞P

(
Rn(e

−δ/n, eδ/n) = 0
) = 1 for any δ > 0,

i.e., the roots of a Kac polynomial with iid rcs with a slowly varying tail distribution hit the
unit circle with almost zero probability.
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Zero-free neighborhoods around the unit circle for Kac… 161

In the case that Wn has iid rcs whose common distribution belongs to the domain of
attraction of an α-stable law, limit (2) yields that, for δ > 0, Wn has at least one root in the
annulus Rδ,n := {z ∈ C : e−δ/n ≤ |z| ≤ eδ/n} with positive probability for all large n and

P
(
Rn(e

−δ/n, eδ/n) = n
) ≤ 1 + e−αδ

1 − e−αδ
− 2

αδ
+ o(1).

Therefore, a remarkable question is to determine if there exists an annulus inside of Rδ,n such
that Wn has at least one root on it or not. The existence of roots pretty close to the unit circle
is an important aspect in the analysis of signals. This helps us to understand the contribution
of the phase information of a signal. We refer to [5] for further details.

Shepp and Vanderbei conjectured in [19] that, with high probability, the nearest root of
Wn to the unit circle is at a distance of order O(n−2). Later, Konyagin and Schlag showed in
[13] that the last conjecture holds true when the rcs have standard Gaussian or Rademacher
(uniform distribution on {−1, 1}) distribution. To be more precise, in [13] it is shown that
there exists a positive constant C such that for any t > 0

lim sup
n→∞

P

(
min

||z|−1|≤tn−2
|Wn(z)| ≤ tn−1/2

)
≤ Ct . (3)

Moreover, in (2.3) in [13] the limit

P

(

min
x∈[0,1] |Wn(x)| ≤ n−1/2(log n)−γ

)

= o(1), as n → ∞, (4)

is established for γ > 1/2 and iid Gaussian rcs.
Karapetyan in [12] mentioned that it is possible to extend the above result under the

assumption of nondegenerate real sub-Gaussian rcs, but only a sketch of the proof was
given. Moreover, he claimed that the previous result can be extended under the finiteness of
the third moment on the rcs. However, Karapetyan in [11] showed that for iid rcs with zero

mean and finite third moment, it follows, for any ε ∈ (0, 1) and n > 16C
9936
ε3 ,

P

(
min

x∈[0,1]

∣
∣
∣

n−1∑

j=0

ξ j e
i j x
∣
∣
∣ ≥ n−1/2+ε

)
≤ 1

nε2/180
, (5)

where the constant C depends only on the moments of ξ0. The proof of (5) is long, technical
and complicated.

Later, Barrera and Manrique [2] proved that if the moment generating function of iid
coefficients exists in an open neighborhood around 0, then for any t ≥ 1

P

(
min

||z|−1|≤tn−2(log n)−1/2−γ
|Wn(z)| ≤ tn−1/2(log n)−γ

)
= O((log n)−γ+1/2), (6)

where γ > 1/2. The proof of (6) recovers the essential ideas of Konyagin and Schlag
[13], who only considered the problem when the rcs have Rademacher or standard Gaussian
distribution. Their proof is quite technical and involved. It is based on the Salem–Zygmund
inequality for sub-Gaussian rvs.

To extend for more distributions, Barrera and Manrique [2] took advantage of the concept
of least common denominator (lcd for short), which was developed in the study of the singu-
larity of random matrices [17]. Roughly speaking, the lcd is a combinatorial measurement to
understand the concentration of a sum of independent rvs in a small ball. Furthermore, under
the assumptions of the finiteness of the second moment, using similar ideas from Barrera
and Manrique [2], it is possible to find an annulus in which Wn does not have roots with
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162 G. Barrera, P. Manrique

high probability. We remark that the lcd has been converted into a useful tool that allows the
analysis of various interesting problems. For instance, it is used in the study of isomorphism
between graphs [15] and in the analysis of the condition number for random matrices [18].
In this paper, the lcd is used to understand how small the modulus of a random polynomial
near the unit circle can be.

In this work, the lcd allows us to develop clear arguments to estimate how close the
roots of a Kac polynomial are to the unit circle. To be more precise, when the rcs of a Kac
polynomial are iid rvs with zero mean and finite second moment, the majority of the roots
are at a distance of order O(n−2(log n)−3) with probability 1 − O((log n)−1/2). The main
obstacle for extending this result comes from the Salem–Zygmund inequality as we will see
in Section 2.

The main result of this paper is the following.

Theorem 1.1 Let
{
ξ j : j ≥ 0

}
be a sequence of real iid nondegenerate real rvs satisfying

sup
u∈R

P(|ξ0 − u| ≤ γ ) ≤ 1 − q and P(|ξ0| > M) ≤ q

2
(H)

for some M > 0, γ > 0 and q ∈ (0, 1). Suppose E[ξ0] = 0 and E[ξ20 ] < ∞. Then for all
fixed t ≥ 1 we have

P

(
min

||z|−1|≤tn−2(log n)−3
|Wn(z)| ≤ tn−1/2 (log n)−2

)
= O((log n)−1/2), (7)

where the implicit constant depends on t and the distribution of ξ0.

Remark 1.2 (1) In Theorem 1.1 we only assume the finiteness of the second moment, zero
mean and condition (H) which include Rademacher and standard Gaussian rvs. As a
direct consequence of Theorem 1.1, we have

P
(
Wn has no roots on

{
z ∈ C : ||z| − 1| ≤ tn−2 (log n)−3 }) = 1 − O((log n)−1/2).

(2) We point out that in (7) we consider the minimum of the modulus of the Kac polynomial
over the set {||z| − 1| ≤ tn−2 (log n)−3} which is properly contained in the region con-
sidered in (3), but it contains the region considered in (4). Nevertheless, we obtain the
upper bound O((log n)−1/2) which improves the bound given in (3).

This paper is organized as follows. In Sect. 2 we give an outline of the proof. In Sect. 3
we provide the proof of Theorem 1.1. Finally, in Appendix A we prove auxiliary results that
we used throughout the paper.

2 Outline of the proof

In this section, we present the strategy used to prove Theorem 1.1. Our goal is to estimate
P(An), where

An :=
{

min
z∈C:||z|−1|≤tn−2(log n)−3

|Wn(z)| ≤ tn−1/2(log n)−2
}

and t ≥ 1 is a fixed constant. First, motivated by the estimates given in [13, Section 2,
p. 4964], we analyze the probability of the events

An,α := {|Wn (exp(i2πxα))| ≤ gn} for xα = α

Nn
, α = 0, . . . , Nn − 1,
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Zero-free neighborhoods around the unit circle for Kac… 163

where Nn and gn are appropriate functions of n (we provide a precise description of them
later on). We anticipate that Nn ≈ n2(log(n))3, which is similar to the number of balls used
in [13]. We point out that Nn needs to trade off gn in order that the probability of An,α tends
to zero, as n → ∞.

Second, for each α = 0, . . . , Nn − 1 we analyze the arithmetic structure of the sequence
{exp(i2π j xα) : j = 0, . . . , n − 1} and using the so-called small ball inequalities we prove
that P(An,α) → 0, as n → ∞. The idea is to apply the Taylor Theorem to approximate Wn

in small balls with centers at exp(i2πxα). This allows us to write the event An as the union of
events of the form An,α . However, we need to handle the maximum value for the derivative
ofWn on the unit circle. The latter can be done by a Salem–Zygmund type inequality, which
estimates the maximum possible value of a Kac polynomial on the unit circle.

Let ‖W ′
n‖∞ denote the supremum norm of W ′

n over the unit circle. In the case of
ξ0, . . . , ξn−1 being iid sub-Gaussian rvs, a Salem–Zygmund type inequality (in probabil-
ity) gives

P
(‖Wn‖∞ > Cpn

1/2 (log n)1/2
) = O

(
n−2) (8)

for some suitable positive constantCp , see for instance [10, Chapter 6, Theorem 2]. In [2], the
authors showed that (8) holds for iid zero mean rvs with a finite moment generating function.
In this paper, we do not assume the existence of the moment generating function. Instead, we
assume the finiteness of the second moment. By applying the majorizing measure method,
Weber [21] showed (8) in expectation. To be more precise, let ξ0, ξ1, . . . , ξn−1 be iid zero
mean rvs with finite second moment. Corollary 2 in [21] implies that there exists a positive
constant C̃ (that only depends on E[ξ20 ]) such that

E [‖Wn‖∞] ≤ C̃n1/2 (log n)1/2 for any n ∈ N.

To improve Theorem 1.1 (using the lcd technique) to more general rcs, we require a refined
version of the Salem–Zygmund inequality for rvs without a finite second moment. At the
moment, the authors are not able to obtain a Salem–Zygmund type inequality for rvs without
the finiteness of the second moment. Later, we apply small ball inequalities to show that

P (|Wn (exp (i2πxα))| ≤ gn) → 0, as n → ∞.

Such inequalities allow us to consider more general rcs and provide a new proof of the main
theorem in [13]. To apply small ball inequalities, we analyze the lcd for some specific matrix.
In the sequel, we give the definition of the lcd for a matrix. Let log+ x := max {log x, 0} for
any x > 0.

Definition 2.1 (Least common denominator (lcd)) Let L > 0 be a positive number. Let ‖ · ‖2
be the standard Euclidean norm and let dist

(
v,ZM

)
denote the distance between the vector

v ∈ R
M and the set ZM . For a given matrix V ∈ R

m×M the lcd is defined as

D(V ) := inf

⎧
⎨

⎩
‖
‖2 : 
 ∈ R

m, dist
(
V T
,ZM

)
< L

√

log+
‖V T
‖2

L

⎫
⎬

⎭
.

For a review of the concept of lcd, we recommend [17, Section 7]. For our purposes, in
Definition 2.1 we take m = 2, M = n and the matrix V is given by

V :=
[
1 cos (2πxα) . . . cos ((n − 1)2πxα)

0 sin (2πxα) . . . sin ((n − 1)2πxα)

]

.
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164 G. Barrera, P. Manrique

Set X = [ξ0, . . . , ξn−1
]T . Observe that

P (‖V X‖2 ≤ gn) = P (|Wn (exp (i2πxα))| ≤ gn) .

Note that if det
(
VV T
)

> 0, Theorem 7.5 in [17] implies that for a > 0 and t ≥ 0

P (‖aV X‖2 ≤ t) ≤ C2L2

2a2(det(VV T ))1/2

(

t + 1

D(aV )

)2
, (9)

where L ≥ √
2/q and the constantC only depends on constantsM , γ , q specified in Theorem

1.1. By Definition 2.1 it is not hard to deduce that, for any a > 0, D(aV ) ≥ (1/a)D(V ).
Recall the inequality (x + y)2 ≤ 2x2 + 2y2 for any x, y ∈ R. By (9) we deduce

P (‖aV X‖2 ≤ t) ≤ C2L2t2

a2
(
det
(
VV T
))1/2 + C2L2

a2
(
det
(
VV T
))1/2

(D(aV ))2

≤ C2L2t2

a2
(
det
(
VV T
))1/2 + C2L2

(
det
(
VV T
))1/2

(D(V ))2
. (K)

Since xα = α
Nn

, the arithmetic properties of xα given by α and Nn should play an impor-
tant role in the estimates. Depending on the greatest common divisor between α and Nn ,
gcd (α, Nn), we deduce suitable positive lower bounds for det

(
V T V
)
and dist

(
V T
,Zn

)

which together with (K) allow us to show that P (‖V X‖2 ≤ gn) is sufficiently small.

Taylor’s approximation

In the sequel, define the trigonometric random polynomial Tn(x) := ∑n−1
j=0 ξ j ei j x , x ∈ R,

and let T ′
n denote its derivative with respect to x . To make the notation shorter, �n denotes

the following event:

�n :=
{

max
z∈C:||z|−1|≤2tn−11/10

|Wn(z)| ≤ n3/2, ‖T ′
n‖∞ ≤ C0n

3/2 log n

}

,

where C0 is a positive constant of which we will find the precise value later on. We also
let P (A, B) denote the probability P (A ∩ B) for any two events A and B. By the total
probability law, we deduce

P (An) ≤ P (An,�n) + P

(
‖T ′

n‖∞ > C0n
3
2 log n

)

+ P

(

max
z∈C:||z|−1|≤2tn−11/10

|Wn(z)| > n3/2
)

. (10)

The Markov inequality yields

P

(

max
z∈C:||z|−1|≤2tn−11/10

|Wn(z)| > n3/2
)

≤ P

⎛

⎝
n−1∑

j=0

|ξ j |
(

1 + 2t

n1+1/10

) j

> n3/2

⎞

⎠

≤
E

[
∑n−1

j=0|ξ j |
(
1 + 2t

n1+1/10

) j
]

n3/2
≤ e2t nE [|ξ0|]

n3/2
= e2tE [|ξ0|]

n1/2

in other words,

P

(

max
z∈C:||z|−1|≤2tn−11/10

|Wn(z)| > n3/2
)

= O
(
n−1/2) , (11)
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Zero-free neighborhoods around the unit circle for Kac… 165

where the implicit constant depends on t and E [|ξ0|]. On the other hand, the Bernstein
inequality (see [16, Theorem 14.1.1]) allows us to deduce for the second term on the right-
side hand of (10) the inequality

P
(‖T ′

n‖∞ > C0n
3/2 log n

) ≤ P
(‖Tn‖∞ > C0n

1/2 log n
)
.

Since E [ξ0] = 0 and E
[
ξ20

]
< ∞, one can apply [21, Corollary 2] which together with the

Markov inequality imply

P
(‖Tn‖∞ > C0n

1/2 log n
) ≤ C(E

[
ξ20

]
)1/2n1/2 (log n)1/2

C0n1/2 log n
= C(E

[
ξ20

]
)1/2

C0 (log n)1/2
,

where C is a universal positive constant. Consequently, the Bernstein inequality yields

P
(‖T ′

n‖∞ > C0n
3/2 log n

) = O
(
(log n)−1/2) . (12)

By (10), (11) and (12), we observe that to estimateP(An)we only need to analyzeP(An,�n).

Remark 2.2 In the preceding reasoning we only used zero mean and the finiteness of the
secondmoment of ξ0. In particular, it holds for sub-Gaussian rvs,which includesRademacher,
standard Gaussian, and bounded rvs.

Arithmetic properties of x

In the sequel,we decompose the event An∩�n into regions forwhich the arithmetic properties
of xα are useful in allowing the use of the anti-concentration assumption(H) and allowing
us to show that P(An,�n) tends to zero, as n → ∞. We point out that in the following
reasoning we use only assumption(H).

To achieve our goal, we consider a set of balls with center at points on the unit circle
with an adequate radius. We distinguish two kinds of balls: the special balls with center at
1 + 0i and −1 + 0i , where the radius r is large (r = 2tn−11/10), and the balls with center
at points z with argument satisfying n−11/10 < |arg(z)| < π − n−11/10 and small radius
(r = 2tn−2 (log n)−3).

Recall that for any x ∈ R, �x
 denotes the greatest integer less than or equal to x . Let
N = �n2 (log n)3
 and xα = α

N for α = 0, 1, . . . , N − 1. For a ∈ C and s > 0, let B (a, s)
denote the closed ball with center a and radius s, i.e., B (a, s) = {z ∈ C : |z − a| ≤ s}. Write
S
1 for the unit circle and let

A (S1, tn−2 (log n)−3) := {z ∈ C : ||z| − 1| ≤ tn−2 (log n)−3} .

Notice that

A (S1, tn−2 (log n)−3) = {z ∈ A : n−11/10 < |arg(z)| < π − n−11/10}

∪ {z ∈ A : |arg(z)| ≤ n−11/10 or |arg(z) − π | ≤ n−11/10} .

If t ≥ 1, observe that
{
z ∈ A : |arg(z)| ≤ n−11/10 or |arg(z) − π | ≤ n−11/10}

⊂ B
(−1 + 0i, 2tn−11/10) ∪ B

(
1 + 0i, 2tn−11/10) .

The preceding inclusion yields that any z ∈ A with small argument belongs in the union of
the balls with center at 1 + 0i and −1 + 0i with radius 2tn−11/10. On the other hand, for
z ∈ A with large argument,

123



166 G. Barrera, P. Manrique

{
z ∈ A : n−11/10 < |arg(z)| < π − n−11/10}

⊂
N−1⋃

α=1
α : n−11/10<|2πxα |<π−n−11/10

B
(
ei2πxα , 2tn−2 (log n)−3

)
.

Define

J1(n, N ) := {α ∈ [1, N − 1] ∩ N : gcd (α, N ) ≥ n11/10 (log n)−1/2} ,

J2(n, N ) := {α ∈ [1, N − 1] ∩ N : n11/10 (log n)−1/2 ≥ gcd (α, N ) ≥ n (log n)3
}
,

J3(n, N ) := {α ∈ [1, N − 1] ∩ N : n (log n)3 ≥ gcd (α, N ) ≥ n9/10 (log n)3
}
,

where gcd(α, N ) denotes the greatest common divisor of α and N .
For any α ∈ J3(n, N ), we have

n − 1

n (log n)3
≤ N

gcd (α, N )
≤ n11/10.

The preceding inequalities mean that the irreducible fraction of xα is as small as a multiple
of n−11/10. Therefore,

N−1⋃

α=1
α : n−11/10<|2πxα |<π−n−11/10

B
(
ei2πxα , 2tn−2 (log n)−3

)

=
⋃

α∈J1(n,N )

B
(
ei2πxα , 2tn−2 (log n)−3

)
∪
⋃

α∈J2(n,N )

B
(
ei2πxα , 2tn−2 (log n)−3

)

∪
⋃

α∈J3(n,N )

B
(
ei2πxα , 2tn−2 (log n)−3

)
.

We emphasize that if α ∈ J1(n, N ) ∪ J2(n, N ) ∪ J3(n, N ), then

n−11/10 < |2πxα| < π − n−11/10.

Consequently,

P (An,�n) ≤ P

(

�n, min
z∈B(1+0i,2tn−11/10)

|Wn(z)| < tn−1/2 (log n)−2

)

+ P

(

�n, min
z∈B(−1+0i,2tn−11/10)

|Wn(z)| < tn−1/2 (log n)−2

)

+
∑

α∈J1(n,N )

P (�n,Bα) +
∑

α∈J2(n,N )

P (�n,Bα) +
∑

α∈J3(n,N )

P (�n,Bα) ,

(13)

where

Bα :=
{

min
z∈B(ei2πxα ,2tn−2(log n)−3)

|Wn(z)| < tn−1/2 (log n)−2

}

.

The right-hand side of (13) will be estimated as follows.

123



Zero-free neighborhoods around the unit circle for Kac… 167

Lemma 2.3 The following hold.

P

(

�n, min
z∈B(1+0i,2tn−11/10)

|Wn(z)| < tn−1/2 (log n)−2

)

= O

(
log n

n1/10

)

and

P

(

�n, min
z∈B(−1+0i,2tn−11/10)

|Wn(z)| < tn−1/2 (log n)−2

)

= O

(
log n

n1/10

)

,

where the implicit constants in the big O notation depend on L and t.

Lemma 2.4 Suppose gcd (α, N ) ≥ n11/10 (log n)−1/2, where N = �n2(log n)3
. Then for a
suitable constant C̃ it follows that

∑

α∈J1(n,N )

P

(
|Wn

(
ei2πxα

)
| ≤ C̃tn−1/2 (log n)−2

)
= O

(
(log n)4

n1/20

)

,

where the implicit constant in the big O notation depends on L and t.

Lemma 2.5 Suppose n11/10

(log n)1/2
≥ gcd (α, N ) ≥ n (log n)3, where N = �n2(log n)3
. Then

for a suitable constant C̃ it follows that

∑

α∈J2(n,N )

P

(
|Wn

(
ei2πxα

)
| ≤ C̃tn−1/2 (log n)−2

)
= O

(
1

log n

)

,

where the implicit constant in the big O notation depends on L and t.

Lemma 2.6 Suppose n (log n)3 ≥ gcd (α, N ) ≥ n9/10 (log n)3, where N = �n2 (log n)3
.
Then for a suitable constant C̃ it follows that

∑

α∈J3(n,N )

P

(
|Wn

(
ei2πxα

)
| ≤ C̃tn−1/2 (log n)−2

)
= O

(
1

n1/10

)

,

where the implicit constant in the big O notation depends on L and t.

In the sequel, we stress that Theorem 1.1 is just a consequence of what we have already
stated up to here. Indeed, combining Lemma 2.3, Lemma 2.4, Lemma 2.5, Lemma 2.6,
estimate (11) and estimate (12) in inequality (10) yields Theorem 1.1.

3 Proof of Theorem 1.1

In this section, we show that the left-hand side of inequality (13) is of order O((log(n))−1/2).

3.1 Estimates on the balls centered at−1 and 1

Proof of Lemma 2.3 Let z ∈ B
(
1 + 0i, 2tn−11/10

)
. The Taylor Theorem implies

|Wn(z) − Wn(1)| ≤ |z − 1||W ′
n(1)| + |R2(z)|,
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where R2(z) is the error of the Taylor approximation of order 2. On �n ,

|R2(z)| ≤
(
2tn−1−1/10

)2

1 − o(1)
max

z∈B(1+0i,2tn−11/10)
|Wn(z)|

≤ 4t2n−2−1/5n3/2

1 − o(1)
= 4t2n−1/2−1/5

1 − o(1)
,

where o(1) = 2tn−1−1/10. By the preceding inequality on �n , we infer

|Wn(z) − Wn(1)| ≤ 2tn−1−1/10|W ′
n(1)| + 4t2n−1/2−1/5

1 − o(1)

≤ 2tn−1−1/10‖T ′
n‖∞ + 4t2n−1/2−1/5

1 − o(1)

≤ 2C0tn
1/2−1/10 log n + 4t2n−1/2−1/5

1 − o(1)
.

Hence,

P

(

�n, min
z∈B(1+0i,2tn−11/10)

|Wn(z)| < tn−1/2 (log n)−2

)

≤ P

(
|Wn(1)| ≤ 2C2tn

1/2−1/10 log n
)

,

where 2C2 = 2C0 + 4t + 1. Since Wn(1) =∑n−1
j=0 ξ j , [17, Corollary 7.6] implies

P
(|Wn(1)| ≤ 2C2tn

1/2−1/10 log n
) ≤ C3L

‖a‖
(

2C2t + 1

D(a)

)

for L ≥ √
1/q, where C3 is a positive constant and D(a) is the lcd of

a = (n1/2−1/10 log n
)−1

(1, . . . , 1) ∈ R
n .

By [17, Proposition 7.4], D (a) ≥ 1
2|a|∞ , where |a|∞ denotes the maximum Euclidean norm

of the columns of a. Then D(a) ≥ 1/2n1/2−1/10 log n and

P
(|Wn(1)| ≤ 2C2tn

1/2−1/10 log n
) ≤ C3L log n

n1/10

(

2C2t + 2

n1/2−1/10 log n

)

≤ (2C2t + 2)C3L log n

n1/10
.

Therefore,

P

(

�n, min
z∈B(1+0i,2tn−11/10)

|Wn(z)| < tn−1/2 (log n)−2

)

= O

(
log n

n1/10

)

.

On the other hand, for z ∈ B
(−1 + 0i, 2tn−11/10

)
a similar reasoning yields

P

(

�n, min
z∈B(−1+0i,2tn−11/10)

|Wn(z)| < tn−1/2 (log n)−2

)

≤ P
(|Wn(−1)| ≤ 2C2tn

1/2−1/10 log n
)
.

In this case, we need to analyze Wn(−1) = ∑n−1
j=0 (−1) j ξ j . Again taking L ≥ √

1/q and
applying [17, Corollary 7.6], we obtain

P
(|Wn(−1)| ≤ 2C2tn

1/2−1/10 log n
) ≤ C3L

‖b‖
(

2C2t + 1

D(b)

)

,
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where C3 is a positive constant and D(b) is the lcd of

b = (n1/2−1/10 log n
)−1 (

1,−1, 1, . . . , (−1)n−1) ∈ R
n .

By [17, Proposition 7.4], D(b) ≥ 1/2n1/2−1/10 log n. So

P
(|Wn(−1)| ≤ 2C2tn

1/2−1/10 log n
) ≤ C3L log n

n1/10

(

2C2t + 2

n1/2−1/10 log n

)

≤ (2C2t + 2)C3L log n

n1/10
.

Therefore,

P

(

�n, min
z∈B(−1+0i,2tn−11/10)

|Wn(z)| < tn−1/2 (log n)−2

)

= O

(
log n

n1/10

)

.

��

3.2 Estimates of P
(
1n,B˛

)

In the sequel, we apply the Taylor Theorem repeatedly in order to reduce P (�n,Bα) to an
estimate of the probability of how small a sum of iid rvs can be. The latter can be computed
(estimated) using small ball inequalities.

Let z ∈ B
(
ei2πxα , 2tn−2 (log n)−3) and suppose that �n holds. The Taylor Theorem

yields

|Wn(z) − Wn

(
ei2πxα

)
| ≤ |z − ei2πxα ||W ′

n

(
ei2πxα

)
| + |R2(z)|

≤ 2tn−2 (log n)−3 |W ′
n

(
ei2πxα

)
| + 4t2n−5/2 (log n)−6

1 − o(1)

≤ (2tC0 + 4t2
)
n−1/2 (log n)−2 ,

where o(1) = 2tn−2 (log n)−3. Hence

P (�n,Bα) ≤ P

(
|Wn

(
ei2πxα

)
| ≤ 2tC2n

−1/2 (log n)−2
)

. (14)

To show that P (�n,Bα) tends to zero as n increases, we rewrite the sum Wn
(
ei2πxα

)
as the

product of a matrix and a vector, and then we analyze the lcd of the corresponding matrix.
Define the 2 × n matrix Vα as follows:

Vα :=
[
1 cos (2πxα) . . . cos ((n − 1)2πxα)

0 sin (2πxα) . . . sin ((n − 1)2πxα)

]

and take X = [ξ0, . . . , ξn−1
]T ∈ R

n . Notice that

‖VαX‖2 =
∣
∣
∣

n−1∑

j=0

ξ j e
i j2πxα

∣
∣
∣ = |Wn

(
ei2πxα

)
|.

Let 
 = r [cos (θ) , sin (θ)]T ∈ R
2, where r > 0 and θ ∈ [0, 2π). For fixed r and θ we

have

V T
α 
 = r [cos (−θ) , cos (2πxα − θ) , . . . , cos (2(n − 1)πxα − θ)]T ∈ R

n .
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We also point out that ‖V T
α 
‖2 ≤ r

√
n. On the other hand, we observe that

det
(
VαV

T
α

)
= det

⎡

⎣

∑n−1
j=0 cos

2 ( j2πxα) 1
2

∑n−1
j=0 sin (2 · j2πxα)

1
2

∑n−1
j=0 sin (2 · j2πxα)

∑n−1
j=0 sin

2 ( j2πxα)

⎤

⎦ .

Bearing all this inmind, we can use the notion of lcd for high dimensions to obtain an accurate
upper bound of the left-hand side of (14).

We recall that the events �n ∩ Bα are defined for

n−11/10 < |2πxα| < π − n−11/10.

Therefore, to estimate the left-hand side of (14), we distinguish the following three cases.

3.2.1 Estimation on J1(n,N)

Proof of Lemma 2.4 Notice that

N

gcd (α, N )
≤ n2 (log n)3

n11/10 (log n)−1/2 = n9/10 (log n)7/2

and

|2πxα| = 2π
α

N
= 2π

α/gcd (α, N )

N/gcd (α, N )
≥ 2π

1

n9/10 (log n)7/2
.

Then 2πxα also satisfies n−1 < |2πxα| < π − n−1 for all large n. By [13, Lemma 3.2, Part
1], there exist positive constants c4,C4 such that

c4n
2 ≤ det

(
VαV

T
α

)
≤ C4n

2. (15)

By Lemma A.1 in Appendix A we obtain that the number of indices α ∈ [1, N ] ∩ N that

satisfies the condition gcd (α, N ) ≥ n11/10 (log n)−1/2 is at most N1+o(1)

n11/10(log n)−1/2 . By the

definition of N we obtain

N 1+o(1)

n11/10 (log n)−1/2 ≤ n2+o(1) (log n)7/2+o(1)

n11/10
= n9/10+o(1) (log n)7/2+o(1) . (16)

By [17, Proposition 7.4], the lcd of Vα satisfies D (Vα) ≥ 1
2|Vα |∞ , where |Vα|∞ denotes

the maximum Euclidean norm of the columns of Vα . Observe that |Vα|∞ = 1 and hence
D (Vα) ≥ 1/2. Therefore, inequality (K), inequality (15) and inequality (16) yield
∑

α∈J1(n,N )

P

(
|Wn

(
ei2πxα

)
| ≤ 2tC2n

−1/2 (log n)−2
)

≤ n9/10+o(1) (log n)7/2+o(1)

(
2C2L2 (2tC2)

2

(
c4n2
)1/2 (

n1/2 (log n)2
)2 + 2C2L2

1
4

(
c4n2
)1/2

)

≤ 8C2C2
2 L

2t2

c1/24 n11/10−o(1) (log n)1/2−o(1)
+ 8C2L2 (log n)7/2+o(1)

c1/24 n1/10−o(1)

for all large n. Consequently,

∑

α∈J1(n,N )

P

(
|Wn

(
ei2πxα

)
| ≤ 2tC2n

−1/2 (log n)−2
)

= O

(
(log n)4

n1/20

)

,
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where the implicit constant depends on L and t . ��

3.2.2 Estimation on J2(n,N)

Proof of Lemma 2.5 Notice that

n ≥ N

gcd (α, N )
≥ n9/10 (log n)7/2 − o(1), (17)

where o(1) = (log n)1/2

n11/10
. The latter implies

|2πxα| = 2π
α

N
= 2π

α/gcd (α, N )

N/gcd (α, N )
≥ 2π

1

n
.

Then 2πxα also satisfies n−1 ≤ |2πxα| ≤ π − n−1 for all large n. By [13, Lemma 3.2, Part
1] there exist positive constants c4,C4 such that

c4n
2 ≤ det

(
VαV

T
α

)
≤ C4n

2. (18)

Note xα = α
N = α′

N ′ , where α = α′ gcd (α, N ) and N = N ′ gcd (α, N ). Observe that
gcd
(
α′, N ′) = 1. Since N ′ ≤ n, for any θ we have

{

exp

(

i

(

j2π
α′

N ′ − θ

))

: j = 0, . . . , N ′ − 1

}

=
{

exp

(

i

(

j2π
1

N ′ − θ

))

: j = 0, . . . , N ′ − 1

}

.

Hence, without loss of generality, we assume that xα = 1
N ′ . A straightforward computation

yields

V T
α 
 = r [cos (−θ) , cos (2πxα − θ) , . . . , cos (2(n − 1)πxα − θ)]T ∈ R

n .

Notice that the proof of Lemma A.2 in Appendix A holds true for any real positive number
r . If r ≤ 1

32πxα
, by Lemma A.2 in Appendix A, inequality (17) and remembering that

‖V T
α 
‖2 ≤ r

√
n we deduce

1

128π

(
n9/10 (log n)7/2 − o (1)

) ≤ 1

128πxα

≤ dist
(
V T

α 
,Zn
)

≤ L

√

log+
‖V T

α 
‖2
L

≤ L

√

log+
rn1/2

L
≤ L

√

log+
n3/2

L
,

which yields a contradiction as L ≥ √
2/q is fixed. Then for r > 1

32πxα
we have

D (Vα) ≥ r >
1

32π

(
n9/10 (log n)7/2 − o (1)

)
.
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Therefore, the preceding inequality together with inequality (K), inequality (18) and the fact
that the cardinality of J2(n, N ) is at most N allow us to deduce

∑

α∈J2(n,N )

P

(
|Wn

(
ei2πxα

)
| ≤ 2tC2n

−1/2 (log n)−2
)

≤ n2 (log n)3

(
2C2L2 (2tC2)

2

(
c4n2
)1/2 (

n1/2 (log n)2
)2

)

+ n2 (log n)3

(
2C2L2

(
c4n2
)1/2 ( 1

32π

(
n9/10 (log n)7/2 − o (1)

))2

)

≤ 8C2C2
2 L

2t2

c1/24 log n
+ 2048cπ2C2L2

c1/24 n2/5 (log n)4

for all large n, where c4 is a positive constant. As a consequence we obtain

∑

α∈J2(n,N )

P

(
|Wn

(
ei2πxα

)
| ≤ 2tC2n

−1/2 (log n)−2
)

= O

(
1

log n

)

,

where the implicit constant depends on L and t . ��

3.2.3 Estimation on J3(n,N)

Proof of Lemma 2.6 This case requires a more refined analysis. Observe that

n11/10 ≥ N

gcd (α, N )
≥ n − o (1) ,

where o (1) = 1
n2(log n)3

. Then 2πxα satisfies

n−11/10 ≤ |2πxα| ≤ (n − o (1))−1 or π − (n − o (1))−1 ≤ |2πxα| ≤ π − n−11/10.

By [13, Lemma 3.2, Part 2], there exist positive constants c4,C4 such that

c4n
2−1/5 ≤ det

(
VαV

T
α

)
≤ C4n

2. (19)

By Lemma A.1, the number of indexes α ∈ [1, N ]∩N that satisfy the condition n (log n)3 ≥
gcd (α, N ) ≥ n9/10 (log n)3 is at most n11/10+o(1)(log(n))o(1), where o(1) → 0, as n → ∞.

In the sequel, we analyze the lcd of Vα . In particular, we find an appropriate lower
bound for the distance between V T

α 
 and the set Z
n . Since xα = α

N = α′
N ′ with

gcd
(
α′, N ′) = 1 and N ′ ≥ n − 1 for all large n, then we have that all the points in

{exp (i ( j2πxα − θ)) : j = 0, . . . , n − 1} are. Let r ∈ N and consider the set of intervals
of the form

[m
r , m+1

r

]
for all m ∈ [−r , r − 1] ∩ Z. Write I rm and Jrm for the correspond-

ing arcs on the unit circle such that their projections on the horizontal axis belong to the
interval

[m
r , m+1

r

]
. If 4r ≤ n, then the Pigeonhole Principle implies that there exists at least

one M ∈ [−r , r − 1] ∩ Z such that IM or JM contains at least n
4r ≥ 1 elements of the set

{exp (i ( j2πxα − θ)) : j = 0, . . . , n − 1}.
In the sequel, we write

I rM :=
{

j ∈ {0, . . . , n − 1} : cos ( j2πx − θ) ∈
[
M

r
,
M + 1

r

]

∈
[
M

r
,
M + 1

r

]}

�= ∅,
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and, for each j ∈ I rM , we define

d j = min

{∣
∣
∣
∣cos ( j2πxα − θ) − M

r

∣
∣
∣
∣ ,

∣
∣
∣
∣cos ( j2πxα − θ) − M + 1

r

∣
∣
∣
∣

}

.

Note that

min
0 ≤ l<k ≤ n−1

|l2πxα − k2πxα| ≥ 2πα′

N ′ ≥ 2π

N ′ .

Let L = min
{⌊ n

8r − 3
2

⌋
,
⌊
N ′
8r − 1

2

⌋}
and observe that for each 0 ≤ λ ≤ L there exists at

least j ∈ I rM such that d j ≥ (2λ + 1) 2π
N ′ . Then

srM :=
∑

j∈I rM
d j ≥

L∑

λ=0

(2λ + 1)
2π

N ′ = 2π(L + 1)2

N ′ ≥ 2πL2

N ′ .

By the choice of L , if r ≤ ⌊n1/4⌋, then 2πL2

N ′ ≥ 2π
n11/10

n3/2 for all large n.
Here, let v be a vector in Rn with entries v j = cos ( j2πxα − θ) for each j = 0, . . . , n −

1. If r is a positive integer with r ≤ ⌊n1/4⌋, then by the previous discussion we deduce
dist(rv,Zn) ≥ 2πn2/5 for all large n. If r is any positive real number, observe that

[ s
r ,

s+1
r

] ⊂
[

s
�r� ,

s+1
�r�
]
, where s ∈ N, and therefore our previous analysis holds true for any r > 0.

Suppose r ≤ ⌊n1/4⌋ and recall that ‖V T
α 
‖2 ≤ r

√
n and that L ≥ √

2/q is fixed. By the
definition of lcd, for all large n, we obtain

2πn2/5 ≤ dist
(
V T

α 
,Zn
)

≤ L

√

log+
‖V T

α 
2‖2
L

≤ L

√

log+
n3/4

L
,

which yields a contradiction for n large. Thus, D (Vα) ≥ ⌊n1/4⌋. Therefore, the preceding
inequality together with inequality (K), inequality (19) and the fact that the cardinality of
J3(n, N ) is at most n11/10+o(1)(log(n))o(1) allow us to deduce

∑

α∈J3(n,N )

P

(
|Wn

(
ei2πxα

)
| ≤ 2tC2n

−1/2 (log n)−2
)

≤ n11/10+o(1)(log(n))o(1)

(
2C2L2 (2tC2)

2

(
c4n2−1/5

)1/2 (
n1/2 (log n)2

)2

)

+ n11/10+o(1)(log(n))o(1)

(
2C2L2

(
c4n2−1/5

)1/2 (
n1/4
)2

)

≤ 8C2C2
2 L

2t2

c1/24 n4/10
+ 2C2L2

c1/24 n1/10

for all large n. As a consequence we obtain

∑

α∈J3(n,N )

P

(
|Wn

(
ei2πxα

)
| ≤ 2tC2n

−1/2 (log n)−2
)

= O

(
1

n1/10

)

,

where the implicit constant depends on L and t . ��
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Appendix A: Arithmetic properties

This section contains the proofs of the results that we skipped in the paper in order to be
more fluid.

Lemma A.1 If m ≥ 1 and M ∈ N, then the cardinality of the set

�M
m := {k ∈ [1, M] ∩ N : gcd (k, M) ≥ m}

is at most 1
�m
 M

1+C(log logM)−1
, where C is a positive constant.

Proof Let T denote the Euler totient function. Observe that

∑

k∈�M
m

1 ≤
M∑

d=�m

d|M

T

(
M

d

)

.

It is well known that T (s) ≤ s − √
s for all s ∈ N. Moreover, if d(s) denotes the number of

positive divisors of s, then [1, Theorem 13.12] implies that there exists a positive constant C
such that d(s) ≤ sC(log log(s))−1

. Hence,

∑

k∈�M
m

1 ≤
(

M

�m
 −
√

M

�m


)

MC(log log(M))−1 ≤ 1

�m
M
1+C(log logM)−1

which yields the statement. ��
Lemma A.2 Let θ ∈ [0, 2π) and n ∈ N. Let V = (V j ) j∈{1,...,n} ∈ R

n such that V j =
r cos ( j2πx − θ) for j = 0, . . . , n − 1, where r ∈ N and x = 1/n. If 1

4πr x ≥ 8, then

dist
(V,Zn) ≥ 1

128πx
.
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Proof Let θ ∈ [0, 2π) and n ∈ N. Let x = 1/n and we define the following sequence:
Pn = {exp (i ( j2πx − θ)) : j = 0, . . . , n − 1}, where i is the imaginary unit. Note that Pn
is a set of points on the unit circle which can be viewed as vertices of a regular polygon with
n sides inscribed in the unit circle.

Since the arguments of “two consecutive points" on Pn , exp (i ( j2πx − θ)) and
exp (i (( j + 1)2πx − θ)), are separated by a distance 2πx , the number of points in Pn which
are in any arc of length � on the unit circle is at least �

2πx − 2.

Let [y, y + 8πx] be a subinterval of [−1, 1]. We consider an arc
�

I on the unit circle such

that its projection on the horizontal axis is [y, y + 8πx]. If the length of the arc
�

I is �, then
the number of values cos ( j2πx − θ), j = 0, . . . , n − 1, that belong to (y, y + 8πx) is at
least 1

2

(
�

2πx − 2
)
. Observe that 1

2

(
�

2πx − 2
) ≥ 1 when � ≥ 8πx .

Let r ∈ N andm ∈ [−(r − 1), (r − 1)]∩Z. By the preceding explanation, for all positive
integers k ≤ 1

8πr x , there exists j ∈ {0, . . . , n − 1} such that

cos ( j2πx − θ) ∈
(m

r
+ 8π (k − 1) x,

m

r
+ 8πkx

)
⊂
[
m

r
,
m + 1

r

]

.

In the sequel, set

I rm :=
{

j ∈ {0, . . . , n − 1} : cos ( j2πx − θ) ∈
[
m

r
,
m + 1

r

]}

�= ∅

and, for each j ∈ I rm , define

d j := min

{∣
∣
∣cos ( j2πx − θ) − m

r

∣
∣
∣ ,

∣
∣
∣
∣cos ( j2πx − θ) − m + 1

r

∣
∣
∣
∣

}

.

Let L be the biggest integer such that 8πLx ≤ 1
2r , or, equivalently, L = ⌊ 1

16πr x

⌋
. Observe

that

L ≥ 1

16πr x
− 1 ≥ 1

32πr x
when

1

4πr x
≥ 8.

Then

srm :=
∑

j∈I rm
d j ≥

L∑

λ=1

2λ(8πx) ≥ 8πxL2 ≥ 1

128πr2x
.

Moreover,

m=r−1∑

m=−(r−1)

srm ≥ 2r − 1

128πr2x
≥ 1

128πr x
,

where the last inequality follows since 2r−1
r ≥ 1 for r ∈ N. Consequently, the distance

between the vector V ∈ R
n with entries V j = r cos ( j2πx − θ) for j = 0, . . . , n − 1 with

x = 1/n and the set Zn is at least

r

(
1

128πr x

)

= 1

128πx
verifying that

1

4πr x
≥ 8 is fulfilled.

��
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