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Abstract
Wewill describe the topological type of the discriminant curve of themorphism (�, f ), where
� is a smooth curve and f is an irreducible curve (branch) of multiplicity less than five or a
branch such that the difference between its Milnor number and Tjurina number is less than 3.
We prove that for a branch of these families, the topological type of the discriminant curve is
determined by the semigroup, the Zariski invariant and at most two other analytical invariants
of the branch.

Keywords Discriminant curve · Nondegenerate singularity · Newton polygon · Zariski
invariant · Milnor number · Tjurina number
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1 Introduction

Let f (x, y) ∈ C{x, y} be irreducible. The germ of the irreducible analytic curve (branch) of
equation f (x, y) = 0 is denoted by C ≡ f (x, y) = 0. Observe that the curves f (x, y) = 0
and u(x, y) f (x, y) = 0 are the same, for any unit u(x, y) ∈ C{x, y}. The multiplicity of C ,
denoted by m(C), is by definition the order of the power series f (x, y). Suppose that C has
multiplicity n. We will say that C is singular if n > 1. Otherwise C is a smooth curve. The
initial form of f (x, y) is the sum of all terms of f (x, y) of degree n. Since f is irreducible,
its initial form is a power of a linear form. After a linear change of coordinates, if necessary,
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we can suppose that the initial form of f (x, y) is yn . Suppose that C has multiplicity n > 1.
We denote by N

∗ the set of positive integers. By Newton’s theorem [7, Theorem 3.8] there
is α(x1/n) ∈ C{x}∗ = ⋃

m∈N∗ C{x1/m} with α(0) = 0 such that f (x, α(x1/n)) = 0 and we
say that α(x1/n) ∈ C{x}∗ is a Newton–Puiseux root of C . Let us denote by Zer( f ) the set of
Newton–Puiseux roots of C . Let α(x1/n) ∈ Zer( f ). After Puiseux’s theorem [7, Corollary
3.12] we have that Zer( f ) = {

α j := α(ω j x1/n)
}n
j=1, where ω is an nth-primitive root of

unity. Hence

f (x, y) = u(x, y)
n∏

j=1

(
y − (α(ω j x1/n))

)
, (1.1)

where u ∈ C{x, y} is a unit. After a change of coordinates, if necessary, we can write
α(x) = ∑

i≥s1 ai x
i/n , where s1 > n and s1 �≡ 0 mod n.

If we put x = tn , where t is a new variable, the Newton–Puiseux root α(x1/n) can be
written as

{
x(t) = tn,

y(t) = ∑
i≥s1 ai t

i ,

that we will call the Puiseux parametrisation of C .
There are g ∈ N and a sequence

(
β0 = n < β1 = s1 < β2 < · · · < βg

)
of nonnegative

integers such that

{ord(αi − α j ) : αi , α j ∈ Zer( f ), i �= j} =
{

βl

β0
: 1 ≤ l ≤ g

}

⊆ Q\Z. (1.2)

The sequence (β0, · · · , βg) ⊆ N is called the sequence of characteristic exponents of C .
The number g is a topological invariant called the genus of the branch C .

Consider the set

S(C) := {i0( f , h) : h ∈ C{x, y}, h �≡ 0 mod f },
where i0( f , h) = dimC C{x, y}/( f , h) is the intersection number (or intersection multiplic-
ity) of f (x, y) = 0 and h(x, y) = 0 at the origin. It is well known that S(C) is a semigroup
called the semigroup of values of the branch C . The complement of S(C) in N is finite. The
conductor of S(C) is by definition the smallest natural number c ∈ N such that every natural
number N ∈ N with N ≥ c is an element of S(C).

The semigroup S(C) admits aminimal systemof generators (s0, s1, . . . , sg), where si−1 <

si , g is the genus ofC , s0 = n = i0( f , x) and s1 = m =: i0( f , y). It is awell-known property
of S(C) [7, p. 88, (6.5)] that ek := gcd(s0, . . . , sk) = gcd(β0, . . . , βk) for 0 ≤ k ≤ g and
ek−1sk < eksk+1 for 1 ≤ k ≤ g − 1.

If n > 2, then we have c ≥ s1 + 1. Let q be the number of natural numbers between s1
and c which are not in S(C). We can verify (see [16, p. 21]) that q = c

2 − s1 + [ s1s0
]+ 1, for

s0 = n > 2, where
[
z
]
denotes the integral part of z ∈ R.

Let f , h ∈ C{x, y} be irreducible power series. Using the Halphen–Zeuthen formula we
get

i0( f , h) =
∑

i, j

ord(γ j − αi ), (1.3)

where Zer f = {αi }i and Zer h = {γ j } j .
Two branches C and D have the same topological type (or they are equisingular) if they

are topologically equivalent as embedded curves in C
2. It is well known [16, Chapter II]
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that two branches are equisingular if and only if they have the same semigroup of values or
equivalently they have the same characteristic exponents. Denote by E(C) the set of branches
which are equisingular to C . In the set E(C) we define the next equivalence relation: two
branches D1 and D2 in E(C) are analytically equivalent, andwewill denote this by D1 ∼= D2,
if there exists an analytic isomorphism T : U1 −→ U2 such that Ui are neighbourhoods of
the origin, Di is defined in Ui , 1 ≤ i ≤ 2 and T (D1 ∩U1) = D2 ∩U2.

The moduli space of the equisingularity class E(C) is the quotient space E(C)/ ∼=. Let
ν1 < ν2 < · · · < νq be the integers of the set {s1 + 1, . . . , c − 1} which are not in S(C).
Zariski proved [16, Proposition 1.2, Chapter III] that there exists a branch C analytically
equivalent to C , parametrized as follows:

{
x̄ = tn,
ȳ = t s1 +∑q

i=1 ai t
νi .

(1.4)

Put � := {ω = g(x, y)dx + h(x, y)dy : g, h ∈ C{x, y}}. If (x(t), y(t)) is a Puiseux
parametrisation of C , we put

ν(ω) := ord
(
f (x(t), y(t))x ′(t) + g(x(t), y(t))y′(t)

)+ 1.

Let 	 := {ν(ω) : ω ∈ �}. If 	\S(C) �= ∅, then the number λ := min
(
	\S(C)

)− v0 is
an analytical invariant of C called the Zariski invariant.

Using [16, Lemma 2.6, Chapter IV], we can rewrite the parametrization (1.4) in the next
form:

{
x̄ = tn,
ȳ = t s1 + atλ + a finite sum of terms ai tνi ,

where a �= 0, νi > λ > s1.
The Normal Forms Theorem (see [8, Theorem 1]) states that the plane branch C with

semigroup of values S(C) = 〈s0, . . . , sg〉 and value set of differentials	 is either analytically
equivalent to a branch with Puiseux parametrization (t s0 , t s1) or Puiseux parametrization
(t s0 , t s1 + tλ +∑

i>λ,i /∈	−s0 ai t
i ).

Let f (x, y) = ∑
i, j ai j x

i y j ∈ C{x, y}. The support of f is supp( f ) := {(i, j) ∈ N
2 :

ai j �= 0}. The Newton polygon of f , denoted by N ( f ), is by definition the convex hull of
supp( f ) + R

2≥0. Observe that N ( f ) = N (u f ) for any unit u ∈ C{x, y}. Nevertheless, the
Newton polygon depends on coordinates. The inclination of any compact face L ofN ( f ) is
by definition the quotient of the length of the projection of L over the horizonal axis by the
length of its projection over the vertical axis. The Newton polygon of f gives information on
the Newton–Puiseux roots of f (x, y) = 0. More precisely, if L is a compact face of N ( f )
of inclination i and the length of its projection over the vertical axis is �2, then f has �2
Newton–Puiseux roots of order i (see [3, Lemme 8.4.2]).

L

i = 1
2

2

1
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324 E. R.G. Barroso, M. F. H. Iglesias

We say that f (x, y) ∈ C{x, y} is nondegenerate in the sense of Kouchnirenkowith respect
to the coordinates (x, y), if for any compact edge L of N ( f ) the polynomial fL(x, y) :=∑

(i, j)∈L∩supp( f ) ai j x
i y j does not have critical points outside the axes x = 0 and y = 0, or

equivalently, the polynomial FL(z) := fL (1,z)
z j0

has no multiple roots, where j0 := min{ j ∈
N : (i, j) ∈ L}. SinceN ( f ) = N (u f ), for anyunitu ∈ C{x, y}, the notion of nondegeneracy
is extended to curves. The topological type of nondegenerate plane curves are completely
determined by their Newton polygons (see [13, Proposition 4.7] and [6, Theorem 3.2]).

Let �(x, y) = 0 be a smooth curve and let f (x, y) = 0 define an isolated singularity at
0 ∈ C

2. Assume that �(x, y) does not divide f (x, y) and consider the morphism

(�, f ) : (C2, 0) −→ (C2, 0),

(x, y) �−→ (u, v) := (�(x, y), f (x, y)). (1.5)

There are two curves associated with (�, f ): the polar curve ∂�
∂x

∂ f
∂ y − ∂�

∂ y
∂ f
∂x = 0 and its

direct image D(u, v) = 0 which is called the discriminant curve of the morphism (�, f ).
The topological type of the polar curve depends on the analytical type of �(x, y) = 0

and f (x, y) = 0. In [9] the authors completely determine the topological type of the generic
polar curve when the multiplicity of f (x, y) = 0 is less than 5.

The Newton polygon of D(u, v) in the coordinates (u, v) is called the jacobian New-
ton polygon of the morphism (�, f ). This notion was introduced by Teissier [14], who
proved that the inclinations of this jacobian polygon are topological invariants of (�, f )
called polar invariants. After Merle [12], when f is irreducible with semigroup of values
S( f ) = 〈s0, s1, . . . , sg〉 then the jacobian Newton polygon of (�, f ) has g compact edges
{Ei }gi=1. The length of the projection of Ei on the vertical axis is

( ei−1
ei

−1
) · ei−1

e0
. The length

of the projection of Ei on the horizontal axis is
( ei−1

ei
−1
) ·si . Hence the inclinations (quotient

between the length of the horizontal projection and the length of the vertical projection) of
the compact edges of the jacobian polygon are s1 < e1

e0
s2 < e2

e0
s3 < · · · <

eg−1
e0

sg .

Ei
ei−1
ei

− 1 · e0
ei−1

ei−1
ei

− 1 · si

In [5] the authors study the pairs (�, f ) for which the discriminant curve is nondegener-
ate in the Kouchnirenko sense. In particular, when f is irreducible, after [5, Corollary 4.4]
the discriminant curve D(u, v) = 0 is nondegenerate if and only if the multiplicity of
f (x, y) = 0 equals 2 or equals 4 and the genus equals 2. Otherwise the discriminant
curve is degenerate. Our aim in this paper will be to describe the topological type of
the discriminant curve D(u, v) = 0 of the morphism (�, f ), where f is irreducible and
belongs to some special families, as for example, branches of multiplicity less than 5,
branches C such that the difference between its Milnor number μ(C) and Tjurina num-
ber τ(C) is less than 3, with μ(C) = i0

( ∂ f
∂x ,

∂ f
∂ y

) = dim, not imCC{x, y}/( ∂ f
∂x ,

∂ f
∂ y

)
and
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τ(C) = dimCC{x, y}/( f , ∂ f
∂x ,

∂ f
∂ y

)
, where

( ∂ f
∂x ,

∂ f
∂ y

)
(resp.

( ∂ f
∂x ,

∂ f
∂ y , f

)
) denotes the ideal

of C{x, y} generated by ∂ f
∂x and ∂ f

∂ y (resp. by ∂ f
∂x ,

∂ f
∂ y and f ).

For these families of plane brancheswedetermine the topological type of their discriminant
curves, in the spirit of [9]. We prove that the topological type of the discriminant curve
D(u, v) = 0 is determined, at most, by the semigroup of values S( f ), the Zariski invariant
and two other analytical invariants of the curve f (x, y) = 0. In all cases we explicitly
determine such analytical invariants. Hence, in order to describe the topological type of the
discriminant curve of a branch, it is necessarily the same number of analytical invariants of
the initial branch, as it happens for its generic polar curves (see [9]). Finally in Sect. 5 we
summarize the different topological types of the discriminant curve in some tables.

2 Equation of the discriminant curve

An analytic change of coordinates does not affect the discriminant curve of the morphism
defined in (1.5) (see for example [2, Section 3]). Hence in what follows we assume that
�(x, y) = x . Then ∂ f

∂ y = 0 is the polar curve of the morphism (x, f ).
In this paper we will determine the topological type of the discriminant curve of the

morphism (1.5) for �(x, y) = x and f (x, y) ∈ C{x, y} irreducible belonging to some
special families. The corresponding study relative to the polar curves was done in [10] and
[11], where the authors characterize the equisingularity classes of irreducible plane curve
germs whose general members have nondegenerate general polar curves. In addition, they
give explicit Zariski open sets of curves in these equisingularity classes whose general polars
are nondegenerate and describe their topology.

Suppose that the Newton–Puiseux factorizations of f (x, y) and ∂ f
∂ y (x, y) are of the form

f (x, y) = u1(x, y)
n∏

i=1

[y − αi (x)], (2.1)

∂ f

∂ y
(x, y) = u2(x, y)

n−1∏

j=1

[y − γ j (x)], (2.2)

where u1(x, y), u2(x, y) ∈ C{x, y} are units, n = ord f , Zer( f ) = {αi (x)}i and Zer
( ∂ f

∂ y

) =
{γ j (x)} j . If f is irreducible of order n then n is the smallest natural number such that
{αi (x)}i ⊂ C{x1/n}. Moreover, if we fix αi (x1/n) then α j (x1/n) = αi (ωx1/n) for any
1 ≤ j ≤ n, where w is an nth root of unity.

Following [4, Lemma 5.4] the discriminant curve of the morphism (x, f ) can be written
as

D(u, v) =
n−1∏

j=1

(v − f (u, γ j (u))). (2.3)

3 Discriminants of branches of small multiplicities

In this section we determine the topological type of the discriminant of the morphism given
in (1.5), where C ≡ f (x, y) = 0 has small multiplicity. For this we will make use the results
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326 E. R.G. Barroso, M. F. H. Iglesias

of [16] and the analytic classification of plane branches of multiplicity less than or equal to
4, given in [8].

3.1 Discriminants of branches of multiplicity 2

Let C ≡ f (x, y) = 0 be a branch of multiplicity 2. The minimal system of generators of the
semigroup of C is 〈2, s1〉, where s1 is an odd natural number. By [16, Chapitre V] the moduli
space of branches of multiplicity 2 have a unique point whose parametrization is given by
(t2, t s1), that is the branch y2 − xs1 = 0. Then fy(x, y) = 2y whose Newton–Puiseux root is
y = 0. Hence, after (2.3) we have D(u, v) = v − f (u, 0) = v + us1 , that is the discriminant
curve is smooth. The Newton polygon of D(u, v) has only one compact edge. The univariate
polynomial associated with this edge is z + 1, so D(u, v) is nondegenerate.

3.2 Discriminants of branches of multiplicity 3

Let C ≡ f (x, y) = 0 be a branch of multiplicity 3. The minimal system of generators of the
semigroup of C is 〈3, s1〉, where s1 ∈ N is such that s1 �≡ 0 mod 3. By [16, Chapitre V] the
moduli space of branches of multiplicity 3 is completely determined by the semigroup of the
branch and its Zariski invariant λ. The corresponding normal forms are as follows:

x = t3, y = t s1 + atλ,

where a = 0 when λ = 0 or if λ �= 0 then we have a = 1 and

λ =
{
3e + 3k + 4 when s1 = 3e + 2
3e + 3k + 2 when s1 = 3e + 1,

where 0 ≤ k ≤ e − 2. (3.1)

Observe that if λ �= 0 then s1+λ
3 is a natural number greater than 2.

Proposition 3.1 Let C ≡ f (x, y) = 0 be a branch of semigroup 〈3, s1〉 and let the Zariski
invariant equal λ. The discriminant curve D(u, v) = 0 is degenerate and its topological type
is determined by (3, s1, λ) in the following way:

(1) If λ = 0 then the discriminant is the double smooth branch (v + us1)2 = 0.
(2) If λ �= 0 then

(a) when gcd(2, s1+λ) = 2, the discriminant curve is the union of two smooth branches
Di (u, v) = 0, 1 ≤ i ≤ 2, with intersection number i0(D1, D2) = s1+λ

2 .
(b) When gcd(2, s1 + λ) = 1, the discriminant is a branch of semigroup 〈2, s1 + λ〉.

Proof Suppose λ = 0. The implicit equation of the normal form is f (x, y) = y3 − xs1 = 0.
Then fy(x, y) = 3y2 whose Newton–Puiseux root is y = 0, with multiplicity 2. Hence, after
(2.3) we have D(u, v) = (v − f (u, 0))2 = (v + us1)2, that is the discriminant is a double
smooth branch.

Suppose now λ �= 0. The normal forms are x = t3, y = t s1 + tλ, with λ as in (3.1).

After (1.1) the implicit equation is f (x, y) = y3 − 3x
s1+λ

3 y − (xs1 + xλ). Then fy(x, y) =
3y2 − 3x

s1+λ

3 , whose Newton–Puiseux roots are γi (x) = ±x
s1+λ

6 for 1 ≤ i ≤ 2. Using (2.3)
we have

D(u, v) =
(
v + us1 − 2u

s1+λ

2 + uλ
) (

v + us1 + 2u
s1+λ

2 + uλ
)

.
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i

j

3
2

s1 s1 + s2

Fig. 1 Jacobian Newton polygon of a branch with semigroup 〈4, s1, s2〉

Hence Zer(D) = {
η1 := −us1 − 2u

s1+λ

2 − uλ, η2 := −us1 + 2u
s1+λ

2 − uλ
}
and ord(η1 −

η2) = s1+λ
2 . We distinguish two cases: if gcd(2, s1 + λ) = 2 then by (1.2) we conclude that

D(u, v) = 0 has two smooth branches of equations D1(u, v) := v + us1 − 2u
s1+λ

2 + uλ

and D2(u, v) = v + us1 + 2u
s1+λ

2 + uλ such that, after the Halphen–Zeuthen formula, the
intersection multiplicity is i0(D1, D2) = s1+λ

2 . If gcd(2, s1 + λ) = 1 then the discriminant
curve D(u, v) = 0 is a singular branch of the semigroup 〈2, s1 + λ〉.

The Newton polygon of D(u, v) is elementary (it has only one compact edge) and the
univariate polynomial associated with its compact edge is (z + 1)2. Hence the discriminant
D(u, v) = 0 is degenerate. ��
Corollary 3.2 If C is a branch of multiplicity 2 or 3 and nonzero Zariski invariant, then the
discriminant curve D(u, v) = 0 has no multiple irreducible branches.

Corollary 3.2 does not hold for branches of multiplicity 4 as the proof of Proposition 3.5
shows.

3.3 Discriminants of branches of multiplicity 4

Let C ≡ f (x, y) = 0 be a branch of multiplicity 4. The branch C may have genus 1 or 2.

Proposition 3.3 Let C ≡ f (x, y) = 0 be a branch of the semigroup 〈4, s1, s2〉. Then the
discriminant curve D(u, v) = 0 is nondegenerate. Moreover, D(u, v) = D1(u, v)D2(u, v),
where D1 is a smooth branch, D2 is a singular branch of semigroup 〈2, s2〉and the intersection
multiplicity between the two branches is i0(D1, D2) = 2s1.

Proof For genus 2, and after the second part of [5, Corollary 4.4] we get that D(u, v) = 0 is
nondegenerate and we can determine its topological type from its Newton polygon (see [13,
Proposition 4.7] and [6, Theorem 3.2]), which is the jacobian Newton polygon of (x, f ) (see
Fig. 1).

Since s2 is an odd natural number, gcd(s1 + s2, 2) = 1. Moreover, after the properties of
S( f ), we get e0s1 = 4s1 < 2s2 = e1s2, hence s2 > 2s1 and D(u, v) = D1(u, v)D2(u, v),
where D1(u, v) = 0 is a smooth curve admitting as parametrization (t, t s1 + · · · ) and
D2(u, v) = 0 is a singular curve of genus 1 which semigroup of values is 〈2, s2〉. Finally,
after the Halphen–Zeuthen formula, the intersection multiplicity between the two branches
is i0(D1, D2) = 2s1. ��

Suppose now that the branch C has genus 1 and semigroup of values equals 〈4, s1〉. By
[8], the moduli space of branches of multiplicity 4 and genus 1 has five families of normal
forms:
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328 E. R.G. Barroso, M. F. H. Iglesias

NF 4.i : x = t4, yi = σi (t), 1 ≤ i ≤ 5, (3.2)

where λi is the Zariski invariant of the i th normal form family. More precisely, we have

(1) (λ1, σ1(t)) = (0, t s1),
(2) If 2 ≤ i ≤ 4 then λi = 2s1 − 4 j for 2 ≤ j ≤ [ s14 ] and

σ2(t) = t s1 + tλ2 + akt
3s1−(4[ s14 ]+ j+1−k) + · · · + a j−[ s14 ]−2t

3s1−4([ s14 ]+3−k),

with ak �= 0, and 1 ≤ k ≤ [ s14 ] − j .

σ3(t) = t s1 + tλ3 + 3s1 − 4 j

2s1
t3s1−8 j + a[ s14 ]− j+2t

3s1−4(2 j−1) + · · ·
+a[ s14 ]t

3s1−( j+1).

σ4(t) = t s1 + tλ4 + a[ s14 ]− j+1t
3s1−8 j + a[ s14 ]− j+2t

3s1−4(2 j−1) + · · ·
+a[ s14 ]−1t

3s1−4( j+2),

where a[ s14 ]− j+1 �= 3s1−4 j
2s1

.

(3) If i = 5 then λ5 = 3s1 − 4 j for 2 ≤ j ≤ [ s12 ] and

σ5(t) = t s1 + t3s1−4 j + akt
2s1−4( j−[ s14 ]−k) + ak+s t

2s1−4( j−[ s14 ]k−s)

+ · · ·

After the Newton–Puiseux Theorem, the i th normal form has the equation

fi (x, y) =
∏

ω4=1

(y − σi (ωx
1/4)), (3.3)

where ω is a 4th primitive root of unity.
Hence, we obtain the implicit equation for each normal form family:

NF 4.1: f1(x, y) = y4 − xs1 .
NF 4.i: For 2 ≤ i ≤ 4 we get

fi (x, y) = y4 + Pi (x)y
2 + Qi (x)y + xs1u(x), (3.4)

where u(x) ∈ C{x} is a unit (that is u(0) �= 0), λi = 2s1 − 4 j for 2 ≤ j ≤ [ s14 ],
Qi (x) = −4xs1− j + · · · and
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Pi (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−4ak xs1−
([ s1

4

]+ j+1−k
)

+ · · · for i = 2

bxs1−2 j + · · · for i = 3 where b = −8(s1− j)
s1

.

(−2 − 4a[ s1
4

]− j+1)x
s1−2 j + · · · for i = 4 and − 2 − 4a[ s1

4

]− j+1 �= 0

0 for i = 4, −2 − 4a[ s1
4

]− j+1 = 0

and a[ s1
4

]− j+2 = · · · = a[ s1
4

]−1 = 0

−4a[ s1
4

]− j+k0
xs1−(2 j−(k0−1)) + · · · for i = 4, −2 − 4a[ s1

4

]− j+1 = 0

and al �= 0 for some l = [ s1
4

]− j + 2, . . . ,
[ s1
4

]− 1

where 2 ≤ k0 ≤ j − 1 such that

k := min
{
l : al �= 0 ,

[ s1
4

]
− j + 2 ≤ l <

[ s1
4

]}
=
[ s1
4

]
− j + k0.

Observe that

ordPi (x) ≥ 2

3
(s1 − j). (3.5)

NF 4.5: f5(x, y) = y4 + P(x)y2 + Q(x)y + R(x), where

P(x) = −4xs1− j − 2a2k x
s1−2( j−[ s14 ]−k) − 4akak+s x

s1−2( j−s1−[ s14 ]−k)+s

−2a2k+s x
s1−2( j−[ s14 ]−k−s) + · · · (3.6)

Q(x) = −4akx
s1− j+[ s14 ]+k − 4ak+s x

s1− j−[ s14 ]+k+s

−4akx
2(s1− j)−( j−[ s14 ]−k) − 4ak+s x

2(s1− j)−( j−[ s14 ]−k−s) + · · · ) (3.7)

R(x) = −xs1 + 2x2(s1− j) − x3s1−4 j + akx
2s1−4( j−[ s14 ]−k) + · · · (3.8)

for 2 ≤ j ≤ [ s12 ].
Proposition 3.4 Let C ≡ f (x, y) = 0 be a branch belonging to the family NF 4.i , for
1 ≤ i ≤ 4. Then the discriminant curve D(u, v) = 0 is degenerate and its topological type
is determined by the semigroup S( f ) = 〈4, s1〉 and the Zariski invariant λi of C. Moreover,

(1) if λi = 0 then the discriminant curve is the triple smooth branch (v + us1)3 = 0;
(2) if λi �= 0 then λi = 2s1 − 4 j for 2 ≤ j ≤ [ s14 ] and

(a) when gcd(3, 2s1 + λi ) = 1, the discriminant curve D(u, v) = 0 is a branch with
semigroup 〈3, 2s1 + λi 〉;

(b) when gcd(3, 2s1 + λi ) = 3, the discriminant curve is the union of three smooth
branches Di (u, v) = 0, 1 ≤ i ≤ 3 with intersection number i0(Dl , Dr ) = 2s1+λi

3
for l �= r .

Proof Suppose λi = 0. By (3.3) the implicit equation of the normal form is f1(x, y) =
y4 − xs1 . Then ∂ f1

∂ y (x, y) = 4y3 whose Newton–Puiseux root is y = 0, with multiplicity

three. Hence, after (2.3) we have D(u, v) = (v − f1(u, 0))3 = (v + us1)3, that is the
discriminant curve is a triple smooth branch.

Suppose now λi �= 0. Then λi = 2s1 − 4 j for 2 ≤ j ≤ [ s14 ] and the normal form of C is
x = t4, y = σi (t) for 2 ≤ i ≤ 4.

From the implicit equations fi (x, y), 2 ≤ i ≤ 4, given in (3.4) and from inequality (3.5)
we get that the Newton polygon of ∂ fi

∂ y (x, y) has only one compact edge whose vertices are
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(0, 3) and (s1 − j, 0). All the parametrisations of ∂ fi
∂ y (x, y) = 0, for 2 ≤ i ≤ 4, have the

same order and we can write them as γr (u) = εu
s1− j
3 + · · · , where ε is a 3rd root of unity.

From (2.3) and for a fixed i ∈ {2, 3, 4}, we have
D(u, v) =

∏

∂ fi
∂ y (γr )=0

(v − fi (u, γr (u))),

and considering the development of fi (u, γr (u)) we obtain

D(u, v) =
∏

ε3=1

(
v + us1 + 3εu4(

s1− j
3 ) + · · · ) =

∏

ε3=1

(
v + us1 + 3εu(

2s1+λi
3 ) + · · · ),

so Zer(D) = {
ηi (ε) := −us1 − 3εu(

2s1+λi
3 ) + · · · }

ε3=1 and ord(ηl − ηr ) = 2s1+λi
3 , for

1 ≤ l �= r ≤ 3. The topological type of D(u, v) = 0 is determined by the semigroup
of the branch C ≡ fi (x, y) = 0 and its Zariski analytical invariant λi = 2s1 − 4 j for
2 ≤ j ≤ [ s14 ]. We distinguish two cases: if 3 and 2s1 + λi are coprime then the discriminant
D(u, v) = 0 is a branch of the semigroup 〈3, 2s1 + λi 〉. Otherwise, by (1.2), we conclude
that the discriminant curve is the union of three different smooth branches Dl(u, v) = 0 with
intersection multiplicity i0(Dl , Dr ) = 2s1+λi

3 for l �= r .
In all cases the Newton polygon of D(u, v) is elementary with vertices (0, 3) and (3s1, 0).

The polynomial associated with its compact edge is (z + 1)3, so the discriminant curve
D(u, v) = 0 is degenerate. ��
Proposition 3.5 Let C ≡ f (x, y) = 0 be a branch belonging to the family NF 4.5. Then
the discriminant curve D(u, v) = 0 is degenerate and its topological type is determined
by the semigroup S( f ) = 〈4, s1〉, the Zariski invariant λ5 and at most two other analytical
invariants of C.

Proof The implicit equation of C has the form f5(x, y) = y4 + P(x)y2 + Q(x)y + R(x),
where P(x), Q(x), R(x) are as in (3.6), (3.7) and (3.8). Hence ∂ f5

∂ y (x, y) = 4y3 +2P(x)y+
Q(x).

We distinguish the following cases:
Case A. If ai = 0 in σ5(t) for all i , then we have that ∂ f5

∂ y (x, y) = 4y3 − 8xs1− j y =
4y(y2 − 2xs1− j ) whose Newton–Puiseux roots are

{
0,±√

2x
s1− j
2
}
. Therefore f5(u, 0) =

R(u) = −us1 + 2u2(s1− j) − u3s1−4 j and f5(u,±√
2u

s1− j
2 ) = −us1 − 2u2(s1− j) − u3s1−4 j .

From (2.3) we conclude that the discriminant curve is the union of three smooth curves
Dl(u, v) = 0, where D1(u, v) = v + us1 − 2u2(s1− j) + u3s1−4 j , D2(u, v) = D3(u, v) =
v + us1 + 2u2(s1− j) + u3s1−4 j , and i0(D1, Dl) = 2(s1 − j) for l ∈ {2, 3}.

Case B. If ak �= 0 and ak+l = 0 in σ5(t) for l > 0, then

∂ f5
∂ y

(x, y) = 4y3 + 2(−4xs1− j − 2a2k x
s1−2( j−[ s14 ]−k) + · · · )y

− 4ak
(
xs1− j+[ s14 ]+k + x2(s1− j)−( j−[ s14 ]−k) + · · ·

)
.

So the Newton polygon of ∂ f5
∂ y (x, y) depends on the position of the point M = (si − j, 1)

with respect to the line passing by E = (0, 3) and F = (s1 − j +[ s14 ]+ k, 0). We have three
subcases:
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B.1. If 2
s1− j < 1

[ s14 ]+k
thenN (

∂ f5
∂ y ) has only one compact edge of vertices E and F . Hence

the order of the Newton–Puiseux roots {γi }3i=1 of
∂ f5
∂ y (x, y) = 0 equals

s1− j+[ s14 ]+k
3 . After

(2.3) we obtain

D(u, v) =
∏

w3
i =1

(
v − 3a

4
3 wi u

4
( s1− j+[ s14 ]+k

3

)

+ us1 + · · · ),

for some nonzero complex number a and where wi is a cubic root of unity. If gcd(3, (s1 −
j + [ s14 ] + k)) = 1 then the discriminant curve is irreducible with semigroup 〈3, 4(s1 − j +
[ s14 ]+k)〉. In the other case, we get gcd(3, (s1− j+[ s14 ]+k)) = 3 and the discriminant curve

is the union of three smooth curves Dl(x, y) = 0 such that i0(Dl , Dr ) = 4(s1− j+[ s14 ]+k)
3 .

B.2. If 2
s1− j > 1

[ s14 ]+k
then N (

∂ f5
∂ y ) has two compact edges of vertices M , E and F . By

(2.3) we get

D(u, v)=(v+us1 −2u2(s1− j)+· · · )(v + us1 + 2u2(s1− j) ± 4
√
2aku

3
2 (s1− j)+[ s14 ]+k + · · · ).

If s1 − j is odd then the discriminant curve is the union of a smooth branch D1(u, v) = 0
and a singular branch D2(x, y) = 0 with semigroup 〈2, 3(s1 − j) + 2([ s14 ] + k)〉. Moreover,
i0(D1, D2) = 4(s1 − j). Otherwise, if s1 − j is even then the discriminant curve is the union
of three smooth branches Dl(x, y) = 0 such that i0(D1, Dl) = 2(s1 − j) for 2 ≤ l ≤ 3 and
i0(D2, D3) = 3

2 (s1 − j) + [ s14 ] + k .

B.3. If 2
s1− j = 1

[ s14 ]+k
thenN (

∂ f5
∂ y ) has only one compact edge of vertices E and F and M

is an interior point of this edge. The polynomial in one variable associated with the compact
edge of N (

∂ f5
∂ y ) is p(z) = z3 − 2z − ak . After the z-discriminant of p(z) we have that the

roots of p(z) are simple if and only if ak �= ±( 4
√
6

9

)
. We will study both cases:

B.3.1 Suppose that ak �= ±( 4
√
6

9

)
. Denote by zi the three different roots of the polynomial

p(z). For any γi (x) ∈ Zer( ∂ f5
∂ y ) we have

f (u, γi (u)) = −us1 + q(zi )u2(s1− j) + · · · , where q(z) = z4 − 4z2 − 4akz + 2.
Since z3 − 2z = ak , we get q(z) = −3z4 + 4z2 + 2 and if zr �= zl then q(zr ) �= q(zl).

Hence D(u, v) = ∏
i (z+us1 +q(zi )u2(s1− j) +· · · ) and the discriminant curve D(u, v) = 0

is the union of three smooth branches Dl(x, y) = 0 such that i0(Dl , Dr ) = 2(s1 − j).

B.3.2 Suppose that ak = 4
√
6

9 . The polynomial p(z) has z1 = 2
√

2
3 as a simple root and

z2 = −
√

2
3 as a double root. If γi ∈ Zer( ∂ f5

∂ y ) corresponds to zi then

f5(u, γ1(u)) = us1 + q(z1)u2(s1− j) + · · · ,

f5(u, γ2(u)) = us1 + q(z2)u2(s1− j) + r2u2(s1− j)+ s1−2 j
2 + · · · ,

f5(u, γ3(u)) = us1 + q(z2)u2(s1− j) + r3u2(s1− j)+ s1−2 j
2 + · · · ,

where r2, r3 ∈ C are different. Observe that q(z1) �= q(z2). Hence, if s1 − 2 j is odd then
the discriminant curve is the union of a smooth branch D1(u, v) = 0 and a singular branch
D2(u, v) = 0 with semigroup 〈2, 5s1 − 6 j〉, where i0(D1, D2) = 4(s1 − j). Otherwise, if
s1−2 j is even then the discriminant curve is the union of three smooth branches Dl(u, v) = 0
such that i0(D1, Dl) = 2(s1 − j), for 2 ≤ l ≤ 3 and i0(D2, D3) = 5s1−7 j

2 .
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B.3.3 Suppose that ak = − 4
√
6

9 . The polynomial p(z) has 2
√

2
3 as a double root and−

√
2
3

as a simple root. After a similar procedure we conclude, in this case, that the topological type
of the discriminant curve is as in B.3.2.

Case C If ak �= 0 �= ak+s , then we have
∂ f5
∂ y (x, y) = 4y3 +2P(x)y+ Q(x). The Newton

polygon of ∂ f5
∂ y (x, y) depends on the position of the point M = (si − j, 1) with respect to

the line passing through E = (0, 3) and F = (s1 − j + [ s14 ] + k, 0). We have the following
subcases:

C.1. If 2
s1− j < 1

[ s14 ]+k
then the topological type of the discriminant curve D(u, v) = 0 is

as in In emphatic way.
C.2. If 2

s1− j > 1
[ s14 ]+k

then the topological type of de discriminant curve is as in In

emphatic way.
C.3. If 2

s1− j = 1
[ s14 ]+k

then the Newton polygon of ∂ f5
∂ y (x, y) has only one compact edge

containing the points E, F, M , as in In emphatic way. The polynomial associated with this

compact edge is p(z) = z3 − 2z − ak whose roots are simple if and only if ak �= ±( 4
√
6

9

)
.

Let us study the different cases:

C.3.1. If ak �= ±( 4
√
6

9

)
then the topological type of the discriminant curve D(u, v) = 0

is as in In emphatic way.

C.3.2. Suppose that ak = ±( 4
√
6

9

)
. The polynomial p(z) has z1 = 2

√
2
3 as a simple root

and z2 = z3 = −
√

2
3 as a double root. If γi ∈ Zer( ∂ f5

∂ y ) corresponds to zi then we can write

γi = zi u
[ s14 ]+k + · · · (3.9)

Hence

δ1 := f (u, γ1(u)) = −us1 + q(z1)u2(s1− j) + · · · ,

δ2 := f (u, γ2(u)) = −us1 + q(z2)u2(s1− j) + · · · ,

δ3 := f (u, γ3(u)) = −us1 + q(z2)u2(s1− j) + · · · ,

where δ2, δ3 ∈ ZerD(u, v) are different. Observe that q(z1) �= q(z2). So ord
(
δ1 − δl

) =
2(s1 − j) for 2 ≤ l ≤ 3. Let us determine ord

(
δ2 − δ3

)
. For that we need to find new terms

in δ2 and δ3. We apply the Newton procedure for ∂ f5
∂ y : let y1 be a new variable. Substituting

(x, y) := (x, x [ s14 ]+k(z2 + y1)) in
∂ f5
∂ y (x, y) we get

∂ f5
∂ y

(x, x [ s14 ]+k(z2 + y1)) = x3([
s1
4 ]+k)g(x, y1),

with

g(x, y1) = 4

[(
2

3

)

z2 + 2y1 + 3z2y
2
1 + y31

]

− (4ak + 4ak+s x
s + 4akx

s1−2 j + · · · )
−[8 + 4a2k x

s1−2 j + 8akak+s x
s1−2 j+s + 4a2k+s x

s1−2 j+2s + · · · ]y1
−[8 + 4a2k x

s1−2 j + 8akak+s x
s1−2 j+s + 4a2k+s x

s1−2 j+2s + · · · ]z2
= 4

[
3z2y

2
1 + y31

]− (4ak+s x
s + 4akx

s1−2 j + · · · )
−[4a2k xs1−2 j + 8akak+s x

s1−2 j+s + 4a2k+s x
s1−2 j+2s + · · · ]y1

−[4a2k xs1−2 j + 8akak+s x
s1−2 j+s + 4a2k+s x

s1−2 j+2s + · · · ]z2, (3.10)

where the last equality follows from p(z2) = 0.
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Hence, in the next step of the Newton procedure it is enough to consider the polynomial

H(x, y1) = 12z2y
2
1 − 4a2k x

s1−2 j y1 + (−4z2a
2
k − 4ak)x

s1−2 j − 4ak+s x
s . (3.11)

The topological type of the discriminant curve will depend on the relation between s and
s1 − 2 j :

C.3.2.1 Suppose that s1 − 2 j > s. We obtain

γ2(u) = −
√
6

3
u

s1− j
2 +

√−ak+s
4
√
6

u
s1− j
2 + s

2 + · · · ,

γ3(u) = −
√
6

3
u

s1− j
2 −

√−ak+s
4
√
6

u
s1− j
2 + s

2 + · · · .

Hence

f5(u, γ2(u)) = −us1 + q(z2)u
2(s1− j) + p(z2)u

2(s1− j)+ s
2 + l(ak+s)u

3s1−4 j

+8

3
cak+su

2(s1− j)+ 3
2 s + · · · ,

and

f5(u, γ3(u)) = −us1 + q(z2)u
2(s1− j) − p(z2)u

2(s1− j)+ s
2 + l(ak+s)u

3s1−4 j

−8

3
cak+su

2(s1− j)+ 3
2 s + · · · ,

where c :=
√−ak+s

4√6
, and l(z) = −4z2z − 1. As a consequence, when s is odd then the

discriminant curve D(u, v) = 0 is the union of a smooth branch D1(u, v) = 0 and a singular
branchwith semigroup 〈2, 4(s1− j)+3s〉, with i0(D1, D2) = 4(s1− j). Otherwise, if s is even
then the discriminant curve D(u, v) = 0 is the union of three smooth braches Dl(u, v) = 0
such that i0(D1, Dl) = 2(s1 − j) for 2 ≤ l ≤ 3, and... and i0(D2, D3) = 2(s1 − j) + 3

2 s.
C.3.2.2 Suppose that s1 − 2 j < s. After (3.11) and for the next step of the Newton

procedure we only need the polynomial

H̄(Z) = 12z2Z
2 − 4(z2a

2
k + ak),

whose roots are ±
√
8
9 . Let d =

√
8
9 . We obtain

γ2(u) = z2u
[ s1
4

]+k + du[ s14 ]+k+ s1−2 j
2 + · · · , (3.12)

γ3(u) = z2u
[ s1
4

]+k − du[ s14 ]+k+ s1−2 j
2 + · · · . (3.13)

Hence

f5(u, γ2(u)) = −us1 + q(z2)u
2(s1− j) + p(z2)u

2(s1− j)+ s
2 + l(ak)u

3s1−4 j

+80

81
z2du

7s1−10 j
2 + · · · ,

and

f5(u, γ3(u)) = −us1 + q(z2)u
2(s1− j) − p(z2)u

2(s1− j)+ s
2 + l(ak)u

3s1−4 j

−80

81
z2du

7s1−10 j
2 + · · ·
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Since 4 and s1 are coprime then 7s1 − 10 is odd and the discriminant curve D(u, v) =
0 is the union of a smooth branch D1(u, v) = 0 and a singular branch with semigroup
〈2, 7s1 − 10 j〉, where i0(D1, D2) = 4(s1 − j).

C.3.2.3 Suppose that s1 − 2 j = s. After (3.11), in order to obtain the next term in the
power series γi , it is enough to consider the polynomial

H̄(Z) = 12z2Z
2 − 4(z2a

2
k + ak+s + ak).

The topological type of the discriminant will depend on the value of ak+s :

C.3.2.3.1 For ak+s �= −4
√
6

81 , we get

H̄(Z) = 12z2Z
2 − 4

(
ak+s + 4

√
6

81

)
,

whose roots are ±b := ±(
√−dk+s

4√6

)
, where dk+s = ak+s + 4

√
6

81 . Hence

γ2(u) = z2u
[ s1
4

]+k + bu[ s14 ]+k+ s
2 + · · · ,

γ3(u) = z2u
[ s1
4

]+k − bu[ s14 ]+k+ s
2 + · · · .

We conclude that

f5(u, γ2(u)) = −us1 + q(z2)u
2(s1− j) + l(ak+s)u

3s1−4 j + 80

81
z2u

2s1− j+ 3
2 s + · · · ,

and

f5(u, γ3(u)) = −us1 + q(z2)u
2(s1− j) + l(ak+s)u

3s1−4 j − 80

81
z2u

2s1− j+ 3
2 s + · · · .

So, if s is odd then D(u, v) = 0 is the union of a smooth branch D1(u, v) = 0 and a
singular branch of semigroup 〈2, 7s1 −10 j〉, with i0(D1, D2) = 4(s1 − j). In the other case,
if s is even then D(u, v) = 0 is the union of three smooth branches Dl(u, v) = 0 such that
i0(D1, Dl) = 2(s1 − j) for 2 ≤ l ≤ 3, and . . ., and i0(D2, D3) = 7s1−10 j

2 .

C.3.2.3.2 For ak+s = −4
√
6

81 , after (3.10), in order to obtain the next term in the power
series γi , it is enough to consider the polynomial

H̄(Z) = 12z2Z
2 − 4a2k Z − 4ak+s(1 + 2akz2),

whose roots t1, t2 are simple. Hence

γ2(u) = z2u
[ s1
4 +k

]+k + t1u
[ s14 +k]+k+s + · · · ,

and

γ3(u) = z2u
[ s1
4 +k

]+k − t2u
[ s14 +k]+k+s + · · · .

We conclude that

f5(u, γ2(u)) = −us1 + q(z2)u
2(s1− j) − u2(s1− j)+s + h(t1)u

2(s1− j)+s2 + · · · ,

and

f5(u, γ3(u)) = −us1 + q(z2)u
2(s1− j) − u2(s1− j)+s + h(t2)u

2(s1− j)+s2 + · · · ,

where h(z) = −4ak+s z + ak . The discriminant curve D(u, v) = 0 is the union of three
smooth branches Dl(u, v) = 0 such that i0(D1, Dl) = 2(s1 − j) for 2 ≤ l ≤ 3 and... and
i0(D2, D3) = 4s1 − 6 j . ��

123



Topological type of discriminants… 335

From the above computations we obtain

Theorem 3.6 Let f (x, y) = 0 be a plane branch of multiplicity n. Then the following hold.

(1) If n = 2 then the discriminant curve D(u, v) = 0 is nondegenerate.
(2) If n = 3 then the discriminant curve D(u, v) = 0 is degenerate and its topological type

depends on the semigroup S( f ) and the Zariski invariant (when it is not zero).
(3) If n = 4 then the discriminant curve D(u, v) = 0 is degenerate and its topological type

depends on the semigroup S( f ), the Zariski invariant (when it is not zero) and at most
two other analytical invariants.

Remark 3.7 In [8], Hefez and Hernandes give explicit normal forms for branches of multi-
plicity 2, 3 or 4. Thanks to that, the description of the topological type of the discriminant
curve of such a branch was possible. The normal forms for branches of multiplicity greater
than 4 are not completely determined.

4 Discriminant of branches C with �(C) − �(C) ≤ 2

Let C : f (x, y) = 0 be a plane branch. Put r(C) := μ(C) − τ(C), where μ(C) and τ(C)

are the Milnor number and the Tjurina number of C , respectively. Observe that r(C) is a
nonnegative integer. In zero characteristic, from [15, Theorem 4] we get r(C) = 0 if and
only if C is analytically equivalent to the curve ys0 − xs1 = 0 for two coprime integers
s0 and s1 greater than 1. Later, in [1], the authors describe all plane branches defined over
an algebraically closed field of characteristic zero, modulo analytic equivalence, having the
property that the difference between their Milnor and Tjurina numbers is 1 or 2. In particular
the authors determined the normal forms of the branches of this family, which show us
that the Zariski invariant of these branches are determined by the two first generators of
their semigroup. By [1, Corollary 5] we know that if r(C) �= 0 then r(C) ≥ 2g−1. Hence,
if r(C) = 1 then g = 1 and if r(C) = 2 then g ≤ 2. In this section we will describe the
topological type of the discriminant curve D(u, v) = 0 of branchesC withμ(C)−τ(C) ≤ 2.

Theorem 4.1 Let C : f (x, y) = 0 be a plane branch with r(C) := μ(C) − τ(C) ≤ 2. Then
the discriminant curve D(u, v) = 0 is degenerate and its topological type is given by the
semigroup S( f ).

Proof Suppose first that r(C) = 1. By [1, Corollary 8] the branchC is analytically equivalent
to the curve defined by the equation f (x, y) = ys0 − xs1 + xs1−2ys0−2, where 2 ≤ s0 < s1
are coprime integers. Hence fy(x, y) = s0ys0−1 + (s0 − 2)xs1−2ys0−3 = ys0−3(s0y2 +
(s0 − 2)xs1−2), whose Newton–Puiseux roots are α1 = 0 (with multiplicity s0 − 3 ), α2 =√

2−s0
s0

x
s1−2
2 and α3 = −

√
2−s0
s0

x
s1−2
2 . After (2.3) we obtain that the Newton–Puiseux roots

of the discriminant curve are

(1) δ1 = us1 with multiplicity s0 − 3,

(2) δ2 = −us1 +
((√

2−s0
s0

)s0 +
(√

2−s0
s0

)s0−2
)

u
(s1−2)s0

2 ,

(3) δ3 = −us1 −
((√

2−s0
s0

)s0 +
(√

2−s0
s0

)s0−2
)

u
(s1−2)s0

2 .

Hence, if s1 and s0 are odd then the discriminant curve is given by D(u, v) =
D1(u, v)s0−3D2(u, v), where D1(u, v) = (v − us1) and D2(u, v) is a branch of semi-
group 〈2, (s1 − 2)s0〉 and the intersection multiplicity is i0(D1, D2) = min

{
s1, (s1 − 2)n

}
.
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Otherwise D(u, v) is the product of D1(u, v)s0−3 and two smooth branches D2(u, v) and
D3(u, v), where i0(D1, Dk) = min

{
s1,

(s1−2)s0
2

}
for 2 ≤ k ≤ 3 and i0(D2, D3) = (s1−2)s0

2 .
Suppose now that r(C) = 2. In this case we get g ≤ 2. If g = 2 then by [1, Corollary 13]

the multiplicity of C is 4 and we study this case in Proposition 3.3.
For g = 1, after [1, Theorem 17, Corollary 18], we have two normal forms:

(A) f (x, y) = ys0 − xs1 + xs1−3ys0−2, with 2 < s0 < s1.

(B) f (x, y) = ys0 − xs1 + xs1−2ys0−3 +
(∑2+[ s1s0 ]

k≥2 akxs1−k
)
ys0−2, with 4 ≤ s0 < s1,

2s0
s0−3 < s1 and ak ∈ C.

In the case (A) we get fy(x, y) = ys0−3(s0y2 + (s0 − 2)xs1−3), whose Newton–Puiseux

roots are α1 = 0 (with multiplicity s0 − 3), α2 =
√

2−s0
s0

x
s1−3
2 and α3 = −

√
2−s0
s0

x
s1−3
2 .

After (2.3) we obtain that the Newton–Puiseux roots of the discriminant curve are

(1) δ1 = us1 with multiplicity s0 − 3,

(2) δ2 = −us1 +
((√

2−s0
s0

)s0 +
(√

2−s0
s0

)s0−2
)

u
(s1−3)s0

2 ,

(3) δ3 = −us1 −
((√

2−s0
s0

)s0 +
(√

2−s0
s0

)s0−2
)

u
(s1−3)s0

2 .

Hence, if s0 is odd and s1 is even then the discriminant curve is given by D(u, v) =
D1(u, v)s0−3D2(u, v), where D1(u, v) = (v − us1) and D2(u, v) is a branch of the semi-
group 〈2, (s1 − 3)s0〉 and the intersection multiplicity is i0(D1, D2) = min

{
s1, (s1 − 3)s0

}
.

Otherwise D(u, v) is the product of D1(u, v)s0−3 and two smooth branches D2(u, v) and
D3(u, v), where i0(D1, Dk) = min

{
s1,

(s1−3)s0
2

}
for 2 ≤ k ≤ 3 and i0(D2, D3) = (s1−3)s0

2 .
In the case (B) we have

fy(x, y) = ys0−4
(

s0y
3 + (s0 − 3)xs1−2 + (s0 − 2)

(2+[ s1s0 ]
∑

k≥2

akx
s1−k

)

y

)

,

hence itsNewtonpolygon coincideswith theNewtonpolygondetermined by (0, 3), (s1−2, 0)
and (s1 − 2 − [ s1s0 ], 1). But, after the inequality 2s0

s0−3 < s1, we get that this Newton polygon
has only two points which are its vertices: (0, 3) and (s1 − 2, 0). The Newton–Puiseux roots

of fy(x, y) = 0 are α1 = 0 (with multiplicity s0 − 4) and αi = ξi
3
√

s0−3
s0

u
s0−2
3 + · · · , where

ξi is a cubic root of unity, 1 ≤ i ≤ 3. Then, after (2.3) the Newton–Puiseux roots of the
discriminant curve are δ1 = us1 with multiplicity s0 − 4 and

δi = −us1 +
⎡

⎣

(

ξi
3

√
s0 − 3

s0

)s0

+
(

ξi
3

√
s0 − 3

s0

)s0−3⎤

⎦ u
(s1−2)s0

3

+
(

ξi
3

√
s0 − 3

s0

)s0−2

a2+[ s1s0 ]u
(s1−2)(s0−2)

3 +(s1−2)−[ s1s0 ] + · · · ,

for 1 ≤ i ≤ 3.
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If s1 − 2 (respectively s0) and 3 are coprime then the discriminant curve is given by
D(u, v) = D1(u, v)s0−4D2(u, v), where D1(u, v) = (v − us1) and D2(u, v) is a branch
of the semigroup 〈3, (s1 − 2)s0〉 and, after the Halphen–Zeuthen formula, the intersection
multiplicity is i0(D1, D2) = 3s1. Otherwise D(u, v) is the product of D1(u, v)s0−4 and
three smooth branches Dk(u, v), 2 ≤ k ≤ 4, where i0(D1, Dk) = s1 for 2 ≤ k ≤ 4 and
i0(Dl , Dr ) = (s1−2)s0

3 , for 2 ≤ l �= r ≤ 4. ��
Remark 4.2 Observe that in Theorem 4.1 Case (B) with s0 = 4 coincides with case σ3 in
(3.2) for j = 2. Hence this case was studied in Proposition 3.4.

5 Tables

In this sectionwe collect, in some tables, the topological type of the discriminants for branches
studied in this paper (See Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11).
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Table 1 Discriminants of branches of semigroup 〈2, s1〉
Multiplicity 2

Normal form Discriminant D(u, v)

λ = 0 v + us1

Table 2 Discriminants of branches of semigroup 〈3, s1〉
Multiplicity 3

Normal form Discriminant D(u, v)

λ = 0 (v + us1 )2

λ �= 0 D1D2, m(Di ) = 1, i0(D1, D2) = s1+λ
2 i f gcd(2, s1 + λ) = 2

D1, S(D1) = 〈2, s1 + λ〉 if gcd(2, s1 + λ) = 1

Table 3 Discriminants of branches of semigroup 〈4, 6, s2〉
Multiplicity 4 and g = 2

Normal form Discriminant D(u, v)

λ = s2 − 6 D1D2, m(D1) = 1, S(D2) = 〈2, s2〉, i0(D1, D2) = 2s1

Table 4 Discriminants of branches of semigroup 〈4, s1〉
Multiplicity 4 and g = 1

Normal form Discriminant D(u, v)

λ = 0 (v + us1 )3

λ = 2s1 − 4 j �= 0
2 ≤ j ≤ [ s14 ] D1D2D3, m(Di ) = 1, i0(Dl , Dr ) = 2s1+λi

3 if gcd(3, 2s1 + λi ) = 3,

D1, S(D1) = 〈3, 2s1 + λi 〉 if gcd(3, 2s1 + λi ) = 1

λ = 3s1 − 4 j �= 0
2 ≤ j ≤ [ s12 ] See Table 5

Table 5 Multiplicity 4, g = 1, λ = 3s1 − 4 j �= 0 2 ≤ j ≤ [ s12 ]
Multiplicity 4, g = 1, λ = 3s1 − 4 j �= 0 2 ≤ j ≤ [ s12 ]
Depending on the analytical invariants Discriminant D(u, v)

λ (ai = 0 for all i) D1D
2
2 , m(Di ) = 1, i0(D1, D2) = 2(s1 − j)

λ and 2s1 − 4( j − [ s14 ] − k)
where k = min{ j : a j �= 0} see Table 6 (case B of Proposition 3.5)

λ, 2s1 − 4( j − [ s14 ] − k) and 2s1 − 4( j − [ s14 ] − k − s)
where k = min{ j : a j �= 0}, s = min{ j : ak+ j �= 0 , j > 0} see Table 7 (case C of Proposition 3.5)
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