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Abstract

We will describe the topological type of the discriminant curve of the morphism (¢, f), where
£ is a smooth curve and f is an irreducible curve (branch) of multiplicity less than five or a
branch such that the difference between its Milnor number and Tjurina number is less than 3.
We prove that for a branch of these families, the topological type of the discriminant curve is
determined by the semigroup, the Zariski invariant and at most two other analytical invariants
of the branch.
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1 Introduction

Let f(x, y) € C{x, y} be irreducible. The germ of the irreducible analytic curve (branch) of
equation f(x,y) = 0is denoted by C = f(x, y) = 0. Observe that the curves f(x,y) =0
and u(x, y) f (x, y) = 0 are the same, for any unit u(x, y) € C{x, y}. The multiplicity of C,
denoted by m(C), is by definition the order of the power series f(x, y). Suppose that C has
multiplicity n. We will say that C is singular if n > 1. Otherwise C is a smooth curve. The
initial form of f(x, y) is the sum of all terms of f(x, y) of degree n. Since f is irreducible,
its initial form is a power of a linear form. After a linear change of coordinates, if necessary,
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we can suppose that the initial form of f(x, y) is y". Suppose that C has multiplicity n > 1.
We denote by N* the set of positive integers. By Newton’s theorem [7, Theorem 3.8] there
isa(x1/") € C{x}* = U, en+ Clx !/} with @(0) = 0 such that f(x, @(x'/")) = 0 and we
say that a(x'/"y e C{x}* is a Newton—Puiseux root of C. Let us denote by Zer(f) the set of
Newton—Puiseux roots of C. Let a(x!/") € Zer(f). After Puiseux’s theorem [7, Corollary
3.12] we have that Zer(f) = {aj = a(wjxl/”)};l.:l, where w is an nth-primitive root of
unity. Hence
n
Foy) =uten [ (v = @@/xm), (1.1)

j=1

where u € C{x, y} is a unit. After a change of coordinates, if necessary, we can write
a(x) = isy, aix'/" where s; > n and s; % 0 mod n.

If we put x = ", where ¢ is a new variable, the Newton—Puiseux root oz(xl/ ") can be
written as

x(t) =1",
y() =Y, ait
that we will call the Puiseux parametrisation of C.
There are ¢ € N and a sequence (/30 =n<pfr=s1<pr<---< ,Bg) of nonnegative
integers such that

{ord(a; — o)) 1, af € Zer(f), i # j} = {% 1<l < g} C Q\Z. (1.2)
0

The sequence (By, - - - , By) S Nis called the sequence of characteristic exponents of C.
The number g is a topological invariant called the genus of the branch C.
Consider the set

S(C) :={io(f, h) : h € C{x, y}, h #0mod f},

where ig(f, h) = dimc C{x, y}/(f, h) is the intersection number (or intersection multiplic-
ity) of f(x,y) =0 and h(x,y) = 0 at the origin. It is well known that S(C) is a semigroup
called the semigroup of values of the branch C. The complement of S(C) in N is finite. The
conductor of S(C) is by definition the smallest natural number ¢ € N such that every natural
number N € N with N > c is an element of S(C).

The semigroup §(C) admits a minimal system of generators (s, 51, .. ., S¢), wheres; 1 <
si, gisthe genusof C,so = n = ip(f, x)ands; = m =: ip(f, y).Itis a well-known property
of S(C) [7, p. 88, (6.5)] that ¢ := ged(so, ..., sx) = ged(Bo, ..., Bx) for 0 < k < g and
Ch—18k < €kSk+1 forl <k < g — 1.

If n > 2, then we have ¢ > s1 + 1. Let g be the number of natural numbers between s
and ¢ which are not in S(C). We can verify (see [16, p. 21]) that g = & — 51 + [%] + 1, for
so =n > 2, where [z] denotes the integral part of z € R.

Let f, h € C{x, y} be irreducible power series. Using the Halphen—Zeuthen formula we
get

io(f h) =) ord(y; —ar), (1.3)
iJ

where Zer f = {a;}; and Zerh = {y;};.
Two branches C and D have the same topological type (or they are equisingular) if they
are topologically equivalent as embedded curves in C2. It is well known [16, Chapter II]
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that two branches are equisingular if and only if they have the same semigroup of values or
equivalently they have the same characteristic exponents. Denote by £(C) the set of branches
which are equisingular to C. In the set £(C) we define the next equivalence relation: two
branches D1 and D, in £(C) are analytically equivalent, and we will denote this by D1 = D»,
if there exists an analytic isomorphism 7 : Uy —> U, such that U; are neighbourhoods of
the origin, D; is definedin U;, 1 <i <2and T(Dy NU;) = Dy N Us.

The moduli space of the equisingularity class £(C) is the quotient space £(C)/ =. Let
V] < vy < --- < v, be the integers of the set {s; + I, ..., c — 1} which are not in S(C).
Zariski proved [16, Proposition 1.2, Chapter III] that there exists a branch C analytically
equivalent to C, parametrized as follows:

I = [n’

{ )-} =151 + Z?:] al_tu,-. (14)

Put Q := {w = g(x, y)dx + h(x, y)dy : g,h € C{x, y}}. If (x(¢), y(¢)) is a Puiseux
parametrisation of C, we put

V(@) = ord (f (x (1), y(O)x' (1) + g(x(1), y(1)y' (1)) + 1.

Let A := {v(w) : w € Q). If A\S(C) # @, then the number A := min(A\S(C)) — v i
an analytical invariant of C called the Zariski invariant.

Using [16, Lemma 2.6, Chapter IV], we can rewrite the parametrization (1.4) in the next
form:

x =1t",
y =11+ ar + a finite sum of terms ;"

where a # 0, v; > A > s1.

The Normal Forms Theorem (see [8, Theorem 1]) states that the plane branch C with
semigroup of values S(C) = (s, ..., s) and value set of differentials A is either analytically
equivalent to a branch with Puiseux parametrization (z°0, #°!) or Puiseux parametrization
(%0, 01+ 1+ 3 g as @il)-

Let f(x,y) = Zi,j aijxiyj € C{x, y}. The support of f is supp(f) = {(i, j) € N2 :
a;j # 0}. The Newton polygon of f, denoted by N'(f), is by definition the convex hull of
supp(f) + R2,,. Observe that N'(f) = N(uf) for any unit u € C{x, y}. Nevertheless, the
Newton polygon depends on coordinates. The inclination of any compact face L of N'(f) is
by definition the quotient of the length of the projection of L over the horizonal axis by the
length of its projection over the vertical axis. The Newton polygon of f gives information on
the Newton—Puiseux roots of f(x, y) = 0. More precisely, if L is a compact face of N (f)
of inclination i and the length of its projection over the vertical axis is £, then f has ¢
Newton—Puiseux roots of order i (see [3, Lemme 8.4.2]).

Lo
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We say that f(x, y) € C{x, y} is nondegenerate in the sense of Kouchnirenko with respect
to the coordinates (x, y), if for any compact edge L of N'(f) the polynomial f7 (x,y) :=
Z(i,j)eLﬁsupp(f) ajjx'y’ does not have critical points outside the axes x =0 and y = 0, or

equivalently, the polynomial Fy (z) := % has no multiple roots, where jy := min{j €
N: (i, j) € L}.Since N(f) = N (uf),forany unitu € C{x, y}, the notion of nondegeneracy
is extended to curves. The topological type of nondegenerate plane curves are completely
determined by their Newton polygons (see [13, Proposition 4.7] and [6, Theorem 3.2]).

Let £(x, y) = 0 be a smooth curve and let f(x, y) = 0 define an isolated singularity at
0 € C2. Assume that £(x, y) does not divide f(x, y) and consider the morphism

¢, f): (C*0) — (C%0),
(x,y) > (u,v) = (L, y), f(x, ). (1.5)

There are two curves associated with (¢, f): the polar curve gl g—f - gl 2—f = 0 and its
X 0y y ox

direct image D(u, v) = 0 which is called the discriminant curve of the morphism (¢, f).

The topological type of the polar curve depends on the analytical type of £(x,y) = 0
and f(x, y) = 0. In [9] the authors completely determine the topological type of the generic
polar curve when the multiplicity of f(x, y) = 0 is less than 5.

The Newton polygon of D(u, v) in the coordinates (u, v) is called the jacobian New-
ton polygon of the morphism (¢, f). This notion was introduced by Teissier [14], who
proved that the inclinations of this jacobian polygon are topological invariants of (¢, f)
called polar invariants. After Merle [12], when f is irreducible with semigroup of values
S(f) = {s0, 51, ..., Sg) then the jacobian Newton polygon of (£, f) has g compact edges
{E; }le. The length of the projection of E; on the vertical axis is (%1 — l) . % The length
of the projection of E; on the horizontal axis is (e" =L _ 1) -s;. Hence the inclinations (quotient

between the length of the horizontal projection and the length of the vertical projection) of
g—1

. . e e 2
the compact edges of the jacobian polygon are 51 < %sz < £S3 << S

€i—1 1) eo
( €4 €i—1

In [5] the authors study the pairs (¢, f) for which the discriminant curve is nondegener-
ate in the Kouchnirenko sense. In particular, when f is irreducible, after [5, Corollary 4.4]
the discriminant curve D(u,v) = 0 is nondegenerate if and only if the multiplicity of
f(x,y) = 0 equals 2 or equals 4 and the genus equals 2. Otherwise the discriminant
curve is degenerate. Our aim in this paper will be to describe the topological type of
the discriminant curve D(u, v) = 0 of the morphism (¢, f), where f is irreducible and
belongs to some special families, as for example, branches of multiplicity less than 5,
branches C such that the difference between its Milnor number pu(C) and Tjurina num-

ber t(C) is less than 3, with u(C) = io(%, %) = dim, not im¢C{x, y}/(%, %) and

@ Springer



Topological type of discriminants... 325

7(C) = dimeClx, y}/(f, 2L, 2), where (3, 31 (resp. (3L, 31, f)) denotes the ideal

/ x> 3y x> dy x dy* -
of C{x, y} generated by % and %—f (resp. by %, g{ and f).

For these families of plane branches we determine the topological type of their discriminant
curves, in the spirit of [9]. We prove that the topological type of the discriminant curve
D(u, v) = 0 is determined, at most, by the semigroup of values S(f), the Zariski invariant
and two other analytical invariants of the curve f(x,y) = 0. In all cases we explicitly
determine such analytical invariants. Hence, in order to describe the topological type of the
discriminant curve of a branch, it is necessarily the same number of analytical invariants of
the initial branch, as it happens for its generic polar curves (see [9]). Finally in Sect.5 we
summarize the different topological types of the discriminant curve in some tables.

2 Equation of the discriminant curve

An analytic change of coordinates does not affect the discriminant curve of the morphism
defined in (1.5) (see for example [2, Section 3]). Hence in what follows we assume that
£(x,y) = x. Then % = 0 is the polar curve of the morphism (x, f).

In this paper we will determine the topological type of the discriminant curve of the
morphism (1.5) for £(x,y) = x and f(x,y) € C{x, y} irreducible belonging to some
special families. The corresponding study relative to the polar curves was done in [10] and
[11], where the authors characterize the equisingularity classes of irreducible plane curve
germs whose general members have nondegenerate general polar curves. In addition, they
give explicit Zariski open sets of curves in these equisingularity classes whose general polars
are nondegenerate and describe their topology. .

Suppose that the Newton—Puiseux factorizations of f (x, y) and % (x, y) are of the form

[y =u ] Iy -, 2.1)
i=1
Bf n—1
3y () =102 y) [y =viol 2.2)
j=1

where u(x, y), ua(x, y) € C{x, y} are units, n = ord f, Zer(f) = {o; (x)}; and Zer(%) =
{yj(x)};. If f is irreducible of order n then n is the smallest natural number such that
{i ()} © C{x!/"}. Moreover, if we fix «;(x!/") then o:j(xl/”) = a;(wx'/") for any
1 < j < n, where w is an nth root of unity.

Following [4, Lemma 5.4] the discriminant curve of the morphism (x, f) can be written

as
n—1

D@, v) = [Jw— fa yja). (2.3)

J=1

3 Discriminants of branches of small multiplicities

In this section we determine the topological type of the discriminant of the morphism given
in (1.5), where C = f(x, y) = 0 has small multiplicity. For this we will make use the results
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of [16] and the analytic classification of plane branches of multiplicity less than or equal to
4, given in [8].

3.1 Discriminants of branches of multiplicity 2

Let C = f(x, y) = 0be a branch of multiplicity 2. The minimal system of generators of the
semigroup of C is (2, s1), where s is an odd natural number. By [16, Chapitre V] the moduli
space of branches of multiplicity 2 have a unique point whose parametrization is given by
(¢2, 151), that is the branch y2 — x*! = 0. Then fy(x,y) = 2y whose Newton—Puiseux root is
y = 0. Hence, after (2.3) we have D(u, v) = v — f(u, 0) = v+ u’!, that is the discriminant
curve is smooth. The Newton polygon of D(u, v) has only one compact edge. The univariate
polynomial associated with this edge is z + 1, so D(u, v) is nondegenerate.

3.2 Discriminants of branches of multiplicity 3

Let C = f(x, y) = 0be a branch of multiplicity 3. The minimal system of generators of the
semigroup of C is (3, s1), where s; € N is such that s; % 0 mod 3. By [16, Chapitre V] the
moduli space of branches of multiplicity 3 is completely determined by the semigroup of the
branch and its Zariski invariant A. The corresponding normal forms are as follows:

3

x=1, y=1"+ar*

where @ = 0 when A = 0 or if A # 0 then we have a = 1 and

x={3e+3k+4Whens1:3e+2 where 0 <k < e —2. G.D

3¢+ 3k +2 whens; =3e+1,

Proposition 3.1 Let C = f(x,y) = 0 be a branch of semigroup (3, s1) and let the Zariski
invariant equal A. The discriminant curve D (u, v) = 0 is degenerate and its topological type
is determined by (3, s1, A) in the following way:

(1) If & = O then the discriminant is the double smooth branch (v + u*1)* = 0
(2) If & # O then

(a) when gcd(2, s1+X) = 2, the discriminant curve is the union of two smooth branches
Di(u,v) =0, 1 <i <2, with intersection number iy(Dy, Dy) = ”H
(b) When gcd(2, s1 + A) = 1, the discriminant is a branch ofsemtgroup (2, st +A).

Proof Suppose A = 0. The implicit equation of the normal form is f(x, y) = y3 —x% = 0.
Then fy(x,y) =3 y2 whose Newton—Puiseux root is y = 0, with multiplicity 2. Hence, after
(2.3) we have D(u,v) = (v — f(u, 0)2 = (v + u®)?2, that is the discriminant is a double
smooth branch.

Suppose now A # 0. The normal forms are x = 3, y = ! + r*, with A as in (3.1).

s1+A
After (1.1) the implicit equation is f(x, y) = y3— 3xlTy - (xx1 + x*). Then Hlx,y) =
S1+A

3y2 — 3x%, whose Newton—Puiseux roots are y; (x) = +x e for 1 <i < 2.Using (2.3)
we have

D(u,v):(v+u —2u.2 +u)<v+u“+2u o —l—u)
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Fig. 1 Jacobian Newton polygon of a branch with semigroup (4, 51, 52)

. s1+A s1+A
Hence Zer(D) = {n := —u" —2u"2> —u’,mp = —u®" +2u"2 —u’}and ord(n; —
m) = ‘”;’\. We distinguish two cases: if gcd(2, s1 + A) = 2 then by (1.2) we conclude that

s+
D(u, v) = 0 has two smooth branches of equations D (u, v) := v + u’! — ur + ut

and Dy(u,v) = v+ u’! + 214# + u* such that, after the Halphen—Zeuthen formula, the
intersection multiplicity is ig(D1, D2) = % If ged(2, s1 + A) = 1 then the discriminant
curve D(u, v) = 0 is a singular branch of the semigroup (2, 51 + A).

The Newton polygon of D(u, v) is elementary (it has only one compact edge) and the
univariate polynomial associated with its compact edge is (z 4+ 1)%. Hence the discriminant
D(u, v) = 0 is degenerate. ]

Corollary 3.2 If C is a branch of multiplicity 2 or 3 and nonzero Zariski invariant, then the
discriminant curve D(u, v) = 0 has no multiple irreducible branches.

Corollary 3.2 does not hold for branches of multiplicity 4 as the proof of Proposition 3.5
shows.

3.3 Discriminants of branches of multiplicity 4

Let C = f(x,y) = 0 be a branch of multiplicity 4. The branch C may have genus 1 or 2.

Proposition 3.3 Let C = f(x,y) = 0 be a branch of the semigroup (4, s1, s2). Then the
discriminant curve D(u, v) = 0 is nondegenerate. Moreover, D(u, v) = D{(u, v)D>(u, v),
where Dy is a smooth branch, D is a singular branch of semigroup (2, s>)and the intersection
multiplicity between the two branches is io(D1, D) = 2s1.

Proof For genus 2, and after the second part of [5, Corollary 4.4] we get that D(u, v) = O is
nondegenerate and we can determine its topological type from its Newton polygon (see [13,
Proposition 4.7] and [6, Theorem 3.2]), which is the jacobian Newton polygon of (x, f) (see
Fig. 1).

Since s> is an odd natural number, gcd(s; + 52, 2) = 1. Moreover, after the properties of
S(f), we get eps1 = 4s1 < 250 = eys2, hence s > 2s1 and D(u, v) = Di(u, v) Dy (u, v),
where Di(u,v) = 0 is a smooth curve admitting as parametrization (¢, ¢*! 4 ---) and
D> (u,v) = 0 is a singular curve of genus 1 which semigroup of values is (2, s;). Finally,
after the Halphen—Zeuthen formula, the intersection multiplicity between the two branches
isig(Dy1, Dy) = 2s7. O

Suppose now that the branch C has genus 1 and semigroup of values equals (4, s1). By
[8], the moduli space of branches of multiplicity 4 and genus 1 has five families of normal
forms:
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NF4di: x=t* yi=o0;(t), 1<i<5, 3.2)
where A; is the Zariski invariant of the ith normal form family. More precisely, we have

(1) (A, 01(0) = (0, 1),
2) If2<i <4theni; =251 —4jfor2 <j < [%‘] and

o (1) = 151 4 172 +akt3s1—(4[%]+j+l—k) +eta.

1 2t3s1—4<[%‘1+3—k>
J=lgz 1= ’

withay #0, and 1 <k <[] — j.

3s1 —4j :
— 451 A3 3s1-8) s
o3(t) =1 17 4 e T

o 351—=U+D
+a[T|]t .

PB9=42i-1) 4

o4(t) = 15 4 1™ +a[x71]_j+lt3“_8j +a[%]_j+2t3s‘_4(2j_1) +-
by, 3D
[2]-1

351—4j
where apst)—j+1 # 5

(3) Ifi =5thenAs =3s; —4j for2 < j <[3]and

os(t) = 151 4 13174 p g 240130 g 2401 k=)

After the Newton—Puiseux Theorem, the ith normal form has the equation

fite, )y =[] 0 —=aitwx'*), (3.3)

w*=1

where w is a 4th primitive root of unity.
Hence, we obtain the implicit equation for each normal form family:

NF4.1: fi(x,y) = y* —x*.
NF 4.i: For2 <i <4 we get

fi,y) =y 4+ Py + Qi(0)y + xS ux), (3.4)

where u(x) € C{x} is a unit (that is u(0) # 0), ;; = 251 — 4 for2 < j < [} ],
Qi(x) = —4x17/ 4 ... and
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—dgx—(CHHH1-8) fori =2
bxS1=2 4 ... fori =3 whereb:#‘f”-
(=2 =dapyy )X e fori =4 and —2—dapy) g #0
Pi(x) =
0 fori =4, —2—4a[%1]_j+120
anda[%]_j+2:---:a[%]_l =0
(ko .
_40["71]—]41«1’(&1 (2j—(ko 1)>+.A. fori =4, _2_4a[%]7j+,1:() ,
anda; #0 forsomel=[%]—j+2,....[%]-1

where 2 < kg < j — 1 such that
k := mi [1 £0 [Sl] it2<1 [“]} [Sl] i+ k
:=min |/ : R [y <l<|=|1=|%|= )
1 aj 4 J 4 4 J 0

Observe that

2
ordP; (x) = S (s1 = ). (3.5)
NF4.5: fs(x,y) = y* + P(x)y> + Q(x)y + R(x), where
P(x) = Bl zalgxﬂ—Z(j—[%]]—k) _ 4£lkak+sxsl_2(j_3'l—[%]—k)-f-s
_za,fﬂxsl—z(j—l%J—k—s) L. 56
o) = —4akxslfj+[%l]+k — 4ak+sxs1*j7[%l]+k+s
gD gy G2emD=G ke 4y 3
R(x) = —x% 42626170 — 39174 g 240G 1H1-0 3.8)

for2 <j <[31

Proposition3.4 Let C = f(x,y) = 0 be a branch belonging to the family NF 4.i, for
1 <i < 4. Then the discriminant curve D(u, v) = 0 is degenerate and its topological type
is determined by the semigroup S(f) = (4, s1) and the Zariski invariant A; of C. Moreover,

(1) if ki = O then the discriminant curve is the triple smooth branch (v + u*')3 = 0;
(2) if ki #0thenr; =251 —4j for2 < j <[%]and

(a) when gcd(3,2s1 + X;) = 1, the discriminant curve D(u, v) = 0 is a branch with
semigroup (3, 2s1 + Ai);

(b) when gcd(3,2s1 + X;j) = 3, the discriminant curve is the union of three smooth
branches D;(u,v) = 0, 1 < i < 3 with intersection number io(D;, D,) = 25'37'”’

forl #r.

Proof Suppose A; = 0. By (3. 3) the implicit equation of the normal form is fi(x,y) =
y* — x*1. Then & " ah (x y) = 4y3 whose Newton—Puiseux root is y = 0, with multiplicity
three. Hence, after (2.3) we have D(u,v) = (v — fi(u,0))> = (v + u*1)?, that is the
discriminant curve is a triple smooth branch.

Suppose now A; #= 0. Then A; =251 —4j for2 < j < [%] and the normal form of C is
x=t* y=oi@t)for2 <i <4.

From the implicit equations f;(x, y),2 <i < 4, given in (3.4) and from inequality (3.5)
a'gi (x, y) has only one compact edge whose vertices are
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(0, 3) and (s; — j, 0). All the parametrisations of %—’;"(x, y) = 0, for 2 < i < 4, have the

same order and we can write them as y,- (1) = 814% + .-+, where ¢ is a 3rd root of unity.
From (2.3) and for a fixed i € {2, 3, 4}, we have

Du,v)= [] @— fitu,y)),

=0

and considering the development of f; (u, y, (1)) we obtain

s1—J 251 +x;
D(H, U): H(v+u.Y1+38u4(lT/)+...): H(U_l_usl_'_:;gu( ]3 )_l_...)’
e3=1 3=l
2s1+Ai .
so Zer(D) = {n,- (&) := —u’t — 3eul 13+ ) 4 '~'}63=1 and ord(n; — n,) = 2‘“%)“, for

1 <1 # r < 3. The topological type of D(u,v) = 0 is determined by the semigroup
of the branch C = fi(x,y) = 0 and its Zariski analytical invariant A; = 2s; — 4 for
2<j< [%‘]. We distinguish two cases: if 3 and 251 + A; are coprime then the discriminant
D(u, v) = 0 is a branch of the semigroup (3, 251 + A;). Otherwise, by (1.2), we conclude
that the discriminant curve is the union of three different smooth branches D; (u, v) = 0 with
intersection multiplicity io(D;, D,) = % forl #r.

In all cases the Newton polygon of D(u, v) is elementary with vertices (0, 3) and (357, 0).
The polynomial associated with its compact edge is (z + 1)3, so the discriminant curve
D(u, v) = 0 is degenerate. ]

Proposition 3.5 Ler C = f(x,y) = 0 be a branch belonging to the family NF 4.5. Then
the discriminant curve D(u,v) = 0 is degenerate and its topological type is determined
by the semigroup S(f) = (4, s1), the Zariski invariant As and at most two other analytical
invariants of C.

Proof The implicit equation of C has the form f5(x, y) = y* + P(x)y?> + Q(x)y + R(x),
where P(x), Q(x), R(x) are asin (3.6), (3.7) and (3.8). Hence %(x, y) = 4y3 +2P(x)y+
O(x).

We distinguish the following cases: ‘
Case A. If a; = 0 in o5(¢) for all i, then we have that %(x, y) = 4y3 — 817y =

4y(y* — 2x*17J) whose Newton-Puiseux roots are {0, j:ﬁx% }. Therefore f5(u,0) =

R(u) = —u®' + 2u21=) — 13174 and fs(u, £3/2u"T") = —u®t — 2026170 — y391=4],
From (2.3) we conclude that the discriminant curve is the union of three smooth curves
Dy(u,v) = 0, where Dy (u,v) = v + u®' — 2u*> =D 4 3174 Dy (u,v) = Ds3(u,v) =
v+ st 4 2u2 =D 4 y31=4 and ig(Dy, D) = 2(s1 — j) forl € {2, 3).

Case B. If a; # 0 and aj4; = 0in os5(t) for/ > 0, then

a . . K
a7];5()@ ¥) = 4y% 4 2(—4xt T = 2apet 0TI oy
4a (xs,—j+[%1+k L 2= =G=TF-h )

So the Newton polygon of %(x, y) depends on the position of the point M = (s; — j, 1)

with respect to the line passing by £ = (0,3) and F = (s; — j + [%] + k&, 0). We have three
subcases:
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then \/ (Y s ) has only one compact edge of vertices E and F'. Hence

- < -
1—J llJ+/<

s1—j+ 14k
5. After

the order of the Newton—Puiseux roots {y; }3 , of = df 2 (x, y) = 0 equals
(2.3) we obtain

s1 =+ 3 1+k

D(u,v) = ]_[ (v —3a%wiu (f) + u' .|_...)’

3_
w;=1

for some nonzero complex number a and where w; is a cubic root of unity. If ged(3, (s1 —

Jj+ [%] + k)) = 1 then the discriminant curve is irreducible with semigroup (3, 4(s; — j +

[%‘] +k)). In the other case, we get gcd (3, (s1—j + [%‘] +k)) = 3 and the discriminant curve
4(s1—j+[%'1+k)

is the union of three smooth curves D;(x, y) = 0 such that io(Dy, D,) = 3
B.2. If r12 5 T ]+k then A/ ( dafS) has two compact edges of vertices M, E and F. By
(2.3) we get

D, v) = W+u® 20267 4y + w4 2026170 4D O mDHEE ),

If 51 — j is odd then the discriminant curve is the union of a smooth branch D (u, v) =0
and a singular branch D> (x, y) = 0 with semigroup (2, 3(s; — j) + 2([%‘] + k)). Moreover,
io(D1, D2) = 4(s; — j). Otherwise, if s1 — j is even then the discriminant curve is the union
of three smooth branches D;(x, y) = 0 such that io(D1, D;) = 2(s; — j) for2 < < 3 and
io(D2, D3) = 3 (s —DT (%] +k

B.3. Ifs1 = = [‘1]+k

is an interior point of this edge. The polynomial in one variable associated with the compact
edge of N(%‘) is p(z) = 23 — 2z — ay. After the z-discriminant of p(z) we have that the
(*5°)
9

then NV (2 ( ) has only one compact edge of vertices E and F and M

roots of p(z) are simple if and only if a; # + . We will study both cases:
B.3.1 Suppose that a # j:(4f) Denote by z; the three different roots of the polynomial
p(z). For any y;(x) € Zer( ) we have

flu,yi(w) = —u' + Q(Zi)uz(sl D+ ..., where q(z) = z* — 42% — darz + 2.

Since 72 — 27 = ag, we get g(z) = —3z2* + 472 + 2 and if z, # z; then ¢(z,) # q(z)).
Hence D(u, v) = [[;(z +u} +¢q(z)u*s1=) 4 ... and the discriminant curve D (u, v) = 0
is the union of three smooth branches D;(x, y) = 0 such that io(D;, D;) = 2(s1 — j).

B.3.2 Suppose that a; = %. The polynomial p(z) has z; = 2\/2 as a simple root and

70 = —\/g as a double root. If y; € Zer(%) corresponds to z; then

s, i) = ust + q(z)uE1 =D 4.
. . s1—2j

f3(t, y2(0) = w0t + (e =D PO

f5(u, y3w) = ut + q(z2)u 1) 4 r3u?t1-

)

where r, r3 € C are different. Observe that g(z1) # ¢(z2). Hence, if 51 — 2 is odd then
the discriminant curve is the union of a smooth branch D;(u, v) = 0 and a singular branch
Dz(u v) = 0 with semigroup (2, 551 — 6), where io(D1, D2) = 4(s; — j). Otherwise, if

—2j iseven then the discriminant curve is the union of three smooth branches D (u, v) = 0
such that ig (D1, D;) = 2(s1 — j), for2 <1 <3 and io(D3, D3) = ‘7_7/

@ Springer



332 E.R.G. Barroso, M. F. H. Iglesias

B.3.3 Suppose thatay, = — %. The polynomial p(z) has 2\/2 as a double root and —\/g
as a simple root. After a similar procedure we conclude, in this case, that the topological type
of the discriminant curve is as in B.3.2.

Case C If ak # 0 # aj+s, then we have af5 (x y) = 4y> +2P(x)y + Q(x). The Newton
polygon of (x y) depends on the posmon of the point M = (s; — j, 1) with respect to

the line passmg through £ = (0,3) and F = (s;1 — j + [%‘] + k, 0). We have the following
subcases:
C.1.1If S1 7 l‘l ] "

as in In emphatic way

then the topological type of the discriminant curve D(u, v) = 0 is

leﬂ. [51] T then the topological type of de discriminant curve is as in In

emphatic way.
C.3. If Hz 7= T ] T then the Newton polygon of f 3 (x, y) has only one compact edge
containing the points E, F, M, as in In emphatic way. The polynomial associated with this

compact edge is p(z) = 73— 27— ay whose roots are simple if and only if a; # :|:(4T*/6).

Let us study the different cases:

C31.Ifa, # i(#) then the topological type of the discriminant curve D (u, v) = 0
is as in In emphatic way.

C.3.2. Suppose that a; = i(%). The polynomial p(z) has z; = 2\/E as a simple root

and zp = 73 = —\/g as a double root. If y; € Zer( 3y 5) corresponds to z; then we can write

yi = zul 44 4 (3.9)
Hence

Bii=flu, () == + g 4
8y 1= [ (. y2(w) = =’ + g2
8 1= f (. y3(w) = —u’' +q(eu* 1) 4o

where 83, 83 € ZerD(u, v) are different. Observe that ¢(z1) # ¢(z2). So ord(8; — &) =
2(s1 — j) for 2 <[ < 3. Let us determine ord(82 — 83). For that we need to find new terms

in 67 and &3. We apply the Newton procedure for %: let y; be a new variable. Substituting
(x, ) = (x, xL3 ¥ (25 4 y)) in S5 (x, ) we get

afs (5L (3L
H—(x xR 2y 4 1)) = P E IO g« yy),

with
glx,y) =4 [(%) 22+ 2y1 + 3227 + yf] — (dag + dapiox° + dapx™ 7 4
—[8 4 4ax*' Y 4 Sagag 1 x"1 THT 4 4a,%+sx“_2j+2s +--In
—[8 + 4a}x" 7 + 8aragsx TH T tdal, xNTHIE 4
=4 [312y12 + y?] — (4appgx® 4+ 4apx 72 4.0
—[4a2x"17% 4 8apapy xS 4 4a,%+sxs‘_2j+2s +--1n
—[4afx"1 7 + 8agagsx* THT +dal, xNTHIE 4z, (3.10)

where the last equality follows from p(z3) = 0.
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Hence, in the next step of the Newton procedure it is enough to consider the polynomial
H(x, y1) = 1220y — 4aix*1 "2y + (—4z2a} — 4ap)x =2 — dap i x°. (3.11)

The topological type of the discriminant curve will depend on the relation between s and
s1—2j:
C.3.2.1 Suppose that s —2j > s. We obtain

V6 s ks sisigs
)/2(14)=—Tu2 +7“2 T
V3(u):_£u”%j—@u:l;/+%+---

3 V6

Hence
fs(u’ VZ(M)) — _u_i +q(Z2)u2(Sl_j) + p(Z2)M2(S1_j)+% +l(ak+3)u3sl_4j

8 .3
S cat

and
S, ya@) = —ui + g2 — peuP T 4 (g ut Y
where ¢ = ¥ _4‘1’6‘” ,and [(z) = —4zpz — 1. As a consequence, when s is odd then the

discriminant curve D (u, v) = 0 is the union of a smooth branch D (u, v) = 0 and a singular
branch with semigroup (2, 4(s1—j)+3s), withig(D1, D2) = 4(s1—j). Otherwise, if s is even
then the discriminant curve D (u, v) = 0 is the union of three smooth braches D;(u, v) = 0
such that ig(Dy, D;) = 2(s; — j) for2 <1 < 3, and... and ig(D3, D3) = 2(s1 — j) + %s.

C.3.2.2 Suppose that s — 2j < s. After (3.11) and for the next step of the Newton
procedure we only need the polynomial

H(Z) = 12202% — 4(z2a} + ),

whose roots are :i:‘/Tg. Letd = @. ‘We obtain

5 K s1—2j
ya(u) = zoul T gy U (3.12)
y3(u) = zoul 1k Al (3.13)
Hence
f5@, o) = =i + q(z)u? ™) 4 p(z)u® =D L ()Y
80 7s1—10;
+8TZ2du 2 4
and
f5@u, y3w) = —u + q(z)u® ™) = p(z)u® =D L ()Y
80 751-10j
—azzdu 2+
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Since 4 and s are coprime then 7s; — 10 is odd and the discriminant curve D(u, v) =
0 is the union of a smooth branch Di(u,v) = 0 and a singular branch with semigroup
(2,7s1 — 10j), where ig(Dy, Dy) = 4(s1 — j)-

C.3.2.3 Suppose that s — 2j = s. After (3.11), in order to obtain the next term in the
power series y;, it is enough to consider the polynomial

H(Z) = 121222 - 4(z2a,§ + ak4+s + ax).

The topological type of the discriminant will depend on the value of aj:
C.3.2.3.1 For agy, # —430, we get

V6

H(Z) = 122,Z% — A(ays + 4~ 2 ),

whose roots are +b := (¥ jg“) where di s = apys + 4‘[ Hence

)/2(1/!) = Zzu[sfl]Jrk + bu[%]+k+% e,

ya(u) = zoul 1Tk — py ks

‘We conclude that

80
Fs(u, o) = —u + q(z22)u* ™ 4 Hagp)u™ 4 + o e A L

and
. . 80 .3
Fs(u, y3(w) = —u 4+ q(z22)u* ) 4 agps)u®1 =4 — 5zzu2“—f+ff SR

So, if s is odd then D(u, v) = 0 is the union of a smooth branch D;(u,v) = 0 and a
singular branch of semigroup (2, 7s1 — 10), with ig(Dy, D) = 4(s1 — j). In the other case,
if 5 is even then D(u, v) = 0 is the union of three smooth branches D;(u, v) = 0 such that

io(D1, D) = 2(s1 — j) for2 <1 < 3,and ...,and io(Ds, D3) = 21510,
C.3.2.3.2 For a4+ = —4%, after (3.10), in order to obtain the next term in the power

series y;, it is enough to consider the polynomial
H(Z) = 122,7% — 4a} Z — dag45(1 + 2ax22),
whose roots 71, t> are simple. Hence

yau) = Zzu[%+k]+k + tlu[%‘+k]+k+s T

and
+k]+k ks 4L

y3(u) = Zzu[ lzul 4

‘We conclude that

s, y2) = —ui + e ™) — PO p (P TITE

and

f5u,y3 ) = —uj +q@)u* ™ — PO g p()utOT I g
where h(z) = —4ag+sz + ax. The discriminant curve D(u, v) = 0 is the union of three
smooth branches D;(u, v) = 0 such that io(Dy, D;) = 2(s; — j) for 2 <[ < 3 and... and
io(D2, D3) = 4s1 — 6. o
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From the above computations we obtain
Theorem 3.6 Let f(x,y) = 0 be a plane branch of multiplicity n. Then the following hold.

(1) If n = 2 then the discriminant curve D(u, v) = 0 is nondegenerate.

(2) If n = 3 then the discriminant curve D(u, v) = 0 is degenerate and its topological type
depends on the semigroup S(f) and the Zariski invariant (when it is not zero).

(3) If n = 4 then the discriminant curve D(u, v) = 0 is degenerate and its topological type
depends on the semigroup S(f), the Zariski invariant (when it is not zero) and at most
two other analytical invariants.

Remark 3.7 In [8], Hefez and Hernandes give explicit normal forms for branches of multi-
plicity 2, 3 or 4. Thanks to that, the description of the topological type of the discriminant
curve of such a branch was possible. The normal forms for branches of multiplicity greater
than 4 are not completely determined.

4 Discriminant of branches C with u(C) — 7(C) < 2

Let C : f(x,y) = 0 be a plane branch. Put r(C) := u(C) — t(C), where (C) and t(C)
are the Milnor number and the Tjurina number of C, respectively. Observe that r(C) is a
nonnegative integer. In zero characteristic, from [15, Theorem 4] we get r(C) = 0 if and
only if C is analytically equivalent to the curve y* — x*' = 0 for two coprime integers
so and s greater than 1. Later, in [1], the authors describe all plane branches defined over
an algebraically closed field of characteristic zero, modulo analytic equivalence, having the
property that the difference between their Milnor and Tjurina numbers is 1 or 2. In particular
the authors determined the normal forms of the branches of this family, which show us
that the Zariski invariant of these branches are determined by the two first generators of
their semigroup. By [1, Corollary 5] we know that if 7(C) # 0 then r(C) > 28!, Hence,
if (C) = 1 then g = 1 and if »(C) = 2 then g < 2. In this section we will describe the
topological type of the discriminant curve D (i, v) = 0 of branches C with u(C)—t(C) < 2.

Theorem4.1 Let C : f(x,y) = 0 be a plane branch with r(C) := u(C) — t(C) < 2. Then
the discriminant curve D(u,v) = 0 is degenerate and its topological type is given by the
semigroup S(f).

Proof Suppose first that r(C) = 1. By [1, Corollary 8] the branch C is analytically equivalent

to the curve defined by the equation f(x, y) = y* — x5 + x5172y%~2 where 2 < s < 51

are coprime integers. Hence fy(x,y) = 50y°0 71 4 (s — 2)x%1 72y 73 = 03 (50y? 4

(s0 — 2)x*172), whose Newton—Puiseux roots are a; = 0 (with multiplicity so — 3 ), orp =
. 512 3 s1-2

\/ 2;%)( > and o3 = — zs_—o“)x = After (2.3) we obtain that the Newton—Puiseux roots

of the discriminant curve are

(1) 8; = u®' with multiplicity so — 3,

Hence, if s; and sp are odd then the discriminant curve is given by D(u,v) =
Di(u, v)® 3Dy (u, v), where Di(u,v) = (v — u') and D, (u, v) is a branch of semi-
group (2, (s1 — 2)so) and the intersection multiplicity is ig(D1, D) = min{sl, (s1 — 2)n}.
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Otherwise D(u, v) is the product of Dj(u, v)%73 and two smooth branches D, (u, v) and
D3 (u, v), where ig(D1, Dy) = min{s, 152} for 2 < k < 3 and ig(Da, D3) = $152%,

Suppose now that ¥ (C) = 2. In this case we get g < 2.If g = 2 then by [1, Corollary 13]
the multiplicity of C is 4 and we study this case in Proposition 3.3.

For g = 1, after [1, Theorem 17, Corollary 18], we have two normal forms:
(A) f(x,y) =y — x5 4 x5173y%072 with2 < 59 < s1.

243

(B) fx,y) = ¥ — &t 29172073 4 (55 apet ™ )y072, with 4 < 50 < s,

250
s0—3

< sy and g € C.

In the case (A) we get fy(x,y) = Y073 (s0y% + (so — 2)x*173), whose Newton—Puiseux
s1—3

. C . 5o 513 _
roots are oy = 0 (with multiplicity so — 3), ap = 1/ZS%)C 7 and a3 = — 250 T

50
After (2.3) we obtain that the Newton—Puiseux roots of the discriminant curve are

(1) 8; = u®! with multiplicity sg — 3,

S0 s0—2 51 —3)s,

(2) 8 = —u" + ((/2;) +(y52) >u¥
-2 51 —3)s

(3) 83:—&[”—(( /2;70507)50_’_( 2;% S0 )u(123)0.

Hence, if sg is odd and s; is even then the discriminant curve is given by D(u, v) =
D (u, v)* 3Dy (u, v), where D;(u, v) = (v — u®') and D3 (u, v) is a branch of the semi-
group (2, (s; — 3)so) and the intersection multiplicity is io(D1, D2) = min{sy, (s — 3)so}.
Otherwise D(u, v) is the product of Dy (u, v)%73 and two smooth branches D, (u, v) and
D3 (u, v), where ig(D1, Dy) = min{s;, 15250} for 2 < k < 3 and ig(D», D3) = S1525%0,

In the case (B) we have

243
50
fylx,y) =yt <SOy3 + (50 — 32+ (50 — 2) ( > ax _k> y) ,
k>2
hence its Newton polygon coincides with the Newton polygon determined by (0, 3), (s; —2, 0)

and (s —2 — [i—(‘)], 1). But, after the inequality 35?3 < 51, we get that this Newton polygon

has only two points which are its vertices: (0, 3) and (s; — 2, 0). The Newton—Puiseux roots

s0—2
of fy(x,y) = 0are oy = 0 (with multiplicity so —4) and o; = &; |} %MOT + ---, where

& is a cubic root of unity, 1 < i < 3. Then, after (2.3) the Newton—Puiseux roots of the
discriminant curve are §; = u*! with multiplicity so — 4 and

S0 s0—3
-3 -3 (51 -2)s
§i = —u' + (51“3/ 0 ) + (-’?i ’ SO) uos
S0 S0

s0—2
550 —3 G260 4 (5 -2)—[2]
+\ & —— aypqu 0T
< 50 24151

forl <i <3.
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If s1 — 2 (respectively sg) and 3 are coprime then the discriminant curve is given by
D(u,v) = Di(u, v)50_4D2(u, v), where D{(u,v) = (v — u*') and D, (u, v) is a branch
of the semigroup (3, (s; — 2)so) and, after the Halphen—Zeuthen formula, the intersection
multiplicity is ig(D1, D2) = 3sy. Otherwise D(u, v) is the product of D (u, v)%0~4 and
three smooth branches Dy (u, v), 2 < k < 4, where ig(Dy, Dy) = sy for 2 < k < 4 and
io(Dy, Dy) = W=2% for2 < #7 <4 O

Remark 4.2 Observe that in Theorem 4.1 Case (B) with 5o = 4 coincides with case o3 in
(3.2) for j = 2. Hence this case was studied in Proposition 3.4.

5 Tables

In this section we collect, in some tables, the topological type of the discriminants for branches
studied in this paper (See Tables 1, 2, 3,4,5,6,7, 8,9, 10, 11).
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Table 1 Discriminants of branches of semigroup (2, s1)

Multiplicity 2

Normal form Discriminant D (u, v)

r=0 v+ usl

Table 2 Discriminants of branches of semigroup (3, s1)

Multiplicity 3

Normal form Discriminant D (u, v)

A=0 (v + u’1)?

A#0 DDy, m(D;j) = 1,ig(D1, D) = ‘Y';—A ifged(2,s1 +4) =2
Dy, S(D1) = (2,51 +A)ifged(2,51 +1) =1

Table 3 Discriminants of branches of semigroup (4, 6, s7)

Multiplicity 4 and g =2

Normal form Discriminant D (u, v)

A=s53—6 DDy, m(Dp) =1, S(Dy)=(2,5), io(D1,Dp)=2sy

Table 4 Discriminants of branches of semigroup (4, s1)

Multiplicity 4 and g = 1

Normal form Discriminant D (u, v)
A=0 (U + us1 )3
A=2s1 —4j#0 251 +A

2<j <% DiDyD3, m(D;) =1, io(Dy, Dr) = =5 if ged(3, 251 +4;) =3,

Dy, S(D1) = (3,251 + ;) if ged(3, 251 + 1) = 1
h=3s1 —4j #0

25]'5[%‘] See Table 5

Table 5 Multiplicity 4, g = 1,3 = 3s; —4j #0 2 < j < [%}]

Multiplicity 4, g = 1, A =351 —4j #0 2 < j < [“71]

Depending on the analytical invariants Discriminant D (u, v)

A (a; =0 forall i) DiD3, m(D;) =1, ig(Dy, D) =2(s1 — j)
A and 251 —4(j = [F1—k)

where k = min{; : a; # 0}

A 251 —4(G —[F1—k and2s) —4( —[F1—k—s)
where k = min{j : aj # 0}, s = min{j : x4 ; #0,j > 0}

see Table 6 (case B of Proposition 3.5)

see Table 7 (case C of Proposition 3.5)
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