
ar
X

iv
:2

30
4.

00
48

0v
1 

 [
m

at
h.

D
G

] 
 2

 A
pr

 2
02

3 The Schwarzian derivative on Finsler manifolds of

constant curvature

B. BIDABAD∗, F. SEDIGHI

Abstract

Lagrange introduced the notion of Schwarzian derivative and Thurston discov-
ered its mysterious properties playing a role similar to that of curvature on Rieman-
nian manifolds. Here we continue our studies on the development of the Schwarzian
derivative on Finsler manifolds. First, we obtain an integrability condition for the
Möbius equations. Then we obtain a rigidity result as follows; Let (M,F ) be a con-
nected complete Finsler manifold of positive constant Ricci curvature. If it admits
non-trivial Möbius mapping, then M is homeomorphic to the n-sphere. Finally,
we reconfirm Thurston’s hypothesis for complete Finsler manifolds and show that
the Schwarzian derivative of a projective parameter plays the same role as the Ricci
curvature on theses manifolds and could characterize a Bonnet-Mayer-type theorem.

AMS subject Classification 2010: 53C60, 58B20.
Keywords: Finsler; Schwarzian; Möbius; constant curvature; conformal; completely in-
tegrable.

1 Introduction

Historically, the definition and elementary properties of the Schwarzian derivative are first
discovered by Lagrange in 1781. The Schwarzian derivative of an injective real function
g on R is defined by

S(g) =
g′′′

g′
− 3

2
(
g′′

g′
)2,
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where g′, g′′, g′′′, are the first, the second, and the third derivatives of g with respect
to x ∈ R. There is a special type of conformal transformations on a Complex plane
denoted by T (z) = az+b

cz+d
, where ad − bc 6= 0, called the Möbius transformation. They are

characterized by vanishing of the Schwarzian derivative S(T ) of T , that is S(T ) = 0.
The Schwarzian derivative is generalized for Riemannian manifolds by Carne [9], Os-

good and Stowe [12], etc. Thurston discovered that a conformal mapping into the Riemann
sphere that has Schwarzian derivative uniformly near zero must be a Möbius transforma-
tion [17].

Recently, we have discussed several applications of Schwarzian in Finsler geometry
which confirms Thurston’s viewpoint on the mysterious role of this derivative, for in-
stance, the present authors have studied the Schwarzian of the projective parameter p
and classified some Randers manifolds.

Theorem A. [5] Let (M,F ) be a compact boundaryless Einstein Randers manifold with
constant Ricci scalar and the projective parameter p.
•If S(p) = 0, then (M,F ) is Berwaldian.
•If S(p) < 0, then (M,F ) is Riemannian.

Theorem A confirms Thurston’s guess in a particular case. In fact, it shows that the
Schwarzian S(p) of a projective parameter p, plays a similar role as Ricci curvature on
Einstein Randers manifolds, see [5, Proposition A ].

As another application a short proof for a known result of Z. Shen in Mathematische
Annalen [15] is given in [14], where we proved that two projectively related complete
Einstein Finsler spaces with constant negative Ricci scalar are homothetic. We have also
obtained the following result using Schwarzian;

Theorem B. [7] Every complete Randers metric of constant negative Ricci curvature (in
particular, of constant negative flag curvature) is Riemannian.

For more characteristics of Schwarzian derivative in Finsler geometry, see for instance
[5, 6, 7, 14], etc. Using some results on [13] and [16] we see Möbius mappings leave
invariant Einstein Finsler spaces and Finsler spaces of scalar curvatures.

In the present work, the Schwarzian derivative on Finsler manifolds is discussed and
the following results are obtained. Let’s set a tensor field Z with the components

Zh
ijk := Rh

ijk −
1

n− 1
(gijR

h
k − gikR

h
j ). (1)

Theorem 1.1. Let (M,F ) be a Finsler manifold. The Möbius partial differential equa-
tions of the conformal factor ϕ, is completely integrable, if and only if the tensor Z
vanishes.
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Theorem 1.1 leads to the following result.

Theorem 1.2. Let (M,F ) be a complete connected Finsler manifold of constant Ricci
curvature c2. If M admits a nontrivial Möbius mapping, then it is homeomorphic to the
n-sphere.

The following theorem reconfirms Thurston’s hypothesis and shows that the Schwarzian
derivative of a projective parameter plays a same role as the Ricci curvature on the com-
plete Finsler manifolds.

Theorem 1.3. Let (M,F ) be a connected forward-complete Finsler manifold with con-
stant Ricci scalar. If the Schwarzian S(p) of the projective parameter p satisfies S(p) >
2F 2λ for λ > 0, then M is compact and the following holds;
(i) Every geodesic of length at least π/

√
λ contains conjugate points.

(ii) The diameter of M is at most π/
√
λ.

(iii) The fundamental group π(M,x) is finite.

2 Preliminaries

2.1 Notations and elementary definitions

Let (M,F ) be an n-dimensional connected smooth Finsler manifold. We denote by TM
the tangent bundle and π : TM0 → M , the fiber bundle of non-zero tangent vectors.
Let (xi, U) be a local coordinate system on M and (xi, yi) an element of TM . Every
Finsler structure F induces a spray vector field G := yi ∂

∂xi − Gi(x, y) ∂
∂yi

, on TM , where

Gi(x, y) = 1
4
gil{[F 2]xkyly

k − [F 2]xl}. The vector field G is globally defined on TM in
the sense that its components remain invariant after a coordinate change. By TTM0 we
denote the tangent bundle of TM0 and by π∗TM the pull back bundle of π.

Consider the canonical linear mapping ̺ : TTM0 → π∗TM , where ̺ = π∗ and ̺X̂ = X
for all X̂ ∈ Γ(TM0). Let us denote by VzTM the set of vertical vectors at z = (x, y) ∈
TM0 equivalently, VzTM = kerπ∗ and V TM :=

⋃

z∈TM0
VzTM the bundle of vertical

vectors. There is a horizontal distribution HTM such that we have the Whitney sum
TTM0 = HTM ⊕ V TM . This decomposition permits to write a vector field X̂ ∈ TTM0

into the horizontal and vertical form X̂ = HX̂ + V X̂ , in a unique manner.
One can observe that the pair { δ

δxi ,
∂
∂yi

} defined by δ
δxi :=

∂
∂xi −Gj

i
∂

∂yj
, where Gj

i :=
∂Gj

∂yi

forms a horizontal and vertical frame for TTM . The horizontal and vertical dual frame are
given by the pair {dxi, δyi}. One can show that 2Gi = γi

jky
jyk, where γi

jk = 1
2
gih(∂ghk

∂xj +
∂ghj
∂xk − ∂gjk

∂xh ), are formal Christoffel symbols. The Cartan connection’s 1-form is denoted
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by ωi
j := Γi

jkdx
k + C i

jkδy
k, where

Γi
jk :=

1

2
gil(δjglk + δkgjl − δlgjk), C i

jk :=
1

2
gil∂̇lgjk, (2)

and δi :=
δ
δxi , ∂̇i :=

∂
∂yi

. In a local coordinate system, the horizontal and vertical Cartan

covariant derivatives of an arbitrary (1, 1)-tensor field on π∗TM with the components T j
i

are denoted here by

c∇kT
j
i = δkT

j
i − T j

rΓ
r
ik + T r

i Γ
j
rk,

c∇̇kT
j
i = ∂̇kT

j
i − T j

rC
r
ik + T r

i C
j
rk.

We denote here by
∗

R
i

jkm the components of Cartan hh-curvature tensor. They are related
to the components of Chern hh-curvature tensor Ri

jkm by the following relation [11].

∗

R
i

jkm = Ri
jkm +Rs

kmC
i
sj, (3)

where, Ri
km := yjRi

jkm =
δGi

k

δxm − δGi
m

δxk and Ri
jkm =

δΓi
jm

δxk − δΓi
jk

δxm + Γi
skΓ

s
jm − Γi

smΓ
s
jk. For a

non-null y ∈ TxM , trace of the hh-curvature called the Riemann curvature are given by
Ry(u) = Ri

ku
k ∂
∂xi , where R

i
k := gmjRi

mjk. Multiplying the components of the hh-curvature

tensor of Cartan connection
∗

R
i

jkm in (3) by yj yields
∗

R
i

km = Ri
km + 0. Again contracting

this equation by yk we have
∗

R
i

m = Ri
m. (4)

The Ricci scalar is defined by Ric := Ri
i, see [4, p.331]. Here, we use Akbar-Zadeh’s

definition of Ricci tensor as follows Ricik := 1/2(F 2Ric)yiyk , see [1]. Let li := yi

F
, be a

unitary 0-homogenous vector field, by homogeneity we have Ricijl
ilj = Ric. A Finsler

structure F is called forward (resp. backward) geodesically complete, if every geodesic on
an open interval (a, b) can be extended to a geodesic on (a,∞) (resp. (−∞, b)). A Finsler
structure is called “complete” if it is forward and backward complete.

Let F̃ be another Finsler structure on M . If any geodesic of (M,F ) coincides with a
geodesic of (M, F̃ ) as set of points and vice versa, then the change F → F̃ of the metric
is called projective and F is said to be projective to F̃ . In the definition of projective
changes we deal with the forward geodesics and the word “geodesic” refers to the forward
geodesic. A Finsler space (M,F ) is projective to another Finsler space (M, F̃ ), if and
only if there exists a 1-homogeneous scalar field p(x, y) satisfying G̃i(x, y) = Gi(x, y) +
p(x, y)yi. The scalar field p(x, y) is called the projective factor of the projective change
under consideration.

Let F and F̄ be two Finsler structures on an n-dimensional manifold M . A diffeo-
morphism f : (M,F ) → (M, F̄ ) is called conformal transformation or simply a conformal
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change of metric, if and only if there is a scalar function ϕ(x) on M called the conformal
factor such as F̄ (x, y) = eϕ(x)F (x, y). Assuming F̄ (x, y) = eϕ(x)F (x, y) we have equiv-
alently ḡij(x, y) = e2ϕ(x)gij(x, y) and ḡij(x, y) = e−2ϕ(x)gij(x, y) where gij is the inverse
matrix defined by gijg

ik = δkj . The diffeomorphism f is said to be homothetic if ϕ is
constant and isometric if ϕ vanishes in every point of M . A conformal transformation is
called C-conformal if the following condition holds ϕhC

h
ij = 0, where ϕh = ∂ϕ

∂xh .
Throughout this article, the objects of (M, F̄ ) are decorated with a bar and we shall
always assume that the line elements (x, y) and (x̄, ȳ) on (M,F ) and (M, F̄ ) are chosen
such that x̄i = xi and ȳi = yi holds, unless a contrary assumption is explicitly made.

Let (x, y) be an element of TM and P (y,X) ⊂ TxM a 2-plane generated by the vectors
y and X in TxM . The flag curvature κ(x, y,X) with respect to the plane P (y,X) at a
point x ∈ M is defined by

κ(x, y,X) :=
g(R(X, y)y,X)

g(X,X)g(y, y)− g(X, y)2
,

where R(X, y)y is the hh-curvature tensor. If κ is independent of X , then (M,F ) is called
of scalar curvature space. If κ has no dependence on x or y, then it is called of constant
curvature, cf. [4]. A Finsler structure F on the smooth n-dimensional manifold M is
called a Randers metric if F = α+ β, where α(x, y) :=

√

aijyiyj, is a Riemannian metric
and β(x, y) := bi(x)y

i, is a 1-form. For a detailed study of Randers metric on Finsler
geometry, one can refer to the book [10].
Fix a tangent vector field T ∈ TpM and consider the constant speed geodesic σ(t) =
expp(tT ), 0 6 t 6 r that emanates from p = σ(0) and terminates at q = σ(r). If there is
no risk of confusion, also we indicate its speed field by T . Let DT denote the covariant
differentiation along σ, with reference vector T . Recall that a vector field J along σ is said
to be a Jacobi field if it satisfies the equation DTDTJ + R(J, T )T = 0. We say that the
point q ∈ M is conjugate to the point p ∈ M along the geodesic σ if there exists a nonzero
Jacobi field J along σ which vanishes at the both points p and q. See [4, p.173,174]. A
fundamental group at a fixed point x ∈ M is a natural and informative group consisting
of the equivalence classes of homotopy of the loops on the underlying topological space.
It contains basic information about the topology of the space, like shape, or number of
holes. We denote the fundamental group at a fixed point x ∈ M by π(M,x).

2.2 Schwarzian tensor and Möbius mapping

Let h : M → R be a smooth real function on an n-dimensional (n > 2) Finsler manifold
(M,F ). At a point p, we indicate the vector field gradient of h by ∇h(p) = grad h(p) ∈
π∗TM which is defined for all v ∈ TpM, by g

gradh(p)
(v, grad h(p)) = dhp(v), where dh :=
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∂h
∂xidx

i is the differential of h. In terms of a local coordinate system, we have grad h :=
hi(x) ∂

∂xi ∈ π∗TM , where hi(x) = gij(x, grad h(x)) ∂h
∂xj .

For each vector field Y = Y i ∂
∂xi ∈ π∗TM , the horizontal divergence and the vertical

divergence of Y are scalar functions on M defined by the contraction of their covariant
derivatives, divhY := ∂Y i

∂xi + Γi
ijY

j and divvY := C i
ijY

j respectively, in a local coordinate
system.

For a real smooth function h on M , we have defined the Hessian of h in the Cartan
case, as follows, see [5, p.883]

Hess(h)(X̂, Y ) = (X̂Y )h− (c∇X̂Y )h.

In a local coordinate system it is written

(

Hess(h)
)

ij
=

∂2h

∂xi∂xj
− (Γk

ij + Ck
ij)

∂h

∂xk
,

where, the Christoffel symbols Γh
ij and the Cartan torsion Ch

ij are given by (2). As usual,
in Finsler space, the Laplacian for a real function h onM is defined by the trace of Hessian
∆h = gij{ ∂2h

∂xi∂xj − (Γk
ij + Ck

ij)
∂h
∂xk}.

Let f : (M,F ) → (M, F̄ ) be a conformal transformation such that F̄ (x, y) = eϕ(x)F (x, y)
where, ϕ : M → R is a smooth function on M . The Schwarzian derivative of a conformal
map f : (M,F ) → (M, F̄ ) with F̄ = eϕF , at a point x ∈ M , is a linear map

SF (f) : Γ(TM0) −→ Γ(π∗TM),

SF (f)X̂ = c∇X̂(∇ϕ)− g(∇ϕ, ̺X̂)∇ϕ− 1

n
(∆ϕ− ‖∇ϕ‖2)̺X̂,

where X̂ ∈ Γ(TM0) and ̺X̂ = X . For more details see [5].
We say that the equation SF (f)X̂ = 0 or equivalently

c∇X̂(Y )− g(Y, ̺X̂)Y − 1

n
(divY − ‖Y ‖2)̺X̂ = 0,

is completely integrable at x ∈ M if for every Y ∈ TxM , there is a local solution ϕ(x)
where grad ϕ(x) = Y .

The Schwarzian tensor B
F
(ϕ) of a smooth function ϕ : M → R on (M,F ) is a

symmetric traceless (0, 2)-tensor field defined by

B
F
(ϕ)(X̂, Y ) = Hess(ϕ)(X̂, Y )− (dϕ⊗ dϕ)(̺X̂, Y )− 1

n
(∆ϕ− ‖gradϕ‖2)g(̺X̂, Y ), (5)

for all X̂ ∈ Γ(TM0) and Y ∈ Γ(π∗TM) where ‖gradϕ‖2 = ϕiϕi, ϕi = gijϕj and g is the
inner product on π∗TM derived from the Finsler structure F , see [5, p.885].
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A conformal diffeomorphism f : (M,F ) → (M, F̄ ), is called a Möbius mapping, if the
Schwarzian derivative S

F
(f) vanishes. By means of SF (f) = BF (ϕ), one can show that f

is a Möbius mapping, if and only if the Schwarzian tensor BF (ϕ), vanishes.
In terms of a local coordinate system, (5) becomes

(

BF (ϕ)
)

ij
= c∇iϕj − ϕiϕj −

1

n
(∆ϕ− ‖gradϕ‖2)gij, (6)

where, c∇iϕj :=
∂2ϕ

∂xi∂xj −(Γh
ij+Ch

ij)ϕh are the components of Cartan h-covariant derivative.

3 Finsler manifolds of constant curvature

Here, we find an integrability condition for the system of Möbius partial differential equa-
tions (B(ϕ))ij = 0.
Proof of Theorem 1.1. Let (M,F ) be a Finsler manifold admitting a non-trivial
Möbius mapping. By definition, the Schwarzian derivative vanishes and (6) leads to

c∇jϕi − ϕiϕj = Φgij ,

where we set Φ = 1
n
(∆ϕ− ||gradϕ||2). Applying the Cartan horizontal derivative to the

both sides of the last equation and replacing again c∇jϕi yields

c∇k
c∇jϕi = 2ϕiϕjϕk + Φ(gikϕj + gjkϕi) + Φkgij , (7)

where, Φk := c∇kΦ = δΦ/δxk. Consider the following well-known Ricci identity: cf. [2,
p.121],

c∇k
c∇jϕi − c∇j

c∇kϕi = −
∗

R
h

ijkϕh − Rh
jkϕh;i, (8)

where, ϕh;i = ∂̇iϕh − Cs
hiϕs = −Cs

hiϕs. Replacing (7) in the Ricci identity we get

gij(Φk − ϕkΦ)− gik(Φj − ϕjΦ) = −
∗

R
h

ijkϕh − Rh
jkϕh;i. (9)

Substituting ϕh;i and (3) in (9) yields

gij(Φk − ϕkΦ)− gik(Φj − ϕjΦ) = −Rh
ijkϕh. (10)

Contracting by gij we obtain (n− 1)(Φk − ϕkΦ) = −Rh
kϕh. Replacing in (10) yields

1

n− 1
(gijR

h
k − gikR

h
j )ϕh = Rh

ijkϕh. (11)
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Using the last equation, we consider a tensor field Z with the components Zh
ijk defined

by the equation (1) where, Rh
ijk is the hh-curvature of Chern connection. Equation (11)

yields Zh
ijkϕh = 0. The Möbius partial differential equations c∇jϕi = ϕiϕj + Φgij is

completely integrable, if and only if

c∇k
c∇jϕi − c∇j

c∇kϕi = 0.

Replacing (3) in the Ricci identity (8), we obtain

c∇k
c∇jϕi − c∇j

c∇kϕi = −Rh
ijkϕh. (12)

From the last two equations, we get Rh
ijkϕh = 0. By definition of complete integrability,

this relation holds for any initial data ϕh(x), hence Rh
ijk = 0. Therefore Rh

j = 0, and

Zh
ijk = 0.
Conversely, let Z = 0, by definition we have

Rh
ijk =

1

n− 1
(gijR

h
k − gikR

h
j ). (13)

Contracting the both sides of (13) with yi and using Ri
km := yjRi

jkm yields

Rh
jk =

1

n− 1
(yjR

h
k − ykR

h
j ).

Contracting again with yk and making use of Rh
ky

k = 0, cf. [4, p.55,57], we obtain

Rh
j =

−F 2Rh
j

n− 1
,

hence Rh
j = 0. By means of (13), we get Rh

ijk = 0 and (12) leads c∇k
c∇jϕi−c∇j

c∇kϕi = 0.
Therefore the Möbius partial differential equations (B(ϕ))ij = 0, is completely integrable
and proof of Theorem 1.1 is complete. �

Corollary 3.1. Let (M,F ) be a Finsler manifold. If it is of constant curvature, then the
Z tensor vanishes.

Proof. Let (M,F ) be a Finsler manifold, the components of Cartan hh-curvature tensor
∗

Rijkl are given by

∗

Rijkl = κ(gikgjl − gilgjk) + κF 2Qijkl + 1/2∇0∇0Qijkl,

where, Qijkl are the components of vv-curvature of Cartan connection. If the flag curvature
κ is constant, then one can see that Qijkl = 0, cf. [1, p.26] and we have

∗

R
h

ijk = κ(gijδ
h
k − gikδ

h
j ). (14)
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Contracting the both sides of the last equation with gij, and using (4) yields

∗

R
h

k = Rh
k = κ(n− 1)δhk . (15)

The equation (14) holds well for the hh-curvature tensor of Chern(Rund) connection, [2,
p.109]. Replacing the last two equations (14) and (15) in (1) yields

Zh
ijk = κ(gijδ

h
k − gikδ

h
j )− κ(gijδ

h
k − gikδ

h
j ) = 0,

and we have proof of this corollary.

4 Applications of integrability condition of Schwarzian

derivative

By studying the integrability condition, the following results are obtained.

Proof of Theorem 1.2. Let (M,F ) be a connected complete Finsler n-manifold
of constant Ricci curvature c2, admitting a non-trivial Möbius mapping. The Schwarzian
integrability condition SF (f)X̂ =0 and (6) lead to

c∇iϕj − ϕiϕj = Φgij , (16)

where we put Φ = 1/n(∆ϕ− ||gradϕ||2). Therefore (M,F ) admits a non-trivial Möbius
mapping which is a non-trivial conformal change of metric ḡ = e2ϕg, satisfying the Möbius
equation (16). After changing the variable ρ = e−ϕ, in the equation (16), a simple
calculation yields ϕl = −ρl/ρ, where ρ is a positive real function on M and ρl = ∂ρ/∂xl.
Hence, we have

c∇kϕl = −ρ c∇kρl − ρkρl
ρ2

.

Replacing these two terms in the Möbius equation (16) yields,

c∇kρl = φglk, (17)

where φ = −ρΦ. Therefore, vanishing of the Möbius equation BF (ϕ) = 0, is equivalent
to the equations (16) and (17). Replacing φ = −c2ρ, the equation (17) becomes c∇jρk +
c2ρgjk = 0. The following theorem in [11] completes the proof of Theorem 1.2. �

Theorem C. [11] Let (M, g) be a complete connected Finsler manifold of constant Ricci
curvature c2. If M admits a non constant function ρ satisfying the ODE;

c∇i
c∇jρ+ c2ρgij = 0,

then M is homeomorphic to the n-sphere.
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4.1 An integrability condition for Finsler manifolds of scalar

curvature

Here we study an integrability condition for the Schwarzian tensor BF (ϕ), related to the
Finsler manifolds of scalar curvature.

Theorem 4.1. The Möbius partial differential equation BF (ϕ) = 0 is completely inte-
grable if and only if Zh

jk = 0, where

Zh
jk = Rh

jk − F−2(yjR
h
k − ykR

h
j ). (18)

Proof. Let us consider the partial differential Bij(ϕ) = 0, which is equivalent to the
equation (16). The horizontal Cartan covariant derivative of c∇iϕj − ϕiϕj = Φgij and
the Ricci identity (8), together with a similar procedure as in the proof of Theorem 1.1,
yields (10). Contracting (10) by yi gives

yj(Φk − ϕkΦ)− yk(Φj − ϕjΦ) = −Rh
jkϕh, (19)

where, yi = gijy
j. Again contracting (19) by yj we have

(Φk − ϕkΦ) = F−2(yk(Φ0 − ϕ0Φ)− Rh
kϕh), (20)

where Φ0 = Φjy
j, ϕ0 = ϕjy

j and Ri
k = Ri

0k. Substituting (20) in (19) we get

(Rh
jk − F−2(yjR

h
k − ykR

h
j ))ϕh = 0.

By means of (18), it yields Zh
jkϕh = 0. If the partial differential Bij(ϕ) = 0, is completely

integrable then the relation Zh
jkϕh = 0 satisfies with any initial data ϕh, therefore Z

h
jk = 0.

Conversely, let Zh
jk = 0, the equation (18) yields

Rh
jk = F−2(yjR

h
k − ykR

h
j ).

Contracting the both sides of the last equation with yk and using ykRh
k = 0 leads Rh

j =
F−2(−F 2Rh

j ), hence Rh
j = 0. From (13) we get Rh

ijk = 0 and (12) results the Mobius
partial differential equations BF (ϕ) = 0 is completely integrable and we have the proof.

Now we are in a position to prove the following corollary.

Corollary 4.1. Let (M,F ) be a connected complete Finsler n-manifold of scalar curva-
ture. If (M,F ) admits a Möbius mapping, then it is conformal to one of the following
spaces;
(a) A direct product I×N of an open interval I of the real line and an (n−1)-dimensional
complete Finsler manifold N .
(b) An n-dimensional Euclidean space;
(c) An n-dimensional unit sphere in an Euclidean space.
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Proof. Let (M,F ) be a Finsler manifold of scalar curvature admitting a non-homothetic
conformal change, that is, there is a non-constant scalar function ϕ on M , satisfying
ḡij = eϕ(x)gij. A Finsler manifold is isotropic or of scalar curvature if and only if we have

∗

R
h

j = κF 2(δhj − lhlj), (21)

where, κ is the flag curvature and li = yi

F
, li =

yi
F
, or equivalently if and only if

∗

R
h

jk = κF (lkδ
h
j − ljδ

h
k ), (22)

where Rh
j = Rh

jky
k and Rh

jk = Rh
jkmy

m, see [13, p.133-147]. Recall that (4) claims
∗

R
h

j = Rh
j

and
∗

R
h

jk = Rh
jk. In fact by means of (22) we have

Rh
j = Rh

jky
k = ykκF (lkδ

h
j − ljδ

h
k) = κF (Fδhj − yhlj) = κF (Fδhj − ljl

hF ) = κF 2(δhj − ljl
h).

Replacing (21) and (22) in (18) we obtain

Zh
jk = κF (lkδ

h
j − ljδ

h
k )− F−2(yj(κF

2(δhk − lhlk))− yk(κF
2(δhj − lhlj)) = 0.

We have Zh
jk = 0, and by means of Theorem 4.1, the partial differential equation (16) has

non-trivial solutions. Next, from (17) consider the Möbius equation c∇kρl = φglk, where
φ = −ρΦ. Thus, if there exists a conformal change on (M,F ), then there is a non-trivial
solution ρ on M for (17). Now if we assume (M,F ) is connected and complete, then as
a consequence of Theorem D we have proof of the corollary.

Theorem D. [3] Let (M,F ) be a connected complete Finsler manifold of dimension
n > 2. If M admits a non-trivial solution of

c∇jρk = φgjk,

where φ is certain function on M , then depending on the number of critical points of ρ,
i.e. zero, one or two respectively, it is conformal to
(a) A direct product I×N of an open interval I of the real line and an (n−1)-dimensional
complete Finsler manifold N .
(b) An n-dimensional Euclidean space;
(c) An n-dimensional unit sphere in an Euclidean space.

The following proposition shows the relationship between Möbius mapping and C-
conformal transformations.

Proposition 4.2. Every Möbius mapping is a C-conformal transformation.
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Proof. Let f : (M,F ) → (M, F̄ ) be a Möbius mapping. By definition Bij(ϕ) = 0 that is

ϕij − (Γh
ij + Ch

ij)ϕh − ϕiϕj − Φgij = 0, (23)

where Φ = 1
n
(∆ϕ − ‖∇ϕ‖2), ϕi =

∂ϕ

∂xi and ϕij =
∂2ϕ

∂xi∂xj . By differentiating (23) by yk we
have

−Γh
ijkϕh − Ch

ijkϕh − Φ̇kgij − Φ(2Cijk) = 0,

where Φ̇ = ∂Φ
∂yk

, Γh
ijk := ∂

∂yk
Γh
ij and Ch

ijk = ∂
∂yk

Ch
ij . Contracting the both sides of the last

equation with yk yields

− Γh
ijkϕhy

k − Ch
ijkϕhy

k − Φ̇kgijy
k = 0. (24)

A moment’s thought shows that the components of the Christoffel symbols Γh
ij given in (2)

are positively homogeneous of degree (0) since all of its three terms δkgjh =
∂gjh
∂xk −Gi

k

∂gjh
∂yi

are of degree (0). In fact, gjh and its derivative with respect to xk are 0-homogeneous
and Gi

k are homogeneous of degree (1). Therefore, Γh
ijk = ∂

∂yk
Γh
ij are homogeneous of

degree (−1). As well, the components of Cartan tensor Cijk are positively homogeneous
of degree (−1) and Ch

ijk is positively homogeneous of degree (−2). Therefore Euler’s

theorem implies Γh
ijky

k = 0 = Cijky
k and −Ch

ijky
k = Ch

ij, hence (24) yields

Ch
ijϕh − Φ̇kgijy

k = 0. (25)

Contracting the both sides of the above equation with yiyj and using gijy
iyj = F 2, we

obtain F 2Φ̇ky
k = 0, hence Φ̇ky

k = 0. Therefore (25) yields Ch
ijϕh = 0 which completes

the proof.

5 Schwarzian and Bonnet-Myers theorem

The following Bonnet-Myers type theorem confirms Thurston’s hypothesis and shows that
the Schwarzian derivative of a projective parameter plays an identical role to the Ricci
curvature on complete Finsler manifolds.

Theorem E. [4, p.194] Let (M,F ) be an n-dimensional forward-complete connected
Finsler manifold. Suppose its Ricci curvature has the uniform positive lower bound

Ric > (n− 1)λ > 0;

equivalently, yiyjRicij(x, y) > (n− 1)λF 2(x, y), with λ > 0. Then:

(i) Every geodesic of length at least π/
√
λ contains conjugate points.

(ii) The diameter of M is at most π/
√
λ.

(iii) M is in fact compact.
(iv) The fundamental group π(M,x) is finite.
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Using the approximation of the Schwarzian derivative, we can characterize the forward-
complete Finsler manifolds.

Proof of Theorem 1.3. Let (M,F ) be an n-dimensional connected Finsler manifold
and γ(t) a geodesic on (M,F ). In general, the parameter t in γ(t) does not remain
invariant under the projective changes of F . There is a unique parameter up to linear
fractional transformation which remains invariant under a projective change of Finsler
structure, called projective parameter, see [14]. In fact let p(s) be a projective parameter
on (M,F ), where s is the arc length parameter of the geodesic γ. Schwarzian derivative
of the projective parameter p(s) is given by;

S(p(s)) =
d3p

ds3

dp

ds

− 3

2

[
d2p

ds2

dp

ds

]2

,

and the projective parameter p is a solution of the above ODE. One can show that, the
projective parameter p(s) is unique up to a linear fractional transformations, that is

S(p ◦ T ) = S(p),

where T = ax+b
cx+d

and ad− bc 6= 0. It is well known that,

S
(

p(s)
)

=
2

n− 1
Ricjk

dxj

ds

dxk

ds
=

2

n− 1
F 2Ric, (26)

where S
(

p(s)
)

is the Schwarzian of “p(s)”and “s”is the arc length parameter, see [6].
When the Ricci tensor is parallel with respect to any of Berwald, Chern or Cartan

connection, then it is constant along the geodesics and we can easily solve the equation
(26), see for more details [6, page 5].

Let the Schwarzian of the projective parameter p satisfies, S(p) > 2F 2λ, where λ > 0,
is a positive number. Equation (26) yields

2

n− 1
F 2Ric > 2F 2λ,

hence Ric > (n − 1)λ > 0. Assuming (M,F ) is forward-complete, the proof is a conse-
quence of Bonnet-Myers theorem E. �

In order to approximate other smooth functions on a Finsler manifold with compact
support one can use the method explained in [8].
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