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Abstract. In this paper, first we study surjective isometries (not necessarily

linear) between completely regular subspaces A and B of C0(X,E) and C0(Y, F )

where X and Y are locally compact Hausdorff spaces and E and F are normed

spaces, not assumed to be neither strictly convex nor complete. We show that

for a class of normed spaces F satisfying a new defined property related to their

T -sets, such an isometry is a (generalized) weighted composition operator up to a

translation. Then we apply the result to study surjective isometries between A and

B whenever A and B are equipped with certain norms rather than the supremum

norm. Our results unify and generalize some recent results in this context.

1. Introduction

Considerable works have been done to characterize linear isometries between var-

ious Banach spaces of functions. The result for surjective isometries between Ba-

nach spaces of all continuous functions was initiated by Banach and Stone as the

weighted composition operators. There are various generalizations of this theorem

based on different techniques. For instance, for the characterization of (surjective)

isometries between subspaces of continuous scalar-valued functions endowed with

the supremum norm or special complete norms, see [6, 9, 14, 16, 21, 20]. The first

vector-valued version of the Banach-Stone theorem was given by Jerison in [13]. By

Jerison’s result, if E is a strictly convex Banach space, then any surjective linear

isometry on the Banach space C(X,E) of all E-valued continuous functions on a

compact Hausdorff space X is a generalized weighted composition operator. There
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are similar results for the case where the dual space of E is strictly convex [17] and

in general for the case that E has trivial centralizer, see [8, Cor. 7.4.11].

Surjective linear isometries between subspaces of vector-valued Lipschitz functions

with respect to particular complete norms have been studied, for instance, in [1, 2,

15, 19]. In [1, 15] the target spaces are assumed to be strictly convex. In [2] the values

of the Lipschitz functions are taken in a quasi-sub-reflexive Banach space with trivial

centralizer and this result has been improved in [19] without the quasi-sub-reflexivity

assumption. We should note that in a strictly convex normed space E, any maximal

convex subset of the unit sphere of E is a singleton. However, in [12] there are some

results for surjective supremum norm isometries between vector-valued spaces of

continuous functions with values in a Banach space E whose unit sphere contains a

maximal convex subset which is a singleton. Characterizatin of surjective isometries

on spaces of vector-valued continuously differentiable functions with values in a

finite-dimensional real Hilbert space can be found in [3]. Surjective isometries (not

necessarily linear) between spaces of vector-valued absolutely continuous functions

with values in a strictly convex normed space have been studied in [11]. In the

recent paper [10] of Hatori, he studies linear isometries between certain Banach

algebras with values in C(Y ), where Y is a compact Hausdorff space. These Banach

algebras include the C(Y )-valued Banach algebra of Lipschitz functions and C(Y )-

valued Banach algebra of continuously differentiable functions. Recently, in [18],

isometries on certain subspaces of vector-valued continuous functions with respect

to the supremum norm and the other (not necessarily complete) norms have been

characterized. We should note that, in [18], neither the target space itself nor its

dual space is assumed to be strictly convex, but they satisfy a mild condition related

to the maximal convex subsets of the unit spheres.

In this paper we deal with surjective (not necessarily linear) isometries between

completely regular subspaces of vector-valued continuous functions endowed with

either the supremum norm or other certain norms. Introducing a property, called

(Dw), on the target spaces which is considerably weaker than the strict convex-

ity, we obtain some characterizations for such isometries as generalized weighted

composition operators.

2. Preliminaries

Throughout this paper K stands for the scalar fields R and C. For a normed space

E over K, we denote its closed unit ball by E1 and its unit sphere by S(E). We use

the notations E∗ and ext(E∗1) for the dual space of E and the set of extreme points

of E∗1 , respectively.
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For a K-normed space E, a subset S of E is said to be norm additive if for any

finite collection e1, e2, ...., en of elements of S,

‖e1 + · · ·+ en‖ = ‖e1‖+ · · · ‖en‖.

A maximal norm additive subset of E is called a T -set in E. If e1, e2 ∈ E such that

‖e1 + e2‖ = ‖e1‖ + ‖e2‖, then for all s, t ≥ 0 we have ‖se1 + te2‖ = s‖e1‖ + t‖e2‖,
see [13, Lemma 4.1]. Hence for any T -set S in E and any t ≥ 0 we have tS ⊆ S.

For each e ∈ S(E) the star-like set St(e) is defined as

St(e) = {e′ ∈ S(E) : ‖e+ e′‖ = 2}.

It is well-known that St(e) is the union of all maximal convex subsets of S(E)

containing e. Clearly, in the case that E is strictly convex, we have St(e) = {e} for

all e ∈ S(E). We also note that if e ∈ S(E) such that St(e) = {e}, then e is an

extreme point of E1, that is E is strictly convex if and only if St(e) = {e} for all

e ∈ S(E). For each e ∈ S(E) and e′ ∈ St(e) we have ‖re+ e′‖ > r = ‖re‖ for r > 0.

Motivated by this, for each u ∈ E we put

Stw(u) = {e′ ∈ S(E) : ‖u+ e′‖ > ‖u‖}.

It should be noted that if e′ ∈ Stw(u), then ‖u + re′‖ > ‖u‖ for all r ≥ 1, that is

e′ ∈ Stw(u
r
) for all r ≥ 1.

For a topological space X and a normed space E over K, let C(X,E) be the space

of all continuous E-valued functions on X. For an element v ∈ E, the constant

function x 7→ v in C(X,E) will be denoted by v̂. In the case that X is locally

compact, C0(X,E) denotes the normed space of all continuous E-valued functions

on X vanishing at infinity, with the supremum norm ‖ · ‖∞. By [7, Theorem 2.3.5],

for Z = C0(X,E) we have

ext(Z∗1 ) = {v∗ ◦ δx : v∗ ∈ ext(E∗1), x ∈ X},

where for each x ∈ X, δx : C0(X,E) −→ E is defined by δx(f) = f(x). Moreover, if

A is a subspace of C0(X,E) then, by [7, Corollary 2.3.6], we have

ext(A∗1) ⊆ {v∗ ◦ δx : v∗ ∈ ext(E∗1), x ∈ X}.

The Choquet boundary of A which is denoted by ch(A), consists of all points x ∈ X
such that v∗ ◦ δx is an extreme point of A∗1 for some v∗ ∈ ext(E∗1). Then ch(A) is

a boundary for A, that is for each f ∈ A there exists a point x ∈ ch(A) such that

‖f‖∞ = ‖f(x)‖.
By [8, Lemma 7.2.2] for a locally compact Hausdorff space X and a normed space

E, if S is a T -set in E and x ∈ X, then the set

(S, x) = {f ∈ C0(X,E) : f(x) ∈ S , ‖f‖∞ = ‖f(x)‖}

is a T -set in C0(X,E). Conversely, any T -set in C0(X,E) is of this form.
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For any T -set S in a normed space E, we put

ΓS = {v∗ ∈ S(E∗) : v∗(u) = ‖u‖ for all u ∈ S}.

By [8, Lemma 7.2.4] we have ΓS ∩ ext(E∗1) 6= ∅. We should note that the Lemmas

7.2.2 and 7.2.4 in [8] have been stated for the case that E is a Banach space, however,

the completeness of E has no role in the proofs. It is obvious that for any T -set R

in E, the corresponding set ΓR is a convex subset of S(E∗) which is norm additive.

The following proposition, which states some elementary properties of T -sets, is

easily verified. For the sake of completeness we state it here.

Proposition 2.1. Let E be a normed space over K. Then

(i) For any T-set R in E and w∗ ∈ ΓR we have R = {u ∈ E : w∗(u) = ‖u‖}.
(ii) For distinct T-sets R1 and R2 in E, if R1 ∩R2 6= {0}, then for any w∗1 ∈ ΓR1

and any w∗2 ∈ ΓR2 we have w∗1 ∈ St(w∗2).

(iii) For distinct T-sets R1 and R2 in E we have ΓR1 ∩ ΓR2 = ∅.
(iv) If E∗ is strictly convex, then for any T-set R in E, ΓR is a singleton.

Proof. (i) It is obvious that R ⊆ {u ∈ E : w∗(u) = ‖u‖}. Now since for each

u1, ..., un ∈ E with w∗(ui) = ‖ui‖, i = 1, ..., n, we have

‖u1 + · · ·+ un‖ = ‖u1‖+ · · ·+ ‖un‖,

the maximality of R implies that R = {u ∈ E : w∗(u) = ‖u‖}.
(ii) Let u ∈ R1 ∩ R2 be nonzero. Since (w∗1 + w∗2)(u) = 2‖u‖ it follows that

‖w∗1 + w∗2‖ = 2 that is w∗1 ∈ St(w∗2).

(iii) Assume on the contrary that ΓR1 ∩ ΓR2 6= ∅ and let w∗ be a point in this

intersection. Then by (i) we have

R1 = {u ∈ E : w∗(u) = ‖u‖} = R2,

which is a contradiction.

(iv) LetR be a T -set in E and w∗1, w
∗
2 ∈ ΓR be distinct. Being E∗ strictly convex we

have ‖w∗1+w∗2‖ < 2 while by (i) for any nonzero u ∈ R we have w∗1(u)+w∗2(u) = 2‖u‖,
a contradiction. �

Two T -sets S and R in a normed space E are said to be discrepant if either

S ∩ R = {0}, or there exists a T-set L in E such that R ∩ L = S ∩ L = {0}. A

normed space E is said to satisfy property (D) if any two T-sets in E are discrepant

(see Definition 7.2.10 in [8]). Since in a strictly convex space E each T -set is of the

form {tu : t ≥ 0} for some nonzero u ∈ E, it follows that for any two distinct T -sets

S and R in E we have S ∩R = {0}, that is all strictly convex spaces have property

(D). For some examples of non-strictly convex normed spaces with this property,

see Examples 7.2.11 in [8].
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3. Main results

In this section, introducing a property, called (Dw), which is weaker than the

property (D), we characterize surjective (not necessarily linear) isometries T : A −→
B between certain subspaces A and B of of C0(X,E) and C0(Y, F ) where F satisfies

the property (Dw).

Definition 3.1. We say that a normed space E satisfies property (Dw) if there exists

a T -set R0 in E which is discrepant to any other T -set in E, that is for any T -set R

in E distinct from R0 we have either R0 ∩ R = {0} or there exists a T -set L in E

such that R0 ∩ L = R ∩ L = {0}.

Remark. (i) We should note that if E is a normed space with a T -set R0 such

that R0 ∩ R = {0} for all T -sets R in E distinct from R0, then E clearly satisfies

the property (D). In particular, if E is a normed space whose unit sphere S(E)

contains an element e with St(e) = {e}, then E has property (D). For an example

of a non-strictly convex space E such that St(e) = {e} for some e ∈ S(E), see [12].

(ii) If E is a normed space and w∗0 ∈ ∪RΓR, where the union is taken over all

T -sets of E, such that St(w∗0) = {w∗0} then, using Proposition 2.1, for the T -set R0

in E containing w∗0 we have R0 ∩ R = {0} for all T -sets R in E distinct from R0.

Hence E has property (D). In particular, if E∗ is strictly convex, then any pair of

distinct T -sets of E has trivial intersection and consequently E has property (D).

It is clear that property (Dw) is weaker than the property (D). We give an

example which shows that the converse statement does not necessarily hold.

Example 3.2. Let E be a normed space whose closed unit ball is the subset K of

R3 as in Figure 1 with the origin in the center of K. Indeed, since K is a symmetric

compact convex subset of R3 and origin is an interior point of K, it suffices to

consider E = R3 with the norm ‖ · ‖ defined by ‖0‖ = 0 and for each nonzero point

x ∈ Rn, ‖x‖ = 1
max{t∈R:tx∈K} . Then K is the closed unit ball of E with respect to

this norm.

The set K consists of a cube and two pyramid on up and down. Hence the unit

sphere of E has twelve maximal convex subsets (four faces of cube, four faces of

upper pyramid and four faces of bottom pyramid), that is E has twelve T -sets. We

note that E does not satisfy the property (D). Indeed, letting R and S be the T -sets

corresponding to two adjacent faces in the cube, we have R ∩ S = {0}. Meanwhile,

the other T -sets clearly have non-empty intersection with at least one of R or S.

Thus E does not satisfy the property (D). However, considering R0 as the T -set

corresponding to one of the upper pyramid faces we see that E satisfies the property

(Dw).
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Figure 1.

For a subspace A of C0(X,E) we say that A is E-separating if for distinct points

x1 6= x2 in X and any u ∈ E there exists f ∈ A such that f(x1) = u , ‖f‖∞ = ‖u‖
and f(x2) = 0. We say that A is completely regular if for any x in X , any u ∈ E
and any neighbourhood U of x there exists f ∈ A such that f(x) = u, ‖f‖∞ = ‖u‖
and f = 0 on X\U . It is clear that any completely regular subspace of C0(X,E) is

E-separating.

For examples of completely regular subspaces of C(K,E), where K is a compact

Hausdorff space, we can refer to the spaces Lipα(K,E) of E-valued Lipschitz func-

tions of order α ∈ [0, 1] on a compact Hausdorff space K, the space Cn([0, 1], E)

of E-valued n-times continuously differentiable functions on [0, 1], and its subspace

Lipn([0, 1], E) consisting of those functions whose derivatives are also Lipschitz func-

tions. The space AC(K,E) of all absolutely continuous E-valued functions on the

compact subset K of the real-line is also completely regular. On the other hand,

by [5], for any locally compact Hausdorff space X, the kernel of each continuous

complex-valued regular Borel measure on X is a completely regular subspace of

C0(X).

Next Lemma gives the general form of T -sets inE-separating subspaces of C0(X,E).

Lemma 3.3. Let X be a locally compact Hausdorff space, E be a real or complex

normed space and A be an E-separating subspace of C0(X,E). Then for any T-set

S in E and any point x ∈ X, the set (S, x)∩A is a T-set in A and conversely, any

T-set in A is of this form.

Proof. First assume that R is a T -set in A. Since R is a norm additive subset of

C0(X,E), it is contained in a T -set in C0(X,E). Hence there exists a T -set S in E

and a point x ∈ X such that R ⊆ (S, x). We note that R ⊆ (S, x) ∩ A and clearly

(S, x) ∩ A is a norm additive subset of A. Hence it follows from the maximality of

R that R = (S, x) ∩ A.
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To prove the converse statement, let S be a T -set in E and let x ∈ X. Since

(S, x) ∩ A is a norm additive subset of A there exists a T-set R in A such that

(S, x) ∩ A ⊆ R. By the first part, there are a T -set S0 in E and a point x0 ∈ X
such that R = (S0, x0) ∩ A. We claim that S = S0 and x = x0. Assume that

x 6= x0. Choosing a nonzero element e ∈ S it follows from the hypothesis that

there exists f ∈ A such that f(x) = e, ‖f‖∞ = ‖e‖ and f(x0) = 0. Thus f ∈
(S, x) ∩ A ⊆ (S0, x0) ∩ A. Hence ‖f‖∞ = ‖f(x0)‖ = 0, a contradiction. This

shows that x0 = x. Since S and S0 are both T -sets in E, to prove that S = S0 it

suffices to show that S ⊆ S0. For this suppose that e ∈ S, and choose f ∈ A such

that f(x) = e, ‖f‖∞ = ‖e‖. Then f ∈ (S, x) ∩ A ⊆ (S0, x0) ∩ A. In particular,

e = f(x) = f(x0) ∈ S0, that is S ⊆ S0, as desired. �

Proposition 3.4. Let X be a locally compact Hausdorff space, E be a real or complex

normed space and A be an E-separating subspace of C0(X,E). Then for any x ∈ X
and any T -set S in E there exists v∗ ∈ ΓS ∩ ext(E∗1) such that v∗ ◦ δx ∈ ext(A∗1). In

particular, ch(A) = X.

Proof. Let x ∈ X and S be a T-set in E. By Lemma 3.3, (S, x) ∩ A is a T-set in

A. Hence that there exists l ∈ ext(A∗1) such that l(f) = ‖f‖∞ for all f ∈ (S, x)∩A.

Since l ∈ ext(A∗1), there are z ∈ X and v∗ ∈ ext(E∗1) such that l = v∗ ◦ δz. Thus for

all f ∈ (S, x) ∩ A we have

v∗(f(z)) = v∗ ◦ δz(f) = l(f) = ‖f‖∞. (3.1)

We show that z = x and v∗ ∈ ΓS. Suppose that z 6= x and let u be a nonzero

element of S. By hypothesis, there exists f ∈ A such that f(x) = u, f(z) = 0 and

‖f‖∞ = ‖u‖. Then f ∈ (S, x) ∩ A and it follows from (3.1) that 0 = v∗(f(z)) =

‖f‖∞ = ‖u‖, a contradiction. Hence z = x. To show that v∗ ∈ ΓS, let u ∈ S and

choose f ∈ A such that f(x) = u and ‖f‖∞ = ‖u‖. Then f ∈ (S, x) ∩ A and it

follows from (3.1) that v∗(u) = ‖u‖. This shows that v∗ ∈ ΓS, as desired. �

Proposition 3.5. Let X and Y be locally compact Hausdorff spaces, E and F

be real or complex normed spaces (not necessarily complete) and A and B be E-

separating and F -separating subspaces of C0(X,E) and C0(Y, F ), respectively. Let

T : A −→ B be a surjective real-linear isometry. If x ∈ X and y ∈ Y such that

T ((S, x)∩A) = (R, y)∩B where S and R are T-sets in E and F , respectively, then

there are v∗ ∈ ΓS ∩ ext(E∗1) and w∗ ∈ ΓR ∩ ext(F ∗1 ) such that T ∗(w∗ ◦ δy) = v∗ ◦ δx.

Proof. Since the real dual of a complex normed space is isometrically isomorphic

to its complex dual, without loss of generality we assume that E and F are real

normed spaces. Let A∗ and B∗ denote the (real) duals of A and B, respectively, and

T ∗ : B∗ −→ A∗ be the adjoint of T as a bounded real-linear operator. Then T ∗ is

a surjective real-linear isometry. By Proposition 3.4 for the T-set R in F and the
7



point y ∈ Y there exists w∗ ∈ ΓR such that w∗ ◦ δy ∈ ext(B∗1). Since T ∗(w∗ ◦ δy) is

an extreme point of the unit ball of A∗ there are v∗ ∈ ext(E∗1) and x0 ∈ X such that

T ∗(w∗ ◦ δy) = v∗ ◦ δx0 , that is

w∗(Tf(y)) = v∗(f(x0)) (f ∈ A). (3.2)

It suffices to show that v∗ ∈ ΓS and x0 = x. Suppose that x0 6= x. Considering a

nonzero element u ∈ S we can find a function f ∈ A such that f(x) = u, f(x0) = 0

and ‖f‖∞ = ‖u‖. Hence f ∈ (S, x) ∩ A and consequently Tf ∈ (R, y) ∩ B, that is

‖Tf(y)‖ = ‖Tf‖∞ and Tf(y) ∈ R. Thus, using (3.2) we have

‖u‖ = ‖f‖∞ = ‖Tf‖∞ = ‖Tf(y)‖ = w∗(Tf(y)) = v∗(f(x0)) = 0,

which is a contradiction. This implies that x0 = x.

Now to show that v∗ ∈ ΓS, let u ∈ S be given and choose f ∈ A such that

f(x) = u and ‖f‖∞ = ‖u‖. Then f ∈ (S, x) ∩A and consequently Tf ∈ (R, y) ∩B.

Using (3.2), once again, it follows that v∗(u) = ‖u‖, as desired. �

Lemma 3.6. Let X be a locally compact Hausdorff space, E be a real or complex

normed space and A be a completely regular subspace of C0(X,E). If S and R are

T -sets in E and x, z ∈ X such that (S, x) ∩ (R, z) ∩ A = {0}, then x = z and

S ∩R = {0}.

Proof. First assume that x 6= z and choose disjoint neighbourhoods U and V of x

and z, respectively in X. Since any T-set is closed under positive multiples, there

are nonzero elements u ∈ S and v ∈ R such that ‖u‖ = ‖v‖. By hypothesis, there

exist f, g ∈ A such that f(x) = u, ‖f‖∞ = ‖f(x)‖ and f = 0 on X\U , and similarly

g(z) = v, ‖g‖∞ = ‖g(z)‖ and g = 0 on X\V . We put F = f + g. Then clearly

‖F‖∞ = ‖u‖ = ‖v‖, F (x) = u and F (z) = v. Hence F ∈ (S, x) ∩ (R, z) ∩ A = {0},
a contradiction.

To show that S∩R = {0}, let u be a nonzero element in S∩R. By hypothesis, there

exists f ∈ A such that f(x) = u , ‖f‖∞ = ‖u‖, that is f ∈ (S, x)∩ (R, z)∩A = {0},
which is again a contradiction. �

Let X and Y be locally compact Hausdorff spaces, E and F be real or com-

plex normed spaces (not necessarily complete), A and B be E-separating and F -

separating subspaces of C0(X,E) and C0(Y, F ), respectively. Let T : A −→ B be

a surjective real-linear isometry. Being T−1 an isometry, it maps any T -set in B

to a T -set in A. Hence for any T -set R in F and a point y ∈ Y , there exist a

T -set S in E and a point x ∈ X such that T−1((R, y) ∩B) = (S, x) ∩ A. Using the

separating property, it is easy to see that the T -set S and the point x ∈ X satisfying

this equality are uniquely determined. Hence for each T -set R in F we can define
8



a function ϕR : Y −→ X such that for each y ∈ Y , there exists a T -set S in E

satisfying T−1((R, y) ∩B) = (S, ϕR(y)) ∩ A.

Lemma 3.7. Let X and Y be locally compact Hausdorff spaces, E and F be real or

complex normed spaces not assumed to be complete. Let A be a completely regular

subspace of C0(X,E), B be an F -separating subspace of C0(Y, F ) and T : A −→ B

be a surjective real-linear isometry. If F satisfies the property (Dw), then ϕR1 = ϕR2

for all T -sets R1 and R2 in F .

Proof. Since F satisfies the property (Dw), there exists a T -setR0 which is discrepant

to all T -sets in F . It suffices to show that ϕR = ϕR0 for all T -sets R in F . Let R

be a given T -set in F and y ∈ Y . Put x = ϕR(y) and x0 = ϕR0(y). Hence there are

T -sets S and S0 in E such that T−1((R, y)∩B) = (S, x)∩A and T−1((R0, y)∩B) =

(S0, x0) ∩ A. Since the T-sets R and R0 are discrepant, the same arguments as in

[8, Theorem 7.2.13] together with Lemma 3.6 imply that x = x0. �

Using the above lemma, in the case that A is completely regular, B is F -separating

and F satisfies the property (Dw), we can define a function ϕ : Y −→ X such that

for each T -set R in F there exists a T -set S in E satisfying T−1((R, y) ∩ B) =

(S, ϕ(y)) ∩ A. It is easy to see that ϕ is surjective. Indeed, given x ∈ X, let S be

an arbitrary T -set in E. Then there exist a T -set R in F and a point y ∈ Y such

that T ((S, x)∩A) = (R, y)∩B, that is T−1(R, y)∩B) = (S, x)∩A which concludes

that ϕ(y) = ϕR(y) = x.

Lemma 3.8. Under the assumptions of Lemma 3.7 if f ∈ A and y ∈ Y such that

f(ϕ(y)) = 0, then (Tf)(y) = 0.

Proof. We put x = ϕ(y) and u = Tf(y). Assume on the contrary that u 6= 0.

Choose a T -set R in F containing u. Then, by the definition of ϕ, there exists a

T-set S in E such that T−1((R, y) ∩B) = (S, x) ∩A. Now by Proposition 3.5 there

are v∗ ∈ ΓS and w∗ ∈ ΓR such that T ∗(w∗ ◦ δy) = v∗ ◦ δx. Hence we have

‖u‖ = w∗(u) = w∗(Tf(y)) = v∗(f(x)) = 0,

a contradiction. �

Theorem 3.9. Let X and Y be locally compact Hausdorff spaces, E and F be real or

complex normed spaces (not necessarily complete), A be a completely regular subspace

of C0(X,E) and B be an F -separating subspace of C0(Y, F ). Let T : A −→ B be

a surjective real-linear isometry. If F satisfies the property (Dw), then there exist

a continuous map ϕ : Y −→ X, a family {Vy}y∈Y of bounded real-linear operators

from E to F with ‖Vy‖ ≤ 1 such that for each y ∈ Y

Tf(y) = Vy(f(ϕ(y))) (f ∈ A).
9



Moreover, if E also satisfies the property (Dw) and B is completely regular, then ϕ

is a homeomorphism and each Vy is a surjective isometry.

Proof. Let ϕ : Y −→ X be the function defined before. For each y ∈ Y and

each e ∈ E by the hypotheses there exists f ∈ A such that f(ϕ(y)) = e. Put

Vy(e) = Tf(y). We note that, by Lemma 3.8, the definition of Vy(e) is independent

of the function f ∈ A satisfying f(ϕ(y)) = e. Then Vy : E −→ F is clearly a

real-linear operator satisfying

Tf(y) = Vy(f(ϕ(y)) (f ∈ A). (3.3)

Since for each y ∈ Y and e ∈ S(E) we can choose a function f ∈ A with ‖f‖∞ = 1

and f(ϕ(y)) = e, it follows easily that ‖Vy‖ ≤ 1.

To prove that ϕ is continuous, assume that y0 ∈ Y and U is an open neighbour-

hood of ϕ(y0) in X. Since Vy0 6= 0 there exists e ∈ E such that Vy0(e) 6= 0. Choose

f ∈ A such that f(ϕ(y0)) = e and f = 0 on X\U . Then W = {y ∈ Y : Tf(y) 6= 0}
is a neighbourhood of y0 and the equality (3.3) implies that ϕ(W ) ⊆ U . Hence ϕ is

continuous.

The second part of the theorem is easily verified. �

In the next theorem, we consider the compact case and, using Theorem 3.9, we

characterize surjective isometries between certain subspaces A and B of C(X,E)

and C(Y, F ), respectively endowed with some norms rather than supremum norms.

Motivated by the property P introduced in [1] and the property Q introduced in [2]

for an isometry T : A −→ B, we consider the property (St) introduced in the earlier

work of the authors [18]. We have compared the new defined property (St) with the

properties P and Q in [18]. Indeed, the property Q implies the property (St) and

in the case where F is strictly convex (this is assumed in [1]) the property P also

implies the property (St).

Definition 3.10. [18, Definition 3.4] Let X and Y be compact Hausdorff spaces and

let E and F be real or complex normed spaces. Assume that A and B are subspaces

of C(X,E) and C(Y, F ), respectively, equipped with the norms of the form

‖ · ‖A = max(‖ · ‖∞, p(·)) and ‖ · ‖B = max(‖ · ‖∞, q(·)),

where p and q are seminorms on A and B, respectively, whose kernels contain the

constant functions. We say that a surjective real-linear isometry T : A −→ B has

property (St) if

(St) For each u ∈ F and y0 ∈ Y there exists v ∈ S(E) such that

‖T v̂(y0) + u‖ > ‖u‖, i.e. T (v̂)(y0)
‖T (v̂)(y0)‖ ∈ Stw(u).

Proposition 3.11. [18, Proposition 3.5] Let X and Y be compact Hausdorff spaces

and let E and F be real or complex normed spaces, not assumed to be complete.
10



Assume that A and B are subspaces of C(X,E) and C(Y, F ), respectively containing

constants and ‖ · ‖A and ‖ · ‖B are norms on A and B such that

‖ · ‖A = max(‖ · ‖∞, p(·)) and ‖ · ‖B = max(‖ · ‖∞, q(·))

for some seminorms p and q on A and B, respectively, whose kernels contain the

constants. If T : A −→ B is a surjective real-linear isometry and T and T−1 satisfy

(St), then T is an isometry with respect to the supremum norms on A and B.

Using the above proposition we get the next result concerning surjective isometries

between completely regular subspaces of functions with respect to some norms.

Theorem 3.12. Let X and Y be compact Hausdorff spaces, E and F be real or

complex normed spaces, not necessarily complete such that F satisfies the property

(Dw). Let A and B be subspaces of C(X,E) and C(Y, F ), respectively containing

the constants such that A is completely regular and B is F -separating. Let ‖ · ‖A
and ‖ · ‖B be norms on A and B, respectively, of the form

‖ · ‖A = max(‖ · ‖∞, p(·)) and ‖ · ‖B = max(‖ · ‖∞, q(·))

for some seminorms p and q on A and B, respectively, whose kernels contain the

constants. Then for any surjective real-linear isometry T : A −→ B such that T

and T−1 satisfy (St) there exist a surjective continuous map ϕ : Y −→ X, a family

{Vy}y∈Y of bounded real-linear operators from E to F with ‖Vy‖ ≤ 1 such that for

each y ∈ Y
Tf(y) = Vy(f(ϕ(y))) (f ∈ A).

Moreover, if E also satisfies the property (Dw) and B is completely regular, then ϕ

is a homeomorphism and each Vy is a surjective isometry.

Proof. It follows immediately from Proposition 3.11 and Theorem 3.9. �
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