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Abstract
The class of abelian p-groups with minimal full inertia, that is, satisfying the property that
fully inert subgroups are commensurable with fully invariant subgroups is investigated, as
well as the class of groups not satisfying this property; it is known that both the class of
direct sums of cyclic groups and that of torsion-complete groups are of the first type. It is
proved that groups with “small" endomorphism ring do not satisfy the property and concrete
examples of them are provided via Corner’s realization theorems. Closure properties with
respect to direct sums of the two classes of groups are also studied. A topological condition
of the socle and a structural condition of the Jacobson radical of the endomorphism ring of
a p-group G, both of which are satisfied by direct sums of cyclic groups and by torsion-
complete groups, are shown to be independent of the property of having minimal full inertia.
The new examples of fully inert subgroups, which are proved not to be commensurable with
fully invariant subgroups, are shown not to be uniformly fully inert.

Keywords Torsion-complete p-group · Direct sum of cyclic p-groups · Fully invariant
subgroup · Fully inert subgroup · Commensurable subgroups · Minimal full inertia ·
Endomorphism ring · Pierce decomposition
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1 Introduction

All groups considered in this note are assumed to be abelian. For all unexplained notions we
refer to the recent monograph [11] by László Fuchs.

Given an endomorphism φ of a group G, a subgroup H ofG is φ-inert if it has finite index
in H + φ(H), and it is fully inert if it is φ-inert for every φ ∈ End(G). The family of fully
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2 B. Goldsmith, L. Salce

inert subgroups of the p-group G is denoted by I(G); this set will be referred to as the full
inertia set of G.

A subgroup commensurable with a fully inert subgroup is also fully inert, so, in particular,
a subgroup H commensurable with a fully invariant subgroup is fully inert. Following [5]
and [6], denote by Inv(G) the set of fully invariant subgroups of G and by Inv˜(G) the set
of subgroups of G which are commensurable with fully invariant subgroups.

Then we have the chain of sublattices of the whole lattice L(G) of subgroups of G:

Inv(G) ⊆ Inv˜(G) ⊆ I(G) ⊆ L(G).

In this paper we investigate when the inclusion Inv˜(G) ⊆ I(G) is strict or is an equality
for G, a reduced p-group. Thus, it is useful to introduce the following

Definition 1.1 A p-group G is said to have minimal full inertia if the full inertia set I(G) is
equal to Inv˜(G).

Results in [15] and [14] indicate that on one hand the group G has minimal full inertia if
End(G) is “big", as in case of unbounded direct sums of cyclic p-groups or of unbounded
torsion-complete p-groups. On the other hand, the group G does not have minimal full
inertia, i.e., the strict inclusion Inv˜(G) � I(G) holds, when End(G) is as small as possible,
that is, if End(G) = Jp · 1G ⊕ Es(G), where Es(G) is the two-sided ideal of the small
endomorphisms of End(G).

There are two ways to look at End(G), both due to Pierce [20], from which we can argue
whether End(G) is “small" or “big". In fact, given a reduced unbounded p-group G, Pierce
proved the following two formulas, that we are going to explain:

End(G) = A ⊕ Es(G), � : End(G)/H(G) →
∏

n

Mαn (Fp). (1.1)

In the left equality in 1.1 A is a subring of End(G) which is the completion in the p-adic
topology of a free Jp-module, containing Jp · 1G , the center of End(G). We shall call the
decomposition End(G) = A⊕Es(G) the “Pierce decomposition" of End(G). Thus, End(G)

is “as small as possible" if in its Pierce decomposition the equality A = Jp · 1G holds.
On the right side in 1.1 we have a ring embedding � of the factor ring End(G)/H(G),

where H(G) is the Pierce radical of End(G) consisting of the endomorphisms that strictly
increase the heights of the elements of the socle G[p], Mαn (Fp) is the ring of the αn × αn

matrices over the field with p elements Fp , and the αn’s are the Ulm–Kaplansky invariants
of G. It is well known that Im(�) is a subdirect product of

∏
n Mαn (Fp), and that � is

surjective if and only if G is torsion-complete (see [11, pp. 625–627]). Hence End(G) is “as
big as possible" exactly when G is torsion-complete.

A central role in this context is reserved to semi-standard groups. Recall that a p-group G
is said to be semi-standard if its Ulm–Kaplansky invariants of finite index αn(G) are finite,
and that G is semi-standard if and only if the two-sided ideal of the small endomorphisms
Es(G) is contained in the two-sided ideal E0(G) consisting of the endomorphisms φ such
that φ(G[p]) is finite (see [22, Proposition 4.1]). The hypothesis that the p-group G is semi-
standard is crucial in our main Theorem 2.4, and it is also assumed in one of the realization
theorems by Corner in [4] that, as we will see in Sect. 2, produce examples of groups which
do not have minimal full inertia. These theorems extend to a large extent the first construction
due to Pierce in [20] of a semi-standard p-group G such that End(G) = Jp · 1G ⊕ Es(G).
This groupG furnished the main ingredient in the following theorem proved in [15, Theorem
4.2].
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Abelian p-groups with minimal full inertia 3

Theorem 1.2 If G is a separable p-group of cardinality 2ℵ0 , with semi-standard basic group
B, such that End(G) = Jp · 1G ⊕ Es(G), then the socle B[p] of B is fully inert in G but it
is not commensurable with any fully invariant subgroup of G.

Thus, Pierce’s construction provided the first example of a p-group which does not have
minimal full inertia. In Sect. 2 of this paperwe extendTheorem1.2 to semi-standard separable
p-groups G with endomorphism rings bigger than Jp ·1G ⊕ Es(G), but still “small". We will
see that, in a technical sense, “small"means that the Jp-algebra A in the Pierce decomposition
is the completion of a free Jp-module of at most countable rank. Thus, Theorem 2.4, the main
result of Sect. 2, shows that groups with “small" endomorphism rings do not have minimal
full inertia. As recalled above, concrete examples of these groups are obtained via realization
theorems by Corner in [4].

In Sect. 3 we consider direct sums of groups that have minimal full inertia, and of groups
which do not have minimal full inertia; a nice consequence of the techniques developed here
is that one can easily derive a simple proof of the main theorem in [15]: direct sums of cyclic
groups have minimal full inertia. We show in Example 3.6 that the class of groups that have
minimal full inertia is not closed under taking finite direct sums and that groups which do not
have minimal full inertia may have “big" endomorphism ring.We provide also in Proposition
3.9 examples of groups which do not have minimal full inertia obtained via finite direct sums
of groups of the same type.

In Sect. 4 we consider two conditions studied by Sands [23] which are satisfied, inter
alia, by direct sums of cyclic groups and by torsion-complete groups. The first condition
relates to Cauchy sequences of the socle of a p-groupG, and the second concerns a structural
condition on the Jacobson radical of End(G). We show that these conditions are also satisfied
by certain groups which do not have minimal full inertia. Thus, these conditions are shown
to be independent on the property of having minimal full inertia.

In Sect. 5we prove that the new examples, furnished in the preceding sections, of fully inert
subgroups which fail to be commensurable with fully invariant subgroups are not uniformly
fully inert, thus giving further evidence of the likely truth of Conjecture 1.6 in [6], which
states that every uniformly fully inert subgroup of an arbitrary group is commensurable with
a fully invariant subgroup.

2 Groups with small endomorphism ring do not haveminimal full
inertia

We start by generalizing Theorem 1.2 just noting that its proof can be extended almost
verbatim to prove the following

Theorem 2.1 If G is a reduced separable semi-standard p-group such that End(G) =
Jp · 1 ⊕ Es(G), then, given any pure subgroup H of cardinality ℵ0 of G, its socles H [pk]
(k ≥ 1) belong to I(G) \ Inv˜(G).

The hypothesis that End(G)/Es(G) ∼= Jp implies that G is not isomorphic to a direct
sum of cyclic groups, henceG must be uncountable (see the next Lemma 2.3). An immediate
consequence of Theorem 2.1 is the following

Corollary 2.2 Under the hypotheses of the preceding theorem, every subgroup commensu-
rable with a pk-socle (k ≥ 1) of a pure subgroup of cardinalityℵ0 belongs to I(G)\Inv˜(G).

The next theorem provides many fully inert subgroups not commensurable with fully
invariant subgroups for a wider class of separable p-groups, thus extending to a large extent
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4 B. Goldsmith, L. Salce

Theorem 2.1. First we need the following lemma whose proof utilises an argument from [1,
Proposition 2.2].

Lemma 2.3 Let G be an unbounded separable semi-standard p-group with Pierce decompo-
sition of its endomorphism ring End(G) = A ⊕ Es(G). If A is the completion in the p-adic
topology of a free Jp-module F of countable rank, then G is uncountable.

Proof Suppose to the contrary that G is countable. Then, by [11, Theorem 5.3, p. 96], G is
a direct sum of cyclic groups, say G = ⊕

i∈N Ci .
Let χ : End(G) → Hom(G[p],G) be the restriction map sending φ ∈ End(G) into

φ � G[p]. We claim that χ(End(G)) has cardinality at least 2ℵ0 . In fact, every element of
Hom(G[p],G) can be thought of as an infinite vector of the form δ = (δ1, δ2, . . .) where δi
correspond to homomorphisms from Ci [p] into G. If we choose δi to be either the zero map
or the identity map, we can clearly produce 2ℵ0 homomorphisms in Hom(G[p],G).

Furthermore, since the zero map and the identity map from Ci [p] → G both extend
trivially to maps from Ci → G, the vector δ clearly extends to a map γ : G → G which
satisfies χ(γ ) = δ. This proves that |χ(End(G)| ≥ 2ℵ0 .

However, the image of A under the map χ is countable, since χ(pA) = 0 and A/pA ∼=
F/pF ∼= (Jp/pJp)(ℵ0). Additionally, as G is semi-standard, every small endomorphism
vanishes on a cofinite subgroup pnG[p] of G[p], for some n. Since there are only countably
many values of n, the image χ(Es(G)) is countable. Thus, χ(A⊕ Es(G)) is also countable,
a contradiction. We conclude that G must be uncountable. 	


Theorem 2.4 Let G be a separable semi-standard p-group such that, in the Pierce decompo-
sition End(G) = A⊕ Es(G), A is the completion in the p-adic topology of a Jp-subalgebra
F which is a free Jp-module of at most countable rank. If H is a countable infinite subgroup
of G, then the higher socles H F [pk] (k ≥ 1) of the subgroup H F = ∑

α∈F α(H) are fully
inert in G but not commensurable with any fully invariant subgroup of G.

Proof We give the proof when the rank of F equals ℵ0. If the rank is finite, the proof is
simpler and it is left to the reader.

First note that HF is F-invariant, because F is closed under multiplication. Let F =⊕
n∈N Jpαn . Clearly

∑
n∈N αn(H) ≤ HF . Conversely let α ∈ F . Then α = ∑

1≤i≤n πiαi

for suitable n ∈ N and πi ∈ Jp . It follows that α(H) ≤ ∑
1≤i≤n αi (H), so HF =∑

1≤i≤n αi (H). This equality implies that HF is countable, since each subgroup αi (H)

is countable, being an image of H ; consequently, also HF [pk] is countable for each k ≥ 1.
As G is uncountable by Lemma 2.3, HF [pk] cannot be commensurable with a nonzero
fully invariant subgroup of G, since these subgroups are also uncountable, as proved in [15,
Theorem 4.2].

To prove that HF [pk] is fully inert, we must show that, given any endomorphism φ ∈
End(G), (HF [pk] + φ(HF [pk]))/HF [pk] is finite. Let φ = α + θ , with α ∈ A and
θ ∈ Es(G). As A is the completion of F , for each n ∈ N there exists a φn ∈ F such
that α − φn ∈ pn A. Then we have α(HF [pk]) = (α − φk)(HF [pk]) + φk(HF [pk]). But
(α − φk)(H A[pk]) = 0 because α − φk ∈ pk A, and φk(HF [pk]) ≤ HF [pk], because
HF [pk] is F-invariant. Therefore it is enough to prove that θ(HF [pk])) is finite.

Since HF is countable, a classical result by Szele (see [11, Theorem 1.5, p. 151]) ensures
that there exists a countable pure subgroup of G, C say, with HF ≤ C . Now C is countable
and separable and hence it is a direct sum of cyclic groups; we write C = ⊕

i ≥ 1Ci where
each Ci is a direct sum of cyclic groups of order pi (possibly zero). Thus, each Ci is a
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Abelian p-groups with minimal full inertia 5

bounded pure subgroup of C and hence is a direct summand of G. Since, by hypothesis, G
is semi-standard, each Ci is of finite rank.

Now HF [pk] ≤ C[pk] = (C1 ⊕ · · · ⊕ Ck) ⊕ pCk+1 ⊕ p2Ck+2 ⊕ · · · and since θ is
small, there exists a positive integer N such that θ(pNG[pk]) = 0. Hence θ(pNCN+k ⊕
pN+1CN+k+1 ⊕ · · · ) = 0. Thus, θ(HF [pk]) ≤ θ(C1 ⊕ · · · ⊕ Ck ⊕ pCk+1 ⊕ · · · ⊕
pN−1CN+k−1) and this latter term is finite since it is a homomorphic image of a finite
direct sum of finite groups. 	


In the next remark and in the following we deal with the algebraic entropy of endomor-
phisms of p-groups. For an illustration of the notion of algebraic entropy and its properties
we refer to [8] and to our survey paper [13]. We just recall here that the algebraic entropy
of an endomorphism φ of an abelian group G, denoted by ent(φ), is an invariant (actually, a
length function on the category of Z[X ]-modules), which measures by means of nonnegative
real numbers and the symbol ∞ the behaviour of the discrete dynamical system obtained by
the powers of φ.

Remark 2.5 If a Jp-algebra A is a free Jp-module of finite rank, then it is integral over
Jp . This implies (see [8, Proposition 2.4]) that every endomorphism φ of a semi-standard
p-group G such that End(G) = A ⊕ Es(G) has algebraic entropy ent(φ) equal to 0. In
fact, ent(φ) = 0 is equivalent to the fact the φ is pointwise integral over G, which means
that for every x ∈ G there exists a monic polynomial g(X) ∈ Jp[X ] depending on x such
that g(φ)(x) = 0. Looking at Theorem 2.4, one could conjecture that the strict inclusion
Inv˜(G) � I(G) is related to the property of G of having the total entropy ent(G) = 0 (i.e.,
ent(φ) = 0 for all φ ∈ End(G)). The following discussion will show that this conjecture is
wrong; see Proposition 2.8 below.

At this point, a natural question arises. Can we find separable semi-standard p-groups G
satisfying the hypotheses of Theorem 2.4?

The answer comes from the realization theorems proved by Corner in his outstanding
paper on endomorphism rings of separable p-groups. One of these theorems ( [4, Theorem
4.1]) is the following.

Theorem 2.6 [Corner] Let A be a Jp-algebra which is the completion of a free Jp-module
of countable rank. If A satisfies the following condition:

(*) there exists a descending sequence of right ideals A ≥ A1 ≥ A2 ≥ · · · ≥ An ≥ · · ·
such that Ai/Ai+1 is a free Jp-module of finite rank for each i and pA = ∩i (pA + Ai ),

then there exists a separable semi-standard p-group G such that End(G) = A ⊕ Es(G).

In [8, Example 5.12] a Jp-algebra A integral over Jp was constructed using the Nagata
idealization satisfying the hypothesis of Corner’s Theorem 2.6. The p-group G obtained via
Theorem 2.6 such that End(G) = A ⊕ Es(G) had total entropy ent(G) = 0, because of the
integrality of A over Jp .

Another powerful theorem in Corner’s paper ( [4, Theorem 2.1]) is the following

Theorem 2.7 [Corner] Let B̄ be a torsion-complete p-group with an unbounded basic sub-
group B of cardinality at most 2ℵ0 , and let 
 be a separable closed subring of End(B̄) that
leaves B invariant and satisfies the condition

(C) if φ ∈ 
 and φ(pn B̄[p]) = 0 for some n, then φ ∈ p
.
Then there exists a family Gσ (σ ∈ �) of 22

ℵ0 pure subgroups of B̄ containing B such that
(a) for each σ ∈ �, End(Gσ ) = 
 ⊕ Es(Gσ );
(b) for distinct σ, τ ∈ �, every homomorphism Gσ → Gτ is small.
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6 B. Goldsmith, L. Salce

Using this theorem, in [8, Theorem 4.4] it was proved that there exist 22
ℵ0 non-isomorphic

groups G with standard basic subgroup B = ⊕
n∈N Z(pn) and contained in the torsion-

completion B̄ of B, such that End(G) = A ⊕ Es(G), where A is isomorphic to the p-adic
completion of the polynomial ring Jp[X ]. Furthermore, if ω denotes the endomorphism of
G corresponding to the indeterminate X , then ent(ω) = ∞. This depends on the fact that ω
is not only nonalgebraic over Jp , but it fails also to be pointwise integral over G.

To sum up, we can answer the above question as follows.
Using Corner’s realization theorems we can construct separable semi-standard p-groups

G satisfying the hypotheses of our Theorem 2.4, with the Jp-algebra A either integral over
Jp , or neither integral over Jp nor pointwise integral over G. All these groups do not have
minimal full inertia. This shows that the proper inclusion Inv˜(G) � I(G) is independent
of the vanishing of the total entropy of G. In conclusion, we have seen that

Proposition 2.8 There exists separable semi-standard p-groupsG which donot haveminimal
full inertia such that ent(G) = 0 and also such that ent(G) = ∞.

3 Minimal full inertia for direct sums of p-groups

In this section we investigate direct sums of groups which have minimal full inertia and of
groups which do not have minimal full inertia.

We are interested in identifying fully inert subgroups up to commensurability. The fol-
lowing lemma was proved in [2, Lemma 7] using an idea in [15, Lemma 3.3].

Lemma 3.1 [Chekhlov] If G = ⊕
i∈I Gi is a direct sum of arbitrary groups, πi : G → Gi

are the canonical projections, and H is a fully inert subgroup, then H is commensurable
with

⊕
i∈I πi (H).

Thus, from now on, when dealing with fully inert subgroups H of a direct sum of cyclic
groups

⊕
i∈I Gi , we will assume that H = ⊕

i∈I Hi , with Hi ≤ Gi for all i . This situation
is expressed by saying that H is a box-like subgroup of G in [7], where this terminology
was introduced and this notion was used for direct sums of divisible groups; it was used also
more recently in [3], [6] and [14].

The following result concerning box-like subgroups was proved in [2] and [3] and is based
on results in [2] and [14]. For the convenience of the reader we present a proof of part (b);
this is a very slight modification of that given in [3, Lemma 2.2].

Lemma 3.2 [Chekhlov, Chekhlov–Danchev–Goldsmith] Let G = ⊕
i∈I Gi be a direct sum

of arbitrary groups, πi : G → Gi the canonical projections, and H = ⊕
i∈I Hi a box-like

subgroup. If H is fully inert in G, then the following conditions hold:

(a) Hi is fully inert in Gi for all i and is fully invariant in Gi for almost all i ;
(b) if I is infinite, then there exists a finite subset I0 of I such that

⊕
i∈I\I0 Hi is fully invariant

in
⊕

i∈I\I0 Gi .

Proof Proof of part (b): By point (a), there exists a cofinite subset I1 of I such that Hi is
fully invariant in Gi for all i ∈ I1. We will prove that there exists a cofinite set of indices I0
contained in I1 such that the whole direct sum

⊕
i∈I0 Hi is fully invariant in

⊕
i∈I0 Gi .

Consider the set

S = {
j ∈ I1 | there exist i ∈ I1 and φi j : Gi → G j such that φi j (Hi ) � Hj

}
.
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Abelian p-groups with minimal full inertia 7

If the set S is infinite, for each j ∈ S choose an index i ∈ I1 and a map φi j : Gi → G j such
that φi j (Hi ) � Hj and define the endomorphism ψ of

⊕
i∈I Gi by setting ψ � Gi = φi j for

each one of these chosen maps φi j , and extend trivially on the remaining direct summands
of G. By the definition of S, for each j ∈ S and the corresponding map φi j , there exists an
element x j ∈ G j such that x j ∈ φi j (Hi ) \ Hj . Now the quotient group (ψ(H) + H)/H
contains the cosets x j + H for each one of these indices j . We claim that these cosets
are all distinct; in fact, if x j + H = xt + H for some j �= t , then x j − xt ∈ H , so that
π j (x j −xt ) = x j ∈ π j (H) = Hj , absurd. Therefore the quotient (ψ(H)+H)/H is infinite,
and this contradicts the full inertia of H . We derive that the set S is finite. Removing this finite
set from I1, we obtain a cofinite subset I0 of I such that for all j ∈ I0 and for all i ∈ I1—and
a fortiori for all i ∈ I0—it happens that φ(Hi ) ⊆ Hj for all maps φ : Gi → G j . Since
End(

⊕
i∈I Gi ) ∼= ∏

i Hom(Gi,
⊕

j∈I Gj) ≤ ∏
i,j Hom(Gi,Gj), it follows that

⊕
i∈I0 Hi is

fully invariant in
⊕

i∈I0 Gi . 	

From Lemmas 3.1 and 3.2 it is possible to deduce a very simple proof of the main theorem

in [15], which states, in our terminology, that direct sums of cyclic p-groups have minimal
full inertia. The proof was very long and elaborate, split into the bounded and the unbounded
cases, with many intermediate results of independent interest. Even allowing for the fact
that detailed proofs of these lemmas require careful arguments, the total effort to prove the
theorem in this way is much lower than that required in [15] and as such, this represents a
substantial improvement on the original solution. We illustrate this by including the proof as
a corollary to Lemma 3.2.

Corollary 3.3 If G is a direct sum of cyclic p-groups, then G has minimal full inertia.

Proof Suppose that G = ⊕
i∈I Ci where each Ci is a cyclic p-group, and let H be an

arbitrary fully inert subgroup of G. As observed above, we may assume that H = ⊕
i∈I Hi

is a box-like subgroup of G. Then it follows from Lemma 3.2 that there is a finite subset I0 of
I such that M = ⊕

i∈I\I0 Hi is fully invariant in G0 = ⊕
i∈I\I0 Ci ; setting F0 = ⊕

i∈I0 Ci ,
we have that H ∼ F ⊕ M where F = ⊕

i∈I0 Hi is a subgroup of the finite group F0. Now
it is well known—see for example [15, Lemma 1.5]—that there is a subgroup F1 of F0 such
that F1 ⊕ M is fully invariant in G. Since F1 is also finite, we have H ∼ F ⊕ M ∼ F1 ⊕ M
and the latter is fully invariant in G. Since H was an arbitrary fully inert subgroup of G, G
has minimal full inertia. 	


The result in Corollary 3.3 has been extended to arbitrary totally projective p-groups by
Patrick Keef in the remarkable paper [18].

We consider now direct sums of a fixed group G which has minimal full inertia, under
the additional hypothesis that G is fully transitive; recall that a separable p-group is fully
transitive. We start with the case of a finite direct sum.

Lemma 3.4 If X = G1 ⊕ G2 ⊕ · · · ⊕ Gn, where Gi = G for all i , and G is an unbounded
fully transitive p-group which has minimal full inertia, then X also has minimal full inertia.

Proof Let H be a fully inert subgroup of X . Then H is commensurable with H1 ⊕ H2 ⊕
· · · ⊕ Hn , where Hi = H ∩ Gi , which is still fully inert. Then Lemma 3.2 (a) and the fact
that G is fully transitive ensure that each Hi is commensurable with G(ui) (i = 1, 2, . . . , n),
for suitable increasing sequences of ordinals or symbols ∞. So H is commensurable with
G(u1) ⊕ G(u2) ⊕ · · · ⊕ G(un) and this subgroup is still fully inert. Then [2, Proposition 1]
ensures that, for every homomorphism α : Gi → G j , with i �= j , the quotient (α(G(ui)) +
G(uj))/G(uj) is finite. In particular, if α = 1G , we have

(G(ui) + G(uj))/G(uj) = G(ui ∩ uj)/G(uj).
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8 B. Goldsmith, L. Salce

Clearly this implies that each subgroup G(ui) is commensurable with G(u1 ∩u2 ∩ · · ·∩un).
In conclusion, setting w = u1 ∩ u2 ∩ · · · ∩ un, we have that H is commensurable with
G(w) ⊕ G(w) ⊕ · · · ⊕ G(w) = X(w), therefore X has minimal full inertia. 	


We extend now Lemma 3.4 to infinite direct sums of a group with minimal full inertia.

Theorem 3.5 If X = ⊕
i∈I Gi , where each Gi is isomorphic to a fixed unbounded fully

transitive p-group which has minimal full inertia, then X has minimal full inertia.

Proof Let H be a fully inert subgroup of X and let πi : X → Gi be the canonical projections.
From Lemma 3.2 we get that H is commensurable with

⊕
i∈I πi (H), with πi (H) fully inert

in Gi for all i ∈ I ; furthermore, there exists a finite subset I0 of I such that X = C ⊕ A
where C = ⊕

i∈I0 Gi and A = ⊕
i∈I\I0 Gi and

⊕
i∈I\I0 Hi is actually fully invariant in A.

Note that C has minimal full inertia, by Lemma 3.4, and
⊕

i∈I0 Hi is fully inert in C .
Since A is fully transitive,

⊕
i∈I\I0 Hi can be expressed in the form A(v) for some suitable

U -sequence v. Lemma 3.4 ensures that
⊕

i∈I0 Hi is commensurable with a fully invariant
subgroup ofC of the formC(u) for aU -sequence u. Hencewe have that H is commensurable
withC(u)⊕A(v), thusC(u)⊕A(v) is fully inert in X , and these summands are fully invariant
in C and A, respectively.

We are now in a position to apply Lemma 3.2. For any homomorphism γ : C → A the
quotient (γ (C(u)) + A(v))/A(v) is finite. In particular, choosing γ to be an isomorphism
from C onto a direct summand Z of A, say A = Z ⊕ Y , we have that γ (C(u)) = Z(u). A
simple argument shows that Z(v) is commensurable with Z(u ∩ v).

Similarly, for any homomorphism δ : A → C , we have (δ(A(v) + C(u))/C(u) is finite.
Now A = Z ⊕Y and choosing δ in such a way that δ(Z) = C , we have A(v) = Z(v)⊕Y (v)
and δ(Z(v)) = C(v). So we have that (C(v) + C(u))/C(u) = C(u ∩ v)/C(u) is finite;
hence C(u) is commensurable with C(u∩v). But C(u∩v)/C(v) ∼= Z(u∩v)/Z(v) is finite,
hence also C(v) is commensurable with C(u ∩ v). It now follows immediately that H is
commensurable with C(v) ⊕ A(v) = X(v). Thus, X has minimal full inertia, as required.

	

Theorem 3.5 applies in particular when the groupsGi are isomorphic to a fixed unbounded

torsion-complete group.
The next example shows that the class of groups which have minimal full inertia is not

closed under taking finite direct sums.

Example 3.6 Let G = B1 ⊕ B̄2, where B1 is an unbounded direct sum of cyclic p-groups
and B̄2 is an unbounded semi-standard torsion-complete group. We claim that G does not
have minimal full inertia.

In fact, the subgroup H = {0} ⊕ B̄2[p] is fully inert, by Proposition 3.1; the only
nonobvious condition to be verified is that, for every homomorphism α : B̄2 → B1,
(α B̄2[p] + {0})/{0} = α B̄2[p] is finite. But α is small by a well-known result of Meg-
ibben (see [11, Exercise 14, p. 317]), hence α(pN B̄2[p]) = 0 for a suitable N ∈ N. As B̄2 is
semi-standard, it follows that α B̄2[p] is finite, so H is fully inert. On the other hand, H is not
commensurable with a fully invariant subgroup ofG; asG is fully transitive, such a subgroup
is of the form G(u) for some sequence u. But G(u) = B1(u) ⊕ B̄2(u), and B1(u) is never
finite, unless B1(u) = 0, equivalently, u = (∞,∞, . . .), in which case also B̄2(u) = 0.

Some comments on Example 3.6 are in order. First, in place of B1 we could use any
unbounded separable p-group not containing an unbounded torsion-complete group. Fur-
thermore, if either B1 or B̄2 is bounded, then G has minimal full inertia, since it becomes
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either torsion-complete or a direct sum of cyclic groups. Example 3.6 is also interesting,
since it shows that also groups with “big" endomorphism ring may fail to have minimal full
inertia and that the property of being semi-standard is independent of the property of having
minimal full inertia. Finally, Example 3.6 may be generalized by the following proposition,
which enables us to produce many p-groups which do not have minimal full inertia.

Proposition 3.7 If G = A ⊕ C is a separable p-group which is the direct sum of two
unbounded groups A and C, such that A is semi-standard and every homomorphism from A
to C is small, then G does not have minimal full inertia.

Proof Let H = A[p] ⊕ {0}. Then the same argument as used in Example 3.6 shows that H
is fully inert in G. Suppose to the contrary that H is commensurable with a fully invariant
subgroup of G, say, G(u) = A(u) ⊕ C(u) for some U-sequence u = (u0, u1, . . .); since G
is separable, u0 is a nonnegative integer. Then C(u) must be commensurable with {0}, that
is, it must be finite. However, as C is unbounded, this is impossible, so we get the desired
contradiction. 	


Lemma 3.2 makes it possible to construct more examples of p-groups which fail to have
minimal full inertia using direct sums of these groups. Selecting finitelymany groups obtained
in the above-mentioned [8, Theorem 4.4], which uses Corner’s Theorem [4, Theorem 2.1],
we get the following

Example 3.8 Let G1,G2, . . . ,Gn be nonisomorphic groups such that End(Gi ) = A ⊕
Es(Gi ), where A is isomorphic to the p-adic completion of the polynomial ring Jp[X ]
and every homomorphism Gi → G j is small for i �= j . We claim that G = ⊕

1≤i≤n Gi

does not have minimal full inertia.
In fact, choose arbitrary countable subgroups Hi in Gi for all i . Using the notation of

Theorem 2.4, set Ki = H
Jp[X ]
i [p] for all i . We claim that the subgroup K = ⊕

1≤i≤n Ki is
fully inert in G but not commensurable with any fully invariant subgroup, so that Inv˜(G) �

I(G). The fact that K is fully inert follows from Lemma 3.2, because all the subgroups Ki

are fully inert in Gi , by Theorem 2.4, and the fact that every homomorphism αi j : Gi → G j

is small for i �= j implies that αi j Ki is finite; therefore (αi j Ki +K j )/K j is finite too. Finally,
K is not commensurable with a fully invariant subgroup of G because such a subgroup is
uncountable and K is countable.

Again, using the results and the notation of [8, Theorem 4.4], we can generalize the
preceding example to the following

Proposition 3.9 If Gσ (σ ∈ �) is a family of 22
ℵ0 separable groups with basic subgroup

B = ⊕
n Z(pn) such that End(Gσ ) = A ⊕ Es(Gσ ), where A is isomorphic to the p-adic

completion of the polynomial ring Jp[X ], and every homomorphism Gσ → Gτ is small for
σ �= τ , then G = ⊕

σ Gσ does not have minimal full inertia.

Proof Fix a τ ∈ � and take a countable subgroup Hτ in Gτ . Using the notation of Theorem

2.4, set Kτ = H
Jp[X ]
τ [p]. We claim that the subgroup K = ⊕

σ∈� Kσ , where Kσ = 0 for
all σ �= τ , is fully inert in G but not commensurable with any fully invariant subgroup, so
that Inv˜(G) � I(G). The fact that K is fully inert follows from Lemma 3.2, since all the
subgroups Kσ are trivially fully invariant in Gσ , except Kτ which is fully inert in Gτ , and
since every homomorphism ατσ : Gτ → Gσ small implies that ατσ Kτ is finite; therefore
(ατσ Kτ +Kσ )/Kσ is finite too. Furthermore, condition (c) of Lemma 3.2 is satisfied trivially
for I0 = {σ }. Finally, K is not commensurable with a nonzero fully invariant subgroup of
G, because such a subgroup is uncountable and K is countable. 	
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10 B. Goldsmith, L. Salce

4 Trying to enlarge the family of p-groups withminimal full inertia

Up to now the only concrete examples of separable p-groups with minimal full inertia at
disposal are the direct sums of cyclic groups, the torsion-complete groups and the direct
sums of a fixed torsion-complete group. We would like to enlarge the family of groups with
minimal full inertia, even if we guess that a characterization of these groups via structural
properties of the groups themselves, or of their endomorphism ring, is hopeless.

To justify this idea, we consider properties of p-groups G and of their endomorphism
ring End(G) investigated by Arthur D. Sands in [23]. Sands calls sufficiently projective a
separable p-group G such that every countable subset is contained in a direct summand
of G that is a direct sum of cyclic groups. Sufficiently projective p-groups are called also
ℵ1-separable (or ω1-separable) by other authors, and have been investigated also using set-
theoretic techniques (see [17], [10, Chapter VIII], [19] and [12]). Clearly direct sums of
cyclic groups are sufficiently projective and a torsion-complete group is sufficiently projective
exactly if it is bounded. Hill gave in [16] an example of a sufficiently projective group which
fails to be a direct sum of cyclics. Sands notes in [23] that sufficiently projective groups and
torsion-complete groups satisfy the following technical condition:

(C) given any Cauchy sequence {gi }i∈N in G[p]which is not convergent in G, there exists
a direct sum of cyclic groups H and a homomorphism α : G → H such that {α(gi )}i∈N is
Cauchy but not convergent in H .

Warning: the preceding condition (C) introduced by Sands is not to be confused with
condition (C) in Corner’s Theorem 2.7.

One of the main results in Sands’s paper, [23, Theorem 5], is that, if a group G satisfies
condition (C), then the Jacobson radical J (End(G)) of End(G) equals H(G)∩C(G), where
H(G) is the Pierce radical mentioned in the Introduction, and C(G) the ideal of End(G)

consisting of those endomorphisms which send Cauchy sequences of the socle G[p] into
convergent sequences. In general the inclusion H(G) ∩ C(G) ⊆ J (End(G)) holds, and
Dugas gave in [9] an example of a p-group for which the strict inclusion holds.

Thus, wemay consider this condition (C) for a p-groupG and the condition J (End(G)) =
H(G) ∩ C(G) for its endomorphism ring, and we may ask whether groups satisfying these
conditions have minimal full inertia. The next result shows that having minimal full inertia
is independent of both these conditions.

Proposition 4.1 There exist separable p-groups G satisfying Sands’s condition (C), or such
that J (End(G)) = H(G) ∩ C(G), which have minimal full inertia and also which do not
have minimal full inertia.

Proof Concerning condition (C), on one hand, we have seen in Example 3.6 that the group
G = B1 ⊕ B̄2, where B1 is an unbounded direct sum of cyclic p-groups and B̄2 is an
unbounded semi-standard torsion-complete group, does not have minimal full inertia. It is
quite obvious that this group G satisfies condition (C). On the other hand, both direct sums
of cyclic groups and torsion-complete groups satisfy condition (C) and have minimal full
inertia.

Concerning the condition J (End(G)) = H(G)∩C(G), on one hand, the results by Sands
show that sufficiently projective groups, and in particular direct sums of cyclic groups, and
torsion-complete groups satisfy this equality; all these groups haveminimal full inertia.On the
other hand, Sands noted in [23] that the Pierce groupG such that End(G) = Jp ·1G ⊕ Es(G)

also has this property; this group G was the first example of a group which has not minimal
full inertia. 	
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We conclude this section with the following still unanswered question: do sufficiently
projective groups have minimal full inertia?

5 The uniform full inertia set

Before our present investigation, there was only one available example of a fully inert sub-
group of a p-group not commensurable with a fully invariant subgroup, namely, the socle
B[p] of a basic subgroup B of the separable p-group G provided by Theorem 1.2, which
uses Pierce’s construction of G such that End(G) = Jp · 1G ⊕ Es(G) (see [15, Theorem
4.2]).

In [6, Proposition 6.2] it was proved that the socle B[p] is not uniformly fully inert, that
is, the cardinalities of the quotients (φB[p]+B[p])/B[p], ranging φ in End(G), do not have
a uniform bound k ∈ N.

This fact, together with many other exhibited examples for different families of abelian
groups, tempted the authors of [6] to formulate the conjecture (already presented in [5]) that
every uniformly fully inert subgroup of a group G is commensurable with a fully invariant
subgroup. Following [6], we denote by Iu(G) the subset of I(G) consisting of the uniformly
fully inert subgroups, that is, of the subgroups H such that |(φH + H)/H | ≤ N for all
endomorphisms φ and for a fixed positive integer N . In [6] it was proved that Inv˜(G) ⊆
Iu(G). We call Iu(G) the uniform full inertia set of G.

Since this paper offers several new examples of fully inert subgroups of p-groups not
commensurable with fully invariant subgroups, our goal is to show that also these examples
are not uniformly fully inert, thus strengthening the conjecture in [6], namely, that Inv˜(G) =
Iu(G) for all groups G. More precisely, we would like to prove that the fully inert subgroups
exhibited in Theorem 2.4, Proposition 3.7 and Proposition 3.9 are not uniformly fully inert.
The next three results provide these desired proofs.

We prove the first result for the fully inert subgroup HF [p] of G, and we leave to the
reader to extend the result to higher socles HF [pk], for k > 1.

Proposition 5.1 The fully inert subgroup H F [p] of G of Theorem 2.4 is not uniformly fully
inert.

Proof We must show that for every positive integer k there exists an endomorphism φ ∈
End(G) such that |(φK + K )/K | ≥ k, where K = HF [p]. We have seen in the proof of
Theorem 2.4 that K is contained in a countable pure subgroup C = ⊕

i∈N Ci , where each
Ci is a finite direct sum of cyclic groups isomorphic to Z(pi ). As K is infinite, there exists a
positive integer n such that |K ∩⊕

1≤i≤n Ci | ≥ k. Note that
⊕

1≤i≤n Ci is a direct summand
of G. We shall find an embedding φ : ⊕

1≤i≤n Ci → G such that Im(φ) ∩C = 0. Extend φ

to an endomorphism of G, still called φ, which sends a complement of
⊕

1≤i≤n Ci to 0. In
such a way we have that φK which contains φ(K ∩ ⊕

1≤i≤n Ci ), has cardinality at least k
and (φK + K )/K ∼= φK , because Im(φ) ∩ C = 0 implies φK ∩ K = 0; so our claim will
follow.

In order to define the map φ, we make use of an idea used in the proof of [6, Lemma 6.1].
By a classical result by Kovács (see [11, Theorem 5.12]), the subgroup C is contained in a
basic subgroup B of G. Since G is uncountable, by Lemma 2.3, and B is countable since
G is semi-standard, we have that the divisible group G/B has uncountable rank, therefore
it contains a subgroup A/B isomorphic to C . But C , being a direct sum of cyclic groups, is
pure-projective, hence we have a direct decomposition A = B ⊕C ′, with C ′ ∼= C ; therefore
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12 B. Goldsmith, L. Salce

B ∩ C ′ = 0 and consequently also C ∩ C ′ = 0. Now the desired map φ : ⊕
1≤i≤n Ci → G

is the restriction to
⊕

1≤i≤n Ci of the isomorphism C ∼= C ′. Thus, we are done. 	

The second result makes use of an idea used in the proof of [13, Lemma 3.2].

Proposition 5.2 The fully inert subgroup H = A[p] ⊕ {0} of G = A⊕C of Proposition 3.7
is not uniformly fully inert.

Proof We must show that for every positive integer k there exists an endomorphism φ ∈
End(A ⊕ C) such that |(φA[p] + A[p])/A[p]| ≥ k.

Let B = ⊕
i∈I 〈ei 〉 be a basic subgroup of A and B ′ = ⊕

j∈J 〈e′
j 〉 a basic subgroup of C .

Select a sequence of cyclic summands 〈ein 〉 (n ∈ N) of B and a sequence of cyclic summands
〈e′

jn
〉 (n ∈ N) of B ′ of strictly increasing order, such that the order of e′

jn
is greater than or

equal to the order of ein . Then define a map σ : B → B ′ by embedding each ein into e
′
jn
, and

sending to zero all the remaining generators ei .
Choose now an index N such that |(⊕1≤n≤N 〈ein 〉)[p]| ≥ k and define the endomorphism

φ ofG = A⊕C in the following way: φC = 0, φ(
⊕

1≤n≤N 〈ein 〉) = σ(
⊕

1≤n≤N 〈ein 〉) and φ

vanishes on a complement of
⊕

1≤n≤N 〈ein 〉 in A. It is clear that |(φA[p]+ A[p])/A[p]| ≥ k,
since (φA[p] + A[p])/A[p] ∼= σ((

⊕
1≤n≤N 〈ein 〉)[p]). 	


The proof of the last result makes use of arguments similar to those used in Propositions
5.1 and 5.2, taking care that the groups Gσ have the same basic subgroup B = ⊕

n Z(pn),
and that the subgroup Kτ is infinite. We just sketch the proof and leave the details to the
reader.

Proposition 5.3 The fully inert subgroup K of G = ⊕
σ∈� Gσ of Proposition 3.9 is not

uniformly fully inert.

Proof We must show that for every positive integer k there exists an endomorphism φ ∈
End(G) such that |(φ(K ) + K )/K | ≥ k. We use the notation of Proposition 3.9: so K is the
direct sum of a single subgroup Kτ and the zero subgroups of all the Gρ with ρ ∈ � and
ρ �= τ . Now it follows from the proof of Proposition 5.1 that, for any given positive integer
k, there is an endomorphism, φτ say, of Gτ such that |(φτ (K ) + Kτ )/Kτ | ≥ k. Extend φτ

to an endomorphism φ of G by setting φ � Gτ = φτ and setting φ to be identically zero
on the complement

⊕
ρ �=τ Gρ of Gτ in G. It follows immediately that |(φ(K ) + K )/K | =

|(φτ (Kτ ) + Kτ )/Kτ | ≥ k. 	

Question 7.5 in [6] asks whether the p-group G of Theorem 2.4 satisfies the equality

Inv˜(G) = Iu(G). In the same way we may ask whether this equality holds also for the
groups considered in Proposition 3.7 and Proposition 3.9.
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