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SOME ¢-CONGRUENCES ARISING FROM CERTAIN IDENTITIES
CHEN WANG AND HE-XTA NI*

ABSTRACT. In this paper, by constructing some identities, we prove some g-analogues of some
congruences. For example, for any odd integer n > 1, we show that

n—1

(5P x (n+1)/2 (n2—1)/4 2
Yt = R = (L g)n] - (mod @4 (0)°),
k=0 !

n—1 3 2
qa;q n n2_ 1+¢

59 )k e - (_qyorrzgot-oia L LEG ) (nod 3, (g)2),

= (G q

where the g-Pochhanmmer symbol is defined by (x;¢)o = 1 and (z;¢)r = (1—z)(1—zq)--- (1—
xq*~1) for k > 1, the g-integer is defined by [n] = 1+ ¢+ --- 4+ ¢"~ ! and ®,(q) is the n-th
cyclotomic polynomial. The g-congruences above confirm some recent conjectures of Gu and
Guo.

1. INTRODUCTION

In 2010, Sun and Tauraso [I1] studied some congruence properties of sums concerning central
binomial coefficients (2:) where k € N ={0,1,...}. For example, let p be an odd prime and
r € Z, they proved that for any m € Z with p t m,

2_: (v = upr_g(m —2) (mod p),

k
m
k=0

where |d| € {0,...p"} and the sequence of polynomials u,(x) (n € N) is defined as follows:
up(z) =0, ui(z) =1, and upi1(z) = zun(z) — up—1(z) (n =2,3,...).
In particular, they obtained that

2_: Q = (—1)(”70_1)/2 (mod p). (1.1)

Later, Sun [10] further proved that (I.1]) also holds modulo p?.
Throughout the paper, the g-integer [n], is defined as [n] = [n], = 1+ ¢+ ...+ ¢"
while the g-pochhammer symbol (q-shifted factorial) is defined by (z;q)o = 1 a d (x; q)k
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(1—2z)(1—xq)--- (1 —2¢*") for k > 1. And recall that the n-th cyclotomic polynomial ®,(q)

is defined as
ouq)= [[ (@—¢,

1<k<n
ged(n,k)=1

where ( is an n-th primitive root of unity.

As we all know, identities or congruences usually have nice g-analogues. In recent years,
g-analogues of identities and congruences have been investigated by various authors (cf. for
example, [1, 2, B 4, 5, © 7, 8, O, 12, 13]). In 2010, Guo and Zeng [8] gave the following

g-analogue of (LI)):

Q§q2)k k (n=1)/2 (n?-1)/4
q = (_1> q (mOd (I)n(Q))? (12>

(C2):

nolo o2
(qu.q )qu = (_1)(n—1)/2q(n2—1)/4 (mod (I)n(Q)z)- (1.3)
— (G k
It should be pointed out that (IL3]) for odd primes n was first conjectured by Tauraso [13] in
2013.
Recently, Gu and Guo [3] provided some g-congruences formally analogous to (I.2)) by making
use of Carlitz’s transformation formula (cf. [2]). For any odd integer n > 1, they proved that

n—1

(@5 (n+1)/2 (n2—1)/4
Z Wq =(-1) q (mod @,(q)), (1.4)
k=0 ’
n-1,3 2
> (Ci]qf;,)f ¢" = (=1)"VE I (mod @,(q)). (1.5)
k=0 ’

Our first theorem concerns the generalization of (L.4)).

Theorem 1.1. For any odd integer n > 1 we have

i (Q(:;qq;)qu = (_1)(n+1)/2q(n2—1)/4 —(144q)[n] (mod (I)n(q)z), (1.6)
> _(q@%qu)?kq% = (—1) D2 9gn] (mod @, (q)°). (L.7)

Letting ¢ — 1 in (LG) or (IL7) we obtain the following congruence.

Corollary 1.1. Let p be an odd prime and r € Z*. Then
p"—1

k=0
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Remark 1.1. (LL6) and (L.8)) were conjectured by Gu and Guo in [3]. (L1) is actually a different
g-analogue of ([L.g]).

Gu and Guo [3] also attempted to find a mod ®@,,(¢)* extension of (L5]) but failed. The next
theorem gives a different g-analogue of (I.I]) and generalizes (I.3]).

Theorem 1.2. Let n > 1 be an odd integer. Then

—_

n— 7 2 B 2 _ 1
((q .q )quk — (_1)(n 1)/2q( 2_5)/4 + q [n] (mod q)n(q)z), (1.9>
— (¢ Q) q
n—l 3 2
q°; q n n2_ 1+gq
S e (a0 4 ) mod @), (110
k=0 !

Letting ¢ — 1 we have the following corollary which confirms [3], (1.8)].

Corollary 1.2. Let p be an odd prime and r € Z*. Then

p'—1

2k +1) (2k ;
> ( ok >(k) = (~1)"*2 42" (mod p?). (1.11)
k=0

Remark 1.2. (I.10) is essentially an extension of (LH). In fact, noting that ¢" =1 (mod ®,,(q)),
we immediately get

¢ = == (1mod B, (q)).

Differently from Gu and Guo’s method, we will not use Carlitz’s transformation. Our
strategy is to find some new identities linking the g-congruences to be solved with (L3)). Assume
that F'(k,q) is a rational function in ¢ such that F'(k,q)/F(k—1,q) can be written as a ratio of
two polynomials in g. Now we want to find a polynomial R(k, ¢) such that Y_,_, F(k,q)R(k, q)
has a closed form. Consider the summation ) ;_, F(k,q). By the definition of F', we may
write

F(k,q)  S(k,q)

or equivalently,
where S(k,q) and T'(k, q) are polynomials of g. Then summing both sides of (LI2) from k = 1
to n and via some simple computation we find that

n

> (T(k,q) = S(k+1,9))F(k,q) = F(0,¢)T(0,q) = F(n,q)S(n +1,q). (1.13)
k=0

Here T'(k,q) — S(k + 1, q) is the polynomial that we hope to find.
The proofs of Theorem [I.1] and will be given in Sections 2 and 3 respectively.
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2. PROOF OF THEOREM [L.1]

Lemma 2.1. For any positive integer n, we have the following identities

n—1 n—1

(6)k 5 1 (@5 & b (G
¢+ "(1 —q¢") = 2" 2.1
; (43 ) 1—q; (43 9)x ( ) (43 @)n—1 (2.1)
and
n—1
1 (@5 & k (¢4:4%)n
(q—q") = ——=—. 2.2
L—q= (69 ( ) (¢ On—1 (22)
Proof. Set
@5k
Fi(k,q) =
1k, 0) (4 Dx
It is easy to verify that
(1= ¢")Fi(k,q) = q(1 = ¢* ) Fi(k = 1,9). (2.3)

Summing both sides of (23] from k& = 1 to n — 1 and noting that the left-hand side of (2.3)

vanishes when k& = 0, we arrive at

n—1 n—1 n—2
Y A=MFkq)=> ¢ - Rk -1,9) =Y q1 ¢ )Fi(k,q),
k=0 k=1 k=0
or equivalently,
n—1 n—1
> a1 = Rk q) =Y (1= ¢")Fi(k,q) = q(1 = ¢ ) Fi(n — 1,q).
k=0 k=0

Then (1)) follows by noting that

a0l — V) Fi(h,q) = (g — 1) LD
(4; )k

for all £ among 0,1,...,n — 1.
To show (22]) we set
(a4
Fy(k,q) = L 4k
(k. 9) (¢: 9
Now we find that
(1= ¢") Fa(k,q) = (1= ¢ ) Fo(k — 1,9).

Then we may obtain (Z.2)) by some similar arguments as above. O
Lemma 2.2. For any odd integer n > 1, we have

(¢ 0)n-1 _

G = il (mod & (g)%), (2.4)
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Proof. Clearly,

(@01 _ (€0)20-2
(G D1 (G On1(G 0
Note that
¢"=1 (mod ®,(q))
and

¢ #1 (mod ®,(¢q)) forallj=1,2,....,n—1.
Thus we have
(¢ @)2n—2 [ —g™)  1—¢n

=(1-¢") =t — = = —q[n] (mod @,(¢)*).

(49)7, [I-i1-¢) 1—q
By [1, Corollary 10.2.2(c)] we have

n(n+1)/2

~¢n 1= (G
(~¢Dn _ Z(qq)q

(=€ On1 = T2 (g k(G s

1+qn 2
Substituting (2.6]) and (2.7) into (2.5]) we immediately obtain the desired lemma.

1 (mod ®,(q)).

(2.6)

Proof of Theorem [I1 We first prove (LL6). Combining (2I)) and (2:2) and with the help of

Lemma we obtain that
(¢ ¢k . (a7 ¢ " (¢ )
+ 1+4¢q
,; (4:9) 2% @on (q;q)n_l( )
=—qn)(1+q7")
—(14¢)[n] (mod ®,(q)%).

Now (6] follows from (L3]).
With the help of (22]), we have

O U IR e B [ RN (/1 I
q; G — (G =1 (¢ Q)n-

Then we obtain (7)) by noting (L6 and Lemma 2.2]
The proof of Theorem [L.1]is now complete.

Ed

3. PROOF OF THEOREM

Lemma 3.1. For any positive integer n we have the following identities.

-1 ) 1 1
1—qZ —Z
k=0 k=0

2

qk) — (q3;q2)n_1 n—1 _ qn>
4 q (¢ )n

LS

7

(3.1)
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and

(3.2)

Proof. Set

Galk, ) = T e g

Then we may easily check that
(1= ¢"Gi(k.q) = (¢ — )Gk —1,9).

Summing both sides of the above identity from k =1 to n — 1 we have

n—1

n—1
¢ (1= ¢*™MGi(k,q) = > (1= "Gk, q) = (¢ — *)Gi(n — 1,9).
k=0

k=0
Thus we obtain (3]) by noting
(1= a)(¢* ¢ = (1= )@ ¢

for all £k among 0,1,...,n — 1.
Also, (8:2)) can be deduced by setting

and noting that
(1—¢"Ga(k,q) = (1 — ¢ )Ga(k —1,9).

Proof of Theorem[1.2 By (B.2) we have

n—1 n— 1

( k 2k 1 2n—1 (Q§q2)n—1
Z ( —4q ") (%9
k=0 Q7q k=0 q;49)n-1

Then ([L9) follows from (L3) and Lemma Substituting (L3) and (L9) we immediately
get (LI0).

The proof of Theorem is now complete. 0J
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