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ON A PROBLEM OF PARTITIONS OF Zm WITH THE SAME REPRESENTATION

FUNCTIONS

CUI-FANG SUN AND MENG-CHI XIONG

ABSTRACT. For any positive integer m, let Zm be the set of residue classes modulo m. For A ⊆ Zm

and n ∈ Zm, let representation function RA(n) denote the number of solutions of the equation

n = a + a′ with ordered pairs (a, a′) ∈ A × A. In this paper, we determine all sets A,B ⊆ Zm

with A ∪ B = Zm and |A ∩ B| = 2 or m − 2 such that RA(n) = RB(n) for all n ∈ Zm. We

also prove that if m is a positive integer with 4|m, then there exist two distinct sets A,B ⊆ Zm with

A ∪B = Zm and |A ∩ B| = 4 or m− 4, B 6= A+ m

2
such that RA(n) = RB(n) for all n ∈ Zm.

If m is a positive integer with 2‖m, A∪B = Zm and |A∩B| = 4 or m− 4, then RA(n) = RB(n)

for all n ∈ Zm if and only if B = A+ m

2
.
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1. INTRODUCTION

Let N be the set of all nonnegative integers. For S ⊆ N and n ∈ S, let the representation function

R′
S(n) denote the number of solutions of the equation n = s + s′ with s, s′ ∈ S. Sárkőzy asked

whether there exist two sets A,B ⊆ N with |(A ∪ B)\(A ∩ B)| = ∞ such that R′
A(n) = R′

B(n)
for all sufficiently large integers n. In 2002, Dombi [2] showed that the answer is negative. There

are many other related results (see [1, 3, 4, 5, 6, 7] and the references therein).

For a positive integer m, let Zm be the set of residue classes modulo m. For any residue classes

a, b ∈ Zm, there exist two integers a′, b′ with 0 ≤ a′, b′ ≤ m − 1 such that a′ = a and b′ = b. We

define the ordering a ≤ b if a′ ≤ b′. For any n ∈ Zm, without loss of generality, we may suppose

that 0 ≤ n ≤ m − 1. For A ⊆ Zm and n ∈ Zm, let RA(n) denote the number of solutions of

n = a + a′ with a, a′ ∈ A. For n ∈ Zm and A ⊆ Zm, let n + A = {n + a : a ∈ A}. For

A,B ⊆ Zm and n ∈ Zm, let RA,B(n) be the number of solutions of n = a + b with a ∈ A and

b ∈ B. The characteristic function of A ⊆ Zm is denoted by

χA(n) =

{

1 n ∈ A,

0 n 6∈ A.

In 2012, Yang and Chen [8] determined all sets A,B ⊆ Zm with |(A ∪B)\(A ∩B)| = m such

that RA(n) = RB(n) for all n ∈ Zm. In 2017, Yang and Tang [9] determined all sets A,B ⊆ Zm

with |(A ∪ B)\(A ∩B)| = 2 or m− 1 such that RA(n) = RB(n) for all n ∈ Zm. Yang and Tang

[9] also posed the following problem for further research.

Problem 1.1. Given a positive even integer m and an integer k with 2 ≤ k ≤ m−1. Do there exist

two distinct sets A,B ⊆ Zm with |A| = |B| = k and B 6= A + {m
2
} such that RA(n) = RB(n)

for all n ∈ Zm?
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In this paper, we consider for which positive even integers m there exist two distinct sets A,B ⊆
Zm with A ∪ B = Zm and |A ∩ B| = 2,m − 2, 4 or m − 4 such that RA(n) = RB(n) for all

n ∈ Zm and obtain the following results:

theorem 1.2. Let m be a positive even integer. Let A,B ⊆ Zm with A∪B = Zm and |A∩B| = 2

or m− 2. Then RA(n) = RB(n) for all n ∈ Zm if and only if B = A+ m
2

.

theorem 1.3. Let m be a positive integer with 4|m. Then there exist two distinct sets A,B ⊆ Zm

with A ∪ B = Zm, B 6= A + m
2

and |A ∩ B| = 4 or m − 4 such that RA(n) = RB(n) for all

n ∈ Zm.

theorem 1.4. Let m be a positive integer with 2‖m. Let A,B ⊆ Zm with A ∪ B = Zm and

|A ∩B| = 4 or m− 4. Then RA(n) = RB(n) for all n ∈ Zm if and only if B = A+ m
2

.

2. LEMMAS

Lemma 2.1. Let m be a positive even integer and t be a positive integer with t < m
2

. Let A,B ⊆ Zm

with A∪B = Zm and |A∩B| = 2t. If RA(n) = RB(n) for all n ∈ Zm, then |A| = |B| = m
2
+ t.

Proof. If RA(n) = RB(n) for all n ∈ Zm, then

|A|2 =
∑

n∈Zm

RA(n) =
∑

n∈Zm

RB(n) = |B|2.

Thus |A| = |B|. Noting that

|A|+ |B| = |A ∪B|+ |A ∩B| = m+ 2t,

we have |A| = |B| = m
2
+ t.

This completes the proof of Lemma 2.1. �

Lemma 2.2. Let m be a positive even integer and t be a positive integer with t < m
2

. Let A,B ⊆ Zm

with A ∪B = Zm and A ∩B = {r1, r2, . . . , r2t}. If RA(n) = RB(n) for all n ∈ Zm, then

(2.1)

2t
∑

i=1

χA(n− ri) = t+
1

2
R{r1,r2,...,r2t}(n).

Proof. Noting that B = (Zm\A) ∪ {r1, r2, . . . , r2t}, we have

RB(n) = RZm\A(n) + 2RZm\A,{r1,r2,...,r2t}(n) +R{r1,r2,...,r2t}(n)

= |{(a, a′) : a, a′ ∈ Zm\A, 0 ≤ a, a′ ≤ m− 1, a+ a′ = n or a+ a′ = n+m}|

+2

2t
∑

i=1

(1− χA(n− ri)) +R{r1,r2,...,r2t}(n)
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=
∑

0≤i≤n

2

(1− χA(i))(1 − χA(n− i)) +
∑

n+1≤i≤n+m

2

(1− χA(i))(1 − χA(n− i))

+
∑

0≤i<n

2

(1− χA(i))(1 − χA(n− i)) +
∑

n+1≤i<n+m

2

(1− χA(i))(1 − χA(n− i))

+2

2t
∑

i=1

(1− χA(n− ri)) +R{r1,r2,...,r2t}(n)

=
∑

0≤i≤n

2

1−
∑

0≤i≤n

χA(i)− χA(
n

2
) +

∑

0≤i≤n

2

χA(i)χA(n− i)

+
∑

n+1≤i≤n+m

2

1−
∑

n+1≤i≤m−1

χA(i)− χA(
n+m

2
) +

∑

n+1≤i≤n+m

2

χA(i)χA(n− i)

+
∑

0≤i<n

2

1−
∑

0≤i≤n

χA(i) + χA(
n

2
) +

∑

0≤i<n

2

χA(i)χA(n− i)

+
∑

n+1≤i<n+m

2

1−
∑

n+1≤i≤m−1

χA(i) + χA(
n+m

2
) +

∑

n+1≤i<n+m

2

χA(i)χA(n− i)

+2
2t
∑

i=1

(1− χA(n− ri)) +R{r1,r2,...,r2t}(n)

=
[n

2

]

+ 1 +

[

n+m

2

]

− n+

[

n− 1

2

]

+ 1 +

[

n+m− 1

2

]

− n− 2|A|

+RA(n) + 2

2t
∑

i=1

(1− χA(n− ri)) +R{r1,r2,...,r2t}(n)

= −2t+RA(n) + 2

2t
∑

i=1

(1− χA(n − ri)) +R{r1,r2,...,r2t}(n)

= 2t+RA(n)− 2

2t
∑

i=1

χA(n− ri) +R{r1,r2,...,r2t}(n).

Since RA(n) = RB(n) for all n ∈ Zm, we have

2t
∑

i=1

χA(n− ri) = t+
1

2
R{r1,r2,...,r2t}(n).

This completes the proof of Lemma 2.2. �

3. PROOFS

Proof of Theorem 1.1. It is clear that RA(n) = RB(n) for all n ∈ Zm if B = A + m
2

. Now we

suppose that RA(n) = RB(n) for all n ∈ Zm. Clearly, the result is true for m = 2. Now we may

assume that m ≥ 4.

Case 1. |A ∩ B| = 2. Let A ∩ B = {r1, r2} with r1 6= r2. By choosing n = 2r1 in (2.1), we

have

1 + χA(2r1 − r2) = χA(r1) + χA(2r1 − r2) = 1 +
1

2
R{r1,r2}(2r1) ≥

3

2
.
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Then χA(2r1 − r2) = 1 and r2 = r1 +
m
2

. Let k ∈ A with k 6= r1 and k 6= r2. By choosing

n = k + r1 in (2.1), we have

χA(k) + χA(k +
m

2
) = 1 +

1

2
R{r1,r2}(k + r1) = 1.

It follows that B = A+ m
2

.

Case 2. |A∩B| = m− 2. Let A∩B = T,A = {a}∪T,B = {b}∪T with a 6= b and a, b 6∈ T .

For any n ∈ Zm, we have

RA(n) = RT (n) + 2RT,{a}(n) +R{a}(n) = RT (n) + 2χT (n − a) +R{a}(n);

RB(n) = RT (n) + 2RT,{b}(n) +R{b}(n) = RT (n) + 2χT (n− b)) +R{b}(n).

Then

(3.1) 2χT (n− a) +R{a}(n) = 2χT (n− b) +R{b}(n).

By choosing n = 2b in (3.1), we have

2χT (2b− a) +R{a}(2b) = 2χT (b) +R{b}(2b) = 1.

Then 2χT (2b− a) = 0 and R{a}(2b) = 1. Thus b = a+ m
2

. It follows that B = A+ m
2

.

This completes the proof of Theorem 1.2. �

Proof of Theorem 1.2. Let m = 4k with k a positive integer.

Case 1. |A ∩B| = 4. Noting that A 6= B, we have k ≥ 2. Let

A = {0, 1, . . . , k − 1, k} ∪ {2k, 2k + 1, . . . , 3k − 1, 3k},

B = {k, k + 1, . . . , 2k − 1, 2k} ∪ {3k, 3k + 1, . . . , 4k − 1, 0}.

It is clear that A,B ⊆ Zm with A ∪ B = Zm, B 6= A + m
2

and A ∩ B = {0, k, 2k, 3k}. Let

S = {0, 1, . . . , k − 1, k}. Then A = S ∪ (S + 2k) and B = (S + k) ∪ (S + 3k). Noting that

RS(n) = RS+2k(n) = RS+k,S+3k(n),

RS+k(n) = RS,S+2k(n) = RS+3k(n)

for all n ∈ Zm, we have

RA(n) = RS(n) + 2RS,S+2k(n) +RS+2k(n)

= RS+k(n) + 2RS+k,S+3k(n) +RS+3k(n)

= RB(n).

Case 2. |A ∩ B| = m − 4. If k = 1, then by choosing A = {0, 2}, B = {1, 3}, we have

A ∪B = Z4, B 6= A+ 2 and RA(n) = RB(n) for all n ∈ Z4. Now let k ≥ 2 and

A = {0, 1, . . . , k − 1} ∪ {k + 1, k + 2, . . . , 3k − 1} ∪ {3k + 1, 3k + 2, . . . , 4k − 1},

B = {1, 2, . . . , 2k − 1} ∪ {2k + 1, 2k + 2, . . . , 4k − 1}.

It is clear that A ∪B = Zm, B 6= A+ m
2

and

A ∩B = {1, . . . , k − 1} ∪ {k + 1, . . . , 2k − 1} ∪ {2k + 1, . . . , 3k − 1} ∪ {3k + 1, . . . , 4k − 1}.
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Noting that RA∩B,{0,2k}(n) = RA∩B,{k,3k}(n) and R{0,2k}(n) = R{k,3k}(n) for all n ∈ Zm, we

have

RA(n) = R{0,2k}(n) + 2RA∩B,{0,2k}(n) +RA∩B(n)

= R{k,3k}(n) + 2RA∩B,{k,3k}(n) +RA∩B(n)

= RB(n).

This completes the proof of Theorem 1.3. �

Proof of Theorem 1.3. It is clear that RA(n) = RB(n) for all n ∈ Zm if B = A + m
2

. Now we

suppose that RA(n) = RB(n) for all n ∈ Zm. By A 6= B and 2‖m, we have m ≥ 6.

Case 1. |A ∩B| = 4. Let A ∩B = {r1, r2, r3, r4}. By Lemma 2.2, we have

(3.2) χA(n− r1) + χA(n− r2) + χA(n− r3) + χA(n − r4) = 2 +
1

2
R{r1,r2,r3,r4}(n).

Then 2|R{r1,r2,r3,r4}(n) for any n ∈ Zm. Thus 2|R{r1,r2,r3,r4}(2ri) for i ∈ {1, 2, 3, 4}. Without

loss of generality, we may assume that r3 = r1 +
m
2

and r4 = r2 +
m
2

. Clearly, the result is true for

m = 6. Now let m = 2k with 2 ∤ k and k ≥ 5. Let

l = min{i ≥ 2 : {r2, r2 +
m

2
} = {ir1 − (i− 1)r2, ir1 − (i− 1)r2 +

m

2
}}.

By 2‖m, we have 3 ≤ l ≤ k and l|k. Now we discuss the following two subcases according to l.

Subcase 1.1 l = k. Then

Zm =

k
⋃

i=1

{ir1 − (i− 1)r2, ir1 − (i− 1)r2 +
m

2
}.

By choosing n− r2 = ir1 − (i− 1)r2 for i = 1, 2, . . . , k in (3.2), we have

χA(r2) + χA(r2 +
m

2
) + χA(r1) + χA(r1 +

m

2
) = 4,

χA(r1) + χA(r1 +
m

2
) + χA(2r1 − r2) + χA(2r1 − r2 +

m

2
) = 3,

χA(2r1 − r2) + χA(2r1 − r2 +
m

2
) + χA(3r1 − 2r2) + χA(3r1 − 2r2 +

m

2
) = 2,

· · ·

χA((k − 2)r1 − (k − 3)r2) + χA((k − 2)r1 − (k − 3)r2 +
m

2
)

+χA((k − 1)r1 − (k − 2)r2) + χA((k − 1)r1 − (k − 2)r2 +
m

2
) = 2,

χA((k − 1)r1 − (k − 2)r2) + χA((k − 1)r1 − (k − 2)r2 +
m

2
) + χA(r2) + χA(r2 +

m

2
) = 3.

Noting that

χA(r2) + χA(r2 +
m

2
) = χA(r1) + χA(r1 +

m

2
) = 2,

we have

χA(ir1 − (i− 1)r2) + χA(ir1 − (i− 1)r2 +
m

2
) = 1

for i = 2, 3, . . . , k − 1. It follows that B = A+ m
2

.

Subcase 1.2 3 ≤ l < k. Then k = ls with s ≥ 3 and 2 ∤ s. Thus
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Zm =

l
⋃

i=1

s−1
⋃

j=0

{ir1 − (i− 1)r2 + j, ir1 − (i− 1)r2 + j +
m

2
}.

By choosing n− r2 = ir1 − (i− 1)r2 for i = 1, 2, . . . , l in (3.2), we have

χA(r2) + χA(r2 +
m

2
) + χA(r1) + χA(r1 +

m

2
) = 4,

χA(r1) + χA(r1 +
m

2
) + χA(2r1 − r2) + χA(2r1 − r2 +

m

2
) = 3,

χA(2r1 − r2) + χA(2r1 − r2 +
m

2
) + χA(3r1 − 2r2) + χA(3r1 − 2r2 +

m

2
)

= 2 +
1

2
R{r1,r1+

m

2
,r2,r2+

m

2
}(3r1 − r2),

· · ·

χA((l − 1)r1 − (l − 2)r2) + χA((l − 1)r1 − (l − 2)r2 +
m

2
) + χA(r2) + χA(r2 +

m

2
) = 3.

Noting that

χA(r2) + χA(r2 +
m

2
) = χA(r1) + χA(r1 +

m

2
) = 2,

we have

χA(ir1 − (i− 1)r2) + χA(ir1 − (i− 1)r2 +
m

2
) = 1

for i = 2, . . . , l − 1.

For any j ∈ {1, 2, . . . , s − 1}, by choosing n − r2 = ir1 − (i − 1)r2 + j for i = 1, 2, . . . , l in

(3.2), we have

χA(r2 + j) + χA(r2 + j +
m

2
) + χA(r1 + j) + χA(r1 + j +

m

2
) = 2,

χA(r1 + j) + χA(r1 + j +
m

2
) + χA(2r1 − r2 + j) + χA(2r1 − r2 + j +

m

2
) = 2,

χA(2r1 − r2 + j) + χA(2r1 − r2 + j +
m

2
) + χA(3r1 − 2r2 + j)

+χA(3r1 − 2r2 + j +
m

2
) = 2,

· · ·

χA((l − 1)r1 − (l − 2)r2 + j) + χA((l − 1)r1 − (l − 2)r2 + j +
m

2
)

+χA(r2 + j) + χA(r2 + j +
m

2
) = 2

Noting that 2 ∤ l, we have

χA(ir1 − (i− 1)r2 + j) + χA(ir1 − (i− 1)r2 + j +
m

2
) = 1

for i = 1, 2, . . . , l − 1. It follows that B = A+ m
2

.

Case 2. |A ∩ B| = m − 4. Let A ∩ B = T,A = {a1, a2} ∪ T,B = {b1, b2} ∪ T with

{a1, a2} ∩ {b1, b1} = ∅ and {a1, a2, b1, b2} ∩ T = ∅. For any n ∈ Zm, we have

RA(n) = RT (n) + 2RT,{a1,a2}(n) +R{a1,a2}(n)

= RT (n) + 2χT (n− a1) + 2χT (n− a2) +R{a1,a2}(n);

RB(n) = RT (n) + 2RT,{b1,b2}
(n) +R{b1,b2}

(n)

= RT (n) + 2χT (n− b1) + 2χT (n− b2) +R{b1,b2}
(n).
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Then

(3.3) 2χT (n− a1) + 2χT (n− a2) +R{a1,a2}(n) = 2χT (n− b1) + 2χT (n− b2) +R{b1,b2}
(n).

By choosing n = a1 + a2 in (3.3), we have

2χT (a1 + a2 − b1) + 2χT (a1 + a2 − b2) +R{b1,b2}
(a1 + a2) = 2.

If χT (a1 + a2 − b1) = 1, then

χT (a1 + a2 − b2) = R{b1,b2}
(a1 + a2) = 0.

Thus a1 + a2 − b2 ∈ {b1, b2} and a1 + a2 6∈ {2b1, b1 + b2, 2b2}, which is a contradiction. It

follows that χT (a1 + a2 − b1) = 0. Similarly, we can get χT (a1 + a2 − b2) = 0. Therefore

R{b1,b2}
(a1 + a2) = 2. It means that a1 + a2 = 2b1 = 2b2 or a1 + a2 = b1 + b2.

By choosing n = b1 + b2 in (3.3), we have

2χT (b1 + b2 − a1) + 2χT (b1 + b2 − a2) +R{a1,a2}(b1 + b2) = 2.

If χT (b1 + b2 − a1) = 1, then

χT (b1 + b2 − a2) = R{a1,a2}(b1 + b2) = 0.

Thus b1 + b2 − a2 ∈ {a1, a2} and b1 + b2 6∈ {2a1, a1 + a2, 2a2}, which is a contradiction. It

follows that χT (b1 + b2 − a1) = 0. Similarly, we can get χT (b1 + b2 − a2) = 0. Therefore

R{a1,a2}(b1 + b2) = 2. It means that b1 + b2 = 2a1 = 2a2 or b1 + b2 = a1 + a2.

If a1 + a2 = 2b1 = 2b2, then b1 + b2 = 2a1 = 2a2. Thus a2 = a1 +
m
2
, b2 = b1 +

m
2

and

2a1 +
m
2
= 2b1, which contradicts 2‖m. It follows that a1 + a2 = b1 + b2. By choosing n = 2a1

in (3.3), we have

(3.4) 2χT (2a1 − a2) +R{a1,a2}(2a1) = 2χT (2a1 − b1) + 2χT (2a1 − b2) +R{b1,b2}
(2a1).

If R{a1,a2}(2a1) = 2, then 2a1 = 2a2 and χT (2a1−a2) = χT (a2) = 0. Thus R{b1,b2}
(2a1) = 0

and χT (2a1 − b1) = χT (2a1 − b2) = 1, which contradicts (3.4).

If R{a1,a2}(2a1) = 1, then 2a1 6= 2a2. By (3.4), we have R{b1,b2}
(2a1) = 1. Then 2b1 6= 2b2 and

2a1 ∈ {2b1, 2b2}. Without loss of generality, we may assume that 2a1 = 2b1. Then b1 = a1 +
m
2

and b2 = a2 +
m
2

. It follows that B = A+ m
2

.

This completes the proof of Theorem 1.4. �
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