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ON A PROBLEM OF PARTITIONS OF Z,, WITH THE SAME REPRESENTATION
FUNCTIONS

CUI-FANG SUN AND MENG-CHI XIONG

ABSTRACT. For any positive integer m, let Z,, be the set of residue classes modulo m. For A C Z,
and M € Zm, let representation function R4 (7)) denote the number of solutions of the equation
n = @+ o’ with ordered pairs (@,a’) € A x A. In this paper, we determine all sets A, B C Z,
with AU B = Zp, and |A N B| = 2 or m — 2 such that Ra(7) = Rp(w) forallm € Z,,. We
also prove that if m is a positive integer with 4|m, then there exist two distinct sets A, B C Z, with
AUB=1Zmand |[ANB|=40rm —4, B# A+ Z such that Ra(n) = Rp(n) for all i € Zp,.
If m is a positive integer with 2||m, AU B = Z, and |ANB| = 4 or m — 4, then R4 (%) = Rp(7)
forall @ € Zyy, if and only if B = A + 2.
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1. INTRODUCTION

Let N be the set of all nonnegative integers. For S C N and n € .5, let the representation function
R's(n) denote the number of solutions of the equation n = s + s’ with s, s’ € S. Sarkézy asked
whether there exist two sets A, B C N with |(A U B)\(A N B)| = oo such that R (n) = Rz(n)
for all sufficiently large integers n. In 2002, Dombi [2] showed that the answer is negative. There
are many other related results (see [1}, 3,4 [5 16, [7] and the references therein).

For a positive integer m, let Z,,, be the set of residue classes modulo m. For any residue classes
@,b € Z,,, there exist two integers a’, b’ with 0 < a’,’ < m — 1 such that o/ = @ and ¥’ = b. We
define the ordering @ < bif ' < V. For any @ € Z,,, without loss of generality, we may suppose
that 0 < n < m — 1. For A C Z,, and @ € Z,, let R4(7) denote the number of solutions of
m=7a+d witha,d € A. Forn € Z,, and A C Zy,,letn + A = {n+a:a € A}. For
A, B C Zy, and T € Zyy,, let R4 p(7) be the number of solutions of 7 = @ + bwith@ € A and
b € B. The characteristic function of A C Z,, is denoted by

1 meA,
Xaln) = {0 nd A

In 2012, Yang and Chen [[8] determined all sets A, B C Z,, with |(A U B)\(A N B)| = m such
that R4(m) = Rp(m) for all @ € Zj,. In 2017, Yang and Tang [9]] determined all sets A, B C Z,,
with [(AU B)\(AN B)| =2 orm — 1 such that R4(n) = Rp(n) for all m € Z,,. Yang and Tang
[9] also posed the following problem for further research.

Problem 1.1. Given a positive even integer m and an integer k with 2 < k < m — 1. Do there exist
two distinct sets A, B C Ty, with |A| = |B| = k and B # A+ {&} such that R4(7) = Rp(7)
forallm € Zy,?
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In this paper, we consider for which positive even integers m there exist two distinct sets A, B C
Ly with AU B = Zy, and |AN B| = 2,m — 2,4 or m — 4 such that R4(n) = Rp(n) for all
n € Zm, and obtain the following results:

theorem 1.2. Let m be a positive even integer. Let A, B C Zy, with AU B = Zy, and |[ANB| =2
orm — 2. Then Ra(n) = Rp () for all @ € Ly, ifand only if B = A + .

theorem 1.3. Let m be a positive integer with 4|m. Then there exist two distinct sets A, B C Zy,
with AU B = Zym, B # A+ % and |AN B| = 4 or m — 4 such that Ry(m) = Rp(n) for all
n € L.

theorem 1.4. Let m be a positive integer with 2||m. Let A, B C Zy, with AU B = Z, and
|ANB| =4 o0rm—4. Then Ry(n) = Rp(n) for all @ € L, ifand only if B = A+ 4.

2. LEMMAS
Lemma 2.1. Let m be a positive even integer and t be a positive integer witht < 5. Let A, B C Zy,
with AU B = Zy, and |AN B| = 2t. If Ra(7) = Rp(n) for all @ € Ly, then |A| = |B| = & + 1.

Proof. If R4(n) = Rp(n) for all @ € Z,,, then

|AP = )" Ra(m)= ) Rp(m) =B

M€Lm M€Lm
Thus |A| = | B|. Noting that
|A| +|B|=|AUB|+ |[ANB|=m+ 2t,

we have |A| = |B| = 3 +1.
This completes the proof of Lemma[2.1] O

Lemma 2.2. Let m be a positive even integer and t be a positive integer witht < 7. Let A, B C Zy,
with AU B = Zy, and AN B = {/,732,...,T2}. If Ra(l) = Rp(n) for all T € Z,y,, then

2t
1
(2.1) > xaln—r) =t+ 5 R} (7)-

i=1

Proof. Noting that B = (Z,,\A) U {71,732, ...,T2}, we have

Rp(m) = Rz,\a(@)+ 2Rz, \a (o575 () + Riprms, o) ()
= {(a,d):@,d € Z,,\A,0<a,a’ <m—1,a+d =nora+ad =n+m}
2

+2) (1= xa(n = 1)) + Ry ,...757 (70)
i=1
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= > @=xal@)A-—xaln =)+ Y (L—=xald){d~xaln—19))

Oisy ntl<i<nim
+ Y C=xa@)@—xan=0)+ > (L=xa(@)(1~xaln—0))
O=i<3 nt1<i<nbm

2t

+2 Z(l —xa(n —71i) + R rs,.. 730 (M)
i1

= Y 1- Y XA(i)—XA(g)+ > xali)xa(n—1)

0<i<% 0<i<n 0<i<2

+ Y 1= > XA(i)—XA(n—;m)+ xa(i)xa(n —1i)

n+1<2‘<”+_m n+1<i<m—1

Y 1= Y @ xalz) + D xalixatn—i)

0<i< 0<i<n 0<i<

+ oy 1= > XA(z‘)JrXA(nJ;m)Jr Z XA(i)XA(n—i)

n+1<i< nzm n+1<i<m-—1 n+1<

2t
+2 Z(l —xa(n —1i)) + Rag s,y (M)
i=1
n n+m n—1 n+m-—1
= [3]+1+ [—2 ] —n+t [—2 } 1+ [72 } —n—2A|
2t
+Ra(m) + 22 (1= xa(n—mr))+ R{T1,T’2, 77"215}( n)
=1
2t

= —2t—|—RA —|—2 E 1 —XA(n—T‘Z)) +R{T1,7‘2, ,th}( )
i=1
2t

- 2t+RA —QZXA n—n)—i—R{TLT27 ,7"27:}( )
i=1
Since R4(n) = Rp(n) for all @ € Z,,, we have
2
ZXA n - TZ) =t+ R{7"177"27 77“215}( )
i=1
This completes the proof of Lemma[2.2] O

3. PROOFS

Proof of Theorem 1.1. It is clear that R4(n) = Rp(n) forallm € Zy, if B = A+ 2. Now we
suppose that R4 () = Rp(n) for all @ € Zy,. Clearly, the result is true for m = 2. Now we may
assume that m > 4.

Case 1. [AN B| = 2. Let AN B = {71,T2} with 77 # T5. By choosing n = 2r; in 1), we

have
3

L+ xa(2r1 —r2) = xa(r1) + xa(2r; —ry) =14 R{Tl,m}( )>§.
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Then x4(2ry —r2) = land 73 = 77 + ? Let k € A with k # 77 and k # 75. By choosing
n =k + ry in 2.I), we have

m 1 I

It follows that B = A —|—§
Case2. [ANB|=m—-2Let ANB=T,A={a}uUT,B = {b}UT witha # band a,b ¢ T.
For any n € Z,,, we have

Ra(m) = Rr(m)+ 2Ry @ M)+ Ry (M) = Rr(R) + 2xr(n — a) + Rgy(0);
Rp(m) = Rr(n)+ 2Ry g (M) + Ry (M) = Rp(n) + 2xr(n — b)) + R, (n).

Then
(3.1) 2xr(n — a) + Rz (M) = 2x7(n —b) + R{I;}(ﬁ).
By choosing n = 2b in (3.1)), we have

2x7(20 — a) + Ryay(2b) = 2x7(b) + Ry5,(2b) = 1.

Then 2x7(2b — a) = 0 and Ry, (2b) = 1. Thus b = @ + U It follows that B = A+ 2
This completes the proof of Theorem O

Proof of Theorem 1.2. Let m = 4k with k a positive integer.
Case 1. |A N B| = 4. Noting that A # B, we have k > 2. Let

A = {0,1,....k—1,k}U{2k,2k +1,...,3k — 1,3k},
B = {kk+1,...,2k—1,2k} U{3k,3k +1,...,4k — 1,0}.

It is clear that A, B C Z,, with AUB = Z,,,B # A+ Z and AN B = {0,k,2k,3k}. Let
S ={0,1,...,k—1,k}. Then A= SU (S + 2k) and B = (S + k) U (S + 3k). Noting that
Rs(m) = Rs+ﬁ(ﬁ) Ry 5 543k(M);
Ry z(M) = Rgg 5x(n) = Ry 3 (M)

for all m € Z,,, we have

Ra(m) = Rg(n)+2Rg g, 9;(M) + Ry 53(M)
= Ry ;M) +2Rg 3 5,55 (M) + Ry 55(7)
= Rp(n).

Case 2. |[AN B| = m — 4. If k = 1, then by choosing A = {0,2}, B =
AUB =17Z4,B+# A+2and Ry(n) = Rp(n) forall m € Z4. Now let k > 2 and

A
B =

{1, 3}, we have

k—1yU{k+1,k+2,...,3k—1}U{3k+ 1,3k +2,...,4k — 1},
2k:—1}u{2k+1 2% +2,...,4k —1}.

0,1,.
1,2,.

ItisclearthatAUB:Zm,B#A—i-?and

AnB={1,...,k—1}U{k+1,...,2k—1}U{2k+1,...,3k — 1} U {3k + 1,...,4k — 1}.
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Noting that R 5 551 (7) = Rynp 535 () and Rig o5, (1) = Ryg 35, () for allm € Zyy,, we
have
= Rp (ﬁ)
This completes the proof of Theorem L3l O
Proof of Theorem 1.3. It is clear that R4 (1) = Rp(n) for all W € Zy, if B = A+ 2. Now we

suppose that R4 () = Rp(n) for all m € Z,,. By A # B and 2||m, we have m > 6.
Case 1. |AN B| =4.Let AN B = {71,73,73,74}. By Lemma[2.2] we have

1
(3.2) xA(n —r1) +xa(n —r2) + xa(n —r3) +xa(n —rq) =2+ §R{ﬁﬁﬁﬂ}(ﬁ)-

Then 2| Rz 75.55,71) (70) for any 70 € Zy,. Thus 2| R 7575y (2r) for i € {1,2,3,4}. Without
loss of generality, we may assume that 73 = 77 + ? and 7y =79 + ? Clearly, the result is true for
m = 6. Now let m = 2k with 2t k and k > 5. Let

l= min{i >2: {E,E‘F %} = {irl — (’L — 1)T2,’i7‘1 — (’L — 1)7‘2 + %}}

By 2|m, we have 3 < | < k and [|k. Now we discuss the following two subcases according to /.
Subcase 1.1 [ = k. Then

k _
Lom = L_Jl{irl "G —Drayiri — (i — )12 + %}.
-
By choosing n —ro = iry — (i — 1)rg fori = 1,2,..., k in (3.2), we have

m m
xA(re) + xa(re + =) + xa(r1) + xa(r1 + =) =4,

2 2
m m
xa(r1) + xalr + 5) +xa(2r1 —72) + xa(2r1 —r2 + 5) =3,
m m
XA(2T1 — 7’2) + XA(2T1 —T9 + 5) + XA(37‘1 — 27‘2) + XA(37’1 — 2rg9 + 5) =2,

xal(k =2 = (k= 3)ra) +xal(k = 2 = (k= 3)r2 + 7)
+xa((k = D = (k= 2)r2) + xal(k = Yri = (k= 2)r2 + ) =2,
xa((k = 1re = (k = 2)r2) + xa((k = Drs = (k= 2)r2 + ) + xalra) + xalra + 5) = 3
Noting that

m m
xA(re) + xa(rs + 5) = xa(r1) +xa(r: + 5) =2,

we have

xaliry = (i = 1)ra) + xaliry = (1= Do+ 5) =1

fori=2,3,...,k— 1. It follows that B = A + 2.
Subcase 1.2 3 <[ < k. Then k = s with s > 3 and 2 { s. Thus
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I s—1
. - m
| | {irqy — (i — D)rag + j,iry — (Z—l)T‘2+j—|——2}.

7 :
By choosing n — ry = irl — (i —1)rgfori =1,2,...,1in (3.2), we have

m m
—) +xa(ry) + xa(ri + 3) =4,

xa(ra) + xa(rs + 5

m m

xa(r) + xalr: + 5) +xa(2r1 —72) + xa(2r1 —ro + 5) =3,
m m
XA(2Tl — 7’2) + XA(27"1 —1r9 + 5) + XA(37‘1 — 27’2) + XA(37‘1 — 2rg9 + 5)
1 .
=24 SR ey O — 1),
m m

xa((l = 1)1 — (1= 2)ra) + xa((l = )1 — (I = 2)ra + 5) + xa(r2) + xa(rs + 5) = 3.

Noting that

m m
xa(r2) + xa(re + 3) =xa(r1) + xa(r1 + 3) =2,

we have m
xA(iry — (i — D)rg) + xa(iry — (i — D)rg + 5) =1

fori=2,...,1—1.
Forany j € {1,2,...,s — 1}, by choosing n — ro = iry — (i — 1)ro + j fori = 1,2,...,l in
(B2), we have

‘ .om . om
xa(ra + ) +xalra + 7+ 5) +xa(rm+7)+xalm+jij+—=)=2,

2

m . .
5) +xa@2r1 —ro+ ) +xa2r —ro+ 5+

xa(2r1 —ro+ ) +xa2r —ro+j+

m
— ) = 2
2 ) )

) =2,

xa(r1+7)+ xalri+7+ 5

m .
3) + xa(3r1 — 212 + j)

+x4(8r1 —2r9 +j +

o

Xa((l=Dry = (= 2)ry +5) + xa((l = Dy = (0= 2r2 + 5+ 5

. 3 m
+XA(T2 —l—]) + XA(TQ +J+ 5) =2

Noting that 2 1 [, we have

My _q

xA(iry — (1 = 1)ra + j) 4+ xaliry — (i = D)o + 5 + 5

fori=1,2,...,01 — 1. It follows that B :A+§
Case2. [ANB| = m—4 Let ANB = T,A = {a,az} UT,B = {b, b3} UT with
{a1,az} N{b1,b1} = @ and {a7,a3,b1,b2} N T = &. For any 7 € Z,,, we have
Ra(n) = RT( ) + 2R7 (araz} () + Rigraz} ()
Rr(7) + 2x7(n — a1) + 2x7(n — a2) + Rgy a1 (7);
Rpm) = Rrp(n)+ 2Ry g5, (1) + R, (M)
= Rr(m)+2xr(n—b1) +2x7r(n —be)
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Then
(3.3) 2xzr(n —a1) + 2xr(n — a2) + Rigr azy (M) = 2xr(n — b1) + 2x7(n — b2) + Rz 37, (M).
By choosing n = a1 + a in (3.3), we have
2xr (a1 + a2 — b1) + 2xr(a1 + a2 — b2) + Ry 7y (@1 + a2) = 2.
If xr(a1 + az — by) = 1, then
xr(a1 + az — b)) = R (a1 +az) = 0.

Thus @1 + @3 — by € {by,bo} and @y + @z & {2by,b1 + ba,2by}, which is a contradiction. It
follows that xr(a; + az — by) = 0. Similarly, we can get xr(ay + as — be) = 0. Therefore
R{H,E}(a_l""a_?) = 2. It means that @y + a3 = 2b; = 2by or @y + a3 = by + bo.

By choosing n = by + by in (3.3), we have

2x7 (b1 + by — a1) + 2x7 (b1 + by — a2) + Rigrazy (b1 + b2) = 2.
If XT(bl + by — al) =1, then
x7(b1 4+ be — ag) = R{ﬁ,@}(a + E) =0.

Thus by + by — @3 € {@1,az} and by + by & {2a1,a7 + @z, 2a3}, which is a contradiction. It
follows that x7(by + by — a;) = 0. Similarly, we can get x7(by + by — az) = 0. Therefore
R{a,@}(E—FE) = 2. It means that b; + by = 2a; = 2as or by + by = a7 + @3.

If @7 + @3 = 2b; = 2bg, then by + by = 2a; = 2as. Thus @3 = a—1+§,5 = E—F?and
2a1 + ? = 2by, which contradicts 2||m. It follows that @ + @3 = by + by. By choosing n = 2a4
in (3.3)), we have

(B4 2xr(2a1 — a2) + Rygrazy (2a1) = 2x7(2a1 — b1) + 2x7(2a1 — b2) + Ry 37, (2a1).

)

If R{a7@} (2—01) = 2, then T@l = T@Q and XT(2a1 —(12) = XT(a2) — (0. Thus R{E,E} (T@l) —
and x7(2a; — b1) = x7(2a1 — b2) = 1, which contradicts (3.4). -
If Riar as) (2a1) = 1, then 2a; # 2as. By (B.4), we have R{H B} (2a1) = 1. Then 2b; # 2bs an

o

2a; € {2b1,2b,}. Without loss of generality, we may assume that 2a; = 2b;. Then by = a7 + 2
and by = a3 + % It follows that B = A + %
This completes the proof of Theorem [[.4] O
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